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ABSTRACT Single image deraining aims to remove rain streaks from a degraded input and reconstruct a
high-quality image. In recent years, image processing tasksmostly applied a U-shaped architecture to capture
rich contextual information. However, it is difficult to achieve long-range pixel dependencies because of
the local receptive field of the convolution operation. In this paper, we propose a deep feature interactive
aggregation network for single image deraining to enhance long-range dependencies among features and
realize the interaction of information. To fully utilize high-level semantic features, we design a long-
range dependency feature aggregation module to significantly improve the representational ability of the
original U-shaped architecture. It aggregates multi-scale features and calculates the interactive attention
of non-overlapping patches among feature maps. In addition, we adopt group normalization to retain the
independence of each given image. It interacts with the information among features in an individual image
and normalizes the channels of each group to weaken the correlation between batch data processing.
Experimental results on widely acknowledged datasets also demonstrate the superiority of our proposed
network over previous state-of-the-art methods.

INDEX TERMS Deep network, image deraining, transformer.

I. INTRODUCTION
Rain is a type of severe weather that degrades the quality of
images and hampers the application for other vision tasks [1],
[2], [3]. Therefore, image deraining has become an important
research topic that aims to remove rain streaks from rain
images. It can provide better image data for other visual tasks
and reduce the interference of low-quality images in model
predictions, such as pedestrian trajectory prediction, object
tracking, and image classification.

Traditional rain removal methods [4], [5] mainly adopt
model-driven algorithms such as Gaussian distribution,
sparse coding, and dictionary learning. They utilized the
physical properties of rain and prior knowledge of the back-
ground in an optimization function and constructed a specific
prior model to solve the rain removal problem. Although
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these models address specific problems, their performance
is limited because the prior information is unsuitable for
different scenarios. Recently, rain removal tasks have mostly
been based on data-driven deep learning methods [6], [7].
Yang et al. [6] proposed a region-dependent rain imagemodel
to detect rain regions with the aim of solving for heavy rain
and rain accumulation. Wang et al. [7] adopted a U-shaped
network and a residual learning branch to reuse features at
different scales. However, owing to the local receptive field
of the convolution operation, these methods cannot establish
long-range pixel dependencies, resulting in the limitation of
the feature interaction. Inspired by the swin transformer [8],
we utilize shifted window strategy to model the long-range
dependencies. Thus, we aggregate features among different
scales to realize the interaction of features and strengthen the
detail representation ability of the restored image.

To alleviate the influence of data distribution changes and
map data distribution into a specific region, the data-driven
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deep neural network adopts normalization strategy to accel-
erate model convergence. Most methods apply batch nor-
malization(BN) [9], which calculates the mean and standard
deviation along the batch dimensions of training dataset.
However, the use of BN easily leads to the correlation of batch
data processing, and it is difficult to realize feature interac-
tions in a single image. Su et al. [10] replaced the BN layer to
avoid the association between the generated images and batch
data processing, then utilized instance normalization(IN) [11]
to ensure the independence of each image. Moreover, image
restoration tasks often employ small image patches and mini-
batches to train the network that easily leads to statistical
instability [12]. To solve these problems, we introduce the
concept of group normalization(GN) [13]. GN groups along
the channel dimension, and calculates the features of each
group channel in a single image. Therefore, it avoids the
batch axis for feature normalization. In addition, GN is bet-
ter than IN because it takes advantage of the cross-channel
dependencies. Layer normalization(LN) [14] calculates the
mean and standard deviation of the channel in each layer,
whereas GN learns the channels of each group to obtain
different feature distributions. GN significantly improves the
interaction ability of features and obtains more characteristics
among different data distributions.

