
Received 12 September 2022, accepted 23 September 2022, date of publication 26 September 2022,
date of current version 5 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3210122

Senior Learning JAYA With Powell’s Method and
Incremental Population Strategy
GÜRCAN YAVUZ
Computer Engineering Department, Kutahya Dumlupinar University, 43100 Kutahya, Turkey

e-mail: gurcan.yavuz@dpu.edu.tr

ABSTRACT JAYA algorithm is one a recently developed meta-heuristic algorithm that does not require
algorithm-specific parameters. It is an algorithm based on the fact that the solutions always go towards
the best when searching. This paper proposes a JAYA variant (JAYA-SIP) with three improvements to
the Original JAYA algorithm. It has incorporated the senior learning strategy, the incremental population
strategy, and Powell’s local search method into JAYA. The improvements were tested with IEEE Congress
on Evolutionary Computation (CEC) benchmark set for 30 and 50 dimensions, and the benchmark functions
set from a special issue of the Soft Computing journal (SOCO) for 500 and 1000 dimensions. In addition to
benchmark sets, the performance of JAYA-SIP was evaluated with nine CEC 2011 real-world test functions.
The results of the proposed algorithm are compared with JAYA variants and some meta-heuristic algorithms.
According to the results of the experiment and the analysis, the proposed improvements increased the
performance of the JAYA algorithm. JAYA-SIP achieved better results than the other algorithms it was
compared with.

INDEX TERMS Benchmark suite, JAYA, Powell’s method, optimization.

I. INTRODUCTION
Meta-heuristic algorithms are the leading methods used in
solving real-world and engineering problems. Meta-heuristic
algorithms, i.e. high-level methodologies, are not dependent
on the problem being solved, making them applicable to a
large number of problem types [1], [2]. The main reason
for this is that when traditional methods are employed to
solve a problem, the problem becomes more complex as
the scale of the problem increases, necessitating a consider-
able amount of processing power and time [3], [4], [5], [6],
[7], [8]. Meta-heuristic algorithms reduce the time it takes
to identify the best solution or the solution that most suit-
able. This has led to an increased interest in algorithms and
the development of a significant number of meta-heuristic
algorithms over the past 10 years. Examples of these meta-
heuristic algorithms that researchers are deeply interested
in are Particle Swarm Optimization (PSO) [9], Ant Colony
Optimization (ACO) [10], Artificial Bee Colony (ABC) [11],

The associate editor coordinating the review of this manuscript and

approving it for publication was Mu-Yen Chen .

Gravitational Search Algorithm (GSA) [12], Tree Seed Algo-
rithm (TSA) [13], Firefly Algorithm (FFA) [14], Salp Swarm
Algorithm (SSA) [15], [16], Differential Evolution (DE) [17],
[18], [19], [20], and their variants [21]. JAYA is one of the
latest meta-heuristic algorithms [22].

The JAYA algorithm has attracted considerable attention
due to its simple structure and the absence of algorithm-
dependent parameters. JAYA, by its very nature, has the
ability to converge quickly. It does, however, have problem
of getting stuck in the local optimum. To eliminate this short-
coming, researchers have made a number of changes to the
algorithm.

In this study, a JAYA variant algorithm called JAYA-SIP for
short, proposes three improvements in total, namely senior
learning, incremental social learning, and Powell’s local
search method. These three improvements were implemented
in order to prevent issues such as local optima and early
convergence of the JAYA algorithm. The behavior of this
algorithm in CEC 2014 and large-scale test functions was
investigated and compared with the JAYA variant and current
meta-heuristic algorithms.

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 103765

https://orcid.org/0000-0002-2540-1930
https://orcid.org/0000-0002-3945-4363

G. Yavuz: Senior Learning JAYA With Powell’s Method and Incremental Population Strategy

JAYA-SIP includes Powell’s local search method and this
method is one of the methods used by combining it with
various meta-heuristic algorithms. For example, [23] tried
to improve the exploitation behavior of the ABC algorithm
by combining the ABC algorithm and Powell’s and used it
in 22 unconstrained and 13 constrained function solutions.
In another study, the Grey Wolf Optimizer algorithm was
extended by Powell’s local search method, and the variant
they name PGWO was used for data clustering [24]. [25]
solved the minimum energy broadcast (MEB) problem in
the wireless sensor network with a variant of the Flower
Pollination Algorithm based on Powell’s method.

Aydın, Yavuz, and Stützle 2017 proposed a general-
ized, configurable ABC framework with an ISL mechanism.
In addition, two other studies proposed an ABC variant by
including ISL in the ABC algorithm (Yavuz, Aydin, and
Stützle 2016; Yavuz and Aydın 2019).

JAYA-SIP uses Incremental Social Learning (ISL) strat-
egy as its incremental population strategy [26]. There are
also a number of different meta-heuristic algorithms using
this method in the literature. De Oca et al. included the
ISL method in the PSO algorithm [27]. Liao et al. brought
together the ACO algorithm and ISL [28]. Özyön, Yaşar,
and Temurtaş included the ISL method in the gravitational
search algorithm (GSA) and used it to solve high-dimensional
problems [29]. Özyön and Aydin used IABC, a variant of
Artificial Bee Colony Algorithm (ABC) with an ISL mech-
anism, to solve the economic power dispatch problem in
the prohibited operating zone [30]. Aydın, Yavuz, and Stüt-
zle proposed a generalized, configurable ABC framework
with an ISL mechanism [31]. In addition, two other studies
proposed an ABC variant by including ISL in the ABC
algorithm [32], [33].

The contributions of this work are summarized as follows:

• A JAYA variant known as JAYA-SIP is proposed.
• The senior learning mechanism is incorporated into the
proposed algorithm.

• CEC 2014, SOCO, and Real World Problems are solved
with JAYA-SIP.

• The ISL strategy and Powell’sMethod have been applied
to the JAYA algorithm.

This study focuses on three proposed improvements for the
Original JAYA algorithm. Section II briefly mentions the pre-
vious studies in the literature. Section III presents the general
structure of the Original JAYA algorithm. In Section IV, the
proposed improvements to the JAYA algorithm and the details
of the proposed JAYA variant algorithm are given. Section V
deals with the experimental environment, the results obtained
by the algorithms included in the experiments, and their
comparisons. Finally, Section VI summarizes the study and
outlines the results.

II. RELATED WORKS
Many improvements have been made on the JAYA algorithm
in the literature. These can be categorized as follows:

• Using learning methods to increase population diversity
• Improvement of the solution update equation
• Hybridization of the original JAYA algorithm with other
techniques

In the first category, researchers used a variety of learn-
ing methods to diversify the population of the solution and
prevent the algorithm getting stuck to local optima. To deter-
mine the Photovoltaic model parameters, Yu et al. used a
JAYA variant with experience-based and chaotic elite learn-
ing methods [34]. Rao and Rai proposed a JAYA variant using
the quasi-oppositional-based learning method to increase
the JAYA algorithm’s population diversity [35]. Wang and
Huang [36] have integrated the elite opposition-based learn-
ing mechanism into the JAYA algorithm. This mechanism is
based on identifying effective solutions close to the global
optimum [36]. A study by X. Yang and Gong improved
upon their proposed Enhanced JAYA (EJAYA) algorithm
with a strategy called Generalized opposition-based learn-
ing [37]. Alawad and Abed-alguni proposed a variant using
three mutation methods for position updating and Refrac-
tion Learning as an initialization method for solving discrete
real-world problems [38].

