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ABSTRACT The traditional Dynamic Window Approach (DWA) with constant weight values of the
evaluation function leads to the inability of obstacle avoidance for the Automated Guided Vehicles (AGV) to
perform obstacle avoidance and path planning in the complex environment. Effective avoidance of complex
obstacles requires adaptive weight adjustment to address the evaluation function’s challenges. This paper
proposes an adaptive DWA (ADWA), which introduces neural network training on the basis of the Mamdani
DWA (MDWA). Firstly, the Mamdani type fuzzy controller is designed, and then the adaptive neuro-fuzzy
controller is obtained by neural network training. Then, experiments are carried out through the MATLAB
simulation environment. The simulation experiment results show that the improved DWA compared to
traditional DWA can make the AGV pass the obstacle environment with a better trajectory and reduce the
time. The improved DWA improves the autonomous obstacle avoidance capability of AGVs, which not only
perfectly fits our task requirements, but also has apparent scientific and practical significance in developing

AGYV autonomous obstacle avoidance technology.

INDEX TERMS Fuzzy control, dynamic window approach, neural network, automatic guided vehicle.

I. INTRODUCTION
Today’s automatic guided vehicle (AGV) plays a significant
role in medical evacuation and medical service support in dis-
aster rescue. The application of the automatic guided vehicle
can significantly reduce the risk of the operation and improve
the operational efficiency in disaster rescue and military med-
ical support. Especially in the complex field environment,
the obstacle situation is unknown, and AGV urgently needs
a reliable obstacle avoidance method. Obstacle avoidance is
the critical technology for the AGV to get to the desired posi-
tion [1], [2], [3], [4], [5], [6], [71, [8], [9], [10]. Autonomous
obstacle avoidance is a critical issue in the field of AGV
research.

Recently, different obstacle avoidance methods have been
proposed by researchers for AGV autonomous obstacle
avoidance. Based on the artificial potential field method for
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obstacle avoidance, AGV can avoid obstacles to reach the
target point [11]. An autonomous obstacle avoidance frame-
work based on a combination of sensor coupling and artifi-
cial potential field method is proposed for AGV in complex
environments, in which the controller carries out obstacle
avoidance by obtaining the environmental information using
sensors of the AGV [12], [13], [14]. However, the artificial
potential field method does not consider the kinematic per-
formance of the AGV itself, resulting in the AGV not moving
according to the planned path in the virtual environment. The
dynamic window approach (DWA) is a strategy that Dieter
Fox and Sebastian Thrun proposed and applied to mobile
robots for obstacle avoidance in 1997 [15], [16], [17], [18],
[19], [20], [21], [22], [23]. The DWA builds a preselected
set of velocities based on the kinematic equations of the
robot, and then the optimal speed is obtained by an evaluation
function. There have been some adequate studies on DWA
by researchers. A dynamic path planning method consisted
of the A* algorithm and DWA by extending the number of
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explorable neighborhoods and introducing a security cost
factor in the evaluation function. The security and efficiency
of the dynamic path planning method are improved [24].
But its algorithm increases the obstacle avoidance time. For
dynamic changes in the environment, the fuzzy control DWA
automatically adjusts the weights of the objective function
according to the distance from the AGV to the target point and
the size of the velocity space. The problem of dangerous AGV
path is avoided, but it is ineffective in complex environments
[25]. Reinforcement learning is introduced in the literature
[26] to enhance applicability. Reinforcement learning is used
to learn the objective function weights, which can output the
appropriate weights in different environments. To address the
problem of insufficient evaluation functions, the literature
[27] proposes an improved DWA with two additional evalua-
tion functions to enhance the accuracy of the navigation path
but with increased evaluation time.

Although the methods in the above literature can solve
some of the problems of traditional DWA, some are fusions
of DWA with other algorithms, which increase the com-
plexity of the algorithms. Some do not consider the evalu-
ation function weight value, which leads to problems such
as poor obstacle avoidance path and a long time of AGV.
So, this paper proposes adaptive fuzzy control DWA, which
enables AGV to acquire environmental information and then
adaptively output the evaluation function weight to complete
autonomous obstacle avoidance efficiently. Furthermore, the
proposed adaptive fuzzy control DWA not only optimizes the
local obstacle avoidance path of the AGV, but also conduct
the global path optimization of the AGV by automatically
adjusting the angle between the AGV and the target point.

