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ABSTRACT The hybrid model of the power system infrastructure is an essential part of the sophisticated
technology of the electrical network. Generally, for the Optimal Power Flow (OPF) problem, the power
system with only thermal generators is considered. In traditional OPF problems, the fuel cost required to
produce electrical energy is considered, and emissions are frequently neglected. Renewable Energy Sources
(RESs) have received increasing attention due to various potential characteristics such as clean, diversity,
and renewability. As a result, RESs are being integrated into the existing electrical grid at an increasing
rate. The study in this paper proposes a techno-economic investigation into the single- and multi-objective
OPF, coordinating with RESs, such as wind, PhotoVoltaic (PV), and small hydropower units with hybrid
PV. Moreover, the probability density functions of Weibull, Lognormal, and Gumble have been used to
predict the required power. A recently reported equilibrium optimizer and its multi-objective version are
considered for handling OPF problems. The superior performance of the equilibrium optimizer is further
verified with the results of both single- and multi-objective through comparative analysis with state-of-the-
art counterparts, and the indications are that the suggested algorithm can find better optimal solutions in a
smaller number of generations (iterations) with faster convergence and well distributed optimal Pareto front
for multi-objective problems. The results are verified by employing an IEEE-30 bus hybrid power network,
and performance comparisons are made among well-established algorithms. Simulation findings show that
the suggested algorithm can achieve a reasonable compromise solution for different objectives.

INDEX TERMS Equilibrium optimizer, multiobjective algorithm, optimal power flow, renewable energy
sources, security constraints.

I. INTRODUCTION
The Optimal Power Flow (OPF) has become recognized as
one of the more challenging problems that must be handled
in the planning and operation of modernized power systems.
It is anticipated that the power system would need to be
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run in the best possible condition to provide the highest
possible levels of security and reliability. Essentially, the
OPF is a multi-model, non-linear minimization problem with
high-dimensional features and great computational complex-
ity. Modern society’s socioeconomic expansion has posed
a great challenge to the electrical power grid. Energy con-
sumption rises each day as the demand for customers grows
exponentially. Meanwhile, rising electricity consumption
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and the rapid depletion of natural resources could present
major supply and demand management problems for utilities
[1], [2], [3]. To address this problem, an attractive alternative
is to use price-based load management programs to encour-
age users to alter existing consumption patterns or to deploy
on-site distributed Renewable Energy Sources (RESs) to
improve power network performance, dependability, reliabil-
ity, and profitability. Integration of information and commu-
nication tools with grid systems pushes the development of
conventional grids into smart grids [4], [5], [6]. In this regard,
control design system components must be considered and
incorporated into the OPF analysis. The OPF is an important
strategy for calculating transmission and distribution system
power losses as well as power generating costs. The most
fundamental and crucial way of managing and controlling an
electrical network is the OPF method. The primary purpose
of OPF is to define the network’s stable operating condi-
tion by achieving a certain goal while adhering to equality
and inequality constraints [7], [8], [9]. Carpentier [10] was
the first to introduce it, and it has been studied over the
past half-century. The OPF’s traditional objective has been
to build coal-based generation systems that run on fossil
fuels. Because of the growing usage of sustainable power
in the power system, the assessment of the OPF is particu-
larly important after incorporating the irregularity of these
renewable units of energy. Researchers from entirely over the
world have examined OPF pertaining to thermal-based power
generation units [11], [12], [13], [14].

The OPF techniques are regarded as a fundamental and
crucial resource for power system operators to assure the
sustainability and stability of the system. The OPF algorithms
are typically executed at defined time frames to optimize
system operation to adjust the values of several dependent
parameters to their optimal setting. Numerous researchers
have utilized traditional OPF procedures that examine the
Economic Environment Dispatch (EED) problem but cater to
thermal-based electrical power generators, resulting in CO2
emissions [15], [16]. The OPF problem is complicated from
an economic and computational standpoint. In the context
of an economic power network, load flow can be viewed
as a problem of Economic Load Dispatch (ELD) to lower
the generation costs. The ELD appears to be unable to deal
with many operating constraints. The demand non-linearities,
losses during the transmission, and the capacity of the gener-
ation units can add to the complexity of the load or power
flow problem. During its operation, the OPF identifies the
optimal values for several control variables, which adds to
the computing complexity. The Multi-Objective Grey Wolf
Optimizer (MOGWO) can find the Pareto optimal front
of any shape. Finally, the result of a complex real-world
Multi-Objective OPF (MOOPF) problem validates that the
MOGWO algorithm can solve any kind of non-linear and
complex problem with many constraints in unknown search
space [17], [18], [19].

Meanwhile, special emphasis is being paid to incorporating
renewable energy supplies into the grid to decarbonize the

electric power system. Solar photovoltaic and wind deploy-
ments are continuously rising due to concerns about global
warming due to climate change. On the alternative, fos-
sil fuel-based power generation systems are becoming less
adaptable. According to recent research, dynamic energy
supplies such as solar and wind have characteristics that span
several time scales, impacting various layers of power system
regulation. Such results indicate that, as RES adoption grows,
standard load flow analyses aren’t adequate to assure depend-
ability through efficient utilization of resources. It is also
proven that, due to the high integration of RESs, operators
have difficulties in handling power requirements and depend
on user curtailment. Furthermore, the unpredictability and
intermittent nature of fluctuating energy sources are expected
to raise backup capacity needs, hence raising the incremental
cost of electricity [20], [21], [22].