The solution update equation is the most important fac-
tor influencing the power of the JAYA algorithm. Various
alternatives to the JAYA solution update equation have been
proposed in the second category. Ingle and Jatoth proposed
a position update equation based on Levy Flight to pre-
vent the JAYA algorithm from remaining stuck in the local
optimum [39]. Leghari et al. added a weight parameter to
the position update equation and sought to determine its
value adaptively [40]. Luu and Nguyen combined the JAYA
algorithm’s solution update step with the DE operator [41].
Jian and Weng used a JAYA variant solution with chaotic
map-based and multiple solution update equations to deter-
mine the parameters of photovoltaic cells [42]. X. Yang and
Gong added the improved solution update equation to the
EJAYA algorithm alongside the learning method [37]. Rao
and Keesari created the MTPG-Jaya algorithm, which uses
multiple teams to search the solution space [43]. These teams
use various equations to search the same population. Farah
and Belazi, however incorporated three new mutation strate-
gies based on chaotic maps into the algorithm to improve
JAYA’s performance and tested them with 16 benchmark
functions [44].

Aside from the improvements made in the first two cate-
gories, the third category of JAYA algorithm improvement is
the combination of the JAYA algorithmwith other techniques.
For example,, Gholami, Olfat, and Gholami combined the
crow search algorithm, which excels at global search, and
the JAYA algorithm, which excels at local search, and tested
it on 20 benchmark functions [45]. Alotaibi combined the
firefly and JAYA algorithms to prevent local optima from
becoming stuck [46]. Goudos et al. combined the Grey
Wolf and JAYA algorithms and applied them to two differ-
ent antenna designs [47]. Xiong et al. used the Differential

103766 VOLUME 10, 2022

G. Yavuz: Senior Learning JAYA With Powell’s Method and Incremental Population Strategy

Evolution algorithm in combination with JAYA to determine
the parameters of the solid oxide fuel cell model [48]. Kaur,
Sharma, and Mishra proposed the JAYA-Bat algorithm as
a solution for reducing cognitive radio network power con-
sumption [49]. Kumar andYadav [50] combined the Teaching
Learning Based Optimization algorithm with JAYA [50] and
Azizi et al. brought together the ant lion optimizer algorithm
with JAYA [51]. Tefek and Beşkirli combined the JAYA algo-
rithm with a method known as Elite Local Search, without
affecting the JAYA algorithm’s general structure, and used
it to solve optimization problems [52]. Gupta, Kumar, and
Srivastava combined JAYA with Powell’s method and pro-
posed three JAYA variants for solving the optimal power flow
problem with a distributed generating unit [53]. Aslan, Gun-
duz, and Kiran hybridized their JAYA variant algorithm with
a local search module and used it to solve binary optimization
problems [54].

Although the JAYA algorithm was introduced as recently
as 2016, it has already been used extensively and been applied
to various types of problems [55], [56], [57]. Premkumar et
al. developed a variant of JAYA that uses a chaotic map-
ping to determine photovoltaic cell parameters [58]. Luu
and Nguyen proposed a new variant called Modified JAYA
to identify solar cell parameters [41]. Gunduz and Aslan
created a variation dubbed DJAYA, which they utilized to
solve the discrete problem type traveling salesman problem
by making two adjustments to JAYA [3]. Aslan, Gunduz,
and Kiran developed a JAYA variant for binary optimization
by combining the JAYA algorithm with the logic exclusive
or operator [54]. Liu et al. proposed a JAYA variant for
short-term forecasting of wind speed with the support vector
machine (SVM) based JAYA-SVM and tested the success
of their algorithm with seven different methods [59]. Warid
developed the adaptive multiple teams perturbation-guiding
Jaya (AMTPG-Jaya) for single goal optimum power flow
(OPF) forms [60]. Degertekin, Lamberti, and Ugur proposed
the Discrete Advanced JAYA (DAJA) algorithm for the opti-
mization of truss structures under stress and displacement
constraints, which are a discrete optimization type problem
that is difficult to solve [61]. Rao and Keesari optimized the
wind farm layout problems with the JAYA algorithm vari-
ant they developed [43]. Rao and Saroj minimized the total
annual cost problem by using a variant referred to as Elitist-
JAYA in the shell-and-tube heat exchangers design [62].
Thirumoorthy and Muneeswaran used a hybrid JAYA variant
to solve the text clustering problem and compared it with
some known meta-heuristic algorithms [63]. Chaudhuri and
Sahu proposed a hybrid filter-wrapper approach based on
JAYA and tested it on 10 micro-array datasets [64].

III. THE ORIGINAL JAYA ALGORITHM
TheOriginal JAYA is a population-basedmeta-heuristic algo-
rithm created by Venkata Rao in 2016 [22]. It takes its name
from the Sanskrit word JAYA,whichmeans victory. The algo-
rithm has a straightforward structure and only requires gen-
eral control parameters (the number of function calls (FES)

and population size(NP)), rather than algorithm-specific con-
trol parameters.

Like other population-based algorithms, the Original JAYA
has a population of randomly-distributed solutions in the
search space. The basic logic of the algorithm is based on
moving a solution in the population away from the worst
solution and approximating it to the best solution in the
population. The pseudo-code of the Original JAYA is given
in Algorithm 1.

The Original JAYA algorithm begins its execution by gen-
erating random solutions. The positions of all solutions in
the population are updated by Equation 1 until the execution
budget is completed. Thus, it is ensured that all solutions
avoid the worst solution (X two,j) and reach the current best
solution (X tbest,j).

X t+1i,j = X ti,j + r1(X
t
best,j − |X

t
i,j|)− r2(X

t
wo,j − |X

t
i,j|) (1)

In the equation, X ti,j represents the j. dimension of the i.
solution in t . iteration. X tbest,j and X

t
wo,j show the dimension

of the best and worst solution in the t . iteration, respectively.
Finally, r1 and r2 are randomly selected numbers from the
range of [0, 1].

Algorithm 1 The Original JAYA Algorithm
1: Determine population size (NP)
2: Populate the population P(i = 1, 2, · · · , n) with random

solutions
3: t ← 1 F initialize iteration
4: while The termination criteria are not met do
5: Find the current best and worst solutions of the pop-

ulation
6: for i = 1 to NP do
7: Update the position of the current solution with

Equation 1 using the information of the best and worst
solutions.

8: i← i+ 1
9: t ← t + 1 F increment iteration

IV. SENIOR LEARNING JAYA WITH POWELL’s METHOD
AND INCREMENTAL POPULATION STRATEGY
The proposed algorithm and its components will be described
in detail in this section.

A. SENIOR LEARNING STRATEGY
The exploration and exploitation capabilities of the Original
JAYA algorithm are based on its position update Equation
(Equation 1) which is described in Section III. Although
JAYA has a powerful position update equation, it can at
times be insufficient in complex problem types [52], [65].
In order to eliminate this deficiency, the JAYA-SIP algorithm
has included a learning method called senior learning in the
JAYA algorithm. In this approach, Equation 2 was used to
replace JAYA’s position update equation, and an algorithmic

VOLUME 10, 2022 103767

G. Yavuz: Senior Learning JAYA With Powell’s Method and Incremental Population Strategy

component called Senior Pool (SE) was added to the algo-
rithm as a result of this equation.

X t+1i,j = X ti,j + r1(X
t
best,j − |X

t
i,j|)− r2(SEra,j − |X

t
i,j|) (2)

In the equation, X ti,j represents the j. dimension of the i.
solution in t . iteration. X tbest,j and SEra,j show the j. dimension
of the best solution and randomly selected solution from SE
pool in the t . iteration, respectively. Finally, r1 and r2 are
randomly selected numbers from the range of [0, 1].
In JAYA, the positions of the solutions are updated with

Equation 1 during iterations. As a result of each update
operation, if the objective function value of the new solution
is better than the objective value of the existing solution, the
current solution is updated with the new solution, and the
information of the old solution is discarded. In the original
JAYA this could lead to the loss of previous knowledge and
experience in the scanned region in the search space, and
thus, these regions to be searched again in the subsequent
iterations. In this proposed study, after the current solution’s
position update, if the objective value of the new solution is
better than the objective value of the old solution, the old
solution is replaced with the new solution and the information
of the old solution is not discarded. Instead, this solution is
labeled ‘‘Senior’’ and saved in a ‘‘Senior Pool (SE)’’. Thus,
this pool preserves the previous search space experience.

Solutions are added to the senior pool throughout the
iterations, and as a result, the pool size can reach enormous
sizes. This causes bad solutions to fill the pool and causes the
algorithm to waste execution time for bad solutions. To avoid
this bad situation, the SE pool size is reduced at a certain rate
in each iteration. For this purpose, a parameter called ratio
(ratio = 0.10) is used, and the new pool size is determined
using this parameter. After the determination process, the
solutions placed in the pool are ranked according to their
objective function values. Solutions with the worst objective
function value are discarded/removed from the pool until the
size of the SE reaches the newly calculated pool size. This
prevents the SE from growing too large and keeping bad solu-
tions in the pool. In addition, a minimum value (Minimum
Pool Size, MPS) is defined for the pool size (MPS = 3). The
size of the SE pool cannot fall below this value. Thus, it is
ensured that the algorithm always works with a small number
of Senior solutions.

B. POWELL’s METHOD
In order to strengthen the exploration ability of the JAYA-SIP
algorithm, it is considered in this study to add a local search
method to the JAYA algorithm. For this purpose, a well-
known, hybridized with manymeta-heuristic algorithms [23],
[24], [25], using Brent’s technique [66] Powell’s conjugate
directions method was preferred [67]. The key reason for this
is that it provides better performance. In addition, it is easy to
hybridize with the meta-heuristic algorithm.

Powell’s method is not an approach called for in every
iteration in the proposed algorithm. The aim is to keep

the execution budget from being spent. According to Algo-
rithm 2, JAYA-SIP calls Powell’s method when it thinks that
the search process has entered stagnation. This is determined
by a parameter specified as sg. The value of sg is initially set
at 0. When the position of a solution is updated (Equation 2),
if the objective function value of the new solution is worse
than the current solution, the value of sg is increased by
one. When the value of this sg reaches the ‘‘stagnation factor
value’’ specified at the beginning of the algorithm, JAYA-SIP
calls Powell’s local search method, and the sg value is reset.
The solution with the current best objective value is used as
the starting point for Powell’s local search method.

C. INCREMENTAL SOCIAL LEARNING STRATEGY
The final improvement of the proposed algorithm is the incre-
mental population method. For this method, the Incremental
Social Learning mechanism (ISL) has been selected [27]. ISL
is tried to increase the diversity of the population by adding
new solutions to the existing population with ISL and to avoid
getting stuck in the local optimum. The number of the growth
period, which is selected at the start of the algorithm and
called growthperiod , determines how long it takes to add
a new solution to the population. After each growthperiod
iteration, a new solution is added to the population. Unlike
the random generation method used during the initialization
step, the new solution is created using Equation 3. The new
solution is produced close to the best solution in the popula-
tion. The logic here is that there could be superior solutions
around the best solution. The ISL process continues until the
maximum number of populations(NPmax).

X̂ t+1i,j = X tbest,j + ra(0, 1) ∗ (X
t
best,j − ra(X

l
− Xu)) (3)

X tbest,j, represents the j. dimension of the best solution of
the current population. X l and Xu represents the minimum
and maximum bounds of the solved problem. ra(0, 1) repre-
sents a random number generated between 0 and 1. X̂ t+1i,j is
the j. dimension of the new solution generated.

V. EXPERIMENTS
The experimental environment and conditions designed to
test the performance of the proposed JAYA-SIP algorithm
will be explained in this section, followed by the outcomes
of the algorithms in the experiments.

A. THE EXPERIMENT ENVIRONMENT
The JAYA-SIP algorithm’s performance was evaluated by
solving CEC 2014 [68], the large-scale SOCO benchmark
suite [69], and real-world problems [70]. The results of JAYA-
SIP were compared with Comprehensive Learning Jaya
(CLJAYA) [71], JAYA [22], Improved Jaya algorithm with
Levy flight (LJA) [65], Improved JA based on the Linearly
Decreasing Weight (LW-IJAYA) [40], Modified JAYA (MJA)
[41], Grey Wolf Optimizer (GWO) [72], Sine Cosine Algo-
rithm (SCA) [73] and the Tree-Seed Algorithm (TSA) [13].

The first experiments conducted are the CEC 2014 bench-
mark set experiments. CEC 2014 is a benchmark set that

103768 VOLUME 10, 2022

G. Yavuz: Senior Learning JAYA With Powell’s Method and Incremental Population Strategy

Algorithm 2 Pseudo-Code of JAYA-SIP
1: Determine population size (NP)
2: Set the problems dimensions (D)
3: t ← 1, flagi← 0
4: stagnation, ratio← 0.10, MPS ← 3
5: Populate the population P(i = 1, 2, · · · , n) with random

solutions
6: SE ← ∅ F Create the Senior pool (SE)
7: while FES ≤ MaxFES do
8: for i = 1 to NP do
9: for j = 1 to D do
10: Update X ti,j solution with Equation 2

11: if f (X t+1i,j) < f (X ti,j) then
12: SE ← X ti,j F Put the old solution in the pool
13: flagi← 0
14: sg← 0
15: else
16: flagi← flagi + 1
17: sg← sg+ 1
18: i← i+ 1
19: if sg < stagnation then
20: Determine the current best solution of the popu-

lation
21: Use the current best solution of the population as

the starting point and apply Powell’s method
22: sg← 0
23: Apply the increasing population method (ISL)
24: if t > 0 and t % growthperiod == 0 and NP <

NPmax then
25: P← X̂ t+1i,j

26: poolsize← NP× ratio F set pool size
27: Sort solutions in Senior Pool(SE) by objective func-

tion values
28: Discard the worst solutions from the pool until the

senior pool size equals poolsize.
29: t ← t + 1

has become a standard for evaluating the performance of
optimization algorithms and includes functions of various dif-
ficulty levels. This benchmark set has 30 different numerical
minimization test functions, including unimodal (f 1 − f 3),
multimodal (f 4 − f 16), hybrid (f 17 − f 22), and composite
(f 23− f 30) types. The test functions in the benchmark set are
summarized in Table 2. The search space of the functions in
the table is defined in the range of [−100, 100]. The functions
in this benchmark set are resolved for 30 and 50 dimensions.
CEC 2014 experiments were carried out by adhering to the
competition rules specified in the CEC 2014 competition.
According to a study, the execution budget of all algorithms
participating in the competition is D × 10000 number of
function calls (FES) [68]. D is the size of the problem. The
algorithms were run 51 times independently for all functions.
The obtained mean error value (where (f (x∗) − f (x), f (x),

is the objective function value obtained by the algorithm, and
f (x∗) is the global optimum value of the test function) is used
in the comparison. The error values obtained by following
the rules of [68] were accepted as 10−8 when they were
less than 10−8.

The second part of the experiments was carried out for
large-scale test functions. For this purpose, the SOCO bench-
mark set prepared for the Large Scale Optimization special
issue of Soft Computing Journal was used. This benchmark
set can be seen in Table 3. This benchmark set includes
19 functions, 4 separable and 15 non-separable SOCO experi-
ments were carried out following the operating rules specified
in [69]. Accordingly, the algorithms were run independently
25 times for each test function. The execution budget is equal
to the number ofD×5000 function calls. The algorithmswere
compared by taking the median value of the obtained error
values (f (x)− f (x∗)). The error values obtained by following
the rules of [69] were accepted as 10−14 when they were less
than 10−14

The performance of the JAYA-SIP algorithm was tested
using real-world engineering problems in the third part of
the experiments. Nine test functions were selected from the
CEC 2011 benchmark set. The experiments were carried
out in accordance with the conditions specified in [70]. The
JAYA-SIP results were compared with the JAYA variants.

