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ABSTRACT Machine learning is now widely used in various fields, and it has made a big splash in the field
of disease diagnosis. But traditional machine learning models are general-purpose, that is, one model is used
to evaluate the health status of different patients. A general-purpose machine learning algorithm depends
on a large amount of data and requires abundant computing power support, relies on the average level to
describe the model performance, and cannot achieve optimal results on a specific problem. In this paper,
we propose to train a unique model for each patient to improve the accuracy and ease of use of the model. The
proposed approach to solving a problem in the paper is from three perspectives (1) targeted data processing,
(2) model structure design: Passing in patient-related information into the model, and (3) hyperparameter
tailored optimization. The preliminary experimental results show that using the custommodel has advantages
of high accuracy, high confidence, and low resource required to diagnose a patient. In the Hepatitis C dataset,
over 99% accuracy and 94% recall were achieved using a smaller dataset (only 615 individuals’ data) without
knowledge of the relevant field. Traditional algorithms such as XGBoost or multi-algorithm ensemble could
achieve less than 95% accuracy and only less than 70% recall. Out of a total of 56 patients, the custommodel
was able to identify 53 patients 20 more than traditional methods, bringing a new and efficient tool for future
hepatitis C prevention and treatment efforts.

INDEX TERMS Machine learning, custom model, hepatitis C, disease diagnosis, data augmentation,
parameter optimization.

I. INTRODUCTION
Hepatitis C is an undetectable silent killer, a serious disease
that is slowly progressive and potentially carcinogenic, and
can remain latent in the body for 10-20 years [1], [2]. Typi-
cally, only about% of patients with hepatitis C virus infection
can recover spontaneously within six months, and 70% of
patients turn into chronic viral infection [3]. The hepatitis
C virus is extremely stealthy, and WHO estimates that only
about one in five of the more than 50 million people living
with hepatitis C worldwide are aware that they have the
disease, with an underdiagnosis rate of up to 80% [4]. In the
early to mid-stages of hepatitis C infection, there are usually
no obvious signs and symptoms. Patients may experience
dizziness and weakness and poor sleep, which can easily be
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confusedwith fatigue caused bywork or study [5]. As a result,
many patients are often found to have hepatitis C when they
are examined for other diseases, and some patients are even
found to have hepatitis C when cirrhosis or liver cancer is
detected. It is because of this stealthy nature that the damage
caused by hepatitis C is chronic and progressive. The hepatitis
C virus replicates primarily in the liver cells and damages
them [6]. Over time, liver cells in the body will continue to
develop inflammation, degeneration and necrosis. There is no
vaccine to prevent hepatitis C, so people at risk can only be
diagnosed and treated for hepatitis C in a timely manner by
taking the initiative to get tested for the hepatitis C virus at
the hospital [7], [8]. Although hepatitis C is dangerous, only
1 ml of blood is needed to test for infection with the virus.
Once diagnosed, there is no need to panic, as more than 95%
of patients with hepatitis C can be cured with standardized
and systematic treatment [9], [10] [11], [12].
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However, the greatest difficulty in the prevention and treat-
ment of hepatitis C disease is that most patients do not know
that they have hepatitis C. The mainstream diagnostic tools
for hepatitis C are: 1. Liver function tests(LFTs), which assess
liver disease from liver-related metabolites [13], [14] [15].
2. Hepatitis C antibody tests, which clarify whether the body
is infected with the hepatitis C virus. If the test result is
positive, it indicates that the patient is currently infected with
hepatitis C or has previously been infected with hepatitis
C [16], [17]. 3. Hepatitis C virus RNA test, this test can
effectively determine how long the infection has been present
and also howmuch of the virus is present in the patient’s body
[18], [19]. 4. Liver puncture or ultrasound: this is the main
way to determine the severity of the liver disease. Generally
speaking, if the disease is serious or has a long duration, these
two tests should be used to analyze the progress of the liver
disease, which is also the key to the current treatment process
for patients who are diagnosed [20], [21].

Among these tests mentioned above, only liver function
tests are easy to perform at regular checkups and have high
marginal utility (LFTs can be used to analyze many diseases
related to the liver). Antibody and RNA tests are more tar-
geted and less prevalent in general health care facilities, and
are relatively costly and not conducive to mass adoption.
Puncture tests or ultrasound are generally used to detect the
progression of disease in patients with confirmed disease and
are not suitable for making early disease diagnosis. This is
why making good use of the data from liver function tests has
become an effective means of identifying hepatitis C patients
earlier.

In order to make the best use of the collected data, a pow-
erful tool such as machine learning is natural. However, the
current direction of machine learning is deep learning, which
relies on a large number of datasets, which contradicts the
small amount of medical-related data accumulated today.
Borisov et al. points out that deep learning methods have a
major disadvantage in the processing of structured data [22],
and the performance of deep learning models with huge num-
bers of participants is even far behind some commonly used
tree models [23]. And there are also obvious ethical issues
with today’s machine learning models when dealing with
medical-related problems, as they are judged by their average
performance on the validation set. Perhaps the model can
perform well on average, but who wants to be the ‘‘unlucky
patient’’ who is misjudged by the model? Every data sam-
ple that is processed by the model is closely related to a
patient. The disease diagnostic model is not just discussing
the categorization of this data sample, but will actually affect
the future of a flesh-and-blood real individual. In order to
overcome the above ethical issues, the primary pursuit of a
custom model for the selected target patient is the highest
possible degree of accuracy. Aim not only for the overall
average performance of the model, but also to ensure that the
worst performance of each case is acceptable.

In this paper, we propose a machine learning model for
hepatitis C diagnosis customized for each patient. The major

difference from the traditional model is that the data of the
patient to be diagnosed is incorporated into the training pro-
cess during the training session. The comparison of the cus-
tomized solution and traditional machine learning is shown
in Figure 1 With the help of richer information, the model
achieves better accuracy and can correctly categorize almost
all patients. The second section analyzes some of the relevant
research developments, and the third section describes the
dataset used and some basic data processing tools. The fourth
section will clarify the principles of the model construction
and detail the process as much as possible in order to facilitate
the replication of the results by subsequent scholars or medi-
cal practitioners. The fifth section presents some experimen-
tal results, and the last section will provide some summary
and outlook.

