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ABSTRACT The empirical entropy of the network flow attributes is an essential measure for identifying
anomalous network traffic. However, computing the exact entropy values for high-speed networks in real-
time is computationally expensive. Accordingly, the present study replaces the complex computations of
existing stable random projection methods for entropy estimation with a simple table lookup procedure.
Notably, the size of the lookup table is reduced through a piece-wise linear interpolation heuristic in order
to facilitate the implementation of the proposed scheme in resource-constrained pipeline environments. The
proposed architecture enables entropy estimation to be performed using both the Log-Mean Estimator (LME)
method and the New Estimator of Compressed Counting (NECC) algorithm reported in the literature. The
feasibility of the proposed approach is verified empirically using both real-world network traffic traces and
synthetic data streams. Moreover, the practical applicability is demonstrated via stream-based implementa-
tion in the programmable data planes of the NetFPGA-Plus framework and a Tofino P4 switch, respectively.
The results indicate that the proposed tabulation-based entropy estimation scheme allows minimum-sized
Ethernet frames to be processed with a wire speed of up to several hundred gigabits per second.

INDEX TERMS Empirical entropy, tabulation, stable random projection, programmable data plane, P4,
FPGA, network traffic measurement, anomaly detection.

I. INTRODUCTION
Information-theoretic methods provide effective means of
detecting anomalies in network traffic. One such measure is
the empirical Shannon entropy, defined as

H = −
n∑
i=1

mi
m

log
mi
m
, (1)

where m is the total elements in the data stream, mi is the
frequency of item i appears in the stream, and n is the total
number of distinct items in the stream. As shown in Equa-
tion (1), the entropy H reaches its minimum value of zero
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when all the items in the stream are the same, and reaches
its maximum value when all of the items are different. Com-
pared to the volume-based traffic anomaly detection meth-
ods [1], entropy-based approaches provide a high-sensitive
detection capability [2] and finer-grained insights into the
network behavior [3] without requiring continuous volume-
change monitoring.

Entropy-based methods thus provide a more feasible
approach for detecting both low- and high-rate [4] Distributed
Denial of Service (DDoS) attacks [5], [6] and for differen-
tiating between Flash Events (FE) and DDoS attacks [7].
However, developing effective techniques [8] for measuring
the entropy of high-speed network traffic in real-time still
remains a significant challenge [9].
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A. MOTIVATIONS
Since 2010, as the IEEE 100 Gbps network standards
(IEEE802.3ba) [10] were introduced, wire speeds in data
center networks have increased tremendously in order to
meet the emerging needs of “Anything as a Service” (XaaS)
technologies [11], [13] for low-latency network functions
with high-bandwidth and enhanced flexibility. However,
as the deployment of high-speed networks has increased,
the scale, severity, and number of malicious attacks also
increased. These attacks are capable of causing substan-
tial economic losses and disruption [12]. Hence, effective
methods for real-time detection of anomalous traffic in
large-scale, high-speed networks are urgently required [6],
[13]. However, computing the exact entropy values of
high-speed and high-volume packet streams for networking
applications is extremely challenging, particularly in envi-
ronments with limited system resources. Moreover, it is gen-
erally necessary to compute the entropy of one or multi-
ple combinations of traffic features simultaneously, which
further increases the cost and complexity of the detection
process.

As shown in Equation (1), a software-based implementa-
tion of the entropy computation is straightforward for off-
line, postmortem analyses of data anomalies in low-speed
networks. However, given the high cardinality nature of
the network traffic in high-speed networks, sampling tech-
niques [14] are required to overcome the time and space
complexity of real-time packet processing. Furthermore, the
sampling processes may create data losses, which introduce
distortion and measurement bias [15] into the anomaly detec-
tion process.

Frequency moment estimation [16] is an essential build-
ing block for many stream-based applications and has been
widely used to simplify and accelerate the entropy esti-
mation process for high-speed network traffic [17], [18],
[19]. In the year 2000, Indyk proposed a unified frame-
work [20] to estimate the Lp norm of a packet stream Φ

where p ∈ {1, 2} based on an α stable distribution. This
foundation was later used in [8], [21], [22], and [23] to
perform entropy estimation. However, generating the ran-
dom values required to compute the entropy from the stable
distribution involves complex floating-point multiplication,
division, logarithmic, and trigonometric operations, which
impose a significant processing bottleneck on the estimation
process.

Accordingly, motivated by the work of Cormode [24], this
study presents a tabulation-based methodology for estimating
the empirical Shannon entropy based on the stable random
projection method [20] and a piece-wise linear interpolation
technique. The overall goal of the proposed method is to
obtain high-accuracy estimates of the network entropy with
a rapid processing speed. Moreover, achieving low computa-
tional and memory cost is also essential. Thereby, supporting
real-time anomaly detection in high-speed networks in even
low-resource systems is feasible.

B. CONTRIBUTIONS
This paper presents a tabulation-based method, designated as
the k-parallel lookup with m-hash, for estimating the empir-
ical Shannon entropy using the stable random projection
framework proposed by Indyk [20]. The key component of
the proposed method is the use of an inverse transform sam-
pling technique to construct an empirical distribution function
in a read-only lookup table. To facilitate the implementa-
tion of the proposed scheme in resource-constrained envi-
ronments, the size of the lookup table is reduced through
the use of a piece-wise linear interpolation heuristic based
on three adaptive parameters (Span, Exponential Head, and
Exponential Tail).
The proposed architecture can support both the Log-

Mean Estimator (LME) method proposed by Clifford and
Cosma [23] and the New Estimator of Compressed Count-
ing (NECC) [25] proposed by Li [26]. The feasibility of the
proposed method is verified using both real-world network
traffic traces and synthetic data streams.Moreover, the practi-
cal applicability is demonstrated via stream-based implemen-
tation in the programmable data planes of an Xilinx U200
FPGA and Tofino P4 switch, respectively. The PoC design
is capable of processing minimum-sized Ethernet frames
at 100 Gbps wire-speed.

The remainder of this paper is organized as follows.
Section II presents the background and related work on
stream-based entropy estimation. Section III briefly outlines
the problem considered in the present study. Section IV
introduces the proposed tabulation-based entropy estimation
method and interpolation technique, and briefly describes the
system implementation. Section V discusses the key param-
eters of the proposed scheme and explores the corresponding
design space. Section VI evaluates the performance of the
proposed architecture using both real-world and synthetic
traffic traces. Section VII presents the system implementation
on the FPGA platform and P4 switch. Section VIII discusses
the comparisons of evaluated results, implementation flexi-
bility, and limitation. Finally, Section IX provides some brief
concluding remarks and indicates the intended direction of
future research.

II. BACKGROUND AND RELATED WORKS
A. STREAM COMPUTATION
Data stream computation [27] has been an active research
topic ever since the Internet started to undergo exponential
growth. Typically, a data stream Φ = (a1, a2, . . . , am) con-
sists of m elements, where some are distinct and others are
repeated. The elements arrive at the observation point sequen-
tially at time t , where the tth element at = (keyt , dt ) consists
of a keyt ∈ [n] and an update dt ∈ R. The space of set [n]
has a maximum value of 2104, if the packet stream measure-
ment is based on the 5-tuple traffic flow consisting of the
protocol number, source, destination of TCP/UDP ports and
IPv4 addresses. Thus, researchers have proposed numerous
algorithms for summarizing such massive data flows in a
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one-pass fashion [28]. Such stream-based algorithms, com-
monly known as (ε, δ)-approximation algorithm, are not only
capable of estimating the measurement outcome accurately
with an error of less than ε with a high probability of 1 − δ,
but are also highly suited to implementation in embedded net-
working systems with only limited memory and computing
resources.

B. STABLE DISTRIBUTION
Alpha-stable distributions, also known as Levy α-stable dis-
tributions, are a family of probability distributions with the
form S(x : α, β, γ, µ), where α, β, γ and µ are stability,
skewness, scale and location parameters with values of α ∈
(0, 2], β ∈ [−1, 1], γ > 0 andµ ∈ R [29]. Such distributions
are used to model complex processes in a wide range of fields
including income distribution analysis [30], commodity price
estimation [31], and financial return prediction [32]. More-
over, statistical models based on α-stable distributions have
also been used for engineering asset health monitoring [33],
network traffic anomaly detection [34], and wireless network
performance evaluation [35] for base station deployment.