All of the CEC 2014, SOCO and Real World problem
experiments were conducted using an Ubuntu Linux com-
puter with an AMD Ryzen 5 1600 with
16GB of RAM.

In order to conduct the experiments fairly, the control
parameters of JAYA-SIP and the algorithms included in
the experiments were configured using the irace tool [74],
a parameter configuration tool. For parameter configu-
ration, CEC 2014 10 dimension is used as a training
set. The execution budget was selected as D × 5000.
The parameters of the algorithms, parameter range val-
ues, and parameter values configured with irace are listed
in Table 1.

B. EXAMINING THE EFFECTS OF THE PROPOSED
MODIFICATIONS
This section examines the contributions of the proposed
improvements to the Original JAYA. For this, each improve-
ment has been added to the JAYA algorithm separately and
run on the CEC 2014 benchmark set for 30 and 50 dimen-
sions. The proposed algorithm (JAYA-SIP) has been com-
pared with JAYA+ISL, which is the ISL added version of
JAYA, JAYA+Powell, which is Powell’s method added to
JAYA, and JAYA+SL, which is the inclusion of the Senior
learning method

The mean error values obtained through the algorithms
are presented in Table 4 for 30 dimensions and in Table 5
for 50 dimensions. At the bottom of the tables, the results
of the pairwise comparison between the improvements with
JAYA-SIP are given. ‘‘Win’’ means JAYA-SIP algorithm
wins, ‘‘Lost’’ means the compared improvement wins, and

VOLUME 10, 2022 103769

G. Yavuz: Senior Learning JAYA With Powell’s Method and Incremental Population Strategy

TABLE 1. The algorithms in the experiments, the names of the control parameters they have, the parameter types, the interval values of the parameters
and the tuned values determined by the irace are given.

TABLE 2. CEC 2014 benchmark suite.

‘‘Draw’’ means the comparison is a draw. The Rank row
shows the average ranking value obtained by the algorithms
in 30 problems.

First, JAYA-SIP and improvements on JAYA were com-
pared for 30 dimensions in Table 4.Accordingly, it appears
that JAYA-SIP, which contains all the improvements in its

structure, showed great success. While JAYA-SIP achieved
lower error values in 28 of 30 problems against JAYA+ISL,
JAYA+ISL achieved smaller values in 2 of them. In addition,
the suggested method surpassed JAYA+SL in 25 problems
while falling short in 5 others. When compared with another
improvement, local search integration, JAYA+Powell, it is

103770 VOLUME 10, 2022

G. Yavuz: Senior Learning JAYA With Powell’s Method and Incremental Population Strategy

TABLE 3. SOCO benchmark suite.

TABLE 4. CEC 2014 30-dim results of proposed improvements over the
Original JAYA. (The best results are highlighted in bold.)

observed that JAYA-SIP had 22wins and 5 losses and ‘‘draw’’
in 3 functions.

Afterwards, the effects of the proposed improvements on
the JAYA algorithm when the size is increased were exam-
ined. Accordingly, when Table 5, which contains 50 dimen-
sion results, was analyzed, it was discovered that the order of
the 30 dimension results remained constant as the dimension
was increased. It can be said that JAYA-SIP achieved better
results than the other algorithms. The proposed algorithm
had 30 wins against JAYA+ISL, 26 wins against JAYA+SL,
4 losses, and finally, 20 wins, 8 losses, and 2 draws against
JAYA+Powell.

Not considering the JAYA-SIP results, it can be said that
Powell’s local search method outperformed the others, only
when the suggested improvements were examined among

TABLE 5. CEC 2014 50-dim results of proposed improvements over the
original JAYA. (The best results are highlighted in bold.)

themselves. However, no single improvement has achieved
better results than JAYA-SIP.

C. CEC 2014 TEST RESULTS
CEC 2014 experiments were conducted in two phases. The
performance of the JAYA-SIP algorithm was first compared
with the Original JAYA algorithm and its improved current
variants. After that, some meta-heuristic algorithms from the
literature were compared. Experiments were conducted for
30 and 50 dimensions.

The proposed algorithm and the algorithms included in the
experiments were compared in pairs with Wilcoxon’s rank-
sum test at the 0.05 significance level. Wilcoxon rank-sum
test results of the algorithm compared with JAYA-SIP are
given in Tables 7, 9, 11 and 13 for CEC 2014. The results of
SOCO experiments are also given at the bottom of the tables.
≈ sign is used when the results obtained are not significant,
the + sign is used if JAYA-SIP is significantly better, and −
if JAYA-SIP is significantly worse.

In addition, summary information of statistical test results
is given in Draw, Win, and Lost lines below the tables. More-
over, the average ranking value obtained by the algorithms is
also included in the rank row.

1) EXPERIMENTS WITH JAYA VARIANTS
The 30 and 50 dimension results of JAYA-SIP and JAYA
variants are presented in Table 6 and Table 8. In the

VOLUME 10, 2022 103771

G. Yavuz: Senior Learning JAYA With Powell’s Method and Incremental Population Strategy

TABLE 6. CEC 2014 30-dim results of JAYA-SIP and JAYA variants. (The best results are highlighted in bold.)

TABLE 7. CEC 2014 30-dim Wilcoxon rank-sum test results of JAYA-SIP
and JAYA variants.

table, the objective function error value of each function
of 51 is given in the form of mean and standard deviation
(std) metrics.

First, when the 30 dimension results are analyzed,
JAYA-SIP was a better optimizer than the JAYA variants
for all unimodal problems (f 1 − f 3). JAYA-SIP ranked
first in 10 of the 13 Multimodal functions (f 4 − f 16),
ranked second in two (f 7, f 14), and ranked fourth (f 6) in
one of them. In hybrid test functions, the proposed algo-
rithm ranked first in four test functions, ahead of JAYA
algorithms. As for f 20 and f 22 test functions, JAYA-SIP
lagged behind JAYA variants. In two functions of composite
functions (f 23 − f 30), it obtained the smallest error value
(f 23, f 29), while it obtained the second smallest error value
in two of them (f 27, f 30).
According to the 30 dimension results in Table 6, the pro-

posed algorithm obtained smaller objective function values in
24 test functions from JAYA, 20 from CL-JAYA, 27 from LJA
and MJA, and 26 from LW-IJAYA.

According to the 50 dimensions results of JAYA variants
in Table 8, JAYA-SIP obtained the smallest error value in all
unimodal functions. In multi-modal functions, the proposed
algorithm was the best algorithm in 10 of the test functions.
On the other hand, in hybrids, JAYA-SIP took first place in
4 functions. Finally, while it was the first algorithm in three
of the composite functions, it came in second place in two
others, resulting in competitive outcomes.

When the 50 dimension results in Table 8 are examined,
the proposed JAYA-SIP algorithm achieved better or
similar results than JAYA in 24 of 30 test functions,
CLJAYA in 21 functions, LJA in 25 functions, and
LW-IJAYA and MJA algorithms in 28 functions. However,
the JAYA-SIP algorithm showed the best performance in

103772 VOLUME 10, 2022

G. Yavuz: Senior Learning JAYA With Powell’s Method and Incremental Population Strategy

TABLE 8. CEC 2014 50-dim results of JAYA-SIP and JAYA variants. (The best results are highlighted in bold.)

f 1 − f 5, f 8 − f 14, f 16 − f 19, f 21, f 23, f 26, f 29 functions
and took the first place.

In addition to the 30 and 50 dimension results, the
JAYA-SIP algorithm’s convergence speed was also investi-
gated. From the CEC 2014 benchmark set, one unimodal,
multimodal, composite, and hybrid test functionwas selected,
and plots for 30 and 50 dimensions were created. The con-
vergence curves obtained are shown in Figure 1. When the
figures are compared, it is seen that the JAYA-SIP algorithm
converges faster than other JAYA variants.

2) EXPERIMENTS WITH OTHER META-HEURISTICS
The results of JAYA-SIP are compared to some current
meta-heuristic algorithms in this section. Controlled restart in
differential evolution (b6e6rl)(The results of the b6e6rl algo-
rithm are taken from the original article.) [75], TSA, GWO,
and SCA were the meta-heuristic algorithms employed in the
comparison. Table 10 shows the results of 30 dimensions.
However, 50 dimension results are presented in Table 12.

Based on Table 10, it can be said that JAYA-SIP achieved
better results than the other algorithms. While it obtained
better results than TSA in 19 of the 30 functions, TSA which
is one of the recent metaheuristic algorithms achieved better
results in 9 of them, and the algorithms had similar results
in 2 of them. However, it had 19 wins and 8 losses against
GWO, which is one of the popular meta-heuristic algorithms,
while the algorithms achieved the same results in 3 functions.
While JAYA-SIP was ahead of SCA in 20 functions, it was
behind in 9 of them. In one function, the result was a draw.

TABLE 9. CEC 2014 50-dim Wilcoxon rank-sum test results of JAYA-SIP
and JAYA variants.

The JAYA-SIP algorithm achieved 22 wins, 5 losses and
3 draws against b6e6rl.

VOLUME 10, 2022 103773

G. Yavuz: Senior Learning JAYA With Powell’s Method and Incremental Population Strategy

TABLE 10. CEC 2014 30-dim results of some metaheuristic algorithms with JAYA-SIP. (The best results are highlighted in bold.)

In Table 12, 50 dimension results are presented. Accord-
ingly, JAYA-SIP won 22 of the 30 functions against TSA, lost
2 of them, and the result was a draw in 6 of them. Moreover,
the proposed algorithm was found to be better in 19 of the
30 functions and worse in 9 of them than the GWO. When
compared to SCA, it was seen that JAYA-SIP achieved better
results in 20 functions, worse results in 8, and similar results
in 2 of them. The JAYA-SIP algorithm achieved 21 wins,
8 losses and 1 draw against b6e6rl.

Based on the 30 and 50 dimension results in the tables,
JAYA-SIP was the algorithm with the lowest average rank
in 30 functions compared to other meta-heuristic algorithms.
It was able to examine the search spaces of the functions
in the benchmark set more effectively. This is due to the
improvements in JAYA-SIP discussed earlier in this section,
which strengthened the algorithm’s exploration and exploita-
tion aspects.

D. SOCO LARGE SCALE EXPERIMENTS
In this section, the scalability behavior of the JAYA-SIP
algorithm in large scale problems is examined. For this pur-
pose, the SOCO large scale benchmark set was solved for
500 dimensions and 1000 dimensions. The median error
values of the algorithms for 500 dimensions are presented in
Table 14 and for 1000 dimensions in Table 15.

Wilcoxon’s rank-sum test was used to compare the pro-
posed algorithm and other algorithms in pairs at the 0.05 sig-
nificance level. Statistical results are given in the p-value line
at the bottom of the tables. The signs≈ are used if the results

TABLE 11. CEC 2014 30-dim Wilcoxon rank-sum test results of some
metaheuristic algorithms with JAYA-SIP.

of the algorithm compared with JAYA-SIP are not significant,
+ if the results of JAYA-SIP are significantly better, and− if

103774 VOLUME 10, 2022

G. Yavuz: Senior Learning JAYA With Powell’s Method and Incremental Population Strategy

FIGURE 1. Convergence plots of JAYA variants for 30 and 50 dimensions. It is the median error value obtained by the
algorithms after 51 runs. An example of Unimodal, Multimodal, Hybrid and Composite problem types is given.

the results of JAYA-SIP are worse. Furthermore, the numbers
of wins, losses, and draws against the algorithm with which
JAYA-SIPwas compared are given in theDraw,Win, and Lost
lines at the bottom of the tables.

When the 500 dimension results in Table 14 are exam-
ined, it is seen that the JAYA-SIP algorithm showed superior
performance against the other algorithms it was compared
to. JAYA-SIP won all 19 of the 19 functions of the SOCO

benchmark set against CLJAYA, LJA, LW-IJAYA,MJA, SCA
and TSA. It only lost in one test function against GWO and
JAYA. Considering the statistical tests performed, it can be
said that the results of the proposed algorithm were signifi-
cantly good.

When the problem size was increased to 1000, JAYA-SIP
once again outperformed the other algorithms, as seen in
Table 15. In the 1000 dimension median results, it was ahead

VOLUME 10, 2022 103775

G. Yavuz: Senior Learning JAYA With Powell’s Method and Incremental Population Strategy

TABLE 12. CEC 2014 50-dim results of some metaheuristic algorithms with JAYA-SIP. (The best results are highlighted in bold.)

TABLE 13. CEC 2014 50-dim Wilcoxon rank-sum test results of some
metaheuristic algorithms with JAYA-SIP.

of CLJAYA, GWO, JAYA, LW-IJAYA and SCA algorithms
in 18 test functions, and a function obtained JAYA-SIP worse

results from these algorithms. However, the proposed algo-
rithm had 19 wins against LJA, MJA, and TSA.

SOCO test results showed that JAYA-SIP maintains
its performance even as the problem size increases.
This shows that the scalability aspect of the algorithm
is strong.

E. REAL WORLD EXPERIMENTS
The proposed algorithm’s performance has also been eval-
uated using real-world problems. Real-World Optimization
Problems from the CEC 2011 Competition were preferred for
this [70]. This benchmark set includes problems from Com-
munication, Chemistry, Economics, and Astronomy. In the
experiments, nine test functions from this benchmark set were
used, and Table 16 provides a summary of their information.
More detailed information about the problems can be found
in [70].

Experiments with real-world problems were conducted
by following the rules stated in [70]. Accordingly, each
algorithm was independently run 25 times for every test
function. Each algorithm is run up to the 150000 func-
tion evaluation (FES) and the parameters listed in Table 1
were used to run the algorithms. Table 17 displays the
results, including the mean error value and standard
deviation.

The results of the real world problems of the JAYA-SIP
algorithm are compared with the JAYA variant algorithms.
As a result, the proposed algorithm performed better than
other JAYA variants and had an average ranking value of

103776 VOLUME 10, 2022

G. Yavuz: Senior Learning JAYA With Powell’s Method and Incremental Population Strategy

TABLE 14. Median results of the algorithms for the SOCO 500 dimension. (The best results are highlighted in bold.)

TABLE 15. Median results of the algorithms for the SOCO 1000 dimension. (The best results are highlighted in bold.)

2.44 when compared to the other algorithms. As a result,
the JAYA-SIP algorithm has shown the same performance
in the real world benchmark set as in the CEC 2014
and SOCO.

F. ALGORITHM COMPLEXITY
The computational complexity analysis of the JAYA-SIP
algorithm is performed in this section. The obtained results
were compared with the Original JAYA and JAYA variants.
For comparison, the method in the problem definition of the

CEC 2014 benchmark set was used [68].

for i = 1 : 1000000

x = 0.55+ (double)i;

x = x + x; x = x/2; x = x ∗ x;

x = sqrt(x); x = log(x); x = exp(x); x = x/(x + 2);

end

According to this method, first, the T0 time value is
obtained by running the given piece of code. The T1 time

VOLUME 10, 2022 103777

G. Yavuz: Senior Learning JAYA With Powell’s Method and Incremental Population Strategy

TABLE 16. CEC 2011 functions used in the experiments and their properties.

TABLE 17. Error values obtained by JAYA variant algorithms in real world problems. (The best results are highlighted in bold.)

TABLE 18. CEC 2014 computational complexity results for 30 dimensions.

TABLE 19. CEC 2014 computational complexity results for 50 dimensions.

value is then calculated using 200000 function calls of the
18th test function from the CEC 2014 benchmark set. The
algorithms then solve the 18th function 200000 times to deter-
mine the T2 time value. Finally, the T̂2 variable is determined
by taking the average value of running the algorithms five
times. The values obtained as a result of these processes are
provided in Table 18 for 30 dimensions and Table 19 for
50 dimensions.