In our work, we propose a deep feature interactive aggre-
gation network for single image deraining, realizing the
exchange of feature channels and aggregating high-level fea-
tures to enhance feature dependencies. We design a long-
range dependency feature aggregation module consisting of
convolutional layers, max pooling layers, and the basic block
from swin transformer [8] that provides flexibility for mod-
eling at multiple scales. It has two significant parts. The
basic block utilizes the interactive attention mechanism of
the non-overlapping shifted window from the aggregation
of multiple features. It enhances the pixel dependencies of
contextual semantics. A 1× 1 convolutional layer is adopted
to compress the channels, and the max pooling layer is used
to reduce dimensionality. They can eliminate the interference
of redundant information and dramatically removes artifacts
from the result. We also employ a GN layer instead of a BN
layer to weaken the relation between batch data processing.
It calculates the feature interaction of a group channel in a sin-
gle image and significantly increases network performance.

Our contributions are listed as follows.
• We build a long-range dependency feature aggregation
module to aggregate the high-level semantic information
of the deep network. It achieves interaction of feature
information and restores more texture characteristics
and color details.

• We utilize the GN layer to perform the normalization
of single image feature maps, weakening the correlation
between batch data processing and realizing the interac-
tion among features.

• Extensive experiments show that our method performs
well in terms of qualitative and quantitative results when
compared with state-of-the-art methods.

II. RELATED WORKS
A. SINGLE IMAGE DERAINING TASK
Many classical methods are based on model-driven that
restore a rain-free background scene from a given rain image.
Liet et al. [4] introduced Gaussian mixture model to retain
the background information and remove rain streaks. To esti-
mate the rain distribution, Zhu et al. [15] analyzed the local
gradient statistics of the rain streak direction. Chen et al. [16]
proposed a generalized low-rank appearance model to cap-
ture spatiotemporally correlated rain streaks. Kang et al. [5]
decomposed the image into low- and high-frequency parts,
removing the rain component from the high-frequency part by
dictionary learning and sparse coding. Although these meth-
ods have achieved good progress in rain removal tasks, they
always rely on prior knowledge and lead to the generation of
over-smoothed details.

Deep learning brings many advances to image processing
methods within the scope of rain removal, as demonstrated
in [17], [18], [19]. Fu et al. [17] divided the image into
the high-frequency detail layer and base layer. They applied
ResNet [20] to shorten the mapping range, so as to improve
the efficiency of deep network training. To adapt the different
types of rain streaks, Zhang et al. [18] constructed a classi-
fication network to predict the density of rain and employed
the category label to guide dissimilar rain removal networks.
However, due to the complexity of rain streaks, it is difficult
to separate the rain layer from the input image and accurately
estimate rain density. Hence, Zheng et al. [19] proposed a
residual multi-scale pyramid model and used different scales
of images as inputs to recover finer details in a coarse-to-fine
manner.

Although thesemethods have achieved fairly achievements
under specific conditions, they still have some limitations.
They exploited simple ways to transfer feature information at
different levels, but it was hard to establish long-range pixel
dependencies in the network. Thus, enhancing the interaction
capability of features is the most significant research topic in
our work.

B. DEEP LEARNING INSPIRED BY TRANSFORMERS
Attention mechanism has made great progress in the field of
image restoration [22] and video restoration [23]. Recently,
transformer which based on multi-head attention mechanism
has broken the predominance of CNN in many computer
vision works. Carion et al. [24] extracted a compact feature
representation from a CNN structure and flattened it into a
sequence as the encoder input. It regarded the object detec-
tion task as a set prediction problem and output the final
sequence of the result directly. Dosovitskiy et al. [25] split
images into small patches, mapped them into linear embed-
ding sequences, and then fed them into the network to achieve
the image classification task. In the work of video super-
resolution, VSR-Transformer [26] was proposed and utilized
the patch-wise self-attention mechanism to deal with local
information. In our work, we aggregate high-level semantic
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FIGURE 1. The overall architecture of the proposed deep feature interactive aggregation network for single image
deraining. The encoder-decoder structure is the Residual U-block of U2-Net [21], and we apply the GN layer in the Residual
U-block and replace the BN layer. The long-range dependency feature aggregation module is surrounded by the red dotted
line, and its detailed framework is presented in Fig. 2.

features from the convolutional neural network to the trans-
former, thus enhancing the interaction capability of features
and the representation ability of detail information.

