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ABSTRACT Privacy-preserving deep learning (PPDL), which leverages Homomorphic Encryption (HE),
has attracted attention as a promising approach to ensure the privacy of deep learning applications’
data. While recent studies have developed and evaluated the HE-based PPDL algorithms, the achieved
performances, such as accuracy and latency, need improvement to make the applications practical. This
work aims to improve the performance of the image classification of HE-based PPDL by combining
two approaches — Channel-wise Homomorphic Encryption (CHE) and Batch Normalization (BN) with
coefficient merging. Although these are commonly used schemes, their detailed algorithms and formulations
have not been clearly described. The main contribution of the current study is to provide complete and
reproducible descriptions of these schemes. We evaluate our CHE and BN implementation by targeting the
Cheon-Kim-Kim-Song scheme as an HE scheme and Convolution Neural Network (CNN) as a machine
learning scheme while using the MNIST and CIFAR-10 as the datasets. In addition, we compare the results
with the five state-of-the-art neural network architectures. Our experiments demonstrate that the CHE can
serve as a tool for empirically achieving shorter latency (the shortest 7.76 seconds) and higher accuracy
(the highest 99.32%) compared with the previous studies that aimed to establish the classification of the
encrypted MNIST data with CNN. Our approach can aid in designing a more robust and flexible PPDL.

INDEX TERMS Channel-wise, homomorphic encryption, CNN, privacy-preserving, ciphertext inference.

I. INTRODUCTION
Users upload data to cloud servers to make use of a ser-
vice such as a training machine learning model. These
are known as Machine Learning as a Service (MLaaS).
However, the users can be reluctant to upload their per-
sonal and sensitive data as the server might not be secure.
Presently, servers leverage encryption to protect the privacy
of user data. Homomorphic Encryption (HE), which can
perform arithmetic computations on ciphertext, is one of
the promising Privacy-preserving Deep Learning (PPDL)
methods.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Huang .

Although there have been several studies [1], [2] [3],
[4] [5], [6], [7] on HE-based PPDL, the achieved latency
was not short enough, and the accuracy was not high enough.
Gilad et al. [1] developed ciphertext inference of the MNIST
dataset, but the accuracy was 96%, and the latency was
570 seconds. Furthermore, Ishiyama et al. [4] achieved an
accuracy of 99.18% and a latency of 21.15 seconds on the
MNIST. We aim to improve the performance by target-
ing image classification of HE-based PPDL by combining
two approaches: Channel-wise Homomorphic Encryption
(CHE), and Batch Normalization (BN), with coefficient
merging (CM).

Most previous studies [1], [4], [6] have adopted Pixel-wise
Homomorphic Encryption (PiHE) for image classification,
where multiple images are packed together and processed
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at once. However, we argue that this approach may not
be suitable for all practical applications as the user may
want the MLaaS to process only one or a few images,
not a batch of images. To implement empirical application
and improve processing efficiency, we aim to leverage the
CHE, which provides shorter inference latency because it
processes the data in channel instead of in pixel. It packs
elements of one channel into a single ciphertext forming
a vector, which can perform the Single Instruction Multi-
ple Data (SIMD) operations. Aharoni et al. [8] introduced
a new packing-oblivious programming framework, which
somewhat generalized the CHE and the PiHE. Although
Dathathri et al. [9] and Lou et al. [10] have previously pro-
posed a conceptually similar CHE; however, the algorithm
was not described in detail. Given this background, we for-
mulate the algorithm and computation scheme ‘‘Onion’’ to
achieve ciphertext inference in Convolutional Neural Net-
work (CNN) through the CHE approach. The BN layer is
widely used in the neural network (NN)model to achieve high
accuracy [11], whitening the input images via the shift and
the bias. Chabanne et al. [2] placed the BN layer before the
activation layer to attain a restricted stable distribution at the
entry of the Rectified Liner Activation (ReLU). HEMET [10]
set the BN layer behind the activation layer and obtained
excellent performance. Moreover, Ishiyama et al. [4] placed
the BN layer in front of the activation layer. However,
there is still not sufficient evidence to decide if it is better
to place the activation layer before the BN layer or vice
versa.

We have pointed out the two schemes with different
orders of the convolution layer, activation layer, and BN
layer, namely, CBA (Convolution-BN-Activation) and CAB
(Convolution-Activation-BN). Each scheme is a method of
CM, and mathematical formulae are given to demonstrate the
scheme’s stability. The latency is related to the number of
predefined levels, so naively deploying the BN layer increases
the multiplicative depth (MD); since the number of multi-
plications and rotations are highly related to the execution
time, which exploits a higher level, it leads to longer latency.
We have fused the BN and activation layer with the CM as
a ‘‘Mapping’’ layer, which increases accuracy and decreases
the latency of ciphertext inference, and describes the func-
tions of the two schemes. In this article, we leverage the [.]
symbol for ciphertext to distinguish more clearly between
plaintext and ciphertext.

Our contributions are summarized as follows:
• We propose the explicit algorithms of the CHE to
address the HE-based ciphertext inference problem in
the CNN for higher accuracy and shorter latency.

• We formulate the BN layer with CM in two schemes
(CAB and CBA) and show the derivation of mathemati-
cal formulae, and the two schemes can reduce ciphertext
inference latency without increasing the MD.

• We evaluate and compare the proposed CHE against
five works [1], [2], [3], [4], [6], and achieve 99.30%
of accuracy and 7.76 seconds of latency on MNIST,

76.40% of accuracy and 111.91 seconds of latency on
CIFAR-10, the result verifies that the CHE is practical
to the end-user during MLaaS.

The remainder of the paper is structured as follows.
Section II provides the related work, the related research
background for PPDL and HE, and the threat model. Then,
Section III contains the proposed CHE from two aspects:
algorithms of the CNN layers and CM schemes. Our experi-
mental results are described in Section IV. The explanations,
limitations, and significance of the work are discussed in
Section V. Section VI concludes the paper.

II. BACKGROUND
A. RELATED WORK
The research in the PPDL area can be divided into five camps
that implement different X-basedmethods: HE-based, Secure
Multi-Party Computation (MPC)-based, Differential Privacy
(DP)-based, Secure Enclaves (SE)-based, and Hybrid-based.

CryptoNets [1] is the first work to use the HE-based
method to make ciphertext inference in the NN model.
As CryptoNets became ineffective for deeper NN,
Chabanne et al. [2] designed and evaluated the first
privacy-preserving classification in NN. To protect privacy
without accuracy loss, Juvekar et al. [12] and Zhang et al.[13]
have proposed using the interactive paradigm to split the
NN model into two parts. Furthermore, Hesamiford et al. [3]
deployed the NN model on the server in the non-interactive
paradigm, placing the activation function with the polynomi-
als. Due to time-consuming PPDL inference, Lou et al. [10]
proposed implementing mobile NN models to achieve
shorter inference latency and higher inference accuracy.
In TenSEAL [5], the authors implement the image to column
(im2col) method to process the convolution layer. However,
it is no way to find simple way to build a network with
more than one convolution layer, which is the non-interactive
scheme.

The Secure MPC-based method exploited Yao’s garbled
circuits for secure two-party computation.Mohassel et al.[14]
developed a combination of the garbled circuit with oblivious
transfer and secret sharing. Rizai et al. [15] suggested a dis-
tributed training computation with a novel approach to secret
sharing. Furthermore, Liu et al. [16] devised a distributed
Secure MPC framework for privacy-preserving data mining,
with one-hot encoding and a lower-upper decomposition
algorithm.

The DP-based method adds random noise to a dataset
and generates fake training data. PATE [17] originated a
DP learning process utilizing teacher and student models.
Fan et al. [18] initiated a local DP framework for data centers
using the Laplacian mechanism to measure the quality of
privacy protection.

The Secure Enclaves-based PPDL is the method by which
a client sends data to the secure enclave environment where
all of the data and models are hidden from the outside world,
such as [19]. The Hybrid-based PPDL is the method that

VOLUME 10, 2022 107447



T. Xie et al.: CHE: Channel-Wise Homomorphic Encryption for Ciphertext Inference in Convolutional Neural Network

leverages several techniques to build a secure and privacy-
preserving model, such as GAZELLE [12].

Kim et al. [20] reported a comprehensive survey about
PPDL, showing a high-level view of the PPDL research.

B. HOMOMORPHIC ENCRYPTION
HE is an asymmetric cryptographic method that facilitates
arithmetic computations over encrypted data (ciphertext).
Since the HE operations introduce a certain amount of
noise into the ciphertext, when the accumulated noise grows
beyond a noise budget, HE decryption does not resolve the
correct result [5]. Although an operation named bootstrap-
ping, proposed by Gentry [21], could reduce the accumulated
noise in a ciphertext, it is too time-consuming for practical
applications. To address this limitation, Cheon et al. [22] pro-
posed the approximate HE with the Residue Number System
(RNS) and named the RNS-variant as Cheon-Kim-Kim-Song
(RNS-CKKS) HE scheme. It is a leveled HE scheme, setting
a threshold for noise budget to compute finite HE operations
without bootstrapping. The RNS-CKKS HE scheme denotes
the degree of polynomial modulus by N , which is a power of
2, encodes data to N/2 fixed-point numbers (if not enough,
pad with 0), and then encrypts N/2 numbers into N/2 slots
of one ciphertext.

The followings are the core algorithm of the RNS-CKKS
HE scheme: 1) Encode operation encodes the input vec-
tor into the polynomials for encryption, 2)HE operations
include HE addition, HE multiplication, and HE rotation:
a)HE addition makes element-wise addition for slots in
the corresponding position; b)HE multiplication performs
element-wise multiplication; c)HE rotation rotates the slots
of ciphertext, similar to the left and right panning. A HE
operation is performed simultaneously on all slots of the
ciphertext. A ciphertext is a polynomial of degreeN with each
coefficient representing modulo Q, where Q is a product of n
primes, describing the level of the HE. To reduce the noise,
a rescaling operation is needed to convert n-level ciphertext
to (n−1)-level ciphertext. The representative encode function
and rotation function are shown as follows:
• Encode(z) −→ p : CKKS exploits the rich structure

of integer polynomial rings for its plaintext and ciphertext
spaces. Nonetheless, data comes more often in the form of
vectors than in polynomials. It is necessary to encode input
vector z into a polynomial p.
• Rot([c], n) −→ [c′] : Deploy linear rotation over cipher-

text [c], n is the step size, which cycles ciphertext horizontally
to the left. n starts from 1 rather than 0, and this function needs
one key, ‘‘Galois key,’’ set as default.

C. PRIVACY-PRESERVING DEEP LEARNING
Security and privacy preservation of the data must be con-
sidered to convince the user to upload their data to a server.
HE allows data to be processed in ciphertext, maintaining a
trade-off between privacy and performance. To protect the
user’s privacy, the privacy-preserving NN is built to perform
inference directly on encrypted data; the ciphertext inference

FIGURE 1. Threat model. There is no collusion. The server is
honest-but-curious; it can access the plaintext machine learning model
and perform ciphertext inference.

can be made over two paradigms: interactive paradigm
(online mode), such as GELU-NET [13] (the model was par-
titioned NN into two non-colluding parties), GAZELLE [12]
(high accuracy but huge memory cost), and BAYHENN [23]
(the inference was partitioned into linear and non-linear com-
putations), and non-interactive paradigm (offline mode), such
as CryptoNets [1] (the first work developed in this area),
Chabanne et al. [2] (first proposed work that combines acti-
vation function with BN function), Hesamiford et al. [3]
(suggested using derivative of polynomials to replace the
activation function), Ishiyama et al. [4] (proposed using CM
for decreasing MD), Xie et al. [24] (exploited the Efficient
Integer Vector HE in CNN) and Dathathri et al. [9] (initiated
an optimizing compiler for HE NN inference). In this work,
the focus is on ciphertext inference in the non-interactive
paradigm. The Table. 1 shows the differentiation and com-
parison of PiHE and CHE. Although the CHE and the PiHE
obtain similar accuracy, the CHE can shorten the latency
and reduce the consumed memory, but it will smaller the
throughput.

D. THREAT MODEL
The threat model is referenced from prior PPDLs [9], [10].
We assume that the machine learning server is a potential
attacker, which is honest-but-curious, implying that the server
does not deviate from the defined protocol but attempts to
learn all the possible information from legitimately received
messages [26]. To be more realistic and safe, instead of gen-
erating the public key and private key by the user, we assume
that keys are distributed by a trusted third-party organiza-
tion, which is different from previous threat models. The
third-party certificate authority generates and distributes the
user’s public key and private key. The data sent to the server
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TABLE 1. Differentiation and comparison of PiHE and CHE. Note that we assume pixels and channels are less than or equal to the slot size.

is encrypted by the HE public key and privacy-preserved by
the encryption method. The model is trained using plaintext
data, and parameters are stored in the server without revealing
them to the user. The server accesses the plaintext parameters,
which causes data leakage. It performs private and secure
inference over encrypted data without decryption or access-
ing the secret key. Only the client decrypts the ciphertext
result by the local stored secret key, as shown in Fig. 1.

III. METHODOLOGY
We propose a detailed and explicit CHE to run inference
over encrypted data in CNN and its workflow (Section III-A).
Moreover, we provide a high-level description of the BN layer
with CM (Section III-B).

A. ALGORITHMS OF CHE
In the proposed method, the image data is preprocessed
channel-wise instead of pixel-wise. In practice, the pre-
processing depends on the inference. Technically, the
PiHE processes data in a matrix (tensor), while the CHE
exploits a vector. We introduce the data preprocessing
scheme (Section III-A1) and functions of CNN layers
(Sections III-A2 to III-A7) by deploying the CHE. The
details of different layers of methods over vector and tensor
are shown in Table 2. The entire data processing schemes
of the CNN model are shown in the Fig. 2. It will be more
comprehensible and readable to understand the following
detailed designs and processes of the model, which uses the
proposed CHE.

1) PRE-PROCESS AND ENCRYPT DATA
The image data consists of tensors from three channels. In the
PiHE, the same pixels of multiple images are packed in a
single ciphertext, and the number of ciphertexts equals the
number of images. In contrast, in the CHE, the first step is to
flatten each channel of an image into a vector, then pack and
encrypt each vector into one ciphertext, which is fed as the
input to the NNmodel. In this case, the number of ciphertexts
equals the number of channels of the image. For a single
image, the CHE takes less time to transform the image into a
ciphertext.

2) RESHAPE CONVOLUTION LAYER
To deploy a deeper NN model with multi-convolution layers
in a non-interactive scheme, we split the convolution layer
into two parts: rotation & accumulation, and mask computa-
tion. Suppose the input has C channels, a height of H , and
a width of W . It can then be encrypted into C ciphertexts
(assuming that the product ofH andW is less than or equal to
the slot size N

2 ), which packs H ×W input elements (pixels).

In rotation & accumulation, the HE rotation operation
Rot([c], n) is required to compute element-wise HE multi-
plication between the input and weight filter, where [c] is
ciphertext and n represents the stride for rotation. Obtaining
corresponding n values is an essential step of the convolution
layer, which has not been described in previous works [9],
[10]. We propose the algorithm-Rotation Index Searching
(RIS) to find n values, as depicted in Algorithm 1. Using a
list of n values by the HE rotation operation Rot([c], n), the
model can calculate element-wise HEmultiplication between
the input and each weight filter and accumulate the results
into a single ciphertext. The result of a single ciphertext is
a semi-manufactured output with two weaknesses: irrelevant
slots in ciphertext, called noise, and chaotic structure of
ciphertext compared with the input. In mask computation,
a plaintext mask replaces the values of valid and irrelevant
slots with 1 and 0, respectively, to remove noise. Note that the
mask variable is a temporary vector with 0s and 1s, where 0s
represent redundant slots, and 1s represent valid slots.

Next, the indexes of valid slots must be calculated to
rearrange the chaotic structure. For this, we propose the
algorithm-Valid Index Searching (VIS) that is used to prepare
the mask, recorded in Algorithm 2, and the return of the
algorithm represents the indexes of 1s.

After implementing mask computation, a well-structured
vector (with valid values listed one after another) is neces-
sary to maintain the exact structure of the input and output.
We propose the algorithm-Chaotic Rotation Index (CRIS)
to look for valid values, as shown in Algorithm 3. How-
ever,mask computation is time-consuming and unsuitable for
speedup inference. The method mentioned above of process-
ing a chaotic vector for the next layer may not be necessary
for the convolution layer that we argue the model does not
need to get the well-structured output. Instead, we propose a
computation scheme, ‘‘Onion,’’ shown in Fig. 4, which relates
to Algorithm 1 and Algorithm 2. The computation scheme
‘‘Onion’’ produces a chaotic vector as the output (a not well-
structured vector) of the convolution layer. The rotation &
accumulation (calculate with filter) and mask computation
(remove noise) cost the same as the one MD in ciphertext;
thus, the MD of the convolution layer is two.

The description follows from Fig. 3. Consider a 4 ×
4 orange-colored matrix A filled with numbers from 1 to
16 left to right and top to bottom. In the first 2D convolution
layer, a single 2×2 filter F with the stride s(1, 1) samples the
upper left corner element. After convolution, the ideal output
is presented as numbers in a blue-colored solid matrix B,
and the practical output is in a dotted matrix. Using the
algorithm VIS, the model can get a list l1 of indexes of valid
values.
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TABLE 2. Different functions of vector and tensor. Tensors are employed for pixel-wise approach and vectors are employed for channel-wise approach.

FIGURE 2. The flow chart showing the entire data processing schemes of the CNN model.

FIGURE 3. Convolution Layer over Ciphertext. Assume total slots are 20, the input size is 4 × 4, and the filter size is 2 × 2 with stride 1. ‘‘#’’ means the
redundant slot, and ‘‘∗’’ means the slot holding zero or relatively small noise.

Similarly, the second layer is sampled by filter F . The
output of this layer is presented in a purple-colored matrix C ,

and the index list l2 is calculated by Algorithm 2. The objec-
tive of themodel is to obtain the indexes of all the valid values.
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FIGURE 4. ‘‘Onion’’ computation scheme of CHE shows how to calculate the ciphertext in the model without revealing the well-structured
vector.

However, elements in l2 cannot be used as subscripts of the
output vector to find valid values. Instead, the elements in l2
are regarded as subscripts in l1, and the elements correspond-
ing to these subscripts in l1 then form the index set. Themodel
leverages elements in the index set as the subscripts of the
output vector. Hence, themodel can find the required indexes,
layer by layer, like an onion. Notably, the model must store
an index list, passing and updating layer by layer, during the
inference.

Algorithm 1 Rotation Index Searching (RIS)
Input: input feature map size m, convolution filter size f
Output: indexing list ris_idx
1: for i = 0, . . . , f − 1 do
2: Set line anchor start ←− i× m
3: for j = 0, . . . , f − 1 do
4: If i = f − 1&j = f − 1 : continue
5: Compute first point of line fp: fp← start + j
6: If j == f − 1:
7: ris_idxi← (i+ 1)× m
8: Else: ris_idxi← fp+ 1
9: end for

10: end for
11: return ris_idx

3) ACTIVATION LAYER
HE data only supports the polynomial function. Thus, the
activation function should be approximated by a polynomial
function to obtain high accuracy. The approximation method
depends on the desired performance of the model, and there
have been several studies [4], [25], [27]. As the method of
approximating the polynomial is not the objective of the

Algorithm 2 Valid Index Searching (VIS)
Input: input feature map size m, output feature map size n,
layer’s stride s
Output: indexing list vis_idx
1: for i = 0, . . . , n− 1 do
2: for j = 0, . . . , n− 1 do
3: vis_idxi← i× s× m+ j× s
4: end for
5: end for
6: return vis_idx

Algorithm 3 Chaotic Rotation Index Searching (CRIS)
Input: input feature map size m, output feature map size n,
layer’s stride s
Output: indexing list rot_idx
1: Indexing list idx = VIS(m, n, s)
2: for i = 1, . . . , n2 − 1 do
3: rot_idxi← idxi − i
4: end for
5: return rot_idx

current study, the square function is used to replace the ReLU.
This square function is a second order polynomial of the form
ax2 + bx + c, where a = 1, b = 0, c = 0. The MD of the
activation layer is 1.

4) POOLING LAYER
As max-pooling is a non-polynomial function, a polynomial
function is needed to replace the max-pooling function. The
HE scheme only supports multiplication and not division.
Note that f is the size of the filter in the pooling layer.
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However, the division by f × f can be considered as multi-
plication by 1

f×f , as in (1). Thus, to modify the max-pooling
layer into the average pooling layer, we adopt the approach
of multiplying the 1

f×f the inverse of the number of the
elements of the filter directly over all the elements of the filter.
Note that the multiplication is performed over the ciphertext
without decryption.

avg() =
1

f × f

f×f∑
i=1

xi −→
f×f∑
i=1

1
f × f

xi (1)

where the mask vector consists of 0 and 1
f×f and the MD of

the average-pooling layer is 1.

5) BATCH NORMALIZATION
To ensure the stability of the NN training, it is necessary to
carefully select the initialization method and choose a small
value of learning rate, despite it increasing the complexity of
the task. To address the limitation, the Google team proposed
the BN [11] method to help train the network better. Average
µ and variance σ 2 of elements of the BN layer in mini-batch
training are used to normalize elements into a fixed range,
subjected to natural distribution. Considering the effect of
the normalization on performance, the authors implemented
two learnable parameters γ and β, to scale and shift values,
respectively.

Because of the leveled HE scheme, the inference latency
of the PPDL model is highly related to the predefined
level. Deploying the BN layer increases the MD, which
sets a higher level and leads to longer latency. Since the
BN layer is adopted into the typical NN model and then
transformed for the NN model for ciphertext inference, its
parameters µ, variance σ 2, scale γ , and shift β are deployed
with multiplication. These four parameters are implemented
in several arithmetic operations, which increases the MD.
The CM is a required tool to reduce MD. It focuses
on coalescing parameters used in the BN layer with the
other layers, such as the activation layer. Ioffe [11] et al.
deployed the BN layer after each activation layer to
improve accuracy. We pointed out two schemes of fusing
the BN and activation layer in the encrypted model, one
is Convolution-Activation-BN, which we call the ‘‘CAB’’
scheme, and the other is Convolution-BN-Activation, which
we call the ‘‘CBA’’ scheme. We develop the fused layer
via CM as the ‘‘Mapping’’ layer, described in detail in
Section III-B.

6) PACK LAYER
The ciphertexts are the chaotic vectors that must be rear-
ranged before feeding feature maps into the Fully Connected
(FC) layer. Due to the vector-matrix multiplication in the
FC layer, the model needs to pack these ciphertexts into one
ciphertext whose valid slots must be equal to the input size
of the following FC layer; otherwise, the model is unable to
perform the HE addition. The required method is flattening
the valid slots of all ciphertexts into one ciphertext. However,

there are two problems with this method. Firstly, ciphertext
has redundant slots that do not casually concatenate the rear
with the head. Secondly, each ciphertext is chaotic, which
means that the valid slots of ciphertext are not neighbors.

The pack layer concatenates all the valid slots, which are
located along the length of the flattened channel vector. The
length of slots of one ciphertext is fixed, whose size equals
N
2 (half of the polynomial degree N ); it is not feasible to
connect the end of one ciphertext to the head of another
ciphertext, as it would exceed the maximum length. Thus,
concatenating slots equal to the flattened channel’s length
rather than the ciphertext length would be a better alternative.
However, there is a problem. If the length or the number of
ciphertexts is too large, the concatenated slots will exceed the
specified length, which implies that the valid slots are sparse.
So, a well-structured output vector is needed in the FC layer.
We propose the algorithm-Flatten Multi-ciphertext to Single-
ciphertext (FM2S) to pack ciphertexts into a single ciphertext,
written down as Algorithm 4.

Algorithm 4 Flatten Multi-Ciphertexts to Single-Ciphertext
(FM2S)
Input: input feature map [x], last output feature map size n,
valid list v, mask m
Output: packed ciphertext [x_pac]
1: Obtain channels of [x] : c←− len([x])
2: for i = 1, . . . , n2 − 1 do
3: rot_idxi←− vi − i
4: end for
5: for j = 0, . . . , c− 1 do
6: [y]← [xj]
7: mask ← Encode(m)
8: [Z0]← HEmult([y],mask)
9: for k = 0, . . . , n2 − 1 do

10: maskvk+1 ← 1
11: [Zk+1]← Rot(HEmult([y],mask), rot_idxk )
12: end for
13: [y]← HEadd([Z0], . . . , [Zn2−1])
14: [Yi]← Rot([y],−(n× n× i))
15: end for
16: [x_pac]← HEadd([Y0], . . . , [Yc−1])
17: return [x_pac]

7) FULLY CONNECTED LAYER
For the FC layer of the NN model, the filter is a matrix of
size (input channel × output channel), and it involves matrix
multiplication of the input and the filter matrix. In privacy-
preserving CNN, before feeding feature maps into the FC
layer, feature maps should be flattened into one ciphertext
in the mentioned pack layer, which shapes a single vector.
The input and the output of the FC layer are presented in
a single ciphertext. However, the ciphertext encrypted by
HE does not support matrix multiplication. Consequently,
we estimated using HE rotation and HE multiplication to
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execute the matrix multiplication function. We change the
matrix-vector multiplication scheme into a vector-matrix
multiplication scheme. We leverage the approach proposed
by Halevi and Shoup [28], which is a multiplication operation
between vector and tensor (matrix).

The first phase of this layer is to preprocess the
weight matrix. Since the output channel is smaller
than the input channel, it is crucial to pad the matrix
by 0 to the square matrix of size ‘‘input channel ×
input channel.’’ Next, the padded matrix is diagonalized
along with the raw. Vector-matrix multiplication performs
element-wise multiplication between the ciphertext and
plaintext weight matrix, which can only be achieved by HE
rotation.

We found that the vector-matrix multiplication has an
unnecessary step, which increases latency. Assuming the
input channel is I , and the output channel is O, it needs
2(I − 1) times HE rotations and one time HE addition,
where there are 2(I−1)

2 times HE rotation to the left and
2(I−1)

2 times HE rotation to the right linearly. To reduce
the HE operation, we propose the method that implements
fewer than 2(I−1)

2 times HE rotation to the right lin-
early, as shown in Algorithm 5. The instance is presented
in Fig. 5.

In Fig. 5, elements of the part η are computed as 0 in
the output, which implies that the elements do not affect the
output. Currently, as the HE rotation is a linear operation,
intersection Iδ,η of the part δ and part η are in serial, which
means that the HE rotation can assemble linear transforma-
tion simultaneously. On the other hand, intersection Iζ,η of
the part ζ and η are not in serial, which means the transfor-
mation is non-linear, and two HE rotations are necessary. The
previous method costs 2(I − 1) HE rotations in the FC layer.
As for the proposed enhanced approach, the intersection Iδ,η
requires I − O times HE rotations, which runs one time HE
rotation to each line; the intersection Iζ,η expends 2(I − (I −
O) − 1) = 2(O − 1) times HE rotations, which executes
two HE rotations to each line. The number of HE rotations is
changed to I +O−2, i.e., the latency of this step has become
I+O−2
2(I−1) of the original. Thus for the aforementioned example,
which demonstrated that it is possible to ignore a part of
the HE rotation moving to the right, the latency becomes
7+3−2
2(7−1) =

2
3 of the original.

The relationship between the input channel and the output
channel is drawn in Fig. 6. The x- and y- axes represent the FC
layer’s input and output channels. The z-axis is the ratio (%)
of the number of HE operations of original and improved
methods. Before implementing the improved algorithm, the
HE operation of the FC layer needs to be performed 2(I − 1)
times. After that, the number of HE operations becomes
I + O − 2 times. This ratio implies that the latency of the
FC layer can be reduced to somewhat the original by using
an improved algorithm, depending on the number of input
and output channels. A lower ratio means better results for
the improved algorithm.

Algorithm 5 Vector-Matrix Multiplication (VMM)
Input: input feature map [x], weight matrix w, bias b
Output: ciphertext [x ′]
1: [t]← [x]
2: Obtain input feature map size m← len(w)
3: Obtain output feature map size n← len(b)
4: Set boundary e← m− n+ 1
5: w← Diagonalization(Padding(w))
6: for i = 0, . . . ,m− 1 do
7: wi← Encode(wi)
8: [Yi]← HEmult([t],wi)
9: IF i 6= 0 or i < e:

10: [t]← Rot([x], i+ 1)
11: IF i 6= m− 1 and i ≥ e :
12: [t]← HEadd(Rot([x], i+ 1),Rot([x], i+ 1− m))
13: end for
14: [Y ]← HEadd([Y0], . . . , [Ym−1])
15: [Y ]← Rescale([Y ])
16: B← Encode(b)
17: [x ′]← HEadd([Y ],B)
18: return [x ′]

B. BATCH NORMALIZATION WITH COEFFICIENT
MERGING
To improve the accuracy and reduce the MD of cipher-
text inference in CNN, we process the BN layer with CM.
By employing qualitative modes of inquiry, we attempt to
illuminate the two different schemes in mathematics. The
derivations of mathematical formulae of the schemes are
shown as the following.

The formulae of the two schemes are described in order.
A convolution layer can be written down as in (2), where
[If ] is the input feature map, f11, . . . , f1f , . . . , fff are weight
elements of the filter of size f × f , and [Xconv] is the out-
put of rotation & accumulation. Furthermore, [Yconv] can be
obtained by the mask computation, which leverages a mask
m to remove the redundant slots ‘‘#,’’ as in (3). The process
of obtaining [Xconv] and [Yconv] are shown in Fig. 3.

[Xconv] = [If ]f11 + · · · + rot([If ], f × f − 1)fff (2)

[Yconv] = m[Xconv] (3)

1) CONVOLUTION-ACTIVATION-BN (CAB) SCHEME
A second-order polynomial is used to approximate the activa-
tion function, as in (4). In the BN layer, the normalized [Yact ]
is calculated by the input [Yact ], the mean µ and variance
σ 2. In addition, due to the gradient dispersion problem, the
output is multiplied by the scale γ (weight), and the shift β
(bias) is also added. After simplifying the formula, the actual
second-order polynomial approximation is expressed as in
(5). We have replaced the activation function with the square
function, which implies that the coefficients a, b, and c of the
second-order function are 1, 0, and 0, respectively. The mask
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FIGURE 5. Vector-matrix multiplication. Assume the input is ciphertext with the first seven valid elements [A B C D E F G], which has a shape of
a 1 × 7 vector, and the filter is 7 × 3 matrix which implies that the input channel is seven and the output channel is three of the FC layer.

FIGURE 6. The relationship between the input channel and the output
channel of the FC layer.

m used in the convolution layer is a vector containing only
0 and 1. Its objective is to obtain a result without the redundant
slots ‘‘#.’’ So the value ofm is regarded as 1 logically, i.e., the
value of m2 is regarded as 1. In conclusion, for the specific
example of a square function, the output feature map [Ybn]
of the CAB scheme is changed into [Y ′bn], as in (6). After
reducing the MD, as proposed by Ishiyama et al. [4], the
output of the CAB scheme is formulated as in (6).

[Yact ] = a[Y 2
conv]+ b[Yconv]+ c (4)

[Ybn] = γ [Yact ]+ β

=
γ am2
√
σ 2 + ε

[X2
conv]+

γ bm
√
σ 2 + ε

[Xconv]

+ (β −
γ (µ− c)
√
σ 2 + ε

) (5)

[Y ′bn] =
γ

√
σ 2 + ε

[X2
conv]+ (β −

γµ
√
σ 2 + ε

)

= [X2
conv]+ B (6)

where B = (β −
γµ

√
σ 2 + ε

)/
γ

√
σ 2 + ε

(7)

2) CONVOLUTION-BN-ACTIVATION (CBA) SCHEME
In the BN layer, the normalized [Yconv] is calculated by the
mean µ and variance σ 2 with the input [Yconv]. In addition,
[Yconv] also needs to be multiplied by the scale γ and added
with the shift β; the resulting well-structured formula is
described in (8). For the CBA scheme, the output feature
map of the BN layer is followed by the activation layer,
as in (10). Furthermore, (10) substituted [Yconv] with [Xconv]
combined within (2). For the specific example of a square
function, the output feature map [Yact ] of the CBA scheme
is changed into [Y ′act ], after CM, as in (11). After reducing
the MD, as proposed by [4], the output of the CBA scheme is
formulated as in (12).

[Ybn] = γ [Yconv]+ β (8)

[Yact ] = a[Y 2
bn]+ b[Ybn]+ c (9)

=
aγ 2m2

σ 2 + ε
[X2

conv]+ [2a(β −
γµ

√
σ 2 + ε

)
γ

√
σ 2 + ε

+
bγ

√
σ 2 + ε

]m[Xconv]+ [a(β −
γµ

√
σ 2 + ε

)2

+ b(β −
γµ

√
σ 2 + ε

)+ c] (10)

[Y ′act ] =
γ 2

σ 2 + ε
[Xconv]2 + [2(β −

γµ
√
σ 2 + ε

)

×
γ

√
σ 2 + ε

][Xconv]+ (β −
γµ

√
σ 2 + ε

)2 (11)

= [X2
conv]+ C[Xconv]+ D (12)

where C = [2(β −
γµ

√
σ 2 + ε

)
γ

√
σ 2 + ε

]/
γ 2

σ 2 + ε

D = (β −
γµ

√
σ 2 + ε

)2/
γ 2

σ 2 + ε

The MD of the mapping layer becomes one after CM and
optimization. The BN and activation layer are separate when
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TABLE 3. The network architectures of PPNNs. C, A, P, B, and F denote
convolution, activation, pooling, batch normalization, and fully-connected
layers.

the NN model is deployed over plaintext, but they are fused
into one, the mapping layer, when deployed over ciphertext,
to optimize the MD. The mapping layer produces completely
different outputs for the two schemes when applied to the
output of the convolution layer. The CAB scheme produced a
second-degree termwith one constant, while the CBA scheme
produced an additional first-degree term. These different
mappings result in their disparate accuracy and latency.

IV. EXPERIMENT
To verify if the latency of encryption/decryption for CHE is
lower than that for PiHE, we have compared their perfor-
mances for one instance. Furthermore, we have applied the
CHE to five previous NN architectures [1], [2], [3], [4], [6]
and measured the accuracy and latency of ciphertext infer-
ence for comparison.

A. DATASETS AND NETWORKS
1) DATASETS
We adopt the MNIST [5] and the CIFAR-10 [29] datasets
to evaluate our proposed methods. We used the MNIST
and the CIFAR-10 datasets as the same datasets used in
previous papers. Both datasets are standard datasets in this
research area. The MNIST is a dataset of handwritten digits,
which has a training set of 60, 000 images and a test set of
10, 000 images, each of size 28× 28, divided into 10 classes
of numbers from 0 to 9. It is a gray image dataset, where each
image has a single channel. The CIFAR-10 dataset consists of
60, 000 color images, each of the size 32× 32 in 10 classes,
with 6, 000 images per class. There are 50, 000 training
images and 10, 000 test images. Unlike the former, each
image in CIFAR-10 has three channels.

2) NETWORKS
We adopted the CNN to evaluate performance and com-
pare the five networks shown in Table 3 with the proposed
CHE. Initially, these studies adopted the pixel-wise approach.
We replicated their architecture precisely and applied the
CHE and CM schemes to improve their performance.

B. EXPERIMENTAL SETUP
We ran all comparison models on the same Linux server in
parallel, equipped with Intel Xeon E5-2660 with 126 GB
memory and 40 cores. We only focused on the ciphertext

inference stage and used Pytorch to train all the NN models
with plaintext. The epoch was set as 100, Adam (β1 =
0.9, β2 = 0.99) as the optimization, the learning rate as
0.01. We adopted the Microsoft SEAL 3.7 [30] in Python
3.9 using Python-SEAL [31] to encrypt and decrypt data with
the RNS-CKKS HE scheme [22]. All PPDL models in our
experiments could achieve the 128−bit security level.

To simulate an actual situation when the user sends one
query to the server, we set the inference image of every epoch
to be one. Furthermore, HE flattens each image channel into
one vector and encrypts it into ciphertext. For example, each
image of CIFAR-10 has three channels flattened into three
vectors and encrypted as three ciphertexts. So, the model gets
a list, with three ciphertexts, as the input to HE-friendly CNN.
After running over the model, the model’s output is a single
ciphertext with valuable front parts (10 slots) and redundant
rear parts (other slots). The user cuts down decrypted output
and feeds it into the Softmax function to obtain the prediction.
The convolution layer, the pack layer, and the FC layer are the
three tough layers in the model used for parallel computing;
serial calculation is used for the rest.

C. RESULT
1) ENCRYPTION AND DECRYPTION
We first evaluated the time required for encryption and
decryption in the CHE and PiHE. This experiment encrypts
the same instance into ciphertext using the CHE and PiHE,
respectively, and then decrypts ciphertext into plaintext,
counting the encryption and decryption time. The encryp-
tion and decryption run time depends on the number of
ciphertexts.

The aim was to validate if the former takes less
encryption/decryption time than the latter. A random instance
was chosen from theMNIST and CIFAR-10, and the example
image was processed using the two approaches while logging
the encryption and decryption times. The test was performed
100 times to obtain an average result, shown in Fig. 7. Sta-
tistically, under datasets, MNIST and CIFAR-10, deploying
with the CHE cost 0.02 seconds and 0.08 seconds for encryp-
tion and cost 0.01 seconds and 0.03 seconds for decryption,
respectively. On the contrary, the PiHE took 15.21 seconds
and 59.21 seconds for encryption and 10.20 seconds and
39.78 seconds for decryption, respectively. As expected, the
CHE took a significantly shorter time for encryption and
decryption.

2) COEFFICIENTS MERGING SCHEMES
To test the effect of different schemes on the performance,
a simple model HCNN [6] and dataset MNIST were chosen.
As shown in Table 4, CAB and CBA obtained an accuracy of
98.50% and 99.03%, respectively, for ciphertext inference.
The attained latency was 10.35 seconds and 10.96 seconds,
respectively. The experimental results reveal that CBA has
higher accuracy and longer latency, which conforms with the
formulae we derived in Section III-B.
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FIGURE 7. Encryption and decryption latency on the datasets MNIST and CIFAR-10 datasets for one instance.

TABLE 4. The accuracy and latency of different schemes.

Due to the fused layer output, the results of the CBA
scheme were stable with high accuracy, but the latency
became a bit long. In contrast, as the CAB scheme does not
have enough lower-order terms to analyze the details of the
feature map, certain elements were ignored during inference.
The CAB scheme resulted in a shorter latency but reduced
accuracy.

3) ACCURACY AND LATENCY
Accuracy is the primary performance measuring a param-
eter of the inference. As the CBA scheme achieved higher
accuracy than the CAB scheme, thus, we performed the CHE
with the CBA scheme to verify if the CHE implementa-
tion improved the accuracy and latency on the MNIST and
CIFAR-10. The ciphertext inference time was logged, and all
recorded values were the average of 10 times experiments.

Table 5 shows the results of the five models and compares
the accuracy and latency of the original models and the pro-
posed model on the MNIST. The proposed method leverages
the CHE to process the whole model, and the fused layer
employs the CBA scheme. It achieved an accuracy of 99.00%
for the CryptoNets [1], 98.05% for the light CNN [2], 99.30%
for the HCNN [6], 99.32% for the CNNA [3], and 99.30% for
the CNN B [4]. The corresponding latency values for the five
models were 15.22 seconds, 17.89 seconds, 10.96 seconds,
16.14 seconds, and 7.76 seconds, respectively. Furthermore,
the speedups are 37.45,− (no previous inference time), 1.29,
23.96, and 2.73, respectively.

The results showed better performance than the previous
five works, especially speedup. As only the work of CNN
B evaluated the CIFAR-10 dataset, Table 6 presented the

single result of the CNN B model and compared it with the
accuracy and latency of the original and proposed models
on CIFAR-10. Our method leverages the CHE to process all
models, and the BN layer employs the CBA scheme. The
proposed model achieved an accuracy of 76.40%, latency of
111.91 seconds, and speedup of 9.28. Thus, the proposed
model establishes better results for this case too.

V. DISCUSSION
A. EXPLANATION
To perform inference on large datasets in the NN model,
researchers packed the same pixel of multiple images in a
single ciphertext, which could test many ciphertext images
in one inference, called the PiHE. Previous research [3], [6],
[25] have shown reasonable accuracy and latency in interac-
tive and non-interactive paradigms.

The PiHE uses tensors to process data, and each ele-
ment of a tensor is ciphertext. The CHE leverages data
upon ciphertext; the data is ciphertext rather than plaintext.
Dathathri et al. [9] and Lou et al. [10] implemented a similar
CHE presented in their figures. However, it is challenging
to derive their exact algorithm from the figures in which it
has been presented. Also, their method is used only for the
convolution layer, while our proposed algorithm applies to
all kinds of layers in the NN, including the convolution layer,
pooling layer, activation layer, BN layer, and FC layer.

Consistent with previous studies, this paper shows that
the CHE can achieve higher accuracy and shorter latency
than current PPDL models under multi-processing. Applying
the CHE to encrypt data into ciphertext in the number of
channels, we found that the proposed HE-friendly algorithms
for the CHE in CNN are prudent and reliable. The algorithm
is predominantly expressed in different layers and easily
exploited to transform NN models. As for the generalization
of the CHE, since the algorithm inside the model has been
adapted to the ciphertext calculation, it is possible to trans-
form any neural network model using the CHE. At the same

107456 VOLUME 10, 2022



T. Xie et al.: CHE: Channel-Wise Homomorphic Encryption for Ciphertext Inference in Convolutional Neural Network

TABLE 5. The inference latency and accuracy of previous models on MNIST. A multi-processing situation evaluates latency. L is the level of the model,
Scale is the scale factor of HE, N is the polynomial degree, and Q is modulo.

TABLE 6. The inference latency and accuracy of previous model CNN B on CIFAR-10. L is the level of the model, Scale is the scale factor of HE, N is the
polynomial degree, and Q is modulo.

time, for the input data, it is only necessary to transform it
into vector data encrypting by homomorphic encryption for
ciphertext inference.

The CAB and CBA schemes show only minor significant
differences in accuracy and latency; it must be pointed out
that, due to the CAB formula, only the profile of the image is
used for the results, lowering the scheme’s accuracy. On the
contrary, due to the CBA formula, the image profile and other
details are used for the results, leading to a higher frequency
but longer latency. Because there are different output poly-
nomial terms in the fused layer, the CAB scheme is more
suitable for quick inference over ciphertext, where the focus is
on central architecture; and the CBA scheme is more suitable
for precise inference over ciphertext to not only see the main
body but also pay attention to the details. We believe that
the minor differences in the accuracy and latency were also
because of the implementation of the second-order square
function. Nevertheless, the final formulae are not hugely
different after deploying CM through the proposed CAB
and CBA schemes because the CBA has only one addi-
tional first-order term using the square function. If higher-
order polynomials are deployed, the final formulae after CM
present more significant differences, increasing the variation
in the accuracies and latencies. Technically, the CBA scheme
provides a more stable analysis in ciphertext inference, and
the CAB scheme provides a quicker analysis.

B. LIMITATION
Despite the preliminary character of CHE, this study indicates
that reasoning and corroborating from the fundamentals of
data structures can prove its effectiveness and efficiency.
However, there is a restriction on inference latency due to the
sophistication and black-box nature of ciphertext. In addition,
the differences in the accuracies and latencies of the CBA
and CAB could be significant if a functionmore sophisticated
than the square function is used. Since there is no source code
to reproduce the previous works, we leave the direct compar-
ison with the previous studies under a specific platform as a
future study.

C. SIGNIFICANCE
Future iterations of inference over ciphertext from CHE to
instance-wise encryption, which encrypts one instance as

the single ciphertext, may demonstrate even greater potency.
Hopefully, the experimental results improve inference over
ciphertext, significantly changing the basic data structures
used for PPDL inference.

VI. CONCLUSION
This study sets out to improve the performance of HE-based
PPDL by combing the proposed approaches of CHE and the
BN layerwith CM. It also discusses several related algorithms
in detail and the computation scheme ‘‘Onion.’’ The CHE
implements ciphertext inference for the end-user in the non-
interactive paradigm. The BN layer with CM improved the
accuracy and decreased the latency by reducing the MD,
using two proposed schemes, the CBA and CAB. The pro-
posed method achieved the highest accuracy of 99.32% and
the shortest latency of 7.76 seconds on the MNIST dataset
compared to five previous architectures. It also attained an
accuracy of 76.4% and a latency of 111.91 seconds on the
CIFAR-10. Thus, our experiments demonstrate that the CHE
can serve as a tool to design a more robust and flexible PPDL
model which performs ciphertext inference in the CNN with
better accuracy and latency. In future work, we will target
more challenging problems with processing on graphical pro-
cessing units, actual datasets, and deeper networks and aim to
achieve lower latency and higher accuracy for instance-wise
ciphertext inference that encrypts one instance as the single
ciphertext.
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