The small T̂2 value in Tables 18 and 19 indicates that
the algorithm needs less computational time. In addition,
(T̂2 − T1)/T0 ratio is calculated in these tables. This ratio
is also used to express the complexity of algorithms. Here,
the smaller value indicates that the algorithm is better. The
JAYA-SIP algorithm has less computational complexity than
the algorithms with which it is compared, with 9.7853 and
13.4093.

VI. CONCLUSION
In this study, three improvements were proposed for the
Original JAYA algorithm. The algorithm was enhanced with
senior learning, incremental population strategy, and Powell’s
method, resulting in a powerful JAYA variant (JAYA-SIP).
The performance of the proposed JAYA variant was tested
with the CEC 2014 benchmark set for low dimension, the
SOCO for large scale and nine CEC 2011 problems for real
world problems. The results of the algorithm were com-
pared with JAYA variants and various recent meta-heuristic
algorithms. According to the results of the experiment, bet-
ter results were obtained than the algorithms in which the
JAYA-SIP algorithmwas compared according to the objective
function value.

A future study consideration is the proposed algo-
rithm to binary optimization problems and expensive
problems.

REFERENCES
[1] C. Huang, Y. Li, and X. Yao, ‘‘A survey of automatic parameter tuning

methods for metaheuristics,’’ IEEE Trans. Evol. Comput., vol. 24, no. 2,
pp. 201–216, Apr. 2020, doi: 10.1109/TEVC.2019.2921598.

[2] Z. Li, X. Lin, Q. Zhang, and H. Liu, ‘‘Evolution strategies for continuous
optimization: A survey of the state-of-the-art,’’ Swarm Evol. Comput.,
vol. 56, Aug. 2020, Art. no. 100694, doi: 10.1016/j.swevo.2020.100694.

[3] M. Gunduz and M. Aslan, ‘‘DJAYA: A discrete Jaya algorithm for solving
traveling salesman problem,’’ Appl. Soft Comput., vol. 105, Jul. 2021,
Art. no. 107275.

[4] M. N. Omidvar, X. Li, and K. Tang, ‘‘Designing benchmark problems
for large-scale continuous optimization,’’ Inf. Sci., vol. 316, pp. 419–436,
Sep. 2015, doi: 10.1016/j.ins.2014.12.062.

[5] G. Wu, X. Wen, L. Wang, W. Pedrycz, and P. N. Suganthan, ‘‘A voting-
mechanism-based ensemble framework for constraint handling tech-
niques,’’ IEEE Trans. Evol. Comput., vol. 26, no. 4, pp. 646–660,
Aug. 2022.

[6] P. N. Suganthan and R. Katuwal, ‘‘On the origins of randomization-based
feedforward neural networks,’’ Appl. Soft Comput., vol. 105, Jul. 2021,
Art. no. 107239.

103778 VOLUME 10, 2022

http://dx.doi.org/10.1109/TEVC.2019.2921598
http://dx.doi.org/10.1016/j.swevo.2020.100694
http://dx.doi.org/10.1016/j.ins.2014.12.062

G. Yavuz: Senior Learning JAYA With Powell’s Method and Incremental Population Strategy

[7] R. S. Al-Gharaibeh, M. Z. Ali, M. I. Daoud, R. Alazrai, H. Abdel-Nabi,
S. Hriez, and P. N. Suganthan, ‘‘Real-parameter constrained optimization
using enhanced quality-based cultural algorithm with novel influence and
selection schemes,’’ Inf. Sci., vol. 576, pp. 242–273, Oct. 2021.

[8] M. Z. Ali, P. N. Suganthan, R. G. Reynolds, and A. F. Al-Badarneh,
‘‘Leveraged neighborhood restructuring in cultural algorithms for solving
real-world numerical optimization problems,’’ IEEE Trans. Evol. Comput.,
vol. 20, no. 2, pp. 218–231, Apr. 2016.

[9] R. Eberhart and J. Kennedy, ‘‘A new optimizer using particle swarm
theory,’’ in Proc. 6th Int. Symp. Micro Mach. Hum. Sci. (MHS), Oct. 1995,
pp. 39–43.

[10] M. Dorigo, M. Birattari, and T. Stutzle, ‘‘Ant colony optimization,’’ IEEE
Comput. Intell. Mag., vol. 1, no. 4, pp. 28–39, Nov. 2006.

[11] D. Karaboga and B. Basturk, ‘‘A powerful and efficient algorithm for
numerical function optimization: Artificial bee colony (ABC) algorithm,’’
J. Global Optim., vol. 39, no. 3, pp. 459–471, Apr. 2007.

[12] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, ‘‘GSA: A gravitational
search algorithm,’’ J. Inf. Sci., vol. 179, no. 13, pp. 2232–2248, 2009.

[13] M. S. Kiran, ‘‘TSA: Tree-seed algorithm for continuous optimization,’’
Expert Syst. Appl., vol. 42, no. 19, pp. 6686–6698, 2015.

[14] X-S. Yang, ‘‘Firefly algorithm, stochastic test functions and design opti-
misation,’’ Int. J. Bio-Inspired Comput., vol. 2, no. 2, pp. 78–84, 2010.

[15] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and
S. M. Mirjalili, ‘‘Salp swarm algorithm: A bio-inspired optimizer for
engineering design problems,’’ Adv. Eng. Softw., vol. 114, pp. 163–191,
Dec. 2017.

[16] G. Yavuz, ‘‘Diversified position update equation-based SSA with
refreshing-gap strategy for global optimization,’’ J. Comput. Sci., vol. 60,
Apr. 2022, Art. no. 101597.

[17] R. Storn and K. Price, ‘‘Differential evolution—A simple and efficient
heuristic for global optimization over continuous spaces,’’ J. Global
Optim., vol. 11, no. 4, pp. 341–359, 1997.

[18] N. H. Awad, M. Z. Ali, P. N. Suganthan, and R. G. Reynolds, ‘‘CADE: A
hybridization of cultural algorithm and differential evolution for numerical
optimization,’’ Inf. Sci., vol. 378, pp. 215–241, Feb. 2017.

[19] G. Yavuz, ‘‘L-shade algoritmasının otomatik parametre yapılandırma yön-
temi ile iyileştirilmesi,’’ Bilişim Teknolojileri Dergisi, vol. 15, no. 2,
pp. 189–197, Apr. 2022, doi: 10.17671/gazibtd.1034921.

[20] G. Yavuz, ‘‘100 basamak probleminin JADE algoritmasi ile Çözülmesi,’’
Avrupa Bilim ve Teknoloji Dergisi, vol. 493, no. 21, pp. 493–500, 2021,
doi: 10.31590/ejosat.839083.

[21] R. V. Rao and A. Saroj, ‘‘A self-adaptive multi-population based Jaya
algorithm for engineering optimization,’’ Swarm Evol. Comput., vol. 37,
pp. 1–26, Dec. 2017, doi: 10.1016/j.swevo.2017.04.008.

[22] R. V. Rao, ‘‘Jaya: A simple and new optimization algorithm for solving
constrained and unconstrained optimization problems,’’ Int. J. Ind. Eng.
Comput., vol. 7, no. 1, pp. 19–34, 2016.

[23] W. F. Gao, S. Y. Liu, and L. L. Huang, ‘‘A novel artificial bee colony
algorithm with Powell’s method,’’ Appl. Soft Comput., vol. 13, no. 9,
pp. 3763–3775, Sep. 2013.

[24] S. Zhang and Y. Zhou, ‘‘Grey wolf optimizer based on Powell local
optimization method for clustering analysis,’’ Discrete Dyn. Nature Soc.,
vol. 2015, pp. 1–17, Nov. 2015.

[25] M. Rajeswari, K. Thirugnanasambandam, R. S. Raghav, U. Prabu,
D. Saravanan, and D. K. Anguraj, ‘‘Flower pollination algorithm with
Powell’s method for the minimum energy broadcast problem in wireless
sensor network,’’ Wireless Pers. Commun., vol. 119, no. 2, pp. 1–25,
Feb. 2021.

[26] M. A. Oca, ‘‘Incremental social learning in swarm intelligence algorithms
for continuous optimization,’’ in Computational Intelligence. Berlin,
Germany: Springer, 2013, pp. 31–45.

[27] M. A.M. de Oca, T. Stutzle, K. Van den Enden, andM.Dorigo, ‘‘Incremen-
tal social learning in particle swarms,’’ IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 41, no. 2, pp. 368–384, Apr. 2011.

[28] T. Liao, M. A. M. D. Oca, D. Aydin, T. Stüzle, and M. Dorigo, ‘‘An incre-
mental ant colony algorithm with local search for continuous optimiza-
tion,’’ in Proc. 13th Annu. Conf. Genet. Evol. Comput., 2011, pp. 125–132.

[29] S. Özyön, C. Yaşar, and H. Temurtaş, ‘‘Incremental gravitational search
algorithm for high-dimensional benchmark functions,’’ Neural Comput.
Appl., vol. 31, no. 8, pp. 3779–3803, 2019.

[30] S. Özyön and D. Aydin, ‘‘Incremental artificial bee colony with local
search to economic dispatch problem with ramp rate limits and prohib-
ited operating zones,’’ Energ. Convers. Manage, vol. 65, pp. 397–407,
May 2013.

[31] D. Aydın, G. Yavuz, and T. Stützle, ‘‘ABC-X: A generalized, automatically
configurable artificial bee colony framework,’’ Swarm Intell., vol. 11, no. 1,
pp. 1–38, Mar. 2017.

[32] G. Yavuz, D. Aydin, and T. Stützle, ‘‘Self-adaptive search equation-based
artificial bee colony algorithm on the CEC 2014 benchmark functions,’’ in
Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2016, pp. 1173–1180.

[33] G. Yavuz and D. Aydın, ‘‘Improved self-adaptive search equation-based
artificial bee colony algorithm with competitive local search strategy,’’
Swarm Evol. Comput., vol. 51, Dec. 2019, Art. no. 100582.

[34] K. Yu, J. J. Liang, B. Y. Qu, X. Chen, and H. Wang, ‘‘Parameters iden-
tification of photovoltaic models using an improved JAYA optimization
algorithm,’’ Energy Convers. Manag., vol. 150, pp. 742–753, Oct. 2017,
doi: 10.1016/j.enconman.2017.08.063.

[35] R. V. Rao and D. P. Rai, ‘‘Optimisation of welding processes using quasi-
oppositional-based Jaya algorithm,’’ J. Exp. Theor. Artif. Intell., vol. 29,
no. 5, pp. 1099–1117, Sep. 2017, doi: 10.1080/0952813X.2017.1309692.

[36] L. Wang and C. Huang, ‘‘A novel elite opposition-based Jaya algorithm
for parameter estimation of photovoltaic cell models,’’ Optik, vol. 155,
pp. 351–356, Feb. 2018, doi: 10.1016/j.ijleo.2017.10.081.

[37] X. Yang and W. Gong, ‘‘Opposition-based Jaya with population reduction
for parameter estimation of photovoltaic solar cells and modules,’’ Appl.
Soft Comput., vol. 104, Jun. 2021, Art. no. 107218.

[38] N. A. Alawad and B. H. Abed-alguni, ‘‘Discrete Jaya with refraction learn-
ing and three mutation methods for the permutation flow shop scheduling
problem,’’ J. Supercomput., vol. 78, no. 3, pp. 3517–3538, 2022.

[39] K. K. Ingle and D. R. K. Jatoth, ‘‘An efficient Jaya algorithm with Lévy
flight for non-linear channel equalization,’’ Expert Syst. Appl., vol. 145,
May 2020, Art. no. 112970.

[40] Z. H. Leghari, M. Y. Hassan, D. M. Said, T. A. Jumani, and Z. A. Memon,
‘‘A novel grid-oriented dynamic weight parameter based improved variant
of Jaya algorithm,’’ Adv. Eng. Softw., vol. 150, Dec. 2020, Art. no. 102904,
doi: 10.1016/j.advengsoft.2020.102904.

[41] T. V. Luu and N. S. Nguyen, ‘‘Parameters extraction of solar cells using
modified Jaya algorithm,’’ Optik, vol. 203, Feb. 2020, Art. no. 164034.

[42] X. Jian and Z. Weng, ‘‘A logistic chaotic Jaya algorithm for parameters
identification of photovoltaic cell and module models,’’ Optik, vol. 203,
Feb. 2020, Art. no. 164041, doi: 10.1016/j.ijleo.2019.164041.

[43] R. V. Rao and H. S. Keesari, ‘‘Multi-team perturbation guiding Jaya algo-
rithm for optimization of wind farm layout,’’ Appl. Soft Comput., vol. 71,
pp. 800–815, Oct. 2018.

[44] A. Farah and A. Belazi, ‘‘A novel chaotic Jaya algorithm for unconstrained
numerical optimization,’’ Nonlinear Dyn., vol. 93, no. 3, pp. 1451–1480,
2018.

[45] K. Gholami, H. Olfat, and J. Gholami, ‘‘An intelligent hybrid Jaya
and crow search algorithms for optimizing constrained and uncon-
strained problems,’’ Soft Comput., vol. 25, no. 22, pp. 14393–14411,
Nov. 2021.

[46] S. S. Alotaibi, ‘‘Optimization insisted watermarking model: Hybrid firefly
and Jaya algorithm for video copyright protection,’’ Soft Comput., vol. 24,
no. 19, pp. 14809–14823, Mar. 2020, doi: 10.1007/s00500-020-04833-8.

[47] S. K. Goudos, T. V. Yioultsis, A. D. Boursianis, K. E. Psannis, and
K. Siakavara, ‘‘Application of new hybrid Jaya grey wolf optimizer to
antenna design for 5G communications systems,’’ IEEE Access, vol. 7,
pp. 71061–71071, 2019, doi: 10.1109/ACCESS.2019.2919116.

[48] G. Xiong, J. Zhang, D. Shi, L. Zhu, and X. Yuan, ‘‘Optimal identification
of solid oxide fuel cell parameters using a competitive hybrid differential
evolution and Jaya algorithm,’’ Int. J. Hydrogen Energy, vol. 46, no. 9,
pp. 6720–6733, Feb. 2021, doi: 10.1016/j.ijhydene.2020.11.119.

[49] A. Kaur, S. Sharma, and A. Mishra, ‘‘A novel Jaya-BAT algorithm based
power consumption minimization in cognitive radio network,’’ Wire-
less Pers. Commun., vol. 108, no. 4, pp. 2059–2075, Oct. 2019, doi:
10.1007/s11277-019-06509-5.

[50] V. Kumar and S. M. Yadav, ‘‘Optimization of reservoir operation with
a new approach in evolutionary computation using TLBO algorithm and
Jaya algorithm,’’ Water Resour. Manag., vol. 32, no. 13, pp. 4375–4391,
Oct. 2018.

[51] M. Azizi, S. A. M. Ghasemi, R. G. Ejlali, and S. Talatahari, ‘‘Optimum
design of fuzzy controller using hybrid ant lion optimizer and Jaya algo-
rithm,’’ Artif. Intell. Rev., vol. 53, no. 3, pp. 1553–1584, Mar. 2020, doi:
10.1007/s10462-019-09713-8.

[52] M. F. Tefek and M. Beşkirli, ‘‘JayaL: A novel Jaya algorithm based on
elite local search for optimization problems,’’ Arabian J. Sci. Eng., vol. 46,
no. 9, pp. 8925–8952, Sep. 2021, doi: 10.1007/s13369-021-05677-6.