III. PROPOSED METHOD
A. OVERALL NETWORK ARCHITECTURE
To make full use of the benefits of high-level features
and long-range dependencies, we propose a deep feature
interactive aggregation network for single image deraining.
The overview framework is shown in Fig. 1, it consists of
a U2-Net [21] encoder-decoder structure and a long-range
dependency feature aggregation module. The encoder-
decoder structure consists of five symmetrical U-shaped
subnetworks. Each U-shaped framework is called Resid-
ual U-Block, which is stacked by multiple up- and down-
sampling operations. This structure can capture the low-level
structural feature and high-level contextual information. It is
beneficial to restore better image details.

To promote the interaction of image features, we adopt
the GN layer as the feature normalization way to replace
the BN layer in the Residual U-blocks. In the deep levels
of our network, the long-range dependency feature aggre-
gation module is embedded to capture finer detail infor-
mation. It consists of three steps. First, the input feature
utilizes a 1 × 1 convolutional layer to compress the number
of channels from 512 to 96. Then, the different scales of
features are aggregated by a concatenation operation, and
the feature is puted into a pair of swin transformer blocks
after stretching into a three-dimensional vector. Finally, after
recovering the feature dimension, max pooling removes
redundant information by filtering the feature, and the last
convolutional layer is used to restore the number of channels
from 96 to 512.

B. LONG-RANGE DEPENDENCY FEATURE AGGREGATION
MODULE
The main goal of this module is to establish long-range
dependencies among features by aggregating high-level rich
semantic information. The feature aggregation of different
levels can focus on the global range semantics well and main-
tain finer structural detail as sharp as the ground-truth(GT)
image. Moreover, the operations of compressing the number
of channels and reducing the spatial size of features help
alleviate the computational load, eliminate the interference of
redundant information and effectively relieve the generation
of artifacts.

The module structure is presented in Fig. 2, it has three
steps. Let fi denotes the output of the i-th Residual U-block.
First, a 1 × 1 convolutional layer is applied to compress the
channels of f4 in which the number of channels is changed
from 512 to 96. Subsequently, flattening the feature map from
[B,C,H ,W ] to [B,H ×W ,C],

f̃4 = R(φ(f4)), (1)

where φ(·) and R(·) express the convolutional layer and flat-
tened vector operation, respectively. The swin transformer
blocks are applied to extract finer detail features, where the
number of blocks is 2, the window size is set as 7, and
the number of self-attention heads is equal to 3. After that,
a pooling operation is employed to process the feature map
of swin transformer blocks,

Fout4 = MAP(R(β(f̃4))), (2)

where MAP(·) denotes the max pooling operation and ß(·)
refers to a pair of swin transformer blocks. Here, R(·) is used
to adjust the size of the feature map from [B,H × W ,C]
to [B,C,H ,W ]. Then the output feature Fout4 is sent to
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FIGURE 2. Long-range dependency feature aggregation module.

the second step. Through the same operation, we obtain the
second output Fout5 :

Fout5 = MAP(R(β(R(φ(φ(f5) Fout4 ))))), (3)

where refers to the concatenation operation. The output
feature Fout4 is aggregated to further extract effective infor-
mation from the image. The last step repeats operation (3)
to obtain the Fout6 and restores the number of channels
from 96 to 512. Through a series of operations, the module
transfers fusion features to the next Residual U-block of the
network.

C. GROUP NORMALIZATION FOR DERAINING TASK
We employ the concept of GN in the Residual U-blocks,
which avoids the dependence of features among different
images and effectively reduces the inaccurate estimation of
statistical data. GN divides the feature vectors into multiple
groups along the (H ,W ) axis and a group of C/G channels,
where C andG represent the number of channels and groups,
respectively. The mean µ and standard deviation σ are calcu-
lated from a set of pixels named Si, and the formulas of µ and
σ are listed as follows:

µi =
1
m

∑
k∈Si

xk, σi =

√√√√ 1
m

∑
k∈Si

(xk − µi)2 + ε, (4)

where x and m symbolize the layer pixel feature calculation
and size of Si, respectively. ε and i = (iN , iC , iH , iW ) are
a small constant and 4D vector index. The difference in
normalizations depends on how Si is determined, where GN
is defined as:

Si =
{
k | kN = iN ,

⌊
kC
C/G

⌋
=

⌊
iC
C/G

⌋}
, (5)

where b·c indicates floor operation. In this study,G is set as 4.
By replacing the normalization layer, the proposed network
effectively avoids the impact of batch data processing estima-
tion and realizes good results of the test dataset.