II. RELATED WORK
Although this article is a study of the diagnostic issues of
hepatitis C, it is essentially an analysis based on medical
data already collected and does not involve relevant medical-
related knowledge. Therefore, in this section, we will not
analyze the virology of hepatitis C and disease-related knowl-
edge, but mainly summarize the existing data analysis tools
for the disease and their effects. In this section, we will
discuss: 1. the development of structured data processing
in the field of machine learning; 2. the customization and
lightweighting of traditional models for specific application
scenarios to make them easier to use; and 3. the progress of
studies using the same dataset.

A. METHODS OF PROCESSING STRUCTURED DATA
1) GRADIENT BOOSTED DECISION TREE
The field of structured data (i.e., tabular data) has historically
been dominated by conventional machine learning algorithms
like Gradient Boosted Decision Tree (GBDT) [24]due to their
better performance [23]. Scientists and businesses alike rely
heavily on several GBDT algorithms, the most popular of
which being XGBoost, LightGBM [25], and CatBoost [26].
A scalable gradient boosting tree technique, GBDT produces
state-of-the-art results on numerous tabular datasets, and
XGBoost is one of the most prominent implementations of
GBDT. The process known as ‘‘gradient boosting’’ builds
new models using the residuals of older models to produce
more accurate predictions [27], [28]. XGBoost’s foundation
is the same as GBDT’s, but it’s been improved upon.For
example, the second-order derivative makes the loss function
more accurate; the use of regular terms to avoid tree overfit-
ting; Block storage allows parallel computation, etc.

2) DEEP NEURAL MODELS
Since deep neural networks have been so successful in image
recognition, numerous recent research have extended deep
learning to the area of tabular data, with the goal of improving
the performance of tabular data by introducing novel neural
architectures [22], [29] [30]. Based on the deep learning ideas
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FIGURE 1. Comparison of the customized solution and traditional machine learning.
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these models draw from, themodels can be classified into two
categories.

Attention-based models. Given the novel route taken by
attention-based models in deep learning, several researchers
have experimented with attention-like modules in tabular
deep networks. Two types of focus have recently been pro-
posed: inter-sample attention, where characteristics within a
single sample interact, and intra-sample attention, where indi-
vidual data points make advantage of row-level or sample-
level interactions. [31], [32].

Differentiable trees. The series of work presented here
seeks to make decision trees differentiable because of the
impressive results obtained by decision tree ensembles when
applied to tabular data. Due to their lack of differentiability
and gradient optimization, classical decision trees are limited
in their use in some specific application scenarios. Fortu-
nately, recent research has found a solution to this issue:
by making tree functions and tree routing differentiable by
smoothing the decision functions in the internal tree nodes
differentiable [33], [34].

But even with the improvement of these new approaches
and the combination of them, it is still difficult for deep neural
models to outperform traditional GBDT across the board in
structured data.

B. CUSTOMIZATION AND LIGHTWEIGHTING OF
COMPLEX MODELS
With the rapid accumulation of data [35], [36], a variety of
all-encompassing datasets have been built [37], [38] [39],
the differences between data and compatibility issues were
ignored. This neglect leads to the difficulty for complex
models for complete scenarios to perform consistently on all
problems [40], [41], there will always be particular problems
that are substantially off in prediction, and there will always
be images that cannot be correctly classified. This leads to the
fact that if one wants to apply large proven models to specific
particular datasets, that is, to adapt the original models to
specific problems, this is not easy to achieve. In the field of
problem-based machine learning research, there has been a
minimal exploration of this.

Some researchers [42], [43] [44], [45] [46] discusses how
existing complex models can be tailored to specific prob-
lems, making the original model better applicable to specific
datasets using transfer learning. Since traditional mature neu-
ral networks are large and bloated. Some researchers [47],
[48] [49], [50] [51] attempts to compress the parameters of
the model based on the existing model employing knowledge
distillation and model simplification to achieve the effect of
improving the speed of computing.

There also are several scholars who proposed some tricks
for data augmentation [52], [53] [54], [55] [56], which can
make the model improve the accuracy of analysis in specific
scenario.

However, these solution ideas are still rarely discussed for
very specific individual problems, and this paper will try to
fill the gap and demonstrate the feasibility.

C. HEPATITIS C DISEASE DIAGNOSIS
USING THE SAME DATASET
In the field of medical diagnostics, machine learning has been
showing its capabilities since very early on. Back in 2017,
Hashem et al. compared several ways to predict hepatitis
C using blood markers, yielding a best accuracy rate of
66.3% to 84.4% [57]. In 2018, Hoffmann et al. collected
and organized the dataset used in this paper, several medical
researchers analyzed the data through a tree model, yielding
an accuracy rate of best 75.3 [58]. This dataset was donated
to the UCI Machine Learning Repository in June 2020 [59],
[60]. After that, Chicco and Jurman used the dataset to per-
form Ensemble Learning on the AST/ALT ratio to achieve
a 95.4% accuracy rate on whether the disease was present
or not [61]. Chawathe et al. achieved a 95% accuracy rate
and 89% recall rate by fusing multiple models. But for spe-
cific applications in medical diagnosis, all this needs to be
enhanced [62].

We need to make every effort so that all patients are
accurately identified and all healthy patients can be correctly
classified without additional biopsies.

III. METHODOLOGY
The algorithm design in this paper is based on thinking from
two perspectives, from the perspective of the user of the
model and from the perspective of the data.

1) USER’s PERSPECTIVE
When a patient’s certain laboratory indicator contributes sig-
nificantly to the outcome of a disease, it means that this
indicator is important and should be given attention. This
kind of judgment is what experienced physicians are good at,
and as someone who has some experience working with key
characteristic variables, understanding them is a must. Like-
wise, for indicators that are not important in the laboratory
results, the physician will find that the impact of this indica-
tor is not important in the diagnosis of a particular disease
[63], [64] [65].

In general, after a systematic study of medical knowledge
and a certain period of internship, a doctor canmake a general
judgment about various laboratory indicators, which ones are
important and which ones do not play a role. However, the
superficial cognition of inexperienced doctors is not enough
to judge the causal relationship between variables in a short
time, so if doctors are allowed to intervene in the screening
of data at the early stage of data processing, the inaccuracy
of doctors’ own judgment will be transferred to the data.
Therefore, it is wiser to have physicians with extensive expe-
rience review the trained model to check whether the impor-
tance differences of the weights in the model are consistent
with the objective laws of the real world, so as to ensure
the reliability and interpretability of the model. It’s also an
effective way to get more value out of experienced physi-
cians and allow excellent medical resources to serve more
people [66].
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2) THE PERSPECTIVE OF DATA
The data itself will naturally present differences in the influ-
ence of different variables, and will also show the relationship
between different data samples.When it comes to data related
to disease diagnosis, the data will then reflect similarities
between patients. The general process of machine learning
mainly describes the relationship between variables, but not
much attention is paid to the relationship between samples.
The data processing customized for patients proposed in this
study is going to fill this gap and explore how to use the
relationship between samples to improve the accuracy of the
model. The effect of focusing on some of the key samples can
be achieved by modifying the ratio of the number between
samples, just like a person focuses on the key information in
a scene.

Guided by the above ideas, the algorithm proposed in this
paper implements model customization for patients in three
stages. 1) data processing stage: targeted sample augmenta-
tion. 2) model structure design stage: patient data are skill-
fully passed to the model. 3) hyperparameter optimization
stage: model performance under different hyperparameters
are judged by new evaluation criteria. We call an individual
patient who needs a disease diagnosis a ‘‘target patient’’.
Each patient’s laboratory results can be considered a sample,
and a medical dataset will have a very large number of
samples.

The framework of the algorithm is depicted in Figure 2,
which is divided into three major parts, they are data process-
ing, model building, and parameter optimization. The yellow
box on the left is the acquisition process of the traditional
machine learning model, and the blue box on the right is the
acquisition process of the custom machine learning model
proposed in this paper.

A. TARGETED DATA AUGMENTATION
This paper proposes to adjust the proportion of training sam-
ples (targeted data augmentation). The operation of this part
is shown in Figure 3.

EDA (Exploratory Data Analysis) [67], [68] is an essential
part of machine learning and is the first step that starts after
acquiring data. In this process, the original data is explored
with as few a priori assumptions as possible, summarizing
the structure of the data and presenting specific patterns. For
a single feature, the data engineer always expects that the
variables under that feature can be uniformly distributed or
normally distributed within the data. For the whole sample
space, the data engineer always expects that each data point
can be uniformly distributed in the sample space (it means
that the probability (density) corresponding to each sample
point in the whole sample space is equal) [69]. This is because
imbalanced data can seriously affect the model’s effective-
ness and even affect the judgment of the model, good or bad.
The accuracy of themodel is very high for the high proportion
categories, and the deviation of the prediction is exceptionally
high for the low proportion categories. Nevertheless, The

researcher naively thought to get a good model because the
higher proportion categories had a more significant effect on
the loss and metric [70].

However, in a dataset containing a large number of sam-
ples, there always is only limited sample data in the region
that should be focused on. If a laboratory result for patients
who need to be diagnosed is introduced in the original sample
space, the percentage of samples in the training set that are
similar to the target patient is tiny. In order to improve the
accuracy of the model for the target patient, the proportion
of training samples can be adjusted by targeted data aug-
mentation [71]. In the case of the disease diagnosis problem
discussed in this paper, to make the custom model more
accurate for the target patient, what is done is to reduce the
level of attention to the cases that differ significantly from the
target patient and pay extra attention to the cases that very
similar to the target patient. This allows the model to be more
sensitive in identifying potential patients and also allow the
model to make correct judgments when faced with healthy
cases [72].

The specific operation is as follows: 1. Find several sam-
ples from previously collected case datasets closest to the
target patient in the whole sample space; 2. Increase the
number of these similar samples by a specific method to
occupy a more significant proportion of the entire sample
space [73], [74]. After determining the idea of targeted data
augmentation, two questions arise: 1. how to describe the
similarity between samples in the sample space, that is, how
to determine that the laboratory results of two patients are
more similar; 2. how to expand the number of similar samples
bywhat means. Inmachine learning and datamining, the con-
cept of ‘‘statistical distance’’ is often introduced to describe
the magnitude of differences between individuals and thus
evaluate the similarity and class of individuals. Depending on
the characteristics of the data, different measures can be used.
In general, to define a distance function d(x,y), the following
criteria need to be satisfied [75]:

1.Non-negativity:

d(x, y) ≤ 0 (1)

2.Identity of indiscernible:

d(x, y) = 0⇐⇒ x = y (2)

3.Symmetry:

d(x, y) = d(y, x) (3)

4.Triangle inequality:

d(x, z) ≤ d(x, y)+ d(y, z) (4)

Based on these criteria, the Euclidean distance [76]
was selected, Mahalanobis distance [77], Chebyshev dis-
tance [78], Minkowski distance [79], and Bhattacharyya dis-
tance [80] as alternative options. After a comparison test,
the Mahalanobis distance was finally chosen as the crite-
rion to describe the sample similarity. Its most prominent
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FIGURE 2. Framework of the custom algorithm. The yellow box is the acquisition process of the traditional machine learning model, and the blue box is
the acquisition process of the custom machine learning model.

advantage is modifying the traditional Euclidean distance,
which corrects the problem of inconsistent and correlated
scales of each dimension in the Euclidean distance. It can
genuinely reflect the similarity relationship between samples
without the constraints of dimensional scales. Other distance
criteria in the comparison experiments were more or less
influenced from the complex dimensions, resulting in calcu-
lated distances that did not satisfy the needs of subsequent
experiments. In the future, it will also try to update the simi-
larity criteria in the form of Metric-learning after introducing
additional information from professionals. This option allows
experienced physicians to judge and score the similarity of
patients. An evaluation criterion for evaluating the degree
of similarity of patients is then summarized by learning
these scores by means of Metric-learning. To increase the
number of few samples in the training set that are simi-
lar to the target patient to achieve sample balancing, the

SMOTE (Synthetic Minority Over-sampling Technique) [81]
algorithm was chosen after comparing various methods for
adjusting the sample proportions. The SMOTE method is
an interpolation-based method that synthesizes new samples
for small sample classes. By calculating the Mahalanobis
distance between the sample points in the training set and the
target patient, a certain stem of samples that are most similar
to the target patient is oversampled. The result of this process-
ing is shown in Figure 4. The figure shows a two-dimensional
(feature) sample space in which the yellow triangle represents
a positive sample and the blue pentagon represents a negative
sample. The target patient is to categorize the green squares
(target samples) in the sample space. After the Targeted data
augmentation process, the samples in the original sample
space are targeted augmentation (which can be interpreted
as simply copying the samples to increase the weights). The
augmentation results in augmenting the samples that are more
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FIGURE 3. Framework of targeted data augmentation.

FIGURE 4. Targeted data augmentation effect comparison chart.

similar to the target samples and paying more attention to the
samples that are more similar.

Define the data before processing as D shown in equation
(5), where there are n samples in total and each sample
is differentiated by the i. The features (dimensions) are d
in total and are distinguished by the k . The output labels
(dimensions) are l in total and are distinguished by the o.
So write X and Y in the form of separate matrices as
Equation (6).

D = (x ik , y
i
o) | i = 1, 2, · · · , n; (5)

k = 1, 2, · · · , d; o = 1, 2, · · · , l

X ∈ Rn×d Y ∈ Rn×l (6)

After the targeted sample augmentation is performed,
it makes the original dataset richer, and here m is defined as
the increased number of samples. The new dataset is defined
as Dnew shown in Equation (7). X and Y have also changed
as Equation (8).

D = (x ik , y
i
o) | i = 1, 2, · · · , n+ m; (7)

k = 1, 2, · · · , d; o = 1, 2, · · · , l

X ∈ R(n+m)×d Y ∈ R(n+m)×l (8)

B. CUSTOM MODEL STRUCTURES FOR PATIENTS
This study proposes a form of subtly passing information of
target patient to the model under the guidance of the above
research idea. The operation of this part is shown in Figure 5.

FIGURE 5. Framework of subtly passing scenario information to the
model.

Is there any part of a neural network model design that
allows the model to receive specific information directly?
The answer is yes. Most ordinary algorithms are one-to-one
correspondence between input and output; one input gets one
output. There is no connection between different inputs. The
structure of the traditional neural network is relatively simple:
input layer-hidden layer-output layer [82].

RNN [83] is different from the traditional neural network
in that each time, the output of the previous time is brought
to the next hidden layer and trained together. Inspired by
RNN, this study proposes to take the selected target patient
as a particular input and bring it into the hidden layer for
operation. The biggest advantage of this approach is that it
makes the model more sensitive to the target patient right
through the training process. And since only one layer of
neural network is added, only one hyper parameter that can
be pre-set and one parameter that can be trained, there is little
impact on the overall complexity of the model.

The specific way is divided into two steps:
After normalizing the data uniformly, the selected target

patient is multiplied by a ‘‘bias coefficient: e’’ and added
to all the input data of the training set. The ‘‘bias coeffi-
cient’’ can be freely set and represents the initial offset to
the target patient on the entire training set. e can be positive
or negative, with larger absolute values indicating a greater
influence on the training set according to the target patient.
The physical meaning of this operation in the sample space
can be understood as a shift of all sample points in the sample
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FIGURE 6. Structural comparison between the traditional model and custom model. Ex i is the ith sample in the training set with total n dimensions. Exp is
the target patient sample. xp

k is a scalar in the kth direction of the vector Exp, and it represents a value for a feature of the target patient.

space in the direction of the selected target patient. If the
value of bias coefficient e = −1, the origin of the whole
sample space coordinate system becomes the selected target
patient sample points. A bias layer with only one parameter
is added immediately after the input layer. In the bias layer,
the input data are multiplied with the selected target patient
by a ‘‘restore coefficient: e′’’ and added again. e′ can be
automatically adjusted during the model training by back-
propagation. That is, the only parameter added to the model
that can be automatically adjusted during the training process.
The Structural comparison between the traditional model and
custom model is shown in Figure 6 [84]. Only one layer is
added to the model structure, and only one parameter is added
that needs to be trained.

In short, the input data is moved twice bias according to
the direction of the selected target patient. The first move is
a move of the overall training set according to the predefined
parameter e. The second move is a move of the samples
in the bench during the training process and the training
parameter e′ by back-propagation at the same time. During
this e′ iteration, the origin of the coordinate system of the
source dataset is displaced back and forth in the direction of
the selected target patient, which forces the model to be stable
for all sample points in the direction of the selected target
patient.

At the beginning of this approach design, it is expected
that the restore coefficient e′ would gradually converge to the
opposite of bias coefficient e during the training process, that
is e′ = −e. When e′ = −e is achieved, it means that the input
passed into the subsequent hidden layer is original data, and
all artificially added bias is counteracted.

In the sample space, in addition to the coordinates of the
absolute position which contains all the information about
the sample, the direction of the sample is also crucial infor-
mation. In the process of Adaptive bias adjustment, the
directions of almost all samples changes with each change

FIGURE 7. Adaptive bias adjustment effect comparison chart.

of e′, and only the direction of the target sample is always
constant. The change of direction vector of each sample in
Figure 7 illustrates this change very visually. The left panel
represents the unbiased sample space, while the right panel
shows the biased sample space. A comparison of the two plots
shows that only the direction of the target patient represented
by the green square is stable, while the direction of all other
samples has changed.

However, during the experiments, it was found that the
final result of e′ was mostly negative regardless of whether
e was set to positive or negative values by reading the final
parameter value e′ after iteration. In other words, the model
tends to orient the overall sample space to the negative
half-axis during the learning process. This situation was ana-
lyzed: because the Rectified Linear Unit(ReLU) [85] is used
as the activation function used in the subsequent hidden layer,
more negative semi-axis variable values will be processed to
zero, and the sample space will bemore concentrated, making
the overall function more likely to converge. In order not to
lose the accuracy and separability of the data in the original
sample space, a parameter selection procedure for the e value
is subsequently introduced. The above method can be easily
applied to MLP (Multilayer Perceptron). A simplified MLP
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with only one hidden layer is defined, and its operational
logic is summarized in the mathematical formula f (x) shown
as equation (9), where Ao and Ah represent the activation
function of the activation function of the output layer and
the hidden layer, respectively. Typically, SoftMax activation
functions are used for classification problems and Identity
functions are used for regression problems. Wo and Wh rep-
resent the weights (also called connection coefficients) of the
output layer and the hidden layer, respectively, and bo and
bh are the biases of the output layer and the hidden layer. The
types of Ao and Ah are selected during the model construction
phase and can be optimized later as hyperparameters.Wo,Wh,
bo and bh are iteratively updated during the training process.

f (x) = Ao (bo +Wo (Ah (bh +Wh X )))

where Wh ∈ Rd×q bh ∈ R1×q (9)

After introducing the adaptive bias adjustment into the
MLPmodel, the equation changes as shown in Equation (10).
Exp is the laboratory report data of target patient to be analyzed,
and Xp is obtained by copying Exp to the same size as X .
Among the two newly added variables, e is selected during
the model construction phase and can be optimized later as
a hyperparameter. e′ is updated iteratively during the training
process. Only one scalar, e′, that needs to be iterated is added
during the training process, and the impact on the number of
parameters of the model can be negligible.

f (x) = Ao(bo +Wo(Ah(bh +Wh(X + eXp + e′ Xp ))))

where Wh ∈ Rd×q bh ∈ R1×q e ∈ R1×1 e′ ∈ R1×1 (10)

Adaptive bias adjustment is not directly applicable to mul-
tiple patients for the time being. As an alternative, adaptive
bias adjustment can be trained for each patient first, and
finally, the effect of customization for the selected target
patients can be achieved by model fusion. That is, it is pos-
sible to customize both to individual patients and to several
patients who share common characteristics. For example,
mass testing for hepatitis C infection in some alcoholic
populations.

C. VALIDATION AND PARAMETER TUNING
Once a model has been built for a single problem, a ques-
tion arises. How can the effectiveness of this new model be
evaluated? In the past, all-purpose models were evaluated
by reserving a separate portion of the collected data as the
validation set and then tuning the model by evaluating the
performance of the trained model on the validation set [86].
However, such a process is no longer applicable to small
sample sizes. First of all, samples in a small sample space
are already very rare, and each unique sample contributes
significantly to the complexity of the entire sample space.
Once some samples are stored separately as validation sets
and do not participate in the training process, the training
effect of the model itself will be greatly affected. If evaluated
by K-Fold Cross-Validation, it again suffers from the loss of
accuracy when the final model is fitted [87].

FIGURE 8. The framework of Novel constructs of Validation sets.

Therefore, Novel constructs of Validation sets are proposed
in this study. The operation of this part is shown in Figure 8.

When it is necessary to evaluate the excellence of a com-
pleted training model, two main criteria are generally used as
a reference. One is the loss such as root-mean-square error
(RMSE) [88] of the training set and the other is the loss of
the validation set. This general case requires us to be able to
calculate the loss or RMSE of the validation set, meaning that
the correct output of the validation set need to be known. This
is possible in the general research and development phase
because these validation sets are divided from the complete
dataset. But how to evaluate the accuracy of the model for
the validation set when nobody has the correct output results
of the validation set in the real scenario of the application?
This study propose to find a number of samples from the
training set that are closest to the selected target patient as
the validation set to evaluate the accuracy and stability of the
model for the selected target patient [89], [90].

The result of such an operationmainly affects the operation
of the loss function [91], the original loss function as in
Equation (11).

J (Wo,Wh, γ, θ, bo, bh) =
1
2

n∑
i=1

l∑
o=1

(yi′o − y
i
o)

2 (11)

After replacing the new validation set, only the selection
of y-values for the loss function formula is changed (as in
Equation 12), without adding additional computational effort.
The main advantage of this is that it allows the validation set
to represent the accuracy and stability of the model for the
target patient, rather than the traditional validation set for the
entire sample space.

J (Wo,Wh, γ, θ, bo, bh) =
1
2

n∑
i=1

l∑
o=1

(yi′onew − y
i
onew)

2 (12)
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TABLE 1. Statistics for each feature of the dataset. STE is the abbreviation for standard error and STD is the abbreviation for standard deviation [59].

1) OPTIMAL PARAMETER SELECTION
With parameters that evaluate the accuracy and stability of
the model with respect to the selected target patient as a
guide, Hyperparameter optimization of custom models can
be carried out with the help of optuna [92], [93] framework.
In addition to the usual hyperparameters, such as the number
of nodes per layer, epochs, and drop-out ratio, it is found
that hyperparametric optimization of the bias coefficient e not
only preserves the accuracy and separability of the data in the
original sample space as much as possible, but also improves
the accuracy of the model for the selected target patient.

2) EARLY TERMINATION OF TRAINING
In the training process of conventional models, training is
usually terminated by setting epochs or terminated early
when the validation set loss is no longer decreasing [94], [95].
Since the scenario developed in this paper has a more explicit
the selected target patient, the model can be called to compute
the selected target patient after each iteration and terminate
the training early when the output is more stable, or the loss
of the validation set is no more significantly decreases.

IV. DATASET AND PREPROCESSING
To cope with the shortcomings of traditional detection means,
difficult, costly, and time-consuming, this paper tries to diag-
nose hepatitis C status through the use of blood biomarkers.
The Hepatitis dataset from UCI machine learning repository
was selected to show the effectiveness of the custom algo-
rithm. This dataset is about blood biomarkers for hepatitis
c virus detection. 615 cases of laboratory values of blood
donors and hepatitis C patients and demographic values like
age. The target attribute for classification is category (blood
donors vs. Hepatitis C). And there are 14 attributes.

Ethical Considerations: The data involved in this paper are
all data obtained from publicly available sources [59] and
have been properly cited according to the data publisher’s
requirements. Some of the data related to case information
of some patients, where information related to identity has

been removed or desensitized by the data publisher so as not
to reveal the privacy of the patient.

But obviously, accuracy of previous work is not sufficient
for medical applications, so more advanced tools are needed
to analyze the data. This section will also analyze this data
using some of the most popular algorithms in the field of
machine learning classification nowadays, in order to com-
pare the advancedness of the proposed approach in this paper.

Exploratory Data Analysis: Perform basic evaluation
checks on the data by calling the functions of pandas [96],
NumPy [97]. Load the training and test sets and briefly
browse the data: head() + .shape(), get familiar with the
relevant statistics of the data by .describe(), get familiar with
the data types, view the corresponding data column names,
and NAN missing information by .info(). View the presence
of NAN for each column to determine missing and abnormal
data. Have a preliminary perception of the data. Some basic
information and analysis of the data are shown in Table 1.

Handling of abnormal data and missing values [98]: Each
kind of data has its own actual meaning behind it. When
the data value exceeds the normal range or is a meaningless
expression, it needs to be adjusted or supplemented in a
targeted way. The dataset used here was reviewed by the
medical staff, and there were no obvious abnormal values.
For patient data with missing values in the dataset, this study
chose to remove them.

The processed data samples have the following features
from x1 to x12: Age, Sex, ALB, ALP, ALT, AST, BIL, CHE,
CHOL, CREA, GGT, and PROT. Each sample has a label y1
with 1 and 0 for disease or absence of disease, respectively.

The feature selection process in filtered and wrapped fea-
ture selection approaches is explicitly decoupled from the
learning training process, which allows for more accurate cor-
relation analysis. As the name suggests, correlation analysis
involves looking at how closely related two variables are by
analyzing them together. Correlation analysis can only be car-
ried out if there is some sort of link or probability between the
associated elements. Carl Pearson, a well-known statistician,
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FIGURE 9. Correlation of numeric features.

developed the correlation coefficient [99]. The correlation
coefficient is a statistical measure of how strongly two vari-
ables are related to one another. By multiplying the two devi-
ations from their respective means, the product-difference
approach yields the correlation coefficient; this method is
especially useful for calculating the linear single correlation
coefficient. Use of the seabon visualization package to create
a scatter plot of the correlation analysis matrix, shown in
Figure 9 [100].

To be precise, −1 to +1 describes the range of the cor-
relation coefficient. In terms of its characteristics, it has the
following [101]. Positive correlation between two variables
is shown by a r value greater than zero, whereas negative
correlation is indicated by a r value less than zero. When
|r| = 1, there is a perfect linear correlation between the
two variables; in other words, they are functionally related. If
r = 0, then there is no linear relationship between the two
metrics. Whenever 0 < |r| < 1, linear correlation exists

between the two variables. As |r| approaches 1 (perfect lin-
earity), the relationship strengthens; as it approaches 0 (poor
linearity), the relationship weakens.

Generally, it can be divided into three levels: |r| < 0.4 for
low linear correlation; 0.4 ≤ |r| < 0.7 for significant correla-
tion; and 0.7 ≤ |r| < 1 for high linear correlation [102]. The
correlation analysis revealed that the x6 feature (AST, Aspar-
tate aminotransferase) is very important for the final label.
There are also x7 (BIL, Bilirubin), and x11 (GGT, Gamma-
Glutamyl Transferase) that contribute to some extent. There is
also a clear correlation between features x3 (ALB, Albumin)
and x12(PROT, Protein). Visualization of the relationship
between digital features based on correlation analysis and
several commonmeans of preliminary data analysis were also
used to gain a preliminary understanding of the data, but no
modifications were made to the data at this stage.

There seems to be a lot of noise/outliers [103]. Some
data engineers choose to remove outliers at a fixed rate and
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then normalize the data to facilitate analysis [104]. However,
considering that this is a medical dataset, all the data is kept
in this case to ensure that the data can cover more rare cases.
The main purpose of feature engineering is to improve the
performance of machine learning by transforming data into
features that better represent the underlying problem. Outliers
are processed to remove noise and features are constructed
to enhance the representation of the data. In order to better
enable the use of machine learning models by people who do
not have a rich industry background, no additional knowl-
edge is introduced in this case to perform complex processing
of the data.

Because of the limited amount of data in the medical
dataset, each patient’s data information is very precious.
Therefore, in order to make full use of this information, the
training set is divided in a special way. Each time a specific
patient is analyzed, we define the patient’s laboratory results
as a separate test set and assign all the remaining data to
the training set. Whenever a patient changes, the training set
changes as well. This is designed to mimic the actual scenario
of hospital diagnosis, i.e., for a new patient seeking medical
treatment, all the previously saved analysis data is used as the
training set to train the model for the new patient.

V. EXPERIMENTS
The experiment will be divided into two phases, the first
phase is the comparison experiment phase and the second
phase is the hyperparameter tuning experiment phase. The
comparison experiment phase is to verify the effectiveness
of the custom model and compare the performance of the
custom model with other commonly used models on some
evaluation criteria. The second phase is to show the extreme
performance level of the custom model by tuning for some
hyperparameter settings. The experiments were conducted on
workstation with an Intel Xeon W-2125 CPU, Quadro RTX
4000 with 8 GiB video memory,32 GiB of DDR4 RAM, and
an SSD for secondary storage. All experiments were per-
formed multiple times and the average results were recorded.

A. PARAMETERS OF THE APPROACHES
The Three main improvement approaches are presented in
the methodology phase, all of which introduce some new
hyperparameters that were not present during the construc-
tion of the original machine learning model. Some of these
hyperparameters are presented and analyzed next. In the first
phase of the experiments, the parameters of the improvement
approaches were chosen using invariant parameter settings to
verify the generalizability of the improvement scheme. The
following is a description of the special parameters.

1) TARGETED DATA AUGMENTATION
a: SIMILARITY THRESHOLD
By calculating the Mahalanobis distance, the degree of simi-
larity between the samples in the training set and the selected
target patient can be obtained, and the smaller the value of

the Mahalanobis distance, the more similar it is. A threshold
value is set in order to facilitate that samples with a Maha-
lanobis distance less than the threshold value are identified
as extremely similar to the selected target patient, and smote
oversampling is performed on these extremely similar sam-
ples. In this experiment phase, the similarity threshold was
set to a fixed value of 2.5.

b: THE PROPORTION OF MINORITY CLASSES
AFTER OVERSAMPLING
The samples identified as extremely similar to the selected
target patient were oversampled and expanded. The number
of expanded minority classes accounted for the majority of
samples (samples considered less similar) up to a set value.
In this experiment phase, the proportion of the oversampled
minority class was set at a fixed 0.3.

2) NOVEL CONSTRUCTS OF VALIDATION SET
The Number of Results Identified as Similar: The samples in
the training set are sorted from smallest to largest by calculat-
ing the Mahalanobis distance. The number of similar results
is set, and the samples that are most similar to the selected
target patient are copied from the training set according to the
number of similar results to form the validation sets. In this
stage, this parameter is set to a fixed number of 10, i.e., the
ten samples that are most similar to the selected target patient
are selected as the validation set.

3) ADAPTIVE BIAS ADJUSTMENT
Bias Coefficient(e):As introduced in 3.2 above. In this phase,
the bias coefficient is set to a fixed -0.2.

B. MODEL CONSTRUCTION
The most basic Back Propagation neural network model
(MLP, multilayer perceptron) with three sequential fully con-
nected layers is chosen as the backbone network [105]. Based
on the number of independent variables, the number of nodes
in each of the three fully connected layers is set to 120, and
each layer is output using the activation function ReLU. The
final output layer has only one node and use sigmoid as
activation function. Total 30,722 trainable parameters. The
Adam [106] optimizer, binary_crossentropy, is chosen as the
loss function. The overall model construction is simplified
as much as possible to evaluate the merit of the final output
without using complex techniques. Callbacks are used for the
model, val_loss is used as the monitored quantity, and the
optimal model is saved. The batch size is chosen to be 256,
and the maximum epochs are 100.

C. COMPARISON MODEL SELECTION
After completing the processing of the data, the initial
screening of the algorithm was performed with the help
of the AutoGluon platform [107]. First, the TabularPredic-
tor and TabularDataset classes of AutoGluon are imported,
and then the training data are loaded into the AutoGluon
TabularDataset object [108]. Next, AutoGluon is used to

106666 VOLUME 10, 2022



L. Chen et al.: Machine Learning Model for Hepatitis C Diagnosis Customized to Each Patient

automatically train different models based on different algo-
rithms, and the trained models are used to evaluate model
performance by making predictions on the reserved test set
data. And XGBoost and LightGBM are the most two efficient
algorithm, so the XGBoost and LightGBM model is chosen
as a reference.

XGBoost is a very mature algorithm that can be called
directly through the XGBoost interface. The dataset is
divided into a training set and a test set in the ratio of
0.2(15 patients, 108 healthy people need to be distinguished).
The model is set as follows: model_xgboost = XGB-
Classifier (colsample_bytree=0.7, learning_rate = 0.03,
n_estimators=100, subsample=0.7, alpha=0.9) [109], [110].
The results are shown in Table 2.

TABLE 2. Confusion matrix of XGBoost model. Accuracy = 0.9431,
Recall = 0.533, Precision = 1, f1-score = 0.6813.

As the confusion matrix demonstrates, the model doesn’t
really do a good job. It mainly predicted everything as
class 0, so Randomized Search was introduced to try to
improve this [111], [112] [113]. The settings for Random-
ized Search are as follows: params= {’learning_rate’: [0.01,
0.05, 0.1,0.2], ’max_depth’: [3, 4, 5], ’min_child_weight’:
[1,3,5,7], ’gamma’: [0.0, 0.1, 0.2, 0.3], ’colsample_bytree’:
[0.3, 0.4, 0.5], ’n_estimators’: [750, 1000]}. The new
XGBoost model is set as follows: model_xgboost =
XGBClassifier (); random_search = RandomizedSearchCV
(model_xgboost, param_distributions = params, n_iter =
3, cv = 3, scoring = ’accuracy’, n_jobs=-1, verbose= 3).
The new results are shown in Table 3, there is indeed some
progress.

TABLE 3. Confusion matrix of XGBoost model with Randomized Search.
Accuracy = 0.9593, Recall = 0.6667, Precision = 1, f1-score = 0.7867.

Similar to the process of XGBoost optimization, the best
results obtained by LightGBM after several hyperparameters
optimization are shown in Table 4 [114], [115].

TABLE 4. Confusion matrix of LightGBM moedel after hyperparameters
optimization. Accuracy = 0.9431, Recall = 0.6667, Precision = 0.8333,
f1-score = 0.7811.

D. CUSTOM MODEL PERFORMANCE
1) THE ORIGINAL PERFORMANCE
Next, it is time for the custom model to make its appearance.
In the context of this problem, the laboratory result informa-
tion is mainly unique to each patient. This session focuses on
experimenting with combinations of parameters involved in
the three improvement approaches so that the most accurate
results can be obtained for each selected target patient. The
parameter selection phase has three rounds. In the first round,
the number of nodes per layer, epochs, and batch size is
determined based on the problem complexity, the number of
parameters, and the number of samples. In the second round,
repeatable experiments are conducted on a certain number
of samples to find parameters that are common to the whole
dataset: Similarity threshold, Number of results identified as
similar, and Proportion of minority classes after oversam-
pling. These parameters are all closely related to the distribu-
tion pattern of the samples in the overall sample space. These
parameters are determined as fixed values, which basically
satisfy all the selected target patients. In the third round, bias
coefficient, and drop-out ratio are then selected according to
each selected target patient by the optuna framework. Optuna
framework is actually a repetitive experiment for multiple
parameters, and the optimal parameter is output according to
the amount of monitoring. The monitored quantity selected
is the MAE of the validation set. The variation interval of
bias coefficient is from -0.5 to 0.5, and the variation interval
of the drop-out ratio is from 0 to 0.3. The results of the
optimal parameters: similarity threshold:3, Number of results
identified as similar:5, and Proportion of minority classes
after oversampling:0.3. Subsequently added judgment condi-
tions. 1. Stop targeted data augmentation when there are less
than 6 samples below the Similarity threshold. 2. When there
are more solutions below the Similarity threshold, the data
augmentation selects up to 15 samples as the expansion base.

For the same test set samples as the XGBoost and Light-
GBM model, each sample is treated as the selected target
patient, and the custom model is constructed and classified
for each the selected target patient in turn, and the final results
are as Table 5.

TABLE 5. Confusion matrix of custom model. Accuracy = 0.9919, Recall =

0.9333, Precision = 1, f1-score = 0.9617.

It can be seen that there is a significant improvement over
XGBoost and LightGBM, and the entire dataset is iterated in
order to better verify the applicability of the method. For the
whole dataset, each sample is treated as the selected target
patient, and the custom model is constructed and classified
for each the selected target patient in turn, and the final results
are as Table 6.
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TABLE 6. Confusion matrix of custom model on the entire dataset.
Accuracy = 0.9864, Recall = 0.875, Precision = 0.98, f1-score = 0.9274.

2) THE PERFORMANCE WITH UPGRADED APPROACHES
By analyzing the results of each selected target patient, the
following conclusions can be drawn. Although the results
have been good, it can be still found that: in the real-world
environment, the unevenness of the sample space can cause
much trouble for the custom model. (1) In the case of insuffi-
cient similar samples, if the less similar samples are forcibly
selected as the benchmark for augmentation, it will increase
the density of the overall training set in the region that devi-
ates from the selected target patient. It is more sensible to turn
off the target sample augmentation at this time. (2) In the case
of too many similar samples, the similar sample set will be
more evenly distributed in the overall sample space because
of its more significant number. Then, the similar sample set
no longer has the sensitivity to the selected target patient.
At this time, the overall performance of the validation set
cannot accurately reflect the accuracy of the custom model
for the selected target patient. (3) For some of the selected
target patients with a strange distribution, the most similar
samples may be of the opposite category. This strange case
can not be distinguished by the custom model for the time
being, and more comprehensive and rich balanced data are
needed to solve this strange case.

The new results are shown in Table 7 after introducing the
automatic disablement of the targeted sample augmentation
and the setting of the upper limit of similarity samples.

TABLE 7. Confusion matrix of custom model on the entire dataset with
upgraded approaches. Accuracy = 0.9949, Recall = 0.9464, Precision = 1,
f1-score = 0.9701.

3) THE PERFORMANCE FOR HIGHER RECALL
Among the target application scenarios of this study, espe-
cially when the model is applied to large-scale screening,
accuracy is certainly a crucial evaluation criterion. The high-
est possible accuracy rate allows patients to be accurately
identified and treated, and also eliminates the need for addi-
tional follow-up testing in healthy individuals.

But the situation changes when hospitals are allowed to
diagnose patients who visit them through custommodels. For
each patient, a false negative poses a much greater risk than
a false positive, so it is important to improve the recall rate
of the model as much as possible. Guided by such a spe-
cific need, the evaluation criteria of the custom model were

adjusted. A partial modification of the binary_crossentropy
used for the loss function is to make the model consider that
the penalty for false negatives is greater than that for false
positives. With such an adjustment, the performance of the
model in the test set new is shown in Table 8.

TABLE 8. Confusion matrix of custom model for higher recall. Accuracy =

0.9268, Recall = 1, Precision = 0.625, f1-score = 0.9620.

It can be seen that all patients in this test set were correctly
identified, but this also led to a more significant decrease in
other evaluation criteria. In the recall enhancement experi-
ment on the total data, 55 patients could be identified out of
a total of 56 patients.

VI. CONCLUSION
This study combines target patient analysis into a three-stage
process of machine learning data processing, model building,
and parameter optimization. The first stage of data process-
ing: Targeted data augmentation is performed on the training
data considering the patients information, so that the dataset
generates relevance according to the target patient. By cal-
culating the relevant parameters such as the Mahalanobis
distance, the relevant information within the data is fully
explored. And the important weight of the samples closely
related to the target patient is increased according to scenario
requirement. In this process, the target patient information
provides the optimization direction for data processing. The
second stage is the training model, which uses the target
patient information as an additional fixed training data to
achieve the target patient as a constraint at all times during
the training process. The goal of this model is to have better
performance in specific target patient, which is different from
the goal of previous models that emphasize broad adaptabil-
ity. In this process, the target patient information provides
additional information for model training. The third stage of
parameter optimization uses the target patient information
as a reference standard. This criterion can both verify the
magnitude of the error after each iteration and back-propagate
the model for tuning based on the magnitude of the error,
and compare the advantages and disadvantages between sev-
eral approaches after all training is completed. It provides a
reliable reference for parameter tuning related to the target
patient, and it is worthwhile to conduct some interesting and
meaningful research on them.

In the testing of the hepatitis C dataset, an extremely accu-
rate model (accuracy of 99.4%) was built without introduc-
ing additional information and without having any relevant
medical background at all. Comparison of test results among
various models is shown in Figure 10. This far exceeds the
decision tree model based on expert system logic used in the
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FIGURE 10. Comparison of experiments results among various models. LightGBM and XGBoost models are the result of parameter optimization. For the
five models compared, all of them use the same test set, except for custom-pro which is the result obtained on the whole dataset. It can be seen that the
custom and custom-pro model show advantages in various metrics, and costom-recall shows that the customized solution can achieve almost 100%
recall at the expense of some of the remaining criteria.

TABLE 9. Richer comparison of experimental results. The custom models at the top of the table are the ones proposed in this paper, the models in the
middle of the table are the results of tuning and optimization using the mature algorithm, and the models at the bottom of the table are the results of
other teams using the same dataset. RF is short for Random Forest, LR is short for Linear Regression, DT is short for Decision Tree, and KNN is short for
K-NearesNeighbor.

article by the original provider of the data with a medical
background. A richer comparison of experimental results is
detailed in Table 9.

In testing the hepatitis C dataset, the custom model outper-
formed the extremely well-developed XGBoost and Light-
GBM model (selected by AutoGluon). This efficient and
accurate model does not require cumbersome tuning and
data processing, and does not require medical practitioners to
master complexmachine learning techniques to use it directly
to aid diagnosis.

The analysis time for each individual patient from this
part of the case study is about 30s, which can meet the time
requirement formedical diagnosis when a patient has finished
the blood test. The equipment requirements involved in the
training and analysis of the model are very common and
easy to implement. This means that there is no need for a
separate viral test, and that only the simplest of blood tests
are needed to detect the vastmajority of patients with hepatitis
C, providing a powerful tool for hepatitis C disease control.
And this custom model can discard some of the accuracy to
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achieve higher recall as needed, and the confidence level is
greatly improved and no longer relies on the general average
level of the model for evaluation, which ensures that the
model can be applied to the treatment of specific patients.
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