VOLUME 10, 2022 103779

http://dx.doi.org/10.17671/gazibtd.1034921
http://dx.doi.org/10.31590/ejosat.839083
http://dx.doi.org/10.1016/j.swevo.2017.04.008
http://dx.doi.org/10.1016/j.enconman.2017.08.063
http://dx.doi.org/10.1080/0952813X.2017.1309692
http://dx.doi.org/10.1016/j.ijleo.2017.10.081
http://dx.doi.org/10.1016/j.advengsoft.2020.102904
http://dx.doi.org/10.1016/j.ijleo.2019.164041
http://dx.doi.org/10.1007/s00500-020-04833-8
http://dx.doi.org/10.1109/ACCESS.2019.2919116
http://dx.doi.org/10.1016/j.ijhydene.2020.11.119
http://dx.doi.org/10.1007/s11277-019-06509-5
http://dx.doi.org/10.1007/s10462-019-09713-8
http://dx.doi.org/10.1007/s13369-021-05677-6

G. Yavuz: Senior Learning JAYA With Powell’s Method and Incremental Population Strategy

[53] S. Gupta, N. Kumar, and L. Srivastava, ‘‘An efficient Jaya algorithm
with Powell’s pattern search for optimal power flow incorporating dis-
tributed generation,’’ Energy Sources B, Econ. Plan. Policy, vol. 16, no. 8,
pp. 759–786, 2021.

[54] M. Aslan, M. Gunduz, andM. S. Kiran, ‘‘JayaX: Jaya algorithm with XOR
operator for binary optimization,’’ Appl. Soft Comput., vol. 82, Sep. 2019,
Art. no. 105576.

[55] E. H. Houssein, A. G. Gad, and Y. M. Wazery, ‘‘Jaya algorithm and
applications: A comprehensive review,’’ Metaheuristics and Optimization
in Computer and Electrical Engineering. Cham, Switzerland: Springer,
2021, pp. 3–24.

[56] R. V. Rao, Jaya: An Advanced Optimization Algorithm and Its Engineering
Applications. Cham, Switzerland: Springer, 2019, pp. 770–780.

[57] R. A. Zitar, M. A. Al-Betar, M. A. Awadallah, I. A. Doush, and
K. Assaleh, ‘‘An intensive and comprehensive overview of JAYA algo-
rithm, its Versions and Applications,’’ Arch. Comput. Methods Eng.,
vol. 29, pp. 763–792, Mar. 2022.

[58] M. Premkumar, P. Jangir, R. Sowmya, R. M. Elavarasan, and B. S. Kumar,
‘‘Enhanced chaotic Jaya algorithm for parameter estimation of photo-
voltaic cell/modules,’’ ISA Trans., vol. 116, pp. 139–166, Oct. 2021.

[59] M. Liu, Z. Cao, J. Zhang, L. Wang, C. Huang, and X. Luo, ‘‘Short-term
wind speed forecasting based on the Jaya-SVM model,’’ Int. J. Electr.
Power Energy Syst., vol. 121, Oct. 2020, Art. no. 106056.

[60] W.Warid, ‘‘Optimal power flow using the AMTPG-Jaya algorithm,’’ Appl.
Soft Comput., vol. 91, Jun. 2020, Art. no. 106252.

[61] S. O. Degertekin, L. Lamberti, and I. B. Ugur, ‘‘Discrete siz-
ing/layout/topology optimization of truss structures with an advanced Jaya
algorithm,’’ Appl. Soft Comput., vol. 79, pp. 363–390, Jun. 2019.

[62] R. V. Rao and A. Saroj, ‘‘Constrained economic optimization of shell-
and-tube heat exchangers using elitist-Jaya algorithm,’’ Energy, vol. 128,
pp. 785–800, Jun. 2017.

[63] K. Thirumoorthy and K. Muneeswaran, ‘‘A hybrid approach for text doc-
ument clustering using Jaya optimization algorithm,’’ Expert Syst. Appl.,
vol. 178, Sep. 2021, Art. no. 115040.

[64] A. Chaudhuri and T. P. Sahu, ‘‘A hybrid feature selection method based on
binary Jaya algorithm for micro-array data classification,’’ Comput. Electr.
Eng., vol. 90, Mar. 2021, Art. no. 106963.

[65] G. Iacca, V. C. D. S. Junior, and V. V. de Melo, ‘‘An improved Jaya
optimization algorithm with Lévy flight,’’ Expert Syst. Appl., vol. 165,
Mar. 2021, Art. no. 113902.

[66] R. P. Brent, Algorithms for MinimizationWithout Derivatives. Chelmsford,
MA, USA: Courier Corporation, 2013.

[67] M. J. D. Powell, ‘‘An efficient method for finding the minimum of a
function of several variables without calculating derivatives,’’ Comput. J.,
vol. 7, no. 2, pp. 155–162, Jan. 1964.

[68] J. J. Liang, B. Y. Qu, and P. N. Suganthan, ‘‘Problem definitions and
evaluation criteria for the CEC 2014 special session and competition on
single objective real-parameter numerical optimization,’’ Comput. Intell.
Lab., Nanyang Technol. Univ., Zhengzhou Univ., Zhengzhou, China,
Tech. Rep., 2013, p. 490, vol. 635.

[69] M. Lozano, D. Molina, and F. Herrera, ‘‘Editorial scalability of evolu-
tionary algorithms and other metaheuristics for large-scale continuous
optimization problems,’’ Soft Comput., vol. 15, no. 11, pp. 2085–2087,
Nov. 2011.

[70] S. Das and P. N. Suganthan, ‘‘Problem definitions and evaluation criteria
for CEC 2011 competition on testing evolutionary algorithms on real world
optimization problems,’’ School Elect. Electron. Eng., Dept. Electron.
Telecommun. Eng., Jadavpur Univ., Nanyang Technol. Univ., Kolkata,
India, Tech. Rep., 2010, pp. 341–359.

[71] Y. Zhang, M. Ma, and Z. Jin, ‘‘Comprehensive learning Jaya algorithm for
parameter extraction of photovoltaicmodels,’’Energy, vol. 211, Nov. 2020,
Art. no. 118644, doi: 10.1016/j.energy.2020.118644.

[72] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf
optimizer,’’ Adv. Eng. Softw., vol. 69, pp. 46–61, Mar. 2014, doi:
10.1016/j.advengsoft.2013.12.007.

[73] S. Mirjalili, ‘‘SCA: A sine cosine algorithm for solving optimization
problems,’’ Knowl.-Based Syst., vol. 96, pp. 120–133, Mar. 2016, doi:
10.1016/j.knosys.2015.12.022.

[74] M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, L. P. Cáceres, and
M. Birattari, ‘‘The irace package: Iterated racing for automatic algorithm
configuration,’’ Oper. Res. Perspect., vol. 3, pp. 43–58, Sep. 2016.

[75] R. Poláková, J. Tvrdík, and P. Bujok, ‘‘Controlled restart in differential evo-
lution applied to CEC2014 benchmark functions,’’ in Proc. IEEE Congr.
Evol. Comput. (CEC), Jul. 2014, pp. 2230–2236.

GÜRCAN YAVUZ received the B.Sc. degree from
the Department of Computer Engineering and the
M.Sc. degree from the Department of Electrical
and Electronic Engineering, Kütahya Dumlupinar
University, in 2009 and 2013, respectively, and
the Ph.D. degree from Eskişehir Technical Uni-
versity, Turkey, in July 2019. He is currently an
Assistant Professor. His research interests include
artificial intelligence, swarm intelligence, and
metaheuristics.

103780 VOLUME 10, 2022

http://dx.doi.org/10.1016/j.energy.2020.118644
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.knosys.2015.12.022