D. LOSS FUNCTION
We use the combination of the robust Charbonnier loss [27]
and edge loss to train the network. They achieve faster con-
vergence in the training and obtain cleaner image details. The
Charbonnier loss function can be expressed as:

LChar =
√
(I − I∗)2 + ε2, (6)

where I and I∗ represent the input rain image and corre-
sponding GT image, respectively. ε indicates the penalty
coefficient, which is set as 10−3. In addition, the edge loss
function is expressed as:

Ledge =
√
(O(I )− O(I∗))2 + ε2, (7)

where O expresses the Laplacian operator. The total loss
function in this work is formulated as follows:

Lall = αLChar + βLedge. (8)

To balance the loss items, α and β set to 1 and 0.05 [28],
respectively.

IV. EXPERIMENTS AND ANALYSIS
A. DATASETS
Our proposed network employs extensive synthetic public
datasets [4], [6], [17], [29] during training; the number of
samples is summarized in Table 1. There are 13,712 pairs
of clean/rainy images in the training dataset. Rain14000 [17]
contains 11,200 image pairs, which are artificially synthe-
sized using 800 clean images. Each clean image is matched
with 14 rainy images with different rain pattern orientations
and densities. To verify the effectiveness of the proposed net-
work, we conduct experimental research on five widely used
datasets [6], [17], [18], [29]. Specifically, Test1200 [18] is
synthesized by Photoshop and has three types of rain density
images: light rain, midden rain, and heavy rain. To quanti-
tatively evaluate the methods, we employ commonly used
indicators, such as peak signal-to-noise ratio(PSNR) and
structural similarity(SSIM).
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TABLE 1. Data description. A total of 13,712 clean/rainy image pairs are used for training. Five public datasets are listed and renamed in the last row.

TABLE 2. Ablation results of long-range dependency feature aggregation
module in terms of PSNR, SSIM. The best results are marked in bold.

TABLE 3. Ablation results of normalization layers in terms of PSNR, SSIM.
The best results are marked in bold.

B. IMPLEMENTATION DETAILS
The proposed network is trained on NVIDIA Titan-X GPU,
and the quantitative results are test on a PC with an Intel
Core i5-10500 CPU, 16GB RAM. The model employs Adam
optimizer [30], where β1 and β2 default to 0.9 and 0.999,
respectively. The initial learning rate is set as 4 × 10−4, and
it will decay to 1× 10−6. In the training process, the number
of iterations is set as 500 epochs, the batch size is fixed to 32,
and the group of GN is equal to 4. The input image pair is
cropped to a size of 256 × 256 randomly and then used for
data enhancement, including flipping and rotating in different
dimensions.

C. ABLATION EXPERIMENT
1) VALIDATION ON LONG-RANGE DEPENDENCY FEATURE
AGGREGATION MODULE
The long-range dependency feature aggregation module has
the significant value in the proposed network, so we analyze
its impact in this section. We define a basic model that
removes any swin transformer block. Based on the basic
model, we investigate the optimal number of swin trans-
former blocks. All the results are presented in Table 2, which

FIGURE 3. Ablation experiments of different normalization layers, where
(a)-(d) denote the results of the BN, IN, LN, and GN layers in the network.
The network using GN layer achieves the best visualization results than
other normalization layers.

contrasts the metrics of PSNR and SSIM on the Test1200 and
Test2800 datasets.

The findings are presented as follows. As a basic model,
it achieves a reasonable performance. Aggregating high-level
features has better results compared to the basic model, which
verifies the effectiveness of our proposed module. However,
with an increase in the number of blocks, the effect of the
model does not exhibit an enhanced trend. It proves that
simply stacking blocks is an ineffective way and easily leads
to the complexity in the proposedmodel.When the number of
blocks is set as 2, it can improve the performance by 0.19dB
and 0.004 compared with the block numbers of 4 and 6.

2) VALIDATION ON GROUP NORMALIZATION LAYER
The method of normalization has a considerable impact on
the proposed network; thus, we analyze its effect on the
results. We compare four normalization ways: LN [14], IN
[11], BN [9], and GN [13]. The qualitative and quantitative
results are shown in Fig. 3 and Table 3, respectively.

Several defects are discovered among other normalization
ways. In Fig. 3(a), the restored image has the color spot and
retains some rain streaks when the BN is used for normaliza-
tion. The color spot appears randomly on the test datasets and
causes degradation of the image visual quality. Using IN layer
leads to the problem of color distortion. The overall tone of
the restored image is darker in Fig. 3(b). When employing the
LN layer, it is difficult to solve the problem of image artifacts,
and the final image still contains rain streaks in some areas.
To avoid the above drawbacks, we adopt GN layer and it
provides comfortable visual effects. Obviously, it has a higher
accuracy than other normalization layers, which illustrates
that our strategy is the most suitable.

D. COMPARISONS WITH STATE-OF-THE-ART METHODS
1) QUANTITATIVE RESULTS
To verify the superiority of the proposed network, we com-
pare it to other state-of-the-art methods. The evaluation
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TABLE 4. Comparison results with several SOTA methods on the different benchmarks. The best and the second best results are marked in bold and
underline, respectively.

FIGURE 4. Qualitative visual results on synthetic datasets. Compared with other state-of-the-art methods, our proposed model generates the best
visualization results by effectively removing the rain streaks and preserving the finer structure derails.

results are listed in Table 4. The compared methods include
JORDER [6], RESCAN [31], SEMI [32], PReNet [33],
OUCD [34], and ECNet [35]. The published codes are used
for the same training and test datasets to obtain fair evaluation
results. Specifically, SEMI employs a semi-supervised strat-
egy; ECNet utilizes a rain-to-rain autoencoder to reconstruct
an ideal rain embedding, and the evaluation results prove its
effectiveness. The results prove that the proposed method has
significant progress compared to SOTA methods in terms of
both the average PSNR and SSIM metrics. Compared with
the second-ranking method ECNet, our method increases by
an average of 1.65dB and 0.007.

2) QUALITATIVE RESULTS
We select several representative images from light, middle,
and heavy rain, as shown in Fig. 4. Most methods retain
large region artifacts, which quite degrade the quality of
the restored image. It can be observed that this situation
appears in the sky, clouds and roof in SEMI, RESCAN and
JORDER. Additionally, because the color of the rain streaks
is similar to the background, some methods easily lead to
excessive deraining. They remove the details with similar
colors together, such as the white font in the first row in
Fig. 4. For some dense objects, it is difficult to recover the
fine details and remove the rain streaks simultaneously, such
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as the black fence and telephone booth in the second and
fourth rows in ECNet, SEMI, PReNet and JORDER. OUCD
pays more attention to local features and combines global
information in the network, but its capability to remove rain
streaks is poor in heavy rain. Compared with these methods,
our proposed network can avoid the above problems, and the
restored images are highly similar to the GT images.

V. CONCLUSION
In this paper, we introduce a new network framework called
deep feature interactive aggregation network to address the
limitations of the local receptive field and build up feature
interactions. A long-range dependency feature aggregation
module is designed to improve representation ability and
restore better texture details. To realize the interaction of
multiple channel information, we adopt GN to normalize
the feature maps. The experimental results demonstrate the
superiority of the proposed network by comparing it with
several state-of-the-art methods.

In future work, we plan to explore a general processing
model for image restoration tasks, including but not limited
to image deblurring, denoising, and dehazing. This model
simplifies the image restoration problem and has become a
research topic in recent years.
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