Chambers et al. [36] presented amethod for simulating sta-
ble random variables based on the arbitrary values of the sta-
bility α ∈ (0, 2] and skewness β ∈ [−1, 1] [37]. Weron [38]
provided the proof of the equality constructing a standard
stable random variable X ∼ S(x : α, β, γ, µ).

Indyk [20] proposed a framework for estimate the Lp norm
of a packet stream Φ based on the fact that the magnitude
of the product of the key of each data item in stream Φ

and the corresponding random variable R drawn from an
α-stable distribution is proportional to the Lp norm of a packet
stream Φ, where p ∈ {1, 2}. This framework was later
taken as the foundation for many proposals for stream-based
entropy estimation [8], [21], [22], [23], [25]. (Note that for
a more in-depth introduction to stable distributions and their
related applications are available in the discussion paper of
Borak et al. [39] and the study of Cormode and Indyk [40] on
high-speed data stream processing.)

C. STREAM-BASED ENTROPY ESTIMATION
As shown in Equation (1), the computation process for esti-
mating the empirical Shannon entropy comprises two parts:
(1) determining the frequency statistics of each arriving dis-
tinct item mi, and (2) performing logarithmic and summation
operations. Many entropy estimation algorithms have been
proposed over the years. These algorithms can be broadly
categorized into three main groups: (1) Alon-Matias-Szegedy
(AMS) sampling [16], (2) Hash tables with sketch data struc-
tures, and (3) Random projection based on stable distribu-
tions. Table 1 presents a qualitative comparison of these
stream-based entropy estimation schemes with that proposed
in the present study.

1) AMS SAMPLING
Lall et al. [41] presented a data streaming algorithm for esti-
mating the entropy norm milogmi of high-speed networks

based on the second frequency moment estimation obtained
via AMS sampling [16]. The authors also presented a siev-
ing methodology for improving the estimation accuracy by
separating the larger flows from the smaller flows. The
experimental results obtained for a traffic trace consisting of
6 million distinct counts and 67 million packets showed that
the proposed algorithm consumed approximately 1.4 Mbytes
ofmemory space and enabled the entropy to be estimatedwith
at most 25% relative error with a probability of 75%.

Chakrabarti et al. [18] proposed a similar AMS-based
approach for estimating the entropy and entropy norm of data
streams. However, while a comprehensive theoretical perfor-
mance analysis was given, no implementation details were
provided.

Bhuvanagiri and Ganguly [46] presented a Hierarchical
Sampling over Sketches (HSS) methodology for estimating
the entropy over data streams. In the proposed approach,
O(logm) levels of data structures were created from the orig-
inal data stream, and the Count-Min [47] and Count sketch
[48] data structures were then used to estimate the top-k
items and frequency of each item at each level. The total
memory space requirement was shown to beO(( top−k

ε
logm+

log 1
ε
)(log3m)(log 1

δ
)).

Chakrabarti et al. [49], [50] proposed a near-optimal
stream-based algorithm for estimating the empirical
entropy using the AMS algorithm [16], which requires
O(ε−2log 1

δ
logm) words of memory space. The implemen-

tation described in the paper utilized a reservoir sampling
approach and maintained the associate counters in a dictio-
nary structure. Moreover, two heap structures were employed
for the the primary and backup samples, respectively. The
per-item processing time in the stream was shown to be
O(log 1

ε
+ loglog 1

δ
+ loglogm).

Harvey et al. [51] approximated the Shannon entropy by
estimating the Renyi entropy under the boundary condition
of α → 1and sufficiently large values of ε. It was shown
that, based on the AMS algorithm [16], the proposed scheme
consumed just consumed O(ε−4log4m) words of memory
space. In a later study [19], the same group proposed another
near-optimal algorithm for estimating the Tsallis entropy and
Shannon entropy with α → 1 using just O(ε−2logm) words
of memory space.

Lapolli et al. [42] proposed a pipeline scheme based on
AMS sampling algorithm [16] and the Count sketch [48]
data structure for performing entropy estimation in the pro-
grammable data plane for DDoS attack detection. In the
proposed method, the complex logarithmic computations
required to estimate the Shannon entropy were replaced
with a simple lookup operation on a Longest Prefix Match
(LPM) table using Ternary Content-Addressable Memory
(TCAM). The experimental results showed that the mem-
ory space required to monitor a single 1Gbps link consist-
ing of 218 packets in a 250-millisecond observation time
was just 58.125 Kbytes. However, a total of 9 Mbytes [42]
were required in a high-speed device to monitor 24 links
of 10 Gbps.
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TABLE 1. Comparison of stream-based Entropy estimation schemes reported in literature and proposed scheme.

2) HASH TABLE WITH SKETCH DATA STRUCTURE
To compute the empirical Shannon entropy in Equation (1),
the frequency count must be updated for every packet. More-
over, the update process should be performed at wire speed.
Accordingly, Bartos and Martin [52] proposed a simple hard-
ware accelerator for performing the update process using
a logarithmic table with the linear interpolation technique.
It was reported that a total memory space of 4.5 Mbits was
required to compute the Shannon entropy for ten features of
networking traffic. However, no details were given of the traf-
fic traces, measurement accuracy, or attainable throughput.

Soto et al. [44] presented a high-throughput hardware
accelerator for estimating the entropy of network traffic, in
which the estimation process focused mainly on the top-k
flows since the least frequent flows had no significant effect
on the entropy of the data stream. The core of the acceler-
ator consisted of a priority queue (PQ) array for the top-k
flow selection and utilized the Count-Min sketch with Con-
servative Updates (CM-CU) [47] to evaluate the frequency
statistics of the traffic flows. The system consumed approxi-
mately 560 K bytes (CM-CU + PQ array) of on-chip Block
RAM and achieved a relative estimation error of less than 3%
and mean value of 1.67% when evaluated using several real-
world networking traffic traces. Moreover, the minimum pro-
cessing throughput was shown to be 204Gbpswith a 400Mhz
system clock.

Ding et al. [45] proposed a framework of P4DDoS for
detecting DDoS attacks in the data plane of P4 switches
by estimating the empirical entropy based on the Count-
Min [47], Count sketch [48], and P4LogLogwith low relative
error. The algorithm, designated as P4LogLog, was imple-
mented using P4-supported arithmetic, bit shift, and bitwise
logical operations. The performance of the proposed algo-
rithm was evaluated using passive traffic traces drawn from
the CAIDA dataset (2018) with each 5-second observation
period containing around 221 packets. The relative estimation
error was shown to be close to 3% [45] when utilizing a
Count-Sketch size of 40 Kbytes (5× 2, 000× 32 bits).

3) RANDOM PROJECTION WITH STABLE DISTRIBUTION
Zhao et al. [8] proposed a streaming algorithm for esti-
mating the entropy of Origin-Destination (OD) flows using
the framework proposed by Indyk [20] for estimating the
Lp norm using a symmetric (β = 0) stable distribution
S(x : α, β, γ, µ). To avoid the complex computations usu-
ally required to generate random variables from a stable
distribution, the authors utilized two pre-computed lookup
tables implemented using the high-throughput Direct Rambus
DRAM DIMM. Up to one million entries were allocated in
each table, where each entry consisted of a total of 640 bits
arranged in 20 blocks. In the proposed implementation, four
tables were allocated, where each table contained 80,000
entries (buckets) of twenty 32-bit blocks. The tables con-
sumed a total memory space of 51.2 Mbits between them.
According to the simulation results, the relative error of the
estimated entropy was less than 10% with a probability of
approximately 0.85 [8].

Li [21] proposed efficient schemes of various estimators
for estimating the Shannon entropy using the Compressed
Counting (CC) [26] data structure based on a maximally-
skewed (β = 1) stable random projection with α → 1 and a
scale parameter of γ = cos(απ2 ). In later study, Li and Zhang
later presented the New Estimator (NE) [25] for estimating
the Shannon entropy, in which up to k number of sketch reg-
isters were used to accomplish the random projection process
for each packet in the traffic stream. Algorithm 1 presents
the corresponding pseudo code, in which the update process
based on stable random projection is shown in line 14 and
the final entropy estimate is obtained in line 18. As shown in
Algorithm 2, the random variables were generated using an
observing key (e.g., IPv4 source address) as the seed.

Clifford and Cosma [23] developed a sketching algo-
rithm for entropy estimation over streaming data based on a
maximally-skewed α-stable random distribution (β = −1)
with a scale parameter γ = π

2 . Algorithm 3 shows the pseudo
code of the proposed Log-Mean Estimator (LME) for an
assumed stability parameter of α = 1, in which the Shannon

VOLUME 10, 2022 104937



Y.-K. Lai et al.: Tabular Interpolation Approach Based on Stable Random Projection for Estimating Empirical Entropy

TABLE 2. List of notations.

entropy is estimated by the LME shown in line 19 based on
the k sketch registers updated in line 13.

III. PROBLEM STATEMENT
As shown in Algorithms 1 and 3, the primary process of
the stream-based entropy estimation schemes proposed is
to project each network traffic element, represented by a
key and update pair (key, d), to a random variable, R(key),
drawn from an alpha-stable distribution, S(x : α, β, γ, δ).
However, given a key, generating the random value from
the skewed alpha-stable distribution requires complex com-
putations involving division, logarithmic, and trigonometric
operations (as shown in Algorithms 2 and 4, respectively).
Consequently, the entropy estimation time is inevitably pro-
longed, therefore imposing a performance bottleneck on the
anomaly detection process. Accordingly, the present study
proposes an efficient tabulation scheme for estimating the
empirical Shannon entropy Ĥi of high-speed network traffic,

in which the complex computations used in Algorithms 2
and 4 to generate the required random values are replaced
with a simple lookup table procedure. Moreover, a piece-wise
linear interpolation heuristic based on three adaptive param-
eters, namely Span, Exponential Head, and Exponential Tail,
is proposed to minimize the total size of the lookup table
compared to that in previous studies [8].

Algorithm 1 Algorithm Proposed by Li and Zhang [25] for
Estimating the Entropy of Data Streams Using the New Esti-
mator of Compressed Counting (NECC)
1: Input: α, keyt
2: Output: Ĥ (Φ), the estimated Shannon Entropy
3: Initialization
4: data sketch (y0, . . . , yk−1)← (0, . . . , 0)
5: counter Y ← 0
6: ∆← 1− α
7: dt ← 1 //sketch update is based on packet count
8: Function R(keyt ):
9: generate the random variable R with the maximally

skewed alpha-stable distribution of S(x;α →

1, 1, 1, cos(απ2 )), by using keyt as the seed.
10: // For each incoming packet with key within the observa-

tion time 1T
11: Update the counter Y = Y + 1
12: for j = 0 to k − 1 do
13: Generate Rj(keyt )∼ S(x;α→ 1, 1, 1, cos(απ2 ))
14: Update yj = yj + Rj(keyt )× dt
15: end for
16: // At the end of the observation time 1T
17: Ĵα =

4

k

∑k−1
j=0 (yj)

−α/4

18: Ĥ (Φ) = −log(Ĵα)− 1
4
log(Y α)

19: Return Ĥ(Φ)

Algorithm 2 Ping Li’s Pseudo Codes [25] to Generate
the Random Variable R(keyt ) With Maximally Skewed
Alpha-Stable Distribution of S(x;α→ 1, 1, 1, cos(απ2 ))

1: Input: α, keyt as the seed for generating random numbers

2: Output: random variable R(keyt )
3: Generate two random numbers U1,U2 ∼ Unif (0, 1)

4: 4← 1− α
5: W1← πU1
6: W2←− logU2
7: R(keyt ) =

sin(αW1)
(sinW1)1/2

( sinW1·4
W2

)4/α

8: Return R(keyt )

The proposed architecture is compatible with both the Log-
Mean Estimator (LME) proposed by Clifford and Cosma [23]
(see Algorithm 3) and the New Estimator of Compressed
Counting (NECC) proposed by Li and Zhang [25] (see Algo-
rithm 1). Moreover, through the use of a tabulation approach
and the piece-wise linear interpolation heuristic, the proposed
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method is suitable for implementation in the programmable
data plane of limited-memory-space systems with a wire
speed of multi-hundred gigabit per second. Table 2 summa-
rizes the notations used in the present study.

Algorithm 3 Algorithm Proposed by Clifford and
Cosma [23] for Estimating the Entropy of Data Streams
Using the Log-Mean Estimator (LME) δ̂lm (ζ )With ζ = 1
1: Input: keyt
2: Output: Ĥ (Φ), the estimated Shannon Entropy
3: Initialization
4: data sketch (y0, . . . , yk−1)← (0, . . . , 0)
5: counter Y ← 0
6: dt ← 1 //sketch update is based on packet count
7: Function R(keyt ):
8: Generate the random variable R with the maximally

skewed alpha-stable distribution of S(x; 1,−1, π2 , 0),
by using keyt as the seed.

9: // For each incoming packet with key within the observa-
tion time 1T

10: Update the counter Y = Y + 1.
11: for j = 0 to k − 1 do
12: Generate Rj(keyt ) ∼ S(x; 1,−1, π/2, 0)
13: Update yj = yj + Rj(keyt .× dt )
14: end for
15: // At the end of the observation time 1T
16: for j = 0 to k − 1 do
17: yj =

yj
Y

18: end for
19: Return Ĥ(Φ) = − log(k−1

∑k−1
j=0 exp(yj))

Algorithm 4 Clifford and Cosma’s Pseudo Codes [23] to
Generate the Random Variable R(keyt ) With Maximally
Skewed Alpha-Stable Distribution of S(x; 1,−1, π2 , 0)

1: Input: keyt as the seed for generating random numbers

2: Output: random variable R(keyt )
3: Generate two random numbers U1,U2 ∼ Unif (0, 1)

4: W1← π (U1 −
1
2 )

5: W2←− logU2
6: R(keyt ) = tan(W1)

[
π
2 −W1

]
+ log(W2

cosW1
π/2−W1

)
7: Return R(keyt )

IV. SYSTEM DESIGN
A. OBSERVATION
In general, a random number r can be generated by seeding
a pseudo-random number generator with a key keyt , where
0 ≤ r ≤ RAND_MAX. The random numbers U1,U2 ∼

Unif(0, 1), generated in Algorithms 2 and 4, can be calcu-
lated as U1 = r1/2b and U2 = r2/2b, where parameter b
represents the computational resolution of the random values
and RAND_MAX=2b − 1. Having generated these random

FIGURE 1. 3-D figure of pre-computed random value R for a
maximally-skewed alpha-stable distribution S(x;1,−1, π2 ,0) with a
resolution of b = 16. Note that the z-axis represents the value of R, and
the x- and y-axis represents the random values of U1 and U2,
respectively in Algorithm 4.

numbers, the corresponding values of R(keyt ) can be obtained
accordingly. Figure 1 presents a three-dimensional (3D) fig-
ure of the random value R(keyt ) for a maximally skewed
alpha-stable distribution with a resolution of 1/(216) in
Algorithm 4.

Based on general logarithmic properties, and grouping the
variables W1 and W2 separately, line 6 in Algorithm 4 can
be represented in the form of R(keyt ) = f1(W1) + f2(W2).
The values of f1(W1) and f2(W2) can be computed in advance
and stored in two lookup tables T1[ ] and T2[ ] each of size
En. The random value R(keyt ) can then be obtained sim-
ply as R(keyt ) = T1[r1] + T2[r2]. A similar technique
can be applied to line 7 in Algorithm 2 such that the ran-
dom value R(keyt ) can be obtained as the product of T1[r1]
and T [r2]. It is noted that Zhao et al. [8] adopted a simi-
lar approach with a large entry size (i.e., En approximately
one million) and allocated the tables in an off-chip Rambus
DRAM.

B. PIECE-WISE LINEAR INTERPOLATION HEURISTIC
Algorithm 5 presents the offline table construction process
in the proposed present study. Briefly, an inverse transform
sampling approach is employed to draw up to Enmc pairs of
random values (U1,U2) ∼ Unif (0, 1) with a resolution of
1/(2b) (lines 21 and 23) from the alpha-stable distribution.
These values, shown as blue dots in Figure 2, are then sorted
in ascending order and stored in a lookup table TableMC of
size Enmc (line 26). The purpose here is to re-construct the
empirical distribution function of R(U1,U2) in Algorithms 2
and 4 in a tabular form. Note that, the sorting for Algorithm 2
is based on the descending order due to the property of the
distribution.

Observing the empirical distribution represented by the
blue dots in Figure 2, it is seen that, with more than 98.5%
probability, the values are distributed within a small range
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FIGURE 2. Empirical distribution of maximally-skewed alpha-stable
distribution S(x;1,−1, π2 ,0) based on x = 65,536 samples. Note that the
interpolation tables are constructed based on the Span, Head and Tail
regions of the distribution in Algorithm 4.

of -5 to 5. Furthermore, the empirical distribution contains
only a very small number (1.5%) of values in the wider range
of -5 to -17,995. Therefore, by using the piece-wise linear
interpolation technique illustrated in Figure 3, only a few
selected points are sufficient to approximate most of the val-
ues in the original empirical distribution [53]. Consequently,
the size of the lookup table used to reproduce the random
values, R(keyt ), in Algorithms 2 and 4 can be substantially
reduced. Crucially, the proposed scheme enables the random
values not stored in the table (i.e., approximately 98% of
the random values stored in the original TableMC of 64 K
entries) to be obtained via simple mathematical and logical
operations.

To further reduce the size of the lookup table, TableMC ,
the present study decomposes the table into three smaller
tables, namely the Span table (Tablespan), Exp-Head table
(Tableexp−head ) and Exp-Tail table (Tableexp−tail), where the
values stored in the three tables are selected in accordance
with two threshold parameters, thhead and thtail . Notably, the

FIGURE 3. Schematic illustration of interpolation process
Y ′i = b2+ (b2−b1)

(a2−a1) (Xi − a1) based on two known points of (a1,b1) and
(a2,b2). The interpolation error 4Yi is defined by |Yi − Y ′i |.

two parameters can be tuned adaptively as required to rep-
resent the particular skew characteristics of the alpha-stable
distribution. The goal is to achieve an acceptable tradeoff
between the total table size (i.e., the memory consumption,
smaller is better) and the entropy estimation accuracy (larger
is better).

The Span table is constructed by selecting values from
TableMC with a fixed span of 2sp, starting from index zero
and ending at index 2thhead . In other words, in the entropy
estimation process, the Span table is accessed for all lookup
values with hash indexes less than or equal to 2thhead .

By contrast, the Exp-Head table (see upper-right corner of
Figure 2) is accessed for all lookup values with hash indexes
2n in the interval between 2thhead and 2thtail . Finally, for lookup
values with hash indexes greater than 2thtail , the hash indexes
are inverted and the Exp-Tail table shown in the upper-left
corner of Figure 2 is accessed.

Example: For x = 65, 536 samples, sp = 1, thhead = 11
and thtail = 15, the Span table requires 2thhead /2sp = 1, 024
entries.Meanwhile, the Exp-Head table requires five entries
to store the values for lookup indexes 211, 212, . . ., and 215.
The Exp-Tail table requires 15 entries to store the values for
the remaining indexes. In other words, the total size En of one
K-parallel table is just 1,044 entries (i.e.,En = 1, 024+ 5+
15 = 1, 044). That is, the size of the original table TableMC
(65,536 entries) is reduced by 98.4%.

C. DATA PLANE PACKET PROCESSING
As shown in Algorithms 1 and 3, the number of random
values generated from the skewed alpha-stable distribution
depends on the size of the data sketch k . To avoid the
need to perform k sequential lookups over the same table,
the present study proposes a k-parallel with m-hash lookup
data structure consisting of kp read-only tables, as shown
in Figure 4. For each table, mp hash functions are used
to compute the indexes of a given key for table lookup
purposes. Through the use of this k-parallel structure, the
total lookup latency is significantly reduced and the max-
imum throughput increased correspondingly. Moreover, for
values selected from TableMC , the hash indexes to the table
have the form of two to the power of n. Thus, the com-
plex division computation in the proposed linear interpolation
scheme (see Figure 3) can be replaced by a simple logic shift
operator.

For each incoming packet, up to mp × kp hash values
are computed based on the key selected. As shown in Algo-
rithm 6, these hash values are then used to index the relevant
lookup tables following simple logical shift and invert oper-
ations (see lines 20 and 34).

In particular, as described above, three different address
ranges are specified based on the threshold values assigned
to thhead and thtail . In accordance with these ranges, the
Span (Tablespan), Exp-Head (Tableexp−head ) and Exp-Tail
(Tableexp−tail) tables are accessed as appropriate to proceed
with linear interpolation (see lines 26, 32, and 39) such that
the final sketch data structure of Yij (line 41) can be obtained.
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Algorithm 5Algorithm for Table Construction in the Offline
Stage
1: Initialization
2: Total entry of theMC table Enmc← [214, 215 . . .]
3: Set number of parallel tables kp← [20, . . .]
4: Set the Resolution bits b← [10, . . . , 31]
5: Set the Span bits sp← [0, 1, 2]
6: Set the Head thresholds thhead ← [10, .., log2
Enmc − 1]

7: Set the Tail thresholds thtail ← (log2Enmc−1)
8: Function sort(table):
9: sort the content in increasing order

10: Function invert(x):
11: inverting bits in the binary representation of x
12: // Construct the α-stable Table
13: for i = 0 to 2b − 1 do
14: for j =0 to 2b − 1 do
15: U1← i/2b,U2← j/2b

16: Tablealpha[i][j]← S(U1,U2 : α, β, γ, δ)
17: end for
18: end for
19: // Construct the Empirical Distribution
20: for j = 0 to (kp− 1) do
21: for i = 0 to (Enmc − 1) do
22: Generate two random numbers m, n where 0 ≤

m, n < 2b

23: jTabletmp[i]← Tablealpha[m][n]
24: end for
25: for i = 0 to (Enmc − 1) do
26: jTableMC [i]=sort (jTabletmp[i])
27: end for
28: // Construct the Span Table
29: for i = 0 to ((2thhead /2sp))) do
30: jTablespan[i]←j TableMC [i� sp]
31: end for
32: // Construct the Head Exp Table
33: for i = thhead to thtail do
34: jTableexp−head [i− thhead ]← jTableMC [2i]
35: end for
36: // Construct the Tail Exp Table
37: for i = 0 to thtail do
38: jTableexp−tail[i]← jTableMC [invert(2i− 1)]
39: end for
40: end for

At the end of the observation time1T , the host CPU collects
this data structure from the fast data plane and computes
the empirical Shannon entropy using the Log-Mean [23] and
New estimator [25] described in Section II-C3. The corre-
sponding pseudo codes for the two proposed estimation pro-
cesses are shown in Algorithms 7 and 8, respectively.

V. DESIGN EXPLORATION
The memory space required by the proposed scheme is equal
to the total size (kp×En) of the Span-Head-Tail tables shown

FIGURE 4. Block diagrams of the proposed k-parallel with m-hash data
structure consisting of kp Span-Head-Tail tables (read only) of size En and
sketch registers Yij of size kp×mp.

TABLE 3. Total entry size (En) of the Span-Head-Tail tables constructed
using different span and threshold parameters. Note that the the MC
table is assumed to have a total entry size (Enmc ) of 216.

in Figure 4, where kp denotes the number of lookup tables
deployed in parallel, and En is the size (i.e., total number
of entries) of each table. It is noted that the two parameters
(kp and En) play a key role in determining the accuracy and
variance of the final entropy estimates.

A. TABLE SIZE REDUCTION
The total entry (En) of the Span-Head-Tail table constructed
using Algorithm 6 can be summarized as

En =
2thhead

2sp
+ (thtail − thhead + 1)+ thtail, (2)

where thtail = log2 Enmc − 1 and thhead ≤ thtail .
The proposed linear interpolation scheme substantially

reduces the total lookup table size. As illustrated in Equa-
tion (2), thhead and sp are the dominating parameters of the
table size.

Example: As shown in Table 3, for thhead = 11,
sp = 1 and Enmc = 64K , the Span table (Tablespan)
consumes only 1, 024 entries of memory space. Moreover,
for thtail = 15, Exp-Head table (Tableexp−head ) and Exp-
Tail table (Tableexp−tail) require just five and fifteen entries,
respectively. Thus, the interpolation-based table construction
process (Algorithm 6) reduces the consumed memory space
by 98.4%.

The average error distance between the values stored in the
original table, TableMC , and those derived by the proposed
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Algorithm 6 Algorithm for Table Lookup and Piece-Wise
Linear Interpolation for Every Incoming Packet on the Data-
plane Within the Observation Time ∆T
1: Input: key (e.g., source IP address) of the packet stream
Φ

2: Output: Sketch data structure Yij, Total packet count
pktcount at the end of each observation time1T

3: Initialization
4: Total entry of the MC table En
5: Set number of parallel tables kp
6: Set number of hash functions used for a tablemp
7: Set the Span bits sp
8: Set the Head thresholds thhead
9: Set the Tail thresholds thtail
10: dt ← 1 //sketch update is based on packet count
11: Yij← 0,pktcount ← 0
12: Function φ(x):
13: The position of the most significant 1-bit in the binary

representation of x
14: Function hij(x):
15: compute hash values of x based on the family of 2-

Unversal hash functions
16: // For each incoming packet with key within the observa-

tion time 1T
17: for i = 0 to mp− 1 do
18: for j = 0 to kp− 1 do
19: indxij← hij(key)
20: indx ′ij← indxij � sp
21: if (indxij < 2thhead ) then
22: a1ij← indx ′ij � sp
23: a2ij← (indx ′ij + 1)� sp
24: b1ij← jTablespan[indx ′ij]
25: b2ij← jTablespan[indx ′ij + 1]
26: Y ′ij ← b1ij + {(b2ij − b1ij) × (indxij − a1ij)} �

sp
27: else if (2thhead ≤ indxij ≤ 2thtail ) then
28: a1ij← (1� φ(indxij))
29: a2ij← (1� (φ(indxij)+ 1))
30: b1ij← jTableexp−head [φ(indxij)]
31: b2ij← jTableexp−head [φ(indxij)+ 1]
32: Y ′ij ← b1ij + {(b2ij − b1ij) × (indxij − a1ij)} �

φ(indxij)
33: else
34: indxij← invert(indx)
35: a1ij← ((1� (φ(indxij)+ 1))− 1)
36: a2ij← ((1� φ(indxij))− 1)
37: b1ij← jTableexp−tail[φ(indxij)+ 1]
38: b2ij← jTableexp−tail[φ(indxij)]
39: Y ′ij ← b1ij + {(b2ij − b1ij) × (indxij −

invert(a1ij))} � φ(indxij)
40: end if
41: Update Yij← Yij + Y ′ij × dt
42: end for
43: end for
44: pktcount ++
45: // At the end of the observation time 1T
46: Return Yij, pktcount

Algorithm 7 Proposed Algorithm Based on Ping Li’s New
Estimator [25] for Estimating the Shannon Entropy at the End
of Observation Time ∆T on the Control Plane
1: Input: α, Sketch data structure Yij, Total packet count
pktcount of packet stream Φ

2: Output: Ĥ (Φ), the estimated Shannon Entropy
3: Set number of parallel tables kp← [10, . . .]
4: Set number of hash functions used for a table mp ←

[1, 2, 3, . . .]
5: // At the end of the observation time 1T
6: ∆ = 1− α
7: Ĵα =

4

mp·kp

∑mp−1
i=0

∑kp−1
j=0 (Yij)−α/4

8: Ĥ (Φ) = −log(Ĵα)− 1
4
log(pktαcount )

9: Return Ĥ (Φ)

Algorithm 8 Proposed Algorithm Based on Clifford and
Cosma’s Log-Mean Estimator [23] to Estimate the Shannon
Entropy at the End of Observation Time ∆T on the Control
Plane
1: Input: Sketch data structure Yij, Total packet count
pktcount of packet stream Φ

2: Output: Ĥ (Φ), the estimated Shannon Entropy
3: Set number of parallel tables kp← [10, . . .]
4: Set number of hash functions used for a table mp ←

[1, 2, 3, . . .]
5: // At the end of the observation time 1T
6: for i = 0 to mp− 1 do
7: for j = 0 to kp− 1 do
8: Yij←

Yij
pktcount

9: end for
10: end for
11: Ĥ (Φ)← (−log( 1

mp·kp

∑mp−1
i=0

∑kp−1
j=0 exp(Yij))

12: Return Ĥ (Φ)

piece-wise linear interpolation process can be evaluated as
Equation (3).

L1 =
1

Enmc

Enmc−1∑
i=0

|Yi − Y ′i | (3)

Figure 5 illustrates the selection of cut-off thresholds (thhead )
and the total entry consumed of the proposed interpolation
scheme. For ease of comparison, as shown in Figure 6, two
baselines of the average error distance are shown, namely
(1) the dotted L1_quarter line, which represents the L1 dis-
tance of the quarter-sized interpolation table in which every
4th entries of the original table TableMC is retained; and
(2) the dashed L1_half line, which represents the average
error distance of the half-sized interpolation table in which
every 2nd entries of the original one is retained. As expected,
the average error distance of the L1_half scheme is much less
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FIGURE 5. Table size (entry) of proposed interpolation-based method for
entropy estimation using the scheme LME of Clifford & Cosma [23] and
various cut-off thresholds. Note that the results are obtained using a
resolution of fourteen bits (b=14) with spans of one (sp=0) and two
(sp=1), respectively.

FIGURE 6. Average error introduced in proposed interpolation-based
method for entropy estimation using the scheme LME of Clifford &
Cosma [23] and various cut-off thresholds. Two reference lines
(L1_quarter, L1_half ) of the average error distance are provided. The
L1_quarter line shows the average error distance of the quarter-sized
interpolation table constructed by sampling every 4th entry in TableMC ,
while the L1_half line shows the average error distance of the half-sized
interpolation table constructed by sampling every 2nd entry in TableMC .

than that of the L1_quarter scheme since twice the number
of original values are preserved in the reconstructed table.

A simple approach for constructing an interpolation table
with half the size of the original MC table is to skip every sec-
ond entry in the original table. However, the resulting tradeoff
between the interpolation error and the memory space saving
may be sub-optimal. As shown in Figure 5, by using a cut-off
threshold of thirteen (thhead = 13) and storing all the values
(sp = 0) in the original table, the L1 distance reaches almost
the same level as that provided by the L1_half.Moreover, the
consumed memory space of the interpolation table Tablespan
is equal to just 12.5% of that of the original table TableMC .
Furthermore, if every 2nd entries (sp = 1) is selected, the
memory space can be halved (4,114 entries) while the average
error distance is still less than the level of the L1_quarter line.

Accordingly, simulations were performed using a real-
world Internet traffic trace extracted from the MAWI
dataset [54] to evaluate the effects of the cut-off thresh-
old (thhead ) and span (sp) on the cumulative probability
of various error percentages. The corresponding results are
shown in Figure 7. It is seen that for parameter settings of

FIGURE 7. Cumulative probability of various error percentages for
different combinations of cut-off threshold (thhead ) and span (sp)
parameters. Note that the simulation results are obtained using a
30-second segment of the MAWI traffic trace (200701011400) with thirty
parallel tables (kp = 30) and twelve hash functions (mp = 12) per table
based on the interpolation-based LME scheme of Clifford & Cosma [23].

FIGURE 8. Box-and-whisker plot of the percentage errors for different
cut-off thresholds (thhead = 7,8, . . . ,13) with span of one (sp = 1). Note
that the simulation results are obtained using a 30-second segment of
the MAWI traffic trace (200701011400) with thirty parallel tables
(kp = 30) and twelve hash functions (mp = 12) per table based on the
interpolation-based LME scheme of Clifford & Cosma [23].

thhead = 13 and sp = 0, the cumulative probability reaches
almost 0.9 within an error percentage of 3%. Furthermore,
the table size can be halved using a span size of two (sp = 1)
with no more than a minor reduction in the cumulative prob-
ability. Figure 8 demonstrates the box-and-whisker plot of
the percentage errors for different cut-off thresholds. The
distribution of relative errors declines as the cut-off thresh-
old increases. For thhead = 10, the upper quartile is less
than 3%.

B. K-PARALLEL TABLE WITH M-HASH
In practice, the variance of the entropy estimates obtained
using the proposed scheme can be further reduced through
an averaging approach by using multiple tables in paral-
lel and independent hash functions for each table lookup.
Figure 9 shows the cumulative probability of the relative error
of the entropy estimates given the use of different numbers of
lookup tables. The relative error, defined as (

ˆ|H−H |
H )×100%,

is the absolute error divided by the magnitude of the exact
entropy. It can be seen that for a cumulative probability of
0.9, for example, the relative error reduces from 7% to just
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FIGURE 9. Cumulative probability of relative error for estimated Entropy
using different numbers of tables (kp = 20 ∼ 120) in parallel. Note that
the number of hash function is eight (mp = 8) in every case.

2.9% as the number of tables increases from twenty (kp = 20)
to forty (kp = 40) given the use of eight hash functions
(mp = 8) in every case. By contrast, as shown in Figure 10,
the cumulative probability increases from 0.71 to 0.98 as the
number of hash functions increases from two (mp = 2) to
sixteen (mp = 16) for a relative error of 5%.

Note that the results presented in Figures 9 and 10 are
obtained using the interpolation-based scheme of Clifford
and Cosma [23] and a synthetic traffic stream consisting of
one million elements. In addition, the skew parameter [55]
is set as Zipf=1.4 (i.e., the same as that of the real-world
MAWI trace used in the previous simulations) and the span
and cut-off threshold parameters have values of sp = 1,
thhead = 11, and thtail = 15, respectively.

FIGURE 10. Cumulative probability of relative error for estimated entropy
(LME) using different numbers of hash functions for each table
(mp = 2 ∼ 16). Note that the number of tables used in parallel is twenty
(kp = 20) in every case.

C. RESOLUTION
Parameter b in the proposed table construction algorithm
(Algorithm 5) defines the resolution, 1/2b, of the values
stored in the lookup table. For a fixed value of Enmc (e.g.,
65,536, see above), a higher resolution results in a more accu-
rate estimation performance for a larger number of distinct
keys in the packet stream. Figure 11 shows the mean abso-
lute percentage error (MAPE), defined as 1

s

∑s
i=1(

ˆ|Hi−Hi|
Hi

)×
100%, of the estimated entropy for one thousand streams
(s = 1, 000) of different distributions and resolutions.

It is seen that for a typical real-world network trace [54]
with a moderate skew (Zipf=1.4) and a length of one million
elements (approximately 18 K distinct elements), a resolu-
tion bit size of 12 is sufficient to yield an accurate entropy
estimation performance. However, for synthetic data streams
containing 100 K, 1 M, and 10 M different items [55], res-
olution bit sizes of at least 16, 18 and 22, respectively, are
required to achieve an adequate estimation accuracy.

FIGURE 11. Mean absolute percentage error (MAPE) of estimated entropy
for data streams of different distributions and different resolution bits.
Note that the evaluation results are obtained using the
interpolation-based LME of Clifford and Cosma with a sketch size of
k = 20.

D. SIZE AND ERROR TRADEOFF
In general, the entry size (Enmc) of TableMC used to store
the values selected from Tablealpha through the inverse trans-
form sampling process should not be too small. The reason
is that if those random values are sampled coarse-grained,
it is hard to represent the original stable distribution; hence,
the interpolation error increases. Based on two distributions
(Zipf=0.1 and 1.9), Figure 12 illustrates the mean absolute
percentage error with different sizes of the TableMC for the
interpolation-based entropy estimations of LME and NECC
(kp = 20, mp = 1). The mean value is obtained based on
simulations of 1, 000 times.
It is apparent that for a highly-skewed stream (Zipf=1.9),

the mean absolute percentage error remains the same as the
size increases. In contrast, for a uniform-distributed stream
(Zipf=0.1), the larger the entry size, the lower the error. The
LME and NECC interpolation schemes achieve less than 5%
of the mean error with the 512 K entry of the MC table.

Please be noted that TableMC is a temporary data structure
storing the random values generated by the inverse transform
sampling. Based on this table, the proposed interpolation pro-
cess further creates the Span-Head-Tail table with a much
smaller size suitable for system implementation.

As indicated in Equation (2), the size of the Span-Head-
Tail table is mainly affected by the parameters of cut-off
(thhead ) and span parameters (sp). Figures 13 and 14 demon-
strate the mean absolute percentage error with different
cut-off thresholds (thhead ) and span parameters (sp) for the
interpolation-based entropy estimations.

Obviously, using a lower span value, the larger the cut-
off threshold, the lower the mean absolute percentage error
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FIGURE 12. Mean absolute percentage error of the proposed
interpolation-based methods with different sizes (Enmc ) of the MC Table.
The simulation is conducted based on two synthetic data streams of
Zipf=0.1 and 1.9.

for the estimation. However, for a fixed span parameter,
the table size (En) increases exponentially as the cut-off
threshold increases. Therefore, for approximately 4 K-entry
of the k-parallel table implementation, suitable selections of
the span and cut-off threshold parameters can be (sp = 0,
thhead = 12) or (sp = 1, thhead = 13).

FIGURE 13. Mean absolute percentage error of the proposed
interpolation-based LME methods with different cut-off thresholds
(thhead ) and three span parameters (sp = 0,1,2). The simulation is
conducted based on a uniform synthetic data stream (Zipf=0.1) with the
MC table size (Enmc ) of 512K .

VI. SYSTEM EVALUATION
The feasibility of the proposed interpolation-based platform
for estimating the Shannon entropy using either the algorithm
of NECC Ping Li and Zhang [25] or LME schemes of Clif-
ford and Cosma [23] was evaluated using both synthetic data
stream and real-world traffic traces adopted from the MAWI
dataset [54] and the CAIDA DDoS attack dataset [56].

A. BASELINE
In general, up to k numbers of Rk values are used in the
LME [23] and NECC [25] schemes to minimize the variance
of the empirical Shannon entropy estimates. For example,
Zhao et al. [8] used twenty blocks of sketch data (k = 20)

FIGURE 14. Mean absolute percentage error of the proposed
interpolation-based LME and NECC methods with different cut-off
thresholds (thhead ) and span parameters (sp = 0,1). The simulation is
conducted based on a skewed synthetic data stream (Zipf=1.9) with the
MC table size (Enmc ) of 512K .

FIGURE 15. Box-and-whisker plot of the relative percentage errors of
entropy estimates obtained using the schemes of original LME of Clifford
& Cosma (left section) and NECC of Ping Li (right section) for Zipf
parameters of 0.1 and 1.9 and different numbers of sketch data structure
(k = 20 ∼ 180).

in the lookup table implementation. Figure 15 presents box-
and-whisker plots of the relative errors obtained using the
schemes of original LME of Clifford & Cosma (left section)
and NECC of Ping Li (right section) for distributions with
two extreme cases (Zipf = 0.1, 1.9) and three different
table configurations (k = 20, 100, 180). The variance of the
estimated entropy can be minimized effectively with a higher
number of sketch data structures (k) in both schemes.

Figure 16 compares the mean estimated entropy values
obtained from the original LME [23] andNECC [25] schemes
with those obtained from the correspondence interpolation-
based schemes (kp = 20,mp = 1). For both schemes, the
simulations were repeated 1,000 times with different hash
parameters each time and the results were then derived as
mean values with the standard deviation shown as error bars.

On average, as shown in Figure 17, the original LME and
NECC schemes yield a relative error of less than 5% com-
pared to the exact entropy solutions with a Zipf value less
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FIGURE 16. Estimated entropy obtained using original and proposed
interpolation-based LME [23] and NECC [25] schemes for stable random
distributions with different Zipf parameters. Note that the original LME
and NECC schemes are implemented using a data sketch size of twenty
(k = 20), while the proposed interpolation-based schemes are
implemented using twenty tables (kp = 20) in parallel and one hash
function per table (mp = 1).

than 1.01. By contrast, the proposed schemes overesti-
mate the entropy value due to the interpolation error intro-
duced. In particular, the mean relative error of both schemes
increases to approximately 18% as the stream elements
become highly-skewed (Zipf = 1.9) distributed. Fortunately,
as shown in Figure 17, the mean relative error for a traffic
distribution with a Zipf value of 1.9 can be reduced to around
6% using the proposed interpolation-based schemes given the
use of more hash functions per table (kp = 20,mp = 12).

FIGURE 17. Mean absolute percentage error of estimated entropy
obtained using original and proposed interpolation-based LME [23] and
and NECC [25] schemes for stable random distributions with different Zipf
parameters. Note that the original LME and NECC schemes are
implemented using a data sketch size of twenty (k = 20), while the
proposed interpolation-based schemes are using twenty tables (kp = 20)
in parallel and one hash function per table (mp = 1) and twelve
(mp = 12).

The simulations considered synthetic data streams, each
consisting of 30 K items, generated using different Zipf
parameters in the range of 0.1 to 1.9 [55]. For the
interpolation-based scheme, the head threshold parameter
was set as ten (thhead = 10), the tail threshold parameter was
set as fifteen (thtail = 15), and the span parameter was set

as one (sp = 1). Finally, the resolution bit size was set as
eighteen (b = 18).

B. MAWI TRACE
Six real-world network traffic traces from the MAWI Work-
ing Group Traffic Archive [54] are used to evaluate the per-
formance of the proposed system. Those 15-minute long
packet traces are originated from part of the 24h-long trace
at MAWI’s samplepoint B, F, and G. As shown in Table 4,
the average number of distinct source IPv4 addresses ranged
from 51.7 K to 5.07 M, while the total number of packets
ranged from 3.5 M to 588.7 M approximately.

TABLE 4. Real-world network traffic traces from MAWI.

Simulations were performed to compute the cumulative
probabilities of the relative error of the estimated entropy of
the six traces given the use of both estimation schemes [23],
[25]. The estimation process was confined to a small por-
tion (30 seconds) of the original trace (15 minutes) and
the estimation procedure was repeated 500 times using dif-
ferent hash parameters and table contents. Table 5 shows
the cumulative probability of 3% and 5% relative errors of
the estimated entropy when using the interpolation-based
approach for LME and NECC algorithms, respectively. It is
seen that when the estimation process is implemented using
forty lookup tables (kp = 40) in parallel, the cumulative
probability reaches 0.89 for a 3% relative error when using
the LME scheme and 0.9 when using the NECC method.
Moreover, the total memory space consumption (sp = 1,
thhead = 13) is 640 K bytes, assuming that each table entry
utilizes a 32-bit counter.

For each 15-minute-long packet trace, an estimated entropy
value Ĥi and exact value Hi were obtained using an obser-
vation time of 30 seconds. The corresponding MAPEs were
then computed. The simulation process was repeated 20 times
with different hashing parameters and table contents each
time. Box-and-whisker plots were plotted for the MAPE val-
ues of the six traces given the use of the interpolation-based
LME and NECC schemes, respectively. The corresponding
results are presented in Figure 18 and Figure 19, respectively.
It is seen that for all six traffic traces, the means of the
box-and-whisker plots are less than 3% for both estimation
schemes. Following the LME simulation results using only
thirty lookup tables (kp = 30), the MAPE for the trace
of 201501011400 and 201904091800 are 1.6% and 1.83%,
respectively. The total memory space consumption (sp = 1,
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TABLE 5. Cumulative probabilities of relative error for entropy estimation of 3% and 5% given use of the LME and NECC schemes (
a

t = 30).

FIGURE 18. Box-and-whisker plot of relative error values for six MAWI
traffic traces. The simulation is based on the LME of Clifford and Cosma
with interpolation parameters of mp = 12 and kp = 40.

FIGURE 19. Box-and-whisker plot of relative error for the six MAWI traffic
traces. The simulation is based on the NECC of Ping Li and Zhang
(α = 0.999) with interpolation parameters of mp = 12, and kp = 40.

thhead = 13) is 480 K bytes. Noted that, as illustrated in
Table 4, the 201904091800 trace contains the highest num-
ber of distinct source IP addresses (197.9 K) in an average
of 30-second observation time. Table 6 illustrates the mean
absolute percentage errors of the LME estimation on MAWI
traces in an observation time of 300 seconds. The errors are all
less than 3% except for the trace of 202004081400. Besides,
the standard deviation for 202004081400 trace is higher than

TABLE 6. Mean absolute percentage error of the interpolation-based LME
estimation on MAWI network traffic traces with observation time of
300 seconds (

a
t = 300). The simulation is based on the configuration of

kp = 40, sp = 1, thhead = 13, b = 18. The total memory consumed
is 640 K bytes.

those of the other traces. This is mainly due to the excess
number of packets (196.2 M) processed.

Noted that, as shown in Table 4, the whole traces (900 sec-
onds) of 201501011400 and 201904091800 contain approx-
imately five million distinct source IP addresses with total
packet counts of 58.1 M and 98.8 M, respectively. There-
fore, according to the simulation results shown in Figure 11,
a higher resolution bit (b) needs to be applied in the table
construction phase. Thus, as shown in Figure 20, with resolu-
tion bits of 22, the interpolation-based LME and NECC can
estimate the empirical entropy of these two 900-second traces
with less than 3% of mean absolute percentage error.

C. CAIDA 2007 DDoS TRACE
The entropy estimation performance of the proposed archi-
tecture was further evaluated using the CAIDA 2007 DDoS
dataset [56]. In particular, a one-hour-long packet trace was
adopted from the MAWI Working Group Traffic Archive
(MAWI 2019 DITL Trace) [54] and was merged as a back-
ground traffic with the CAIDA DDoS attack trace.

As shown in Figure 21, the synthetic trace contained
two DDoS attacks, where these attacks were simulated sim-
ply by inserting the same DDoS attack records into the
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FIGURE 20. Box-and-whisker plot of relative error for the MAWI traces of
201501011400 and 201904091800. The simulation is based on the
interpolation-based LME and NECC algorithms with the configuration of
kp = 40, sp = 1, thhead = 13, b = 22. The observation time is 900 seconds
(
a

t = 900).

background traffic twice. The entropy values were estimated
using the interpolation-based LME [23] and NECC [25]
schemes based on the source IP address and an observation
time of 30 seconds in both cases. For both estimators, the
interpolation scheme was implemented using parameter set-
tings of b = 18, sp = 0, thhead = 11, and thtail = 15. More-
over, the interpolation process was performed using twenty
tables in parallel (kp = 20) with four hash functions for each
table (mp = 4). A detailed inspection of Figure 21 shows that
the MAPE values for the interpolation scheme of LME and
NECC (α=0.999) is 3.3% and 2.46%, respectively.

In order to compare the entropy values in different observa-
tion time slots, the entropy values are often normalized based
on the distinct count or the total count [41] of the stream
elements. Figure 21 presents the entropy normalized based on
the exact distinct count for illustration purposes. As the car-
dinality estimation is outside the scope of this study, we refer
the readers to the literature of Flajolet and Martin [57], [58]
for the original algorithm. Furthermore, Kulkarni et al. [59]
and Soto et al. [44] presented the estimation accelerator in
FPGAs, and Ding et al. [45] introduced the practical imple-
mentations in the P4 programming language.

VII. PRACTICAL IMPLEMENTATION
A. FPGA
The practical feasibility of the proposed architecture was
demonstrated by implementing it in the data plane of the
NetFPGA-Plus [60] project in an UltraScale+ XCU200
FPGA consisting of 2, 160 blocks of 36 K-bit BRAMs. The
total processing latency of the hardware design comprised ten
clock cycles for frame parsing and key hashing (2 cycles),
table lookup (1 cycle), and interpolation (7 cycles).

Figure 23 presents the FPGA system operation estimat-
ing the entropy values of five-tuple attributes by replaying
the CAIDA DDoS 2007 network traffic trace [56] through
a 100Gbps network interface card. Each incoming packet was
processed in a pipeline fashion using a 250MHz AXI-Stream
bus with 512-bit. A typical minimum-sized Ethernet frame
consisted of a 12-byte inter-frame gap, a preamble of 8 bytes,
a 14-byte frame header, a 46-byte payload, and a 4-byte

FIGURE 21. Estimated entropy values of source IP address obtained using
interpolation-based LME and NECC algorithms. Note that the
CAIDA 2007 DDoS dataset [56] is used with each time slot corresponds to
an observation time of 30 seconds (

a
t = 30).

TABLE 7. FPGA resource utilization.

CRC checksum of the wire. Thus, two cycles were required
to process the 84-byte frame on the 512-bit AXI-Stream
bus. The interpolation architecture was implemented using
two sets of fifty tables in parallel (kp = 100 in total),
where each table utilized two dual-port BRAMs with a size
of 2 K × 36 bits. Accordingly, four hash lookups (mp =
4) were performed for each table within two clock cycles
enabling 148, 809, 524 frames to be processed per second at
a 100 Gbps wire speed. The Verilog HDL implementation
is synthesized and the resource utilization is presented in
Table 7.
Given the UltraScale+ BlockRAM’s maximum clock fre-

quency of 825 MHz [61], the proposed design was capable
of processing up to twelve hash-lookups (mp = 12) within
two clock cycles at a 100 Gbps wire speed. The theoretical
processing throughput of the proposed pipelined design was
thus 422.4 Gbps for minimum-sized Ethernet frames.

B. P4
The proposed Entropy estimation scheme was also imple-
mented in the data plane of a P4 switch using P4-16 program-
ming language [62]. The interpolation parameters were set as
sp = 1, thhead = 10, and thtail = 15, and the estimation pro-
cess was performed using twenty tables (kp = 20) in parallel
and one hash function (CRC32) per table (mp = 1). Each
entry stored a 32-bit fixed-point value consisting of a 12-bit
fraction and a 20-bit integer. Figure 24 shows an excerpt of
the P4 code for the interpolation operation in the behavioral
model.
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FIGURE 22. Box-and-whisker plot of the relative errors of entropy estimates obtained using interpolation-based LME of Clifford & Cosma (see upper
panel) and NECC of Ping Li (see lower panel) schemes for Zipf parameters ranging from 0.1 to 2.0 and different numbers of tables (kp) and hash
functions (mp). The synthetic data stream consists of 300 K items.

FIGURE 23. FPGA testbed used to evaluate entropy estimation
performance with CAIDA 2007 DDoS trace [56].

Most of the programmable data plane architecture [63]
can not support complex mathematical operations such as
multiplication and division. The solution is to adopt the

approximation techniques [64] of bit-shifting with adders and
table lookups. In addition, more complex operations such
as exponential and logarithmic can also be realized [45]
based on the approximation techniques with binomial series
expansion.

Assuming that a total of m packets of key are observed
within the range of a1 and a2 during the observation windowa
t , and Xj = hash(keyj), the estimation sketch data structure

Y ′j obtained using the interpolation process shown in Fig. 3
can be expressed as

m−1∑
j=0

Y ′j =
m−1∑
j=0

(b2 +
(b2 − b1)
(a2 − a1)

(Xj − a1)) (4)

= m× b2 +
(b2 − b1)
(a2 − a1)

(
∑

Xj − m× a1). (5)

Since the values of a1, b1, a2, and b2 are all known constant
values, the multiplication step in of the interpolation process
can be conducted in batch mode by using the host CPU in the
control plane. In order to implement the proposed scheme in

VOLUME 10, 2022 104949



Y.-K. Lai et al.: Tabular Interpolation Approach Based on Stable Random Projection for Estimating Empirical Entropy

FIGURE 24. Excerpt of P4 codes for interpolation operation in behavioral model (BMv2).

TABLE 8. Average hardware resource consumption of Tofino switch.

the Tofino Native Architecture (TNA) pipeline without the
need for a multiplication operation, the implemented design
utilizes additional register tables to accumulate the summa-
tion of the hash index Xi and corresponding frequency count
mi within the range of ai and ai+1 for each incoming packet
in the data plane. The average resource consumption of the
final implementation (kp = 20,mp = 1) using eleven
pipeline stages is shown in Table 8. Figure 25 presents a pho-
tograph of the P4 testbed. A total of 100 K minimum-sized
Ethernet frames were generated at a rate of 100 Gbps by
the Thor-400G-7S-1P test module in the ValkyrieCompact
chassis (XENA Networks). Three different distributions of
the IPv4 source addresses were configured, namely random,
linear-increasing, and fixed. The relative error of the esti-
mated entropy was found to be less than 11% in all three
cases.

VIII. DISCUSSION
A. PACKET COUNT AND DISTINCT ITEM
Typically, the network traffic analysis adopts observation
epochs of 30∼900 seconds [8], [41], [44]. Thus, based on the
memory size ranging from 480K to 640K bytes, the proposed
scheme can process traces of up to 98.8 million packets and
handle approximately up to five million distinct items with
less than 3% of mean absolute percentage error.

The proposed schemes can handle a more different number
of distinct items for a traffic stream as the resolution bit value
(b) increases. Hence the accuracy of the entropy estimates
improves. A high-resolution setting extends the depth range
of the span region. Thus, the parameters of thhead and sp need
to be adjusted accordingly to meet the required estimation
accuracy.

B. IMPLEMENTATION FLEXIBILITY
The number of lookup tables (kp) and hash functions (mp)
in the proposed interpolation-based scheme provides valu-
able flexibility in the system implementation to minimize the
variance of the estimated entropy. Figure 22 presents box-
and-whisker plots of the relative errors obtained using the
interpolation-based LME of Clifford & Cosma (upper panel)

FIGURE 25. P4 testbed used to evaluate entropy estimation performance.

and NECC of Ping Li (lower panel) schemes for distributions
with different Zipf parameters. Three different table config-
urations are adopted (kp = 20, 40, 80), and the number of
hash functions used for each table is equal to eight (mp = 8)
or sixteen (mp = 16).

The designer can deploy the proposed schemes with a
fair number of tables and hash functions based on the avail-
able memory space and processing throughput requirement.
Thus, compared to the existing hardware solutions [8], [41],
[44], [45] we can implement the proposed scheme in the
programmable data plane with P4 on the TofinoNative Archi-
tecture (TNA) and FPGA easily. Moreover, instead of con-
ducting read-modify-write operations (2∼3 clock cycles) on
the entire sketch memory [44], the read-only lookup pro-
cedure (1 clock cycle) of the proposed scheme provides a
faster processing speed for the packet updates. Since the table
lookup procedure can be performed in parallel, the latency
is reduced. Hence the estimation process is favorable for
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FIGURE 26. Mean absolute percentage error for the interpolation-based
LME of Clifford & Cosma and NECC of Ping Li with different numbers of
packet counts processed and Zipf parameters (Zipf = 0.1,1.3,2.1). The
simulation is based on the configuration of kp = 20, mp = 12, sp = 1,
thhead = 13, b = 18.

high-speed network traffic (providing that sufficient memory
space is available).

C. LIMITATION
Increasing the number of tables can minimize the variance to
a certain extent (e.g., kp > 80) since the variance is inherently
dependent on the magnitude of the interpolation error. For a
given number of tables (kp = 80) shown in Figure 22, the
variance can also be reduced by increasing the number of hash
functions from eight (mp = 8) to sixteen (mp = 16). How-
ever, most on-chip embedded memories have only a limited
number of read-ports. As a result, the lookup process must be
conducted sequentially, causing a long latency delay. Con-
sequently, the number of hash functions must be balanced in
such a way as to meet the wire-speed processing requirement.

Figure 26 presents the mean absolute percentage error for
the interpolation-based LME and NECC with different num-
bers of packet counts processed. The simulation is conducted
based on three synthetic data streams of Zipf=0.1, 1.3, and
2.1 with parameters of kp = 20 and mp = 12. For a traffic
distribution of Zipf=1.3, the interpolation-based LME and
NECC schemes can process up to approximately 400Mpack-
ets with less than 5% of error. However, for an extreme case
where the traffic is very uniformly distributed (Zipf=0.1), the
error of the entropy estimation increases rapidly as the packet
count grows. The reason is primarily due to the accumulation
of interpolation errors originating from the table lookup pro-
cess.

IX. CONCLUSION AND FUTURE WORK
This paper has proposed a tabular interpolation scheme for
estimating the empirical Shannon entropy of network traffic
based on the stable random projection method. The existing
entropy estimation methods, such as the Log-Mean Estimator
(LME) [23] and the New Estimator of Compressed Count-
ing (NECC) [25], [26], required complex computations. In
contrast, the present study derives the required data structures
using a simple table lookup process and a piece-wise linear
interpolation technique. The total size of the lookup table is
reduced by separating the table into three smaller tables in
accordance with parameters of sp, thhead and thtail .

Notably, the parameters can be adjusted by the particular
characteristics of the skewed alpha-stable distribution. The
purpose is to correctly reproduce the distribution and achieve
an acceptable tradeoff between the proposed scheme’s mem-
ory consumption and the entropy estimates’ accuracy.

The feasibility of the proposed architecture has been
demonstrated using both real-world traffic traces and syn-
thetic data streams. The scheme has additionally been eval-
uated, delivering the capability of processing network traffic
at a 100 Gbps wire speed on a Xilinx U200 FPGA platform
and a Tofino programmable P4 switch. In general, the results
have shown that the proposed architecture is compatible with
both the LME scheme [23] and the NECC method [25].

In addition, the simulation results have indicated that the
proposed scheme can process traces of up to 98.8 million
packets and handle up to five million distinct items with
a mean relative error of less than 3%. The total memory
space consumed is 480 K bytes (kp = 30) and 640 K bytes
(kp = 40), respectively based on the configuration of (mp =
12, sp = 1, thhead = 13).

Since the primary entropy estimation involves only the
lookup of read-only tables and the update of some sketch
registers, the process has very low latency. Thus, a theoretical
processing throughput in excess of 400 Gbps can be achieved
given the latest advances in FPGA technology with a Block
RAM frequency of 825 MHz. In future studies, we plan
to optimize the proposed design further and deploy it in
real-world network environments for traffic monitoring and
anomaly detection applications.
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