Different alternatives have already been dedicated to the
OPF problems for the last few decades. To handle the
hydrothermal OPF, the authors of [23] have utilized non-
linear and linear programming methods. The OPF with con-
tinuous and discrete optimization parameters was solved
using a mixed Particle Swarm Optimization (PSO) algo-
rithm [24]. For the OPF problem with integrated security
restrictions, the authors of [25] presented a PSO with recon-
structive operators. The authors of [26] have solved the
OPF problem using PSO with aging challengers and leaders.
The OPF problem was optimized using glowworm swarm
optimization in [27], using the minimization of emission
and generation cost as fitness functions. To handle the OPF
effectively, the authors of [28] have devised an enhanced col-
liding bodies optimizer. The Differential Evolutionary (DE)
algorithm for single- and multi-objective optimal power flow
problems was given in Ref. [29]. For the OPF problem,
the authors of [30] have presented an enhanced Artificial
Bee Colony (ABC) algorithm based on orthogonal learning.
To overcome the limited OPF challenge, the authors of [31]
have proposed a unique moth swarm method. Upgraded self-
adaptive DE with a mixed crossover algorithm was used
to address multi-objective OPF problems with conflicting
objectives [32]. To obtain OPF solutions, the authors in
[33] and [34] used a DE algorithm combined with effec-
tive constraint handling strategies. The authors of [35] have
presented an enhanced social spider optimizer for tackling
the optimal power flow problem with a single objective.
The authors of [36] suggested an adaptive perturbation-
guiding JAYA algorithm developed to deal with various
single-objective optimal power flow problems. Although
these algorithms have produced more satisfactory outcomes,
the majority of such algorithms are based on conventional
thermal-based power generation units and ignore other essen-
tial objectives, such as emission reduction of toxic gases, such
as CO2, NOx, and SOx in ton/hr.
Since the citations above consider traditional generation

units, some articles now consider an electrical system com-
bining wind and coal-based power units in their quest for
the lowest generating prices. The authors of [37] presented
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the Gbest-directed ABC to increase OPF results reported in
previous studies using the same experimental design. In the
OPF problem, the authors of [38] proposed an Improved
Bacteria Foraging Algorithm (IBFA) and a framework for a
double-fed induction generator to emphasize restrictions on
the ability to create VAR fuel. The STATCOM is another
VAR power compensating device for a network with coal-
based and wind units (static synchronous compensator). Ant
colony optimization and IBFA were also used to tackle the
OPF problem [39]. The authors of [40] suggested a method
for assessing wind power prices. The difficulty of planning
generators for ELD is common for a grid with both coal-
based and wind units. The random nature of the wind power
output was provided by [41]. Researchers in [42] also used
the DFIG wind turbine model despite solving a compara-
ble problem. The complex ELD problem, which included
a wide variety of wind energy and risk reserve constraints,
was discussed in [43]. The authors of [44] have incorpo-
rated the valve-point loading impact in the Dynamic ELD
(DELD) structure of the producing unit and emanation. The
optimal power flow scheduling approach is given in [45]
for a single system with battery energy storage, Photovoltaic
(PV), and gas-based power generation units. The authors
of [46] defined pumped hydro storage as a storage alterna-
tive for a freestanding hybrid network comprising a wind
turbine, solar PV unit, and a diesel generator. The prob-
lem was developed using three sources, as mentioned in
ref. [47], in addition to a single objective DELD problem.
The authors of [48] have used non-conventional sources
such as coal-based and solar-wind power, as well as battery
storage, to achieve optimum scheduling. Biswas et al. [34]
established a framework for evaluating OPF challenges for
solar, wind, and river units with various probability density
functions.

Even though incorporating renewable energy resources
into OPF is addressed in such literature, it should have been
viewed as a starting point rather than an end. Numerous
literature reviews examine a single optimization objective
when addressing the OPF problem with renewable energy.
Other objectives, especially those related to emissions, are
significant and, therefore, should be considered. In conclu-
sion, multi-objective OPF with renewable energy sources
merits further investigation. The typical IEEE-30 bus system
is enhanced in this research by incorporating probabilistic
wind and solar energy. Sustainable energy generators, like
traditional power generators, are now aiming to emphasize
everyday researchmore. In addition to coal-based units, solar,
wind, and small-hydro power generation units are considered
in this paper, and the OPF problem is handled by both single-
and multi-objective algorithms. For research purposes, these
sustainable energy sources are being integrated into the stan-
dard IEEE 30-bus network. The Equilibrium Optimizer (EO)
technique can be used to generate clusters of solutions for
single-objective and multi-objective problems [49], [50]. The
Multi-Objective Whale Optimization Algorithm (MOWOA)
is developed by equipping the whale optimization algorithm

with a crowding distance, an archive, and whales’ position
(according to ranking) selection method based on Pareto
optimal dominance nature.

The MOWOA algorithm is first applied on 17 standard
test functions (including eight unconstraint, five constraints,
and four engineering design multi-objective problems) to
prove its capability in terms of qualities and quantities
showing numerical as well as convergence and coverage
of Pareto optimal front with respect to true Pareto front.
Then, after the MOWOA algorithm is applied to a real-world
complex MOOPF problem, the algorithm is proved with a
Summation-based Multi-Objective DE (SMODE) algorithm,
Multi-Objective Symbiotic Search Algorithm (MOSOS),
Multi-Objective Colliding Bodies Optimization (MOCBO)
algorithm, Multi-Objective PSO (MOPSO), Non-Dominated
Sorting Genetic Algorithm (NSGA-II), and other well-known
algorithms in the field of multi-objective algorithms. A stor-
age and leader selection strategy were then combined into a
single objective Ion Motion Optimization (IMO) approach
to solving multiobjective problems. A group of uncon-
strained, constrained, and engineering benchmark functions
were employed to assess the performance of the Multi-
Objective IMO (MOIMO) [51], [52], [53], [54], [55], [56],
[57], [58], [59], [60], [61]. The outcomes of MOIMO
are compared with those of the Multi-Objective Dragon-
fly Algorithm (MODA), Multi-Objective Multi-Verse Opti-
mizer (MOMVO), and Multi-Objective Ant Lion Optimizer
(MOALO). It was evident that the MOIMO algorithm is very
competent and modest in determining an exact estimation
of the Pareto optimal front with uniform dispersal across
considered objectives with minimum simulation time. The
major contributions of this paper are as follows.
• Formulation of objective functions for OPF problem
with single- and multi-objective to handle four objec-
tive functions, such as minimization of total fuel cost,
voltage deviation, voltage stability index, and the active
power loss

• Development and application of single- and Multi-
Objective EquilibriumOptimizer (MOEO) in OPF prob-
lem of hybrid power network considering the security
constraints

• Application of suitable Probability Density Functions
(PDFs) to randomize the behavior of solar PV, wind, and
small hydro plants

• Validating the suggested algorithm on a modified
IEEE-30 bus hybrid power system network

• Comparative analysis is made among well-established
algorithms

The paper is organized as follows. Section 2 describes the
mathematical models that present the uncertainty in solar-
wind-small hydro energy outputs in the context of the OPF
problem. Section 3 clarifies the various objective functions.
Section 4 describes the EO and MOEO algorithms and their
application in the OPF problem. The quantitative findings and
analysis are found in Section 5, while the concluding remarks
are found in Section 6.
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FIGURE 1. Enhanced IEEE 30-bus hybrid wind-solar-small hydroelectric power plant system [34].

TABLE 1. Key specification of the system of the hybrid network
considered in this paper [34].

II. MATHEMATICAL MODEL
This paper considers the enhanced IEEE-30 bus network
to validate the performance of the EO and MOEO when it

TABLE 2. Upper Bound (UB) and Lower Bound (LB) of control
parameters [34].

handles the OPF problem. The power framework of the
improved IEEE-30 bus system is shown in Fig. 1, where
thermal units are located at buses 1, 2, and 8, one solar PV
unit is located at bus 11, one wind unit is located at bus 5,
and one small hydro with hybrid PV unit is located at bus 13.
Table 1 summarizes a complete specification of the selected
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TABLE 3. Emission and cost coefficients of the system considered in this paper.

IEEE-30 bus power system. Table 2 shows the upper and
lower bounds of the selected power system.

A. GENERATION COST OF THERMAL UNITS
As discussed in the literature, there are general optimization
objectives, namely, minimizing the generating cost, the active
power loss, and the voltage deviation. In classical coal-based
power generation, the cost is computed as follows, allowing
the valve-point loading effect.

CT (PTG) =
NTG∑
i=1

ai + biPTGi + ciP2TGi

+

∣∣∣di × sin (ei × (PminTGi − PTGi
))∣∣∣ (1)

where ai, bi, and ci denote the cost coefficients for ith gener-
ator, and di and ei denote the cost constants for ith generator
with a loading effect. The values of the emission and cost
coefficients are presented in Table 3.

B. EMISSION
Minimizing emissions is an extremely important challenge.
One main reason is that typical thermal power generation
units release toxic gases, such as CO2, NOx, and SOx, into the
atmosphere, leading to pollution. The emission in tons/hour
can be computed as follows.

Emission,E

=

NTG∑
i=1

[(
αi + βiPTGi + γiP2TGi

)
× 0.01+ ωie(µiPTGi)

]
(2)

where, αi, βi,γi, ωi and µi are the emission constants of the
ith unit and the values of such coefficients are listed in Table 3.

C. DIRECT COSTS OF STOCHASTIC UNITS
The direct cost associated with the wind unit is mathemati-
cally modeled with the Pws scheduled power from the same
sources. The associated cost is as follows.

Cw (Pws) = gw × Pws (3)

where, gw signifies the direct cost coefficient and Pws sig-
nifies the scheduled wind power. Likewise, the direct cost
associated with the photovoltaic unit is presented with the Pss
scheduled power from the same sources. The associated cost
is presented as follows.

Cs (Pss) = hs × Pss (4)

where, hs signifies the direct cost coefficient and Pss signifies
the scheduled PV power. A hybrid solar unit with a small-
hydro unit is known as a third sustainable energy source.

So, the scheduled power consists of the summation of the
hydropower and the PV output power. The direct costs for
the PV and the small-hydro units are as follows.

Cs (Pss) = Cs
(
Pssh,h + Pssh,s

)
= Pssh,s×hs + Pssh,h × ms

(5)

where, Pss denotes the expected production from the hybrid
plant, Pssh,s denotes the influence of the PV unit, and Pssh,h
denotes the influence of the small-hydro unit. The direct vari-
ables of price hs andms are similar to the previous discussion.

D. UNCERTAIN SUSTAINABLE WIND POWER COST
The standby cost for the wind unit is formulated as follows.

CRw
(
Pw,s − Pw,av

)
= KRw

(
Pw,s − Pw,av

)
= KRw

∫ Pws

0
fw (pw)

(
Pw,s − pw

)
dpw

(6)

where, KRw denotes the reserve cost coefficient for wind
component, the wind power Probability Density Function
(PDF) is represented by fw (pw), and Pw,s denotes the amount
of power that is accessible from the same wind unit. The
penalty cost for the same is given as follows.

CPw
(
Pw,av − Pw,s

)
= KPw

(
Pw,av − Pw,s

)
= KPw

∫ Pwr

Pws
fw (pw)

(
pw − Pw,s

)
dpw

(7)

where, Pwr signifies the rated output from the wind unit and
KPw denotes the wind penalty cost coefficient.

E. UNCERTAIN SUSTAINABLE PV POWER COST
The standby cost of a solar PV unit can be written as follows.

CRs
(
Ps,s − Ps,av

)
= KRs

(
Ps,s − Ps,av

)
= fs

(
Ps,av < Ps,s

)
× KRs

×
[
Ps,s − E

(
Ps,av < Ps,s

)]
(8)

where,KRs denotes the standby price constant regarding solar
PV units, Ps,av denotes the amount of power that is accessible
from the same PV unit, fs(Ps,av < Ps,s) represents the proba-
bility of PV output shortage rate concerning scheduled output
power Ps,s, and E(Ps,av < Ps,s) represents the expected PV
output power lesser than Ps,s. The penalty price for overrating
PV units can be given as follows.

CPs
(
Ps,av − Ps,s

)
= KPs

(
Ps,av − Ps,s

)
= KPs × fs

(
Ps,av > Ps,s

)
×
[
E
(
Ps,av > Ps,s

)
− Ps,s

]
(9)
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TABLE 4. PDF constants of solar PV, wind, and small hydro plants [34].

FIGURE 2. Weibull function for a wind plant at bus-5.

where, KPs represents the coefficient of penalty price regard-
ing SPV unit, fs(Ps,av > Ps,s) represents the expected PV
output in excess of the scheduled output, and E(Ps,av > Ps,s)
represents the expected PV output higher than Ps,s.

F. UNCERTAIN SUSTAINABLE HYBRID SOLAR PV AND
SMALL-HYDRO POWER COST
In this subsection, another sustainable generation network is
a cluster of small-scale hydropower units, and solar PV units
are considered. The water flow strength determines the gener-
ation of the small-hydro unit that is famous for accompanying
Gumbel distribution [41]. Satisfying Eq. (8), the reserve cost
for hybrid unit output is as follows.

CRsh (Pssh − Pshav) = KRsh (Pssh − Pshav)

= KRsh × fsh (Pshav < Pssh)

× [Pssh − E (Pshav < Pssh)] (10)

where,KRsh is the standby cost coefficient and is related to the
hybrid unit and Pshav is the actual accessible output from the
system. The possibility of a shortage of hybrid system output
from the scheduled power (Pssh) is given by fsh(Pshav < Pssh)
and the principle of distributed power belowPssh isE(Pshav <
Pssh). After Eq. (9), the cost of penalty for underestimating

the performance of the hybrid system is as follows.

CPsh (Pshav − Pssh) = KPsh (Pshav − Pssh)

= KPsh × fsh (Pshav > Pssh)

× [E (Pshav > Pssh)− Pssh] (11)

where, KPsh is the penalty cost coefficient is related to the
hybrid unit, fsh(Pshav > Pssh) is the possibility of the
excess of hybrid system power from the scheduled power
(Pssh) , andE(Pshav > Pssh) is the expectancy of the hybrid
system output above Pssh.

G. UNCERTAINTY OF STOCHASTIC
SOLAR/WIND/SMALL-HYDRO UNITS
Wind speed distributions are represented using the Weibull
Probability Density Function (PDF). The following is how
the Weibull PDF was used by the authors of [34] to depict the
probability of wind speed in meters per second. The data of
the suggested Weibull scale (c) and shape (k) constants were
presented in Table 4. The distributions of the Weibull curve
and wind frequency are shown in Fig. 2 by taking 8000 steps
from the Monte-Carlo simulation.

The probability of Weibull PDF following wind velocity
vm/s, including scale factor (c) and shape factor (k) could be
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FIGURE 3. Lognormal function for the PV unit at bus-11.

FIGURE 4. Lognormal PDF for the solar irradiance distribution for solar PV plant located at bus-13 (Solar hybridized with a
small-hydro plant).

estimated as follows.

fv (v) =
(
k
c

)(v
c

)(k−1)
e−(

v
c )

k
, for 0 < v <∞ (12)

The Weibull distribution mean is reported as follows.

Mwbl = c ∗ 0
(
1+ k−1

)
(13)

The expression for 0(x) is presented as follows.

0 (x) =
∫
∞

0
e−t tx−1dt (14)

The thermal plant at bus-11 of the standard IEEE-30 bus
system is replaced with the PV unit. The power production of
the PV unit is contingent on sun irradiation (G) that follows

the Lognormal PDF [34]. The solar irradiation probability
tracking Lognormal PDF has a standard deviation σ andmean
µ can be presented as follows.

fG (G) =
1

Gσ
√
2π

exp

{
− (lnx − µ)2

2σ 2

}
, for G > 0 (15)

By replicating theMonte-Carlo setup with a set point of 8000,
Figure 3 defines a frequency distribution and Lognormal
distribution of solar irradiation. The mean of the Lognormal
distribution is given as follows.

Mlgn = exp
(
µ+

σ 2

2

)
(16)
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FIGURE 5. Gumbel PDF for river flow rate distribution located at bus-13 (Solar with a small-hydro plant).

TABLE 5. Price coefficients for sustainable energy resources.

The possibility of water flow rate Qw, subsequent Gumbel
PDF through position constant λ and scale constant γ has
been written as follows.

fQ (Qw) =
1
γ
exp

(
Qw − λ
γ

)
exp

[
−exp

(
Qw − λ
γ

)]
(17)

The hybrid PV and hydropower unit are at bus-13 of the
enhanced network, swapping the coal-based generator. Fig. 4
shows the solar PV PDF output and Lognormal scale obtain-
able for the PV located at bus-13. Figure 5 illustrates the
strength of water mass flow distribution and the scale of
Gumbel. To perform an 8000Monte Carlo setup, both figures
are generated using the basic standards of PDF parameters
tabulated in Table 4.

H. POWER MODELS OF SOLAR PV, WIND, AND
HYBRID PLANTS
The wind plant at bus-5 comprised the combined outputs of
the 25 turbines. The power capacity of each turbine is 3 MW.
Depending on the speed, the exact energy production of the
wind turbine varies. In terms of wind velocity (v), the turbine
output power is expressed as follows.

pw (v) =


pwr , for vr < v ≤ vout
0, for v < vin and v > vout
pwr

(
v−vin
vr−vin

)
, for vin ≤ v ≤ vr

(18)

where, vout , vr , and vin, denotes the cut-out, rated, and cut-in
speed of the wind turbine, respectively and pwr signifies the

rated generated power of the turbine. The Enercon E82-E4
model datasheet is referenced for the 3MWwind turbine. The
different speeds are vout = 25 meter/sec, vr = 16 meter/sec,
and vin = 3 meter/sec. The solar irradiation Ps (G) to trans-
form the energy of the photovoltaic can be represented as
follows.

Ps (G) =


Psr

(
G2

GstdRc

)
, for 0 < G < Rc

Psr

(
G
Gstd

)
, for G≥Rc

(19)

where, Rc denotes a particular irradiance position set as
120 W

/
m2, Gstd denotes the solar irradiation in the typical

environment fixed at 1000 W
/
m2, and the PV unit’s rated

performance is Psr . The flow rate of water (Qw) and effective
pressure head (Hw) are calculated by the output of a small
hydro plant. The efficiency of the small hydro plant can
therefore be determined as follows.

PH (Qw) = ηρgQwHw (20)

where η stands for the efficiency of the generator-turbine
set, g denotes the acceleration due to gravity, and ρ denotes
the water concentration. To calculate the hydro output, the
parameters are set at these values, η =0.85, ρ =1000 kg/m3,
g = 9.81m/s2, andHw =25m. Table 5 shows the quantitative
value of direct, penalty, and reserve cost factors for wind,
PV, and small hybrid hydropower. The direct cost factors are
set, so that wind energy is the most priced, trailed by PV
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power and hydroelectric power. The reserve cost coefficient is
larger than the direct cost coefficient for sustaining spinning
reserves. On the other hand, the penalty for not using the
power available is less than the direct cost.

III. PROBLEM FORMULATION
The optimal VAR power and real power dispatch objectives
are included in the OPF. The following objectives for OPF
with PV, wind, and hybrid plants are included in this section.
Entirely the fitness functions considered in this paper are
minimization functions.

A. MINIMIZATION OF TOTAL FUEL COST (TFC)
The very first objective is the reduction of the total overall
cost. Including coal-based unit prices and direct, reserve, and
penalty prices for non-conventional resources is the expense
of the entire generation. Therefore, the combined price for a
coal-based power plant, a wind power plant, a solar photo-
voltaic power plant, and a hybrid solar and small hydropower
plant is presented as follows.

f 1 = CTot = CT (PTG)

+ [Cw (Pws)+ CRw (Pws − Pwav)+CPw (Pwav−Pws)]

+ [Cs (Pss)+ CRs (Pss − Psav)+ CPs (Psav − Pss)]

+ [Csh (Pssh)+ CRsh (Pssh − Pshav)

+CPsh (Pshav − Pssh)] (21)

B. VOLTAGE DEVIATION (VD) MINIMIZATION
The VD is a measure of voltage reliability of entire load buses
in the system. The voltage variations of the PQ bus can be
controlled starting at 1.0 for every unit, resulting in a more
consistent voltage profile overall. The problem is formulated
as follows.

f 2 = VD =
Npq∑
i=1

|vi − 1| (22)

where vi represents the voltage level of ith bus in p.u. and Npq
presents the number of PQ buses.

C. MINIMIZATION OF ACTIVE POWER LOSS (APL)
Transmission line losses are caused by the transmission
cables’ due to their resistive nature. When electrical energy
flows from one node to the other in a branch, it dissipates
as heat. Whenever this loss is incurred, it impacts the node
voltages, which may be explained in terms of the magnitude
and angle of the node voltage. The third objective function for
minimizing transmission network Active Power Loss (APL)
can be represented as follows.

f 3 = APL = PLOSS =
NB∑
i=1

PGi−
NB∑
i=1

PDi (23)

where, PGi and PDi denote the generated power output and
power distributed at ith bus, and NB denotes the number of
buses.

D. VOLTAGE STABILITY INDEX (L-INDEX)
The L-index, which depicts each bus’s voltage uniformity
margins, is themost important metric for keeping the constant
voltage at a tolerable level under typical conditions. L-index
provides a scalar count for any PQ bus. The L-index remains
between ‘0’ (no load) and ‘1’ (maximum load) (collapse of
voltage). The total voltage collapse indication for the ith bus
is as follows.

Lj =

∣∣∣∣∣∣1−
Ng∑
i=1

Fji
Vi
Vj

∣∣∣∣∣∣ , ∀j = 1, 2, . . . ,NL (24)

Fji = − [Y2] [Y1]−1 (25)

where Y2 and Y1 denote the sub-matrices of YBUS . The fitness
function to improve stability is described as follows.

f 4 = L = max
(
Lj
)
∀j = 1, 2, . . . ,NL (26)

E. EQUALITY CONSTRAINTS
The power flow expressions provide equality constraints,
showing that both reactive and real power generated in a
network necessity satisfy the system’s power demands and
losses.

QGi − QDi − Vi
NB∑
j=1

Vj
[
Gij sin

(
δij
)
− Bij cos

(
δij
)]
= 0

∀ i ∈ NB (27)

PGi − PDi − Vi
NB∑
j=1

Vj
[
Gij cos

(
δij
)
+ Bij sin

(
δij
)]
= 0

∀ i ∈ NB (28)

where NB signifies the total buses, PDi and QDi signify the
real power and reactive power demand at ith bus, δij = δi− δj
denotes the variance in phase angles of voltage among bus i
and bus j, and PGi and QGi are the active power and reactive
power generation respectively of ith bus by either unit (coal-
based or renewable) as appropriate. Gij displays the conduc-
tance and Bij signifies the susceptance among bus j and bus i,
correspondingly.

F. INEQUALITY CONSTRAINTS
The functional limitations of systems, as well as the security
limits of lines and PQ buses, constituted inequity constraints.
The following are the generator boundaries:

PminTGi ≤ PTGi ≤ PmaxTGi ∀i ∈ NTG (29)

Pminws ≤ Pws≤Pmaxws (30)

Pminss ≤ Pss ≤ Pmaxss (31)

Pminssh ≤ Pssh ≤ Pmaxssh (32)

QminTGi ≤ QTGi ≤ QmaxTGi ∀i ∈ NTG (33)

Qminws ≤ Qws ≤ Qmaxws (34)

Qminss ≤ Qss ≤ Qmaxss (35)

Qminssh ≤ Qssh ≤ Qmaxssh (36)

Vmin
Gi ≤ VGi≤Vmax

Gi , i = 1, . . . ,NG (37)
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Security bounds are as follows

Vmin
Lp ≤ VLp≤V

max
Lp , p = 1, . . . ..,NL (38)

Slq ≤ Smaxlq , q = 1, 2, . . . ,nl (39)

The active power output limits of coal-based, PV, and wind
units are denoted by Eq. 29-32. The reactive power of gen-
erating units is then represented by Eq. 33-36. The entire
voltage control buses are depicted inNG. Equation 37 depicts
voltage bounds for PV buses, whereas Eq. 38 depicts voltage
boundaries for PQ buses and NL denotes the total PQ buses.
For the total nl lines in a network, Eq. 39 is used to establish
line loading boundaries.

IV. SINGLE- AND MULTI-OBJECTIVE
EQUILIBRIUM OPTIMIZER
This part describes the elementary notion of the single-
objective equilibrium optimizer and the Multi-Objective
Equilibrium Optimizer (MOEO) formulation.

A. EQUILIBRIUM OPTIMIZER (EO)
Equilibrium Optimizer is a metaheuristic optimization tool
that was reported by Faramarzi et al. [49]. The strategy is
based on mass conservation balances for a particle entering
and departing a regulated volume, to achieve equilibrium.
The optimization procedure, likewise, tries to maintain the
system’s balance. There are three primary mathematical rep-
resentations, i) initializing concentrations, ii) computing an
equilibrium pool of candidates, and iii) updating concen-
trations. The mathematical model of the EO algorithm is
discussed in this sub-section. The readers should read the
base paper for comprehensive details [49]. Like entirely other
metaheuristic algorithms, the initial random population solu-
tion of EO is generated using Eq. 40.

C initial
i = Cmin + rand i (Cmax − Cmin) i = 1, 2, . . . , n

(40)

where n denotes the number of particles in the population,
C initial
i signifies the initial concentration vector, Cmin and

Cmax are the lower and upper bounds, and rand i is a random
number between [0,1]. The best solution is to metaphorically
reach an equilibrium condition by calculating candidate solu-
tions and the equilibrium pool. To reach the unknown equilib-
rium state, the EO uses five concentrations. The particle pool
is made up of the average of the four best concentrations so
far. The following are the pool’s characteristics.
−→
C eq,pool =

{
−→
C eq(1),

−→
C eq(2),

−→
C eq(3),

−→
C eq(4),

−→
C eq(ave)

}
(41)

Equation 42 is used to update the population solution in EO.

−→
C =

−→
C eq +

(
−→
C −
−→
C eq

)
.
−→
F +

−→
G
−→
λ

(
1−
−→
F
)

(42)

−→
F = e−

−→
λ (t−t0) (43)

t =
(
1−

FE
Max_FEs

)(a2( FE
Max_FEs

))
(44)

where Max_FEs denotes the total number of function evalu-
ations, and FE is the current function evaluations.

−→t 0 =
1
−→
λ
ln
(
−a1sign(

−→r − 0.5)
[
1− e−

−→
λ t
])
+ t (45)

−→
G =

−→
G 0e−

−→
λ (t−t0) (46)

−→
G 0 =

−−→
RCP

(
−→
Ceq −

−→
λ
−→
C
)

(47)

−−→
RCP =

{
0.5r1, r2 ≥ RP
0, Otherwise

(48)

where r1, r2, and r are arbitrary numbers ∈ [0, 1], and r1
and r2 are factors that balance the exploitation and explo-
ration phase of EO. The term sign (−→r −0.5) regulates the
exploitation and exploration directions. The rate

−→
G is a

section that may progress the divergence procedure and
−−→
RCP

controls if the control variable is utilized or not in the updating
procedure.

B. MULTI-OBJECTIVE EQUILIBRIUM OPTIMIZER
In multiobjective problems, two or more objective functions
are solved at the same time when entirely constraints are
satisfied [51], [52], [53]. To describe the multi-objective
OPF problem, several optimization approaches are used in
the literature. From the previous works, it can be seen that
many researchers have turned a multiobjective problem into
a single-objective problem by combining the two conflicting
objective works into a single-objective problem and then
employing the weighting components approach. Further-
more, estimating the set of optimal tradeoffs and finding the
best compromise solutions around each of the Pareto fronts
may be the best method for determining the result of the
multi-objective problem. Themulti-objective problem should
be written as follows.

Minimize : fi (u) , i = 1, 2, 3, . . . ,N (49)

Subjected to: gj (u) = 0, j = 1, 2, 3, . . . ,M (50)

hk (u) ≤ 0, k = 1, 2, . . . ,K (51)

where fi is the irrational fitness function, N indicates the
total fitness function,M denotes the number of equality con-
straints, and K denotes the total inequality constraints. The
non-dominated sorting strategy in multiobjective optimiza-
tion might have two probabilities: one objective dominating
the other or not. To put it another way, without losing the
ability to generalize; Only if the given two requirements are
met, does u1 have the upper hand over u2.

∀i ∈ {1, 2, 3 . . . . . .N } : fi (u1) ≤ fi (u2) (52)

∃j ∈ {1, 2, 3 . . . . . .N } : fj (u1) ≤ fj (u2) (53)

If any of the preceding conditions are not met, the solution
u1 is no longer in control of u2. If u1 outnumbers u2, it is
referred to as the non-dominated solution. The pseudocode of
the MOEO is presented in the Algorithm [50]. The maximum
function evaluations and the population size Npop are control
parameters of the MOEO algorithm. In addition, a random
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parent population Po is generated in search space S and every
fitness function of the fitness vector F for Po is evaluated.
Po is then subjected to non-dominated sorting and the deter-
mination of crowding distances. The MOEO method is then
used to create the new population Pj, which is subsequently
converged with Po to form the combined population Pi.
The best Npop solutions are referred to as parent population
based on non-domination sorting and calculated estimates of
crowding distance and non-domination rank. This process
is repeated until the maximum number of generations has
been reached. It’s worth noting that a similar method can
be used in conjunction with the termination criteria based
on the function’s overall evaluations. The readers are highly
recommended to read [50] for more comprehensive details.

For a non-dominated solution, the membership function
score for every fitness function is first determined as follows.

µkm =


1, f km ≤ f

min
m

f maxm − f ij
f minj − f maxj

, f minm ≤ f km ≤ f
max
m

0, f km ≥ f
max
m

(54)

where µkm signifies the value of the membership function
of k th non-dominated solution of mth objective, f maxm and
f minm denote the maximum and minimum objective function
value of the generated non-dominated solutions, f km denotes
the fitness function values of k th non-dominated solution of
mth objective. On every solution, the normalized membership
function can be formed as follows.

µk =

∑Nobj
m=1 µ

k
m∑Nd

k=1
∑Nobj

m=1 µ
k
m

(55)

where Nobj is the number of the fitness functions and Nd rep-
resents the number of non-dominated solutions. The value
with the highest µk value is the most compromised.

Algorithm Pseudocode of MOEO Algorithm
Step-1: Generate random population Po in the solution set

S and fitness vector F for the generatedPo
Step-2: Categorize the Po using non-dominated sorting

process and compute the non-dominated rank and
generate Pareto fronts

Step-3: Determine the crowding distance for every Pareto
front generated

Step-4: Update the Pj solutions by EO algorithm
Step-5: To produce Pi = Po ∪ Pj, combine Po and Pj
Step-6: For Pi, complete step-2 as per the rank and crowd-

ing distance sort Pi
Step-7: Replace Po with Pi for first Npop of Pi

V. RESULTS AND DISCUSSIONS
In this section, the validation of EO and MOEO on an
enhanced IEEE-30 bus system is carried out, and the per-
formance comparison is also made among well-established

algorithms. There are two simulation scenarios considered in
this section. Scenario 1 deals with the single-objective OPF
problem, and Scenario 2 deals with the multi-objective OPF
problem.

A. SCENARIO-1
This study uses the EO algorithm to address the probabilistic
optimal power flow problem with three sustainable energy
units: wind, solar, and hybrid small-hydropower. The features
of the enhanced IEEE-30 bus network are listed in Table 1.
Table 6 shows the entire test cases considered in this paper.
The proposed strategy is developed using the MATLAB tool
installed on a 3.4GHz Intel i5 CPU with 8 GB memory. The
population size is set to 40, and each algorithm is run 10 times
with 100 iterations. The EO algorithm is related to finding
solutions for sustainable power generation units. The solution
to the OPF problem is also verified and compared with the
recently developed algorithms such as Ion Motion Optimizer
(IMO) [54], Grey Wolf Optimizer (GWO) [55], and Harris
Hawks Optimization (HHO) [56].

The obtained results for the case study from 1-5 are listed
in Tables 7-9. Table 6 lists the decision vectors for case
studies 1-2, including the best Total Fuel Cost (TFC) and
the emission. The results obtained by entirely algorithms
are also recorded in Table 7. Table 7 shows that the TFC
value obtained by the EO is 891.651 $/hr, which is the best,
followed by GWO, HHO, and IMO. Similarly, the value of
emission obtained by EO is 0.092 Ton/hr, which is the best
in addition to the GWO and IMO. The emission achieved by
the HHO is higher than the selected algorithms.

Table 8 lists the decision vectors for case studies 3-4,
including the best APL and the VD values. The results
obtained by selected algorithms are also recorded in Table 8.
Table 8 shows that the APL value obtained by the EO is
1.866 MW, which is the best, followed by IMO, GWO,
and HHO. Similarly, the value of VD obtained by EO is
0.284 p.u., which is best followed by GWO, HHO, and IMO.

Table 9 lists the decision vectors for case study 5, includ-
ing the best VSI (L-index) values. The results obtained
by selected algorithms are also recorded in Table 9. From
Table 9, it is noticed that the L-index value obtained by the
EO is 0.133, which is similar to the selected algorithms.

Some of the traditional and well-established algorithms
are called the Multi-Objective Evolutionary Algorithm with
Superiority of Feasible solution constraint handling mecha-
nism (MOEA/D-SF) and Summation-based Multi-Objective
DE algorithm with Superiority of Feasible solution con-
straint handling mechanism (SMODE/SF) is applied for first
case studies of OPF problem [34]. The consolidated results
obtained by EO and other selected algorithms, including
MOEA/D-SF and SMODE/SF for all case studies, are listed
in Table 10. The result of TFC, including the sustainable
power plants with EO, is 891.651 $/hr which is the best
among the four algorithms. Also, reduced up to 1.352 $/hr
in comparison with the MOEA/D-SF and 1.852 $/hr in
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TABLE 6. Test cases considered in this study.

TABLE 7. Single-objective simulation results of case-1 and case-2.

comparison with the SMODE/SF, as seen in Table 10. The
boldfaces in the tables indicate the best result.

The convergence curves of entire case studies are illus-
trated in Figs. 6-10. As consolidated in Table 9, the EO
algorithm produces the best optimal results for all case studies
of single-objective OPF problems. From the convergence
curves, it is observed that the EO algorithm produces the
best optimal results, in addition to quick converges than the
selected algorithms. For most entirely case studies of single-
objective OPF, HHO produces the worst results, and the
convergence speed is also poor than entire algorithms. Next to

HHO, the IMO algorithm also produces worst results than
the GWO and EO, apart from HHO. The results produced
by the GWO are almost similar to EO for a few case stud-
ies; however, the convergence speed is slower than the EO
algorithm. Therefore, from the discussions, it is discovered
that the EO algorithm stood first, followed by GWO, IMO,
and HHO.

Comparative analysis plots with respect to total fuel cost
are shown in Fig. 11. While analyzing the simulated results
of entire case studies, it is shown that the suggested EO
algorithm provides the best optimal solutions.
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TABLE 8. Single-objective simulