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ABSTRACT Rail is one of the most energy efficient and economical modes of transportation. Regular rail-
way track health inspection is an essential part of a robust and secure train operation. Delayed investigations
and problem discoveries pose a serious risk to the safe functioning of rail transportation. The traditional
method of manually examining the rail track using a railway cart is both inefficient and susceptible to
mistakes and biasness. It is imperative to automate inspection in order to avert catastrophes and save countless
lives, particularly in zones where train accidents are numerous. This research develops an Internet of Things
(IoT)-based autonomous railway track fault detection scheme to enhance the existing railway cart system
to address the aforementioned issues. In addition to data collection on Pakistani railway lines, this work
contributes significantly to railway track fault identification and classification based on acoustic analysis,
as well as fault localization. Based on their frequency of occurrences, six types of track faults were first
targeted: wheel burnt, loose nuts and bolts, crash sleeper, creep, low joint, and point and crossing. Support
vector machines, logistic regression, random forest, extra tree classifier, decision tree classifier, multilayer
perceptron and ensemble with hard and soft voting were among the machine learning methods used. The
results indicate that acoustic data can successfully assist in discriminating track defects and localizing these
defects in real time. The results show that MLP achieved the best results, with an accuracy of 98.4 percent.

INDEX TERMS Acoustic analysis, artificial neural network, Internet of Things, machine learning, railway
faults detection.

I. INTRODUCTION
Railways are a country’s lifeline, particularly in developing
nations, serving the public’s transportation requirements as
well as being the backbone of trade and supply lines. The
railway market has strengthened over time, providing better
opportunities for the public and the country’s economy. Rail
is one of the most energy efficient modes of transportation,
accounting for 8% and 9% of global passenger and freight
transit respectively, while consuming only 3% of total trans-
portation energy [1]. Rail uses 12 times less energy and
produces 711 times fewer Greenhouse Gases (GHGs) per
passenger kilometer travelled than private automobiles and
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airlines, making it the most efficient means of motorized
passenger transportation. Aside from shipping, freight rail is
the most energy efficient and low carbon mode of transporta-
tion [1]. However, high performance railway operations must
be provided to ensure the continuous running of railway trains
and the safety of passengers.

The general public, commuters, and tourists all travel by
train, and their safety is compromised if railway tracks are
unfit for day-to-day operations. Similarly, freight safety and
dependability are critical components of the supply chain,
necessitating fault-free and fault tolerant railway tracks.
Because mechanical and physical wear and tear can develop
over time, regular inspections are essential to reduce train
derailing incidents. Rail freight traffic increased interna-
tionally between 2018 and 2019, with Europe and Turkey
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handling around 3.1 trillion-ton kilometers in 2019, ranking
slightly lower than Asia/Oceania/Middle East, which han-
dled over 3.5 trillion-ton kilometers of freight by rail in the
same year [2]. Each year, China, and India service approx-
imately 773 and 770 billion passenger kilometers, respec-
tively. Russia (175.8 billion), France (88.3 billion), Germany
(77 billion), Ukraine (53.1 billion), and the United Kingdom
(51.8 billion), are among the other nations with significant
rail passenger traffic [3]. Pakistan is also a country where
many people prefer traveling by rail, with an anticipated
70million people reported to travel by train between 2018 and
2019 [4]. Pakistan railways (PR) has earned 48.652 billion
Pakistani Rupee (PKR) from its operation between 2020 and
2021 [5]. Although railway is a well-known mode of trans-
portation throughout the country, the sad reality is that it does
not nearlymatch global standard requirements. Cracks, creep,
loose fittings, crash sleeper, ballast, discontinuity, missing
nuts and bolts, and wheel burnt are some of the key issues.
A lack of regular visible maintenance, preemptive inspec-
tions, delayed problem detection, all generate severe concerns
about the security of rail transit operations in Pakistan. As a
result, numerous and severe incidents have occurred in recent
years, resulting in significant human and financial damage.
According to PR’s yearly reports [6], 127 incidents occurred
between 2013 and 2020 due to derailing and track defects.

Railway tracks require regular and adequate maintenance
and if neglected, has a significant influence on the railway
network [7]. To mitigate potential negative effects, the viabil-
ity of a low-cost automated conventional cart system capa-
ble of monitoring the health of the railway track must be
developed and evaluated in order to aid the regularly required,
efficient and accurate diagnosis, track repairs and tominimize
the possibility of accidents. Railway track condition monitor-
ing, where railway tracks are regularly monitored to locate
and fix faults, is critical for the ongoing running of railway
trafficwith a greater degree of safety and dependability. How-
ever, monitoring hundreds of thousands of miles of railway
track necessitates a significant investment in both money and
labor making it unlikely. Additionally, human examination is
prone to mistakes, and manual inspection is time consuming
and can be biased. In Pakistan, a railway cart is currently
utilized for track inspection, with human specialists manu-
ally inspecting the track and determining where repairs are
required. An automated railway track fault detection system
would reduce human error, provide greater inspection ranges
and accuracy and reduce overall labor costs. The Internet
of Things (IoT) has changed the way we interact with our
environment. Smart cities, smart homes, pollution manage-
ment, energy conservation, smart transportation, and smart
industries are applied examples of IoT driven developments.
IoT is the also used for data acquisition and telemonitoring
in real time. This study presents and proposes an IoT based
smart automated cost-effective track conditions inspection
approach. Common track faults such as low joint, wheel
burnt, creep, crash sleeper, loose nuts and bolts, and point and
crossing are investigated with results presented in this study.

The rest of the paper is organized as follows. Section 2 pro-
vides a summary of other studies on locating such faults
in railway tracks. Section 3 presents the data gathering
techniques, data collection device, and proposed study
approach. Section 4 provides the results and discussions,
while Section 5 has the conclusion.

II. LITERATURE REVIEW
The key motive for inspecting railway lines is for predictive
maintenance, problem identification and to ultimately mini-
mize the possibility of train accidents. Periodic and frequent
railway line examination is critical. Human inspection of hun-
dreds of thousands of miles of track is time-consuming, labor-
intensive, and susceptible to human error. Due to human error,
manually driven systems are insufficient to monitor the health
of tracks routinely, reliably, frequently, and universally; thus,
automatic identification and monitoring of track faults/cracks
is vital. As a result, several automated systems have been
developed to reduce efforts and boost the efficiency. Non-
destructive evaluation (NDE) techniques such as electromag-
netic approaches (Eddy current testing [8], magnetic flux
leakage (MFL) testing [9], guided wave-based systems (ultra-
sonic testing [9], [10], guided wave detection [11]), vision
based systems, IoT based system and acoustic based systems
have been employed for rail track inspection. More informa-
tion on the tools and procedures used for rail track inspection
is provided in [8] and [11]. The literature is categorized by
electromagnetic, guided, computer vision. IoT and acoustic
based approaches below.

A. ELECTROMAGNETIC APPROACHES
The concept of a train-based differential eddy current (EC)
sensor system for fastener detection was presented in [12].
The sensor operates via electromagnetic induction, in which
an alternating-current carrying coil generates an EC on the
rail and other electrically conductive material in the area, and
a pick-up coil measures the returning field. The results of both
field measurements and lab testing show that the suggested
approach can detect an individual fastening system from a
height of 65mm above the rail. A time domain feature of the
measurement signal was also used to detect missing clamps
within a fastening system.

The performance of a machine learning method to iden-
tify and analyze missing clamps within a fastening system,
as evaluated by a train-based differential eddy cur-rent sensor,
was examined in [13]. This study investigated six classifi-
cation algorithms, with KNN being the highest performing
model achieving precision and recall of 96.64% and 95.52%,
respectively.

A typical excitation coil (EC) sensor to simulate rail crack
detection presented by [14] and [15]. The alternating current
(AC) bridge was included into the EC system by [16] to
balance the large baseline signal. The sensor comprised an
excitation coil and two detection coils combined to produce
a three-winding transformer. In [17] the authors employed
a differential pulse ECT sensor with an excitation coil and
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two detection coils to measure the plate thickness of various
materials. An excitation coil and two hall sensors were used
in another differential ECT probe [17]. The detected pulse’s
characteristics, peak value, and time to zero were extracted
for thickness description.

A sensitive magnetic induction head-based magnetic flux
leakage (MFL) technique was developed [18], [19]. To mea-
sure the change in magnetic flux detected in a magnetic
core with an open gap, an induction coil was connected.
The maximum sensitivity, however, was attained when the
distance was roughly equal to the fracture width. It is very
dependent on the orientation of the sensor.

An MFL based multi-sensor technique, with a primary
sensor and four auxiliary sensors positioned in the detecting
direction was presented [20]. First, the root mean square
(RMS) of the primary sensor signal’s x-component was deter-
mined. The relative values of the sensors signal indicated
faults in the data set greater than the threshold. The appropri-
ate distances between these sensors were determined based
on the magnitude of a flaw and the lift-off [20]. Finite ele-
ment modelling and practical investigations demonstrate that
this technology successfully suppresses vibration interfer-
ence and improves flaw identification accuracy.

A technique for detecting the components perpendicular
to the steel surface using a sensor probe consisting of a
semi-circular yoke with induction coils at each end and a
gradiometer with two anisotropic magnetic resistance sen-
sors was proposed by [21]. In [22] the authors suggested
a quantitative technique based on the Pulsed MFL method
to investigate the effect of sensor lift-off on magnetic field
distribution, which impacts the detection capabilities of var-
ious damages. The approach employs a ferromagnetic one
to direct additional magnetic flux to seep out. A ferrite is
added to a LMF sensor to minimize the reluctance to raise the
magnetic strength above the faults in order to detect minor
imperfections in the rail surface [23]. A magnetic sensor
prototype was built utilizing the best parameters determined
by numerical parametric research [24].

B. GUIDED WAVE SYSTEMS
A non-destructive defectoscopic approach, or more precisely
an ultrasonic test, conducted using the DIO 562 instrument,
which also incorporated measurement data processing was
proposed in [25]. During an ultrasonic examination, the
equipment replicated the form of the rails. The measurement
was evaluated using the PC and the specialist programme
DIO 2000.

In [26], the authors, introduced a contact-free rail diag-
nosis method based on ultrasound. The non-ablative laser
sources were used to generate waves. Echo reception was
accomplished using rotational laser vibrometry that measured
angular velocity, elastic deformation, and rail angular dis-
placement. The detection of rail defects was tracked using
unique ultrasonic wave signal-based markers.

To achieve visual identification of the oblique fracture
on the railhead surface, a quantitative detection approach

integrating non-contact laser ultrasonic testing technology
and variational mode decomposition (VMD) was presented
in [27]. All scanning signals were preliminarily filtered using
Wigner time-frequency distribution and fir1 filtering. VMD
was also used to divide the signal into several intrinsic mode
functions (IMF). The ideal IMF component was chosen based
on the correlation coefficient (C) and SNR characteristics
between different IMF components and the original sig-
nal. Finally, the time-domain and temporal features of sig-
nals were used to realize visual crack-induced surface wave
energy using ultrasonic propagation pictures.

C. COMPUTER VISION BASED SYSTEMS
Computer vision-based track detection is gaining greater
attention. Drones, rather than a moving cart, might enable
cost-effective track inspection. An innovative method for
calculating gauge measurement using drone footage was
proposed by [28]. Track health was evaluated using com-
puter vision algorithms from drone data. For data collection,
a Da-Jiang Innovations (DJI) Phantom 3, equipped with a
4k camera and Sony sensors was employed. The images
were transformed into hue, saturation, and value (HSV) color
space to lessen the impact of changing weather conditions on
lighting, and then a Gaussian smoothing filter was applied to
reduce noise. Because railway tracks have a purple/pinkish
hue, all colors between cyan and magenta were separated
using various threshold masks to achieve track recogni-
tion. Morphological techniques were employed to delete any
linked pixels below a certain threshold value, and then a
Canny edge detector was utilized to achieve precise results.

The study presented by [29] used a camera taking images
at 30 frames per second, to conduct a computer vision exper-
iment. It was placed on a locomotive with the aim to provide
a continuous steady image for real-time railway track fault
identification. On the Image net dataset, the Inception V3
model was used to tune for binary class classification. The
model generalized effectively on actual vegetation pictures
for vegetation overgrowth. A sun kink classifier had a 97.5 %
accuracy in classifying professionally produced sun kink
videos. The study [30] proposed a visual based track inspec-
tion system (VTIS) system employing TrackNet, a multi-
phase deep learning-based rail surface anomaly detection and
classification approach.

A vision-based system for track inspection and defect
identification was presented by [31]. A Gabor filter was
used to breakdown the input picture, and texture char-
acteristics retrieved using segmentation-based fractal tex-
ture examination. The track defects were classified using
the AdaBoost classifier. The study by [32] proposed a
vision-based autonomous rail inspection system employing
the structured topic model (STM) to detect the presence
(or absence) of sleepers or fasteners by evaluating real-time
pictures captured by a digital camera, positioned beneath a
diagnostic train. Similarly, [33] presented a railway track
derailment monitoring system for automated visual inspec-
tion of railroad tracks that detects flaws using prerecorded
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videos. The scope of [33] was limited to the localization of
rail problems, ballast, tie and tie plate, and spikes, tie plate
holes, and anchors.

Deep convolutional neural network (DCNN) based cas-
cade learning embedded vision inspection technique for rail
fastener detection was presented in [34]. The two phases
of the proposed technique were region location and defect
detection. Initially, a modified Single Shot multibox Detec-
tor (SSD) model was used to identify the fastener locations
within the collected railway images. To identify faulty fas-
teners, a key component identification approach based on
an enhanced Faster Region Convolutional Neural Network
(RCNN) was used. Extensive trials were carried out to show
the effectiveness of the suggested method. The results of the
experiments indicated that the suggested technique achieved
an average precision of 95.38% and an average recall of
98.62%.

A vision-based rail track inspection system was presented
in [35]. Yolo v3 was implemented and trained as the deep
learning model, and subsequently, the accuracy and recall
rates of damaged fasteners on the test dataset were validated.
In the study, a GoPro motion camera, mounted on rail main-
tenance vehicle was used to collect and record a total of
20 kilometers of track fastener images. The accuracy and
recall rates for faulty fasteners detection were 89% and 95%,
respectively.

Using image processing techniques such as Canny edge
detection and 2D discrete wavelet transformation, the
research presented in [36] enabled real-time identification of
railway track faults. Due to its unique threshold amplitude,
the Canny edge detection used can recognize squats in real-
time, utilizing a camera module installed on a specially con-
structed handheld Track Recording Vehicle (TRV). Applying
a high sub-band frequency filter, the 2D discrete wavelet
transformation validated the inference of the Canny edge
detector regarding track damage and determined damage
severity. Using an OpenCV API, the complete technique was
implemented on a Raspberry Pi 3 B+. When tested on a
real train track, the algorithm’s ability to detect track surface
defects in real-time proved reliable. In terms of detecting the
degree of track surface degradation, wavelet transformation
outperforms Canny edge detection, but its processing over-
heads becomes a bottleneck in real-time.

D. IoT BASED SYSTEMS
An autonomous robot based on a PIC microprocessor and
obstacle sensors was presented by [37]. The vehicle was
equipped with a GPS module to track the location of a crack
and deliver a Short Message Service (SMS) notifications
through a Global System for Mobile communication (GSM)
module.

A real-time railway fishplate monitoring system based on
IoT was presented by [38]. The proposed system monitored
the position of each bolt on each fishplate and notified the
central railway monitoring center, neighboring stations, and
incoming train drivers if any bolt became loose.

A robot mechanism prototype demonstrated in [39] was
capable of detecting rail surface defects such as cracks,
squats, corrugations, and rust. To diagnose problems, the
system employed ultrasonic sensor inputs in conjunction
with image processing, utilizing OpenCV and deep learning
techniques. Each robot was locally powered by a Raspberry-
pi 3 microcontroller used to communicate real-time data to
an internet server. Four ultrasonic sensors were mounted
above and on each side of a railway track surface to identify
problems.

The study by [40] presented an automatic fault detection
system, comprising several sensor modules, embedded on a
moving robot. An infrared (IR) sensor, a limit switch [41],
and ultrasonic sensors were included within the sensor layer,
controlled by an LPC 1768 ARM microcontroller. If faults
were detected, the location and type of fault were reported to
the control room through the GSM module.

In study [42], an ultrasonicmetal detecting sensor was used
to identify cracks with greater precision. For crack detection,
encoders and radio frequency transmitters were employed,
with a constant flow of current between the encoders indicat-
ing that tracks were fault free. The transmitter would emit RF
signals as long as the current remained constant. If there was
a crack in the track, the current flow between the encoders
would suffer an interruption. This, in turn, inhibits the trans-
mitter from emitting RF signals, resulting in no signal being
received by the locomotive’s receiver, thus leading the micro-
controller to bring the train to a halt.

A track recording vehicle (TRV) with an innovative design
based on axle-based acceleration approach for rail track
defect diagnosis was proposed in [43]. The system was
reported to be 87%more effective than the conventional push
trolley-based TRV system, according to site-specific testing.
The authors of [44] proposed a unique automated system
based on robotics and visual inspection, enabling local image
processing while inspecting, a cloud storage of information
consisting simply of photos of defective railway tracks, and
robot localization within a range of 3-6 inches. The technol-
ogy employed ML and applied it to the photos received from
the tracks to determine potential faults. The areas were then
identified, and a dedicated operator with directed spots/areas
to examine could carry out a thorough examination.

Researchers of [45], [46], and [47] presented an
IoT-based prototype vehicle for railway track crack mon-
itoring. Ultrasonic sensors and infrared sensors were used
to detect cracks and obstacles in rail tracks respectively.
Whenever a crack was detected in the rail track, the vehicle
stopped automatically, and an alert message was sent to the
authorities via GSM module with the location determined by
the GPS sensor. System presented by [46] and [47] employed
a solar cell to charge the battery running the system and the
vehicle.

E. ACOUSTIC BASED SYSTEMS
The authors of [48] proposed an acoustic analysis-based sys-
tem for fault identification and diagnostics. Dataset collection
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was carried out via a SAMSAMTMNS-AM type rail point
system, mounted with audio sensors. This study investigated
faults such ice blockage, ballast obstruction, and slackened
nuts. MFCC features were used to conduct two tests: one for
fault detection and one for fault classification on the entire
dataset, achieving an accuracy of 94.1%. An autonomous
railway track fault detection system which could identify
three types of faults: normal track, wheel burnt, and superel-
evation using acoustic analysis was presented in [49]. MFCC
features were extracted from the audios of faults and fed
into support vector machine (SVM), logistic regression (LR),
multilayer perceptron (MLP), convolutional neural network
(CNN), decision tree (DT), and random forest (RF) mod-
els for classification. In terms of accuracy, the DT and RF
models outperform the others. Both algorithms showed 97%
accuracy in detecting the aforementioned faults. A railway
track inspection system combining standard acoustic meth-
ods with deep learning models to improve performance was
presented by [50]. The system employed two CNN mod-
els, convolutional 1D and convolutional 2D, as well as one
recurrent neural network (RNN) model, and a long short-
term memory (LSTM). Furthermore, the model reported
94.9%, 96.5%, and 93.3% accuracy onConv1D, Conv2D, and
LSTM, respectively.

Using acoustic emission (AE) monitoring data and knowl-
edge transferred from an acoustic-related database, study
presented in [51] described a unique transfer learning method
for assessing the structural states of rail tracks. In particular,
the proposed CNN model (NA-AE) transferred lower-layer
knowledge from a pre-trained AudioSet model to extract
the acoustic-specific features of the time–frequency spec-
trograms from over two months of acoustic emission (AE)
monitoring data, collected from an in-service point rail; only
the higher layers of the proposed model required training.
Testing results indicates that the proposed model NA-AE
performed well on the rail condition assessment task, based
on AE data, with a high macro-F1 score of 97.5 percent and
converge in 100s.

A nondestructive single-sensor AE method to detect and
localize cracks in steel rail tracks under stress was presented
in [52]. AE signals were recorded by the AE sensor and con-
verted to digital data by the AE collection module. The dig-
ital data were denoised to eliminate ambient and wheel/rail
contact sounds, and the denoised data were processed and
categorized to pinpoint fractures in the steel rail using a deep
learning algorithmic model. The computational model was
trained and validated using AE signals of pencil lead breaks at
the head, web, and foot of steel rail. The deep learning-based
AE method was also implemented on-site in order to detect
cracks in the steel rail, with an accuracy of 78%, 80%, and
74% in the rail head, web, and foot, respectively.

Several researchers have investigated ways to identify
defects in railway tracks; [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24] used electromagnetic
approaches and [25], [26], [27] used ultra-sonic waves to
detect track faults. In circumstances where the surface of

rail wear rail heads is severely damaged or substantially
worn, ultrasonic waves are ineffective [53]. Ultrasonic waves
cannot detect smaller defects [53], [54]. For electromag-
netic detection, the velocity effect can change the signal’s
amplitude, and the signal is susceptible to interference from
the surrounding environment. Consequently, a well-designed
algorithm is required to counteract these effects. Unlike
ultrasonic inspection, electromagnetic inspection can identify
faults close to the surface [54].

[28], [29], [30], [31], [32], [34], [35], [36] proposed
vision-based systems employing fault images acquired by
several camera types, exhibiting good accuracy in controlled
environments. Due to environmental conditions such as light
variations, dirty lenses, and temperature, the performance of
these systems is substantially reduced in real word appli-
cations. Thermographic cameras are expensive and mass
role out is unwarranted [53]. Papers [37], [38], [39], [40],
[41], [42], [43], [44], [45], [46], [47] presented IoT-based
systems for detecting defects in railway tracks. However,
the deployment cost of sensors and equipment makes such
systems costly. In addition, malfunctioning sensors demand
accurate sensor replacement, further increasing system costs.
Additionally, the maintenance of such systems requires the
employment of specialized personnel. The theme presented
in [48] and [49] used audio recordings of railway line faults,
while [50] used the spectrogram of audio data obtained
by [49]. Only three faults were detected in [48], with two
faults detected in [48] and [49]. Papers [50], [51] used AE
to detect cracks in railway tracks and although both achieved
good accuracy, the sensor to record AE must be placed on the
railway track and due to the complicated geometry of the rail
section as well as the high cost of sensors to record AE, it is
impossible to identify cracks without the accurate andmanual
sensor placement on railway line.

This study develops an autonomous IoT-based railway
track fault detection system to improve the current railway
cart system. This work aims to mitigate the challenges of
labor, biasness, human intervention, and resource limitations.
On Pakistan’s operational railway tracks, the acoustic data
of six frequently occurring defects were gathered. This study
considers an increased number of faults compared to previous
investigations and significantly contributes to the detection,
classification, and localization of railway track faults based
on acoustic analysis.

III. METHODOLOGY
This section describes the dataset acquisition technique and
machine learning algorithms used for classification, along
with the proposedmethodology. All IoT systems have the fol-
lowing generic architecture, as shown in Figure 2. A frame-
work capable of detecting, responding, and acting/reacting
whenever it is exposed to a change or stimulus from a
situation in which it is kept without the need for human
intervention.

The framework presented in this manuscript is designed
for a real case situation. The microphone, and GPS sensor
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FIGURE 1. Schematic diagram of the proposed system.

FIGURE 2. Generic Architecture of IoT.

are all directly connected to the RPi, running under a Linux-
based operating system Raspbian. The RPI is a credit card
sized, low-cost computer [55]. The microphone, and GPS
are mounted on top of the RPi. The microphone records the
acoustic signal caused by the friction of wheel and railway
track. An acoustic stereo signal, with a sampling frequency
of 44100Hz and GPS locations are recorded and sent every
5 seconds to a Cloud viaWIFI network (IEEE 802.11n) using
parallel computing via multiprocessing library that enables
parallel and distributed computing in python [56] to save disk
space. Due to the memory constraint, the RPi memory is
organized in Round Robin fashion, where the acoustic signal
of wheel track interaction, time stamp and its location are
stored in local memory for short period of time and then
overwritten by the latest data (acoustic signal, timestamp, and
GPS location), once the previous signals are pushed to the
cloud. In the case of an absence of internet or interruption
in the internet connectivity, the acoustic signals are stored
locally and all files are subsequently pushed with a time
stamp and GPS location to the cloud when the internet is
available.

For this work, the RPi model B+ with 10 GB of free
memory from its 32 GB is used. With such capacity, this
device can store up to 11627 audios of 5 seconds length,

FIGURE 3. Data Flow edge layer to cloud.

covering 16 hours. This means the RPi can store data locally
for 16 hours in case of internet interruptions. Data analytics,
to predict the unseen acoustic signal’s fault type is performed
on the cloud. The GPS module provides the location of the
faulty track’s acoustic signal patch. Each audio signal patch
is 5 seconds and the average speed of the cart is 35kmph.
With this arrangement, once a fault is detected, the fault
localization lies 48.6m around the provided GPS location.
The schematic diagram is shown in figure 1.

A. DATA COLLECTION
A mechanical cart shown in Figure 4 provided by the PR
Walhar district Rahim Yar Khan administration was used for
data collection.

FIGURE 4. Cart used for data collection.

An onsite setup was established for dataset acquisition at
the Walhar railway station. Two microphones were placed at
the safest maximum distance (1.75 inches) from the point of
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contact between thewheel and track.Microphoneswere fitted
to the cart’s right and left sides to collect data.

Figures 5 & 6 depict the arrangement of microphones
affixed to the cart’s left and right sides. The mechanical cart
was propelled by a generator, which kept the cart engine
running at an average speed of 35 kilometers per hour. Two
ECM-X7BMP microphones shown in Figure 7. Unidirec-
tional electric condensers with a 3-pole locking small plug,
were set on the train cart’s left and right wheels. These
microphones have a sensitivity of -44.0±3 dB and an output
impedance of 1.2 k�±30%. Foam or fur was used to shield
the microphone diaphragm from air gusts as without a wind-
shield, wind may cause loud pops in the audio transmission.
Because the foam windshields are typically the first line
of defense against wind noise, they were further utilized to
diminish cart vibrations and prevent their transmission to the
microphone.

FIGURE 5. Proposed system.

Data was collected at a sample frequency of 44.1kHz.
Subsequently, the recordings were manually tagged in order
to structure the dataset. The recorded audio was then split into
216 frames, with a window length of 1024 and a hop size of
512.

B. PROPOSED METHODOLOGY
The architecture of the classification of six types of railway
tracks is represented in Figure 8. The collected audio data
was utilized to detect faulty tracks. Acoustic features from
the audio data were utilized to train the machine and deep
learning algorithms. This study employed 40 Mel-frequency
cepstral coefficients (MFCC) each audio frame.

Each audio frame contains 40Mel-frequency cepstral coef-
ficients (MFCC). Total frames in a 5 sec acoustic audio signal
are 216 creating a matrix B with 216 rows and 40 columns.
Taking the mean of each column of the matrix B yields a
vector D of size 40 and stored in matrix ‘A’.

FIGURE 6. Assembly of microphone on cartwheels.

FIGURE 7. ECM-X7BMP micro phone.

FIGURE 8. Block diagram of fault detection system.

This resulted in a matrix ’A’ with 1625 rows and
40 columns, with 1625 rows representing the frames and
40 columns representing theMFCC values respectively. Each
element inmatrix A represents anMFCC coefficient value for
a specific frame from a specific crack class. These features
were used to train and test the employed machine learning
algorithms.
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MFCC is based on signal disintegration using filter bank.
The MFCC provides a discrete cosine transform (DCT) of a
real logarithm of short-term energy presented on the Mel fre-
quency scale. Equation below expressesMel’s approximation
from physical frequency.

mel (f )= 2592×log10
(
1+

f
100

)
where mel(f) denotes frequency in mels and f denotes fre-
quency in hertz. The steps of MFFC execution are listed
below [57]:
• Reduce the length of the signal by framing it in short
frames.

• Estimate the power spectrum period gramme for each
frame;

• Add the energy from each filter and apply the Mel-filter
bank to the power spectra.

• Find the logarithm by adding all of the filter bank
energies.

• Consider the DCT of the log filter bank energies.
DCT coefficients 1–40 should be retained, while the remain-
der should be discarded. Figure 9 illustrates the process of
obtaining MFCC features.

FIGURE 9. Steps to Derive MFCC features [18].

C. EXPERIMENT SETUP
Railway track inspection professionals from Pakistan Rail-
ways detected and confirmed the faults on tested tracks. The
cart was run on the defective tracks and audio signals were
obtained for the following fault types shown in Table 1:

TABLE 1. Number of files against each fault type.

Wheel burns, a typical example is shown here in
Figure 10 are caused by a locomotive’s driving wheel slipping
on the Rail fastenings (Nut and Bolts) keeps rails linked
to railway sleepers, giving an adequate slope of rail foot

(1:20, 1:40) in the transverse plane, and prevents longitudinal
movement of rail surface, causing the wheel to burn. When
driving wheel burns is most evident on down steep inclines
or during rain [58]. When the locomotive’s pulling power
is insufficient to support the weight of the train, wheel slip
occurs, causing the rail temperature to rise and the rail surface
to melt.

FIGURE 10. Wheel Burn on railway track.

FIGURE 11. Creep fault on railway track.

Rail creep as shown in Figure 11 is defined as a longitu-
dinal movement of rail in relation to a sleeper. Rail has a
propensity to gradually shift in the direction of dominating
traffic. Rail creep is common to all railway tracks, and its
value ranges from almost nil in certain cases to about 130mm
each month [59].

A sleeper is a weight-bearing component of the rail-
way system that is installed transversely to support the
rail. Sleepers are often known as ‘‘Ties’’ since they con-
nect the rails [60]. Nowadays, the sleepers used are made
of pre-stressed concrete and are commonly referred to as
Pre-Stressed Concrete (PSC) sleepers. The sleeper provides
the permanent route with longitudinal and lateral support.
It ensures that rails are properly gauged and aligned. The
sleeper evenly distributes the weight from the rails to the
superior ballast surface and works as an elastic medium
between the rails and the ballast to cushion the blows and
vibrations of moving loads [30]. Among the reasons of such
faults are inappropriate screwing and unscrewing of fasten-
ers, inaccuracy during ballasting and ballast deficiency dur-
ing maintenance, poor tamping, derailments, inappropriate
sleeper spacing, and non-alignment of sleepers in track [60].

Bending cracks, sleeper break owing to derailment, cut-
ting cracks, sleeper instability in fastening area, and sleeper
damage on dry land are the primary flaws of this stage [60].
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TABLE 2. Plots of Mel spectrogram and time domain of all faults.
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FIGURE 12. Crashed sleep fault.

A crashed sleeper as shown in Figure 12 is dangerous for the
flow of rail traffic.

steel rails [61]. Rails are firmly held in place in the rail seat
by the fastening. It prevents the rail from rotating around the
outside edges of the rail foot [61]. If either of these fastenings
are missing or loose, the train is in danger. Figure 13 shows a
loose fastening.

FIGURE 13. Loosed nut bolts.

In the railroad, a rail joint performs a jointing func-
tion (connection function). A high-quality railway joint may
effectively reduce the effects of wheels passing through the
jointing areas of the steel rail while also enhancing the stabil-
ity and continuity of passing trains [62]. Joint railway bars,
as one of the key parts in railway, are widely employed in
light rail and heavy rail to provide railroad transit safety.
Figure 14 shows low joint fault.

FIGURE 14. Low joint fault.

Points and crossings are important components of railway
track. They are used to move railway vehicles from one track
to another that is either parallel to or diverges from the first.
Wear on rails, corrugation, and rail corrosion are some of the
types of distresses that occur at points and crossings [63].
Around 90% of severe railway accidents occur at or near

FIGURE 15. Point and crossing.

TABLE 3. Parameters of ML classifiers.

TABLE 4. Results of K-fold cross validation.

TABLE 5. Classification report of machine learning and deep learning
models.

points and crossings across the world [63]. This is because
points are the track’s weakest link. As a result, significant care
must be taken to keep them in excellent working condition.
Figure 15 shows a point and crossing.
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TABLE 6. Comparison with already present systems.

The time domain and Mel spectrogram plots of all faults
acoustic signals are shown in Table 2. There is a visual
distinction between these track sounds. Table 2 displays the
Mel-sound spectrogram’s intensity distribution over several
frequency ranges. The experimental dataset was collected on
the mainline where traffic regularly flows, and because the
assigned space only had these faults at the time, so experiment
conducted on this line exclusively.

IV. RESULTS
This section focuses on the performance and outcomes of the
various classifiers. Forty MFCC coefficients were extracted
as features from the audio recordings of the six faults. Subse-
quently a dataset with 1599 rows and 40 columns was main-
tained, where rows represent faults and columns comprise
extracted features (MFCC coefficients). The dataset was split
into train and test datasets with a 70:30 ratio. In this work,
fault classification was performed using classical Machine
Learning (ML) models such as, logistic regression (LR),
adaboost (ADB), and random forest (RF), as well as advanced
deep learning model artificial neural network (ANN) and
multilayer perceptron (MLP). Table 3 lists the parameters
used to tune the classifiers. The non-standardized features
vector comprising of 40 MFCC coefficients were input to
the ML models to classify into labels (creep, crash sleeper,
loose nut bolt, low joint, point and crossing, and wheel burn).
Subsequently, the ML models were validated on a validated
dataset and evaluated on a test dataset. A 10-fold k-fold cross

validation was performed on the dataset and results are shown
in table 4.

The ML models performance on the test dataset is shown
in Table 5 and can be visualized in figure 16. It is evident from
table 5 that deep learning model MLP outperformed other
ML models, indicating that the MLP is a more generalized
approach.

FIGURE 16. Visualization of classification report of ML models.

Further, the model performance per class can be viewed by
the confusion matrix. Figure 17 shows the confusion matrix
of the better performing classifier MLP.
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FIGURE 17. Confusion matrix of MLP.

A. COMPARISON
A comparison was performed with acoustic based systems.
Researchers [48], [49], [50] presented the acoustic based rail-
way fault detection systems. Although the system presented
in this manuscript is also used, acoustic data was collected at
a main railway line. The number of faults in the proposed sys-
tem is greater than that presented by [48], [49], [50] systems.
The accuracy achieved by all systems, along with classifier,
features and faults is shown in table 6.

It is evident from Table 6 that the proposed system sur-
passes other presented systems in terms of accuracy with
increased number of faults. Further work is now ongoing to
repeat and augment the work with further faults across more
stations.

V. CONCLUSION
Railway track monitoring and maintenance is essential for
an effective and safe railway operation. Absence of agreed,
stable and effective track fault detection methods, results in
safety alerts, accidents and losses in terms of assets, time,
and lives. Thus, satisfactory and timely track maintenance
and fault prevention should be conducted as a matter of
fact. In many developing nations, the present typical railway
cart for track inspection involves manual inspection, heavily
relying on human action and judgement for track defect
identification. A smart IoT based railway cart is proposed
to autonomously identify railway track faults using acoustic
analysis and localization. The microphone and GPS sensor
mounted on RPi positioned near the wheels of the cart was
used to record the sound and send acoustic signal and a GPS
location every five seconds to a remote cloud. A dataset
was maintained by deriving forty MFCC features from the
collected fault sounds. Different machine learning models
were trained and evaluated on this data. Amongst them, MLP
achieved 98.4% accuracy. The authors are now preparing for
a IoT system for the train rather than railway carts to gather
more fault types or data from other typical railway terrains
across Pakistan and other countries through international col-
laboration.
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