The main contributions of this paper are summarized as
follows:

e We propose an adaptive DWA based on a fuzzy neural
network, which aims to solve the problem of real-time
and efficient obstacle avoidance for the AGV in dynamic
environments.

e We use a neural network to train the input-output
relationship between environmental information and
the coefficients of the DWA evaluation subfunction to
obtain an adaptive fuzzy control DWA. The adaptive
fuzzy control DWA acquires real-time environmental
information to output the corresponding coefficients.

e Our experiments demonstrate that adaptive fuzzy con-
trol DWA can achieve real-time dynamic obstacle avoid-
ance for the AGV. Compared with the conventional
DWA and the Mamdani DWA, the adaptive fuzzy control
DWA has a shorter obstacle avoidance time.

The rest of the paper is organized as follows: Chapter
2 describes the basic principles of DWA. Chapter 3 analyzes
the problems of traditional DWA. Chapter 4 achieves the
DWA improvement. Chapter 5 conducts simulation experi-
ments and a discussion of the results. Finally, Chapter 6 gives
the conclusion of the study.
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Il. DYNAMIC WINDOW APPROACH
DWA can be summarized as three steps:

(1) The velocity sampling space is restricted to a specific
range based on the performance limitations and environ-
mental constraints of the AGV. A series of discrete val-
ues of velocity are then obtained based on the dynamics
and kinematic properties of the AGV.

(2) The AGV kinematic equations introduce the velocities
obtained in the first step and then use these velocities to
simulate the trajectory of the AGV over the next period.

(3) The evaluation function evaluates these trajectories, and
the trajectory with the highest score is selected as the
optimal trajectory of the AGV.

A. KINEMATICS MODELING OF AGV

The basic motion structure of AGV is divided into two kinds.
One is a non-omnidirectional structure, and the other is an
omnidirectional structure. The main difference between these
two structures is whether the main direction of motion of the
AGV is restricted. The omnidirectional AGV can move in any
direction, while the non-omnidirectional AGV can only move
forward and backward. Since the AGV in this paper is an
omnidirectional structure, the kinematic model is established
for the case of AGV omnidirectional (longitudinal presence
of velocity component). The motion behavior of the AGV
includes straight travel, traverse, turn, and rotation. Let x(¢)
and y(¢) represent the coordinates in the world coordinate
system at the time. The heading angle is described by 6(¢)
at the time. Then (x, y, ) represents the kinematic posture.
As shown in Fig. 1, it is the AGV kinematic model.

X_ROBOT

v

FIGURE 1. AGV kinematic model.

Let vy, and vy, be the lateral and longitudinal velocities of
the AGV at moment t, respectively, and w(¢) be the rotational
velocity. Considering the trajectory of adjacent moments as
uniform linear motion, the increment of AGV’s positional
posture can be expressed as:

Ax = vy X At X cos 0; — vy X At X sin 6;
Ay = vy X At X sin 0 + vy X At X cos 0; (1)
A, = wy X At
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Therefore, the equation for calculating the positional atti-
tude at the moment t+1 is expressed as:

Xepl = X + Vyr X AL X cos 0 — vy X At X sin 0;
Vel =Yt + Ve X At X sin 0 + vy X At X cos 0, (2)
6[+] = 9; + wy X At

B. AGV SPEED SAMPLING
Depending on the AGV and environmental factors, the speed
sampling space can be limited to a reasonable range to
achieve dynamic speed sampling.

(1) AGV is limited by its maximum speed and minimum
speed:

WV, W) =V € Vnin, Vimax]» W € [Winin, Winax | 3)

(2) AGV is limited by drive motor performance (maximum
and minimum acceleration):

“

V € [Veurrent — Vb * AL, Veyrrent + Va * Af]
W € [Weyrrent — Wh * AL, WSeyrrens + Wa ¥ Af]

(3) AGV is limited by safety protection:

y < \/2*dist v, w) xvp, w < \/Z*dist v, w)xwp (5)

In the above equation, v is the linear velocity, w is the
angular velocity, v, indicates the minimum acceleration, and
v, indicates the maximum acceleration.

The AGV velocity set needs to satisfy three constraints,
which can plan a collision-free and possible trajectory com-
bination. Then all the velocities are substituted into the eval-
uation function, and the optimal trajectory is selected as the
next moment AGV trajectory.

C. EVALUATION FUNCTION
In order to select the speed of the final execution trajectory
from the trajectory, the evaluation function is as follows:

G (v,w) = o [a X heading (v, w) + B X dist (v, w)
+y x velocity (v, w)] (6)

Heading(v, w) measures the angular difference 6 between
the AGV orientation angle and the target orientation angle at
the end of the trajectory during the simulation period driven
by the selected sampling speed.

Dist(v, w) represents the minimum distance between the
AGYV and the obstacle on a simulated trajectory. The smaller
the distance, the more likely the AGV will collide with the
obstacle.

Velocity(v, w) is the forward speed of the AGV, which is
used to evaluate the speed of the AGV during its travel to the
target point.

The o, B,y are the coefficients of evaluation sub-
functions, representing the weight of each evaluation sub-
function in the evaluation function. The « affects the angle
between the AGV and target direction. The B affects the
distance between the AGV and obstacle. The § is the most
important for obstacle avoidance. In the obstacle avoidance,
when the B is larger, the distance of the AGV from the
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obstacle is larger. When the 8 is smaller, the distance of the
AGV from the obstacle is smaller. The y affects the speed of
the AGV. The «, 8, y jointly affect the evaluation function to
achieve obstacle avoidance of the AGV.

The evaluation function needs to be normalized to ensure
that the three metrics have a combined effect on the algorithm
and prevent the evaluation function from becoming discon-
tinuous due to the high rating of one metric. The calculation
formula is as follows:

l heading (i)
norma ing(i) = N s (1)
heading(i) " heading (i)
dist (i)
L dist() @)

roTmatdin () = SN (i)

velocity (i)
normalyeiocity(iy = m

i=1

where: 1 is the current trajectory to be evaluated, n is the
number of combinations of linear and angular velocities that
satisfy the velocity constraint at the time of velocity sampling.

lil. PROBLEMS OF TRADITIONAL DWA

By analyzing the literature [28], [29], [30], [31], [32], [33],
[34], [35], AGV using conventional DWA can complete
obstacle avoidance and reach the target point in a facile
environment. However, the AGV usually works in com-
plex and variable environments. As the density of obstacles
increases, the success rate of conventional DWA in finding
a path decreases. In order to analyze the effect of conven-
tional DWA on obstacle avoidance in different environments,
this paper conducted a simulation experiment of obstacle
avoidance for the AGV using the conventional DWA through
MATLAB. As shown in Fig. 2, it is the result of the simulation
experiment.

() =02, f=05, y=03 (b) a=005 f=065 y=03

(¢) @ =10.05, B =065 y=03 (d) a=02, =05, y=03

FIGURE 2. Results of conventional DWA simulation experiments.

The combination of evaluation function weights shown
in Fig. 2(a) leads to the inability of the AGV to complete
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obstacle avoidance for straight-line obstacles. The combina-
tion of evaluation function weights shown in Fig. 2(b) leads
to redundant rotation of the AGV near the target point. The
different evaluation function weight combinations shown in
Fig. 2 (c, d) lead to different paths and times for the AGV
to reach the target point under the same obstacle environ-
ment. The above simulation experimental results show that
the evaluation function weights «, 8, y are critical factors in
determine the performance of the DWA obstacle avoidance.
There are problems with AGV stopping in front of obsta-
cles, redundant rotation near the target point, and poor AGV
obstacle avoidance paths because of the constant evaluation
function weight. Therefore, the evaluation function weights
o, B, y need to be adaptively outputted with the environment
to achieve autonomous obstacle avoidance for AGV.

IV. DWA IMPROVEMENT

This paper proposes an improved DWA, which combines the
traditional DWA with the fuzzy theory. Through the fuzzy
theory, the DWA adaptively outputs the weight coefficient of
the evaluation function with the environment. To obtain the
training data for the Adaptive-Network-Based Fuzzy Infer-
ence System (ANFIS), it is first necessary to design the
Mandani-type fuzzy controller to avoid obstacles effectively.
Then the evaluation function weight data of the AGV obstacle
avoidance process is extracted and used to train the fuzzy
neural network [36].

A. MANDANI-TYPE FUZZY CONTROLLER

1) FUZZIFICATION

In the evaluation function, « is mainly related to the distance

between the AGV and the target point and the angle, and 8

and y are mainly influenced by the distance between the AGV

and the obstacle. According to the study context, there are
three inputs:

(1) The distance Dy between the AGV and the obstacle
with the theory of domain for [0,10m] describe in vague
language as {near (N), middle (M), far (F)}.

(2) The distance D; between AGV and the target point with
the theory of domain for [0,70m] describe in vague lan-
guage as {near (N), middle (M), far (F)}.

(3) The angle 6 between the AGV direction and the target
point with the theory of domain for [0°,180°] describe in
vague language as {small (S), medium (M), large (L)}.

The affiliation functions of Do, D;, and 6 use trapezoidal
and Gaussian functions. As shown in Fig. 3, this is a diagram
of their affiliation functions.

3%

FIGURE 3. Dg, Dy, 0 affiliation functions diagram.

There are three output parameters: heading weight o the-
ory of domain for [0,0.4]. The obstacle avoidance weight 8
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and the velocity weight y theory of domain for [0,1]. The
descriptive fuzzy language is { XS (very small), S (small), M
(medium), L (large), XL (very large)}. Affiliation functions
o, B, y are Gaussian functions. As shown in Fig. 4, it is their
affiliation function.

FIGURE 4. «, B, y affiliation functions diagram.

2) FUZZY RULE

The formulation of fuzzy rules is the core step to complete

fuzzy control. Based on the principle of DWA and consider-

ing the practical application of DWA to outdoor AGV path
planning, five rules are used according to fuzzy rule design
principles as follows:

(1) When the Dy is large, the Do is large, and the 6 is small,
the AGV gives priority to fast forward toward the target
position and is not in a hurry to avoid obstacles. So it is
determined that the « is smaller, the g is smaller, and the
y is larger.

(2) When the D; is large, the Do is large, and the 6 is
large, the AGV gives priority to adjusting the heading
and turning to the direction of the target position without
rushing to avoid the obstacle. So it is determined that the
« is larger, the g is smaller, and the y is moderate.

(3) When the D; is small and the 9 is large, the AGV needs to
adjust the heading to the direction of the target position
and reduce the forward speed. So it is determined that the
« is larger, the 8 is smaller, and the y is smaller.

(4) When the Dy is small, the AGV must prioritize obstacle
avoidance, reduce the travel speed, and explore near the
obstacle to avoid collision accidents. So it is determined
that the « is smaller, the 8 is larger, and the y is smaller.

(5) Regardless of any situation, when close to an obstacle,
the AGV must prioritize obstacle avoidance and then
consider the impact of the D, and the 6.

As shown in Table 1, it is a Mamdani-type fuzzy rule
design.
According to the design of the above fuzzy rules, there are

four representative fuzzy rule surfaces, as shown in Fig. 5.

As shown in Fig. 5, it can be found that the fuzzy rule
surface is not smooth, and the evaluation function weight out-
put is jumpy. The parameters and rules of the Mamdani-type
fuzzy controller cannot be modified after they are determined,
and the adaptability is poor. The path planning effect will
be defectively facing a complex and changing environment.

Therefore, the ANFIS is applied to solve the above problems.

B. ANFIS FUZZY CONTROLLER

1) ANFIS PRINCIPLE

ANFIS is a fuzzy inference system based on the Takagi-
Sugeno model. The learning mechanism of the neural
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TABLE 1. Mamdani-type fuzzy rule.

Numbers Input Output

Do Dt 6 a B Y
1 N N S XS XL XS
2 N N M S XL XS
3 N N L S XL XS
4 N M S XS XL S
5 N M M S XL S
6 N M L M XL S
7 N F S XS L S
8 N F M S L S
9 N F L M L S
10 M N S S M S
11 M N M M M S
12 M N L L M S
13 M M S S M M
14 M M M M M M
15 M M L L M M
16 M F S XS M M
17 M F M S M M
18 M F L M M M
19 F N S S XS M
20 F N M M M M
21 F N L L XS M
22 F M S S S XL
23 F M M L S L
24 F M L XL S M
25 F F S XS XL
26 F F M L XS L
27 F F L XL XS
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FIGURE 5. Fuzzy rule surfaces.

network is used to automatically extract rules from the
input and output sample data to form the ANFIS con-
troller. As shown in Fig. 6, it is a typical ANFIS system
architecture [37].

VOLUME 10, 2022

XXz

XXz

FIGURE 6. ANFIS system architecture.

2) ANFIS DESIGN

A training dataset was built from a Mamdani-type fuzzy con-
troller and trained in Neuro-Fuzzy Designer of Matlab2018a.
The experimental environment is the Ubuntul8.04 operating
system based on the Pytorch framework. CPU: Intel Core
19-10900K, GPU: NVIDIA RTX 3090, 24GB.

The dataset was imported into Neuro-Fuzzy Designer. The
input parameters are Do, Dy, 6. The output parameters are
o, B, v. The Generate FIS is set to Grid partition, the affil-
iation function is set to gaussmf, the output function is set
to constant, the Optim Method is set to hybrid, the Error
Tolerance is set to 0.005, and the Epochs is set to 500. The
training process is shown in Fig. 7 below. The fuzzy neural
network structure is shown in Figure 8. Because Neuro-Fuzzy
Designer can only perform single output training, the output
results «, B, y are obtained by training three times.

Neuro-Fuzzy Designer: Untitled <

File Edit VYiew
— &S Info.

Training Data (000)

zas
©%%%

Output

o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
data sot index

Lead data —— Gererate FIS Train FIS — Test AS
From: Optin. ethod

® Training ) Load from file hybrid b Flot against:

- . © file © Load from worksp. Error Tolerance: ® Training data
) @ Grid partition 0005 2] festing dita
) Checking ‘® worksp. - i Epochs: b

o © 8. clustering o Checking data
Load Data... | Clear Data Gererate FIS ... Train Now Test Now
a rev fis gererated

FIGURE 7. ANFIS training process.

The pairs of input variable of the training fuzzy affiliation
functions compared with the original affiliation functions are
shown in Figure 9. The pairs of output of the training fuzzy
rule surfaces compared with the original rule surfaces are
shown in Figure 10.

As shown in Fig. 9, the Mamdani-type separation of each
region is expected, which does not have good applicability.
In contrast, the affiliation function obtained by ANFIS train-
ing is reasonable, and its distribution is consistent with the
actual environment of DWA obstacle avoidance. As shown in
Fig. 10, the Mamdani-type output surface plot has apparent
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Anfis Model Structure
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FIGURE 8. Fuzzy neural network structure.
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FIGURE 9. Comparison of affiliation functions.

(b) after training

(a) before training

FIGURE 10. Comparison of fuzzy regular surfaces.

steps change, which indicates that the output jumps more and
is not conducive to AGV obstacle avoidance. Contrarily, the
output surface after ANFIS training is smooth and achieves
an adaptive output of evaluation function weights.

V. RESULTS AND DISCUSSION
The MDWA means the combination of the Mamdani and
the DWA. The ADWA means the combination of the ANFIS
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and the DWA. The DWA, MDWA, and ADWA are tested
respectively in the simulation environment. According to
the outdoor work of AGYV, this paper designs four different
kinds of obstacle environment maps, i.e. conventional static
obstacle environment, complex static obstacle environment,
simple dynamic obstacle environment and fusion obstacle
environment. Simulation experiments were performed five
times for each algorithm. As shown in Table 2, it is AGV
kinematic model parameters.

TABLE 2. AGV kinematic model parameters.

v(min) v(max) Av/At w(min) w(max) Aw/At
om/s 3m/s 1m/s? Orad/s 2rad/s 1rad/s?
@=020, =040, ¥=0.40 { i i i
| l
\
[
,f |
vl |
\

(a) DWA

=023
B=o.40
YFo37

=018
=043~
=039

2

(b) MDWA (c) ADWA

FIGURE 11. Simulation path in conventional obstacle environment.

A. CONVENTIONAL STATIC OBSTACLE ENVIRONMENT
The conventional static obstacle environment map is set up
for the customary obstacle conditions in the outdoor environ-
ment. The DWA evaluation function weights are set, as shown
in Fig. 11(a). The initial evaluation function weights for
MDWA and ADWA are assigned too = 0.1, 8 = 0.5,y =
0.4. As shown in Fig. 11(b, c), it is the simulation experi-
mental path planning results. As shown in Table 3, it is five
simulation experimental time.

TABLE 3. Simulation time in conventional obstacle environment.

. Number Average
Algorithm 1 2 3 4 5 time
DWA Unsuccessful Rotate 106.14s 108.55s 107.32s 107.34s
MDWA 91.36s 92.47s 91.20s 93.51s 92.76s 92.26s
ADWA 87.80s 87.53s 86.39s 87.31s 85.98s 87.00s

It can be found through the simulation experiment. When
the initial evaluation function weights are settoo = 0.2, 8 =
0.4,y = 0.4, the AGV stops in front of the obstacle and
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cannot complete obstacle avoidance. When the initial eval-
uation function weights were changed to « = 0.05, 8 =
0.65,y = 0.3, the AGV made a non-essential rotation
near the target point. When the initial evaluation function
weights were modified to « = 0.1, = 0.6,y = 0.3,
the AGV reached the target point. The above three cases
illustrate that different evaluation function weight settings
can lead to different obstacle avoidance paths of the AGV.
However, regardless of setting the initial evaluation function
weights, MDWA and ADWA can achieve path planning, and
the trajectories are the same. It indicates that the improved
DWA can adaptively output the evaluation function weights
to achieve autonomous obstacle avoidance of the AGV. From
Table 4, we can see that the improved DWA avoidance time
is much smaller than DWA. The simulation time of ADWA
is slightly shorter than MDWA. The reason is that the « is
smaller, 8 is larger, and y is larger of ADWA than MDWA in
the first avoidance. During the linear motion of AGV, the y of
ADWA is larger. Therefore, the AGV motion time is reduced,
and thus the total path planning time ADWA is smaller than
MDWA.

TABLE 4. Simulation time in complex obstacle environment.

Number Average
Algorith .
sorftm 1 2 3 4 5 time
MDWA 145.73s 143.69s 146.50s 145.81s 143.07s 144.96s
ADWA 139.20s 137.54s 137.82s 138.69s 139.15s 138.48s

B. COMPLEX STATIC OBSTACLE ENVIRONMENT

The complex static obstacle environment map is set up for the
more complex obstacle environments featuring the outdoor
environment. The initial evaluation function weights are set
toa =0.1,8 = 0.5,y = 0.4. As shown in Fig. 12, it is the
simulation experimental path planning results. As shown in
Table 4, it is five simulation experimental time.

a=0.06

o
Bos
) ¢ Yiom

(a) DWA

(¢) ADWA

(b) MDWA

FIGURE 12. Simulation path in complex obstacle environment.

It is found that DWA cannot complete the obstacle avoid-
ance task by simulation experiments. However, both MDWA
and ADWA can complete the obstacle avoidance task well,
and the path planning trajectory is almost the same. But the
simulation time of ADWA is shorter than that of MDWA.
Because the evaluation function weight of ADWA output
obtained by neural network training is more reasonable, more
adaptable to the complex obstacle environment, and enables
the AGV to pass the obstacle quickly while ensuring safety.
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FIGURE 13. Simulation path in simple dynamic obstacle environment.

C. SIMPLE DYNAMIC OBSTACLE ENVIRONMENT

Obstacle avoidance performance experiments are conducted
for conditions where dynamic obstacles exist in the envi-
ronment. This environment map sets two dynamic obstacles.
The first obstacle moves from position the (15,0) parallel to
the Y-axis at a speed of 1m/s. The second obstacle moves
from position the (40,0) parallel to the Y-axis at a speed
of Im/s. The initial evaluation function weights are set to
o = 0.1,8 = 0.5,y = 0.4. As shown in Fig. 13, it is the
simulation experimental path planning results. As shown in
Table 5, it is five simulation experimental time.

TABLE 5. Simulation time in simple dynamic obstacle environment.

. Number Average
Algorithm 1 2 3 4 5 time
DWA 52.31s 51.38s 52.59s 51.86s 51.91s 52.01s
MDWA 50.01s 50.52s 50.45s 50.34s 50.40s 50.34s
ADWA 49.50s 49.57s 49.82s 49.49s 49.72s 49.62s

The simulation results show that the three algorithms can
make the AGV complete obstacle avoidance and reach the tar-
get position. The improved DWA simulation time is shorter,
so the improved DWA can quickly make the AGV complete
obstacle avoidance. The simulation time of ADWA is slightly
shorter than MDWA because ANFIS outputs more reasonable
evaluation function weights, which demonstrated that the
ADWA can weigh between the obstacle avoidance weight and
speed weight during obstacle avoidance, and then output a
larger speed weight when there is no obstacle.

D. FUSION OBSTACLE ENVIRONMENT

The fusion obstacle environment adds a dynamic obsta-
cle in the conventional static obstacle environment map.
The dynamic obstacle moves reciprocally from position the
(30,30) to position the (30,50) at a speed of 1m/s. The initial
evaluation function weights are settooe = 0.1, 8 = 0.5,y =
0.4. As shown in Fig. 14, it is the simulation experimental
path planning results. As shown in Table 6, it is five simula-
tion experimental time.

TABLE 6. Simulation time in fusion obstacle environment.

Algorithm Number Av'erage
1 2 3 4 5 time
DWA 112.47s 111.72s 113.61s 111.90s 112.35s 112.41s
MDWA 97.14s 97.50s 96.45s 96.91s 97.03s 97.00s
ADWA 92.54s 92.93s 93.11s 92.48s 92.66s 92.74s
104381
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(a) DWA (b) MDWA (c) ADWA
FIGURE 14. Simulation path in fusion obstacle environment.

From the simulation experiment results, it is shown that
the DWA can complete the obstacle avoidance task, but the
planning path is poor and the AGV motion time increase.
The improved DWA including the MDWA and the ADWA
can complete the trajectory planning. The average simulation
time of ADWA is 4.26s less than that of MDWA because
the combination of evaluation function weights output from
ANFIS makes the AGV movement faster.

Based on the above simulation experiments, it can be con-
cluded that both the DWA and improved DWA can achieve
obstacle avoidance in the conventional static environment.
However, the DWA cannot complete obstacle avoidance in
a complex obstacle environment, while improved DWA can
complete obstacle avoidance, and the ADWA simulation
times are shorter than the MDWA in a complex static obsta-
cle environment. The effectiveness and superiority of the
improved DWA are verified by the experimental simulation
results well verify.

VI. CONCLUSION

This paper proposes an improved DWA with adaptive out-
put evaluation function weights to address the problems of
stopping in front of obstacles, rotating near the target point,
and poor obstacle avoidance path when AGV uses traditional
DWA for obstacle avoidance. Firstly, the environmental infor-
mation is fuzzified. The input parameters are the distance
between AGV and obstacle, the distance between AGV and
target point, and the angle between AGV heading and tar-
get point. The output quantities are the evaluation function
weights. Then, the fuzzy controller is designed based on the
fuzzy theory. The Mamdani type controller fuzzy rule surface
step change is evident, while the ANFIS fuzzy rule surface
is relatively smooth. Finally, from the simulation experi-
ments in different obstacle environments, it is found that the
improved DWA can adaptively output the evaluation function
weights. However, the ADWA enables the AGV to complete
autonomous obstacle avoidance better, and the simulation
time is shorter than the MDWA. The experimental results also
show that ADWA has better environmental adaptability and
obstacle avoidance performance in an unknown environment.
The research results will benefit the development of the AGV
autonomous obstacle avoidance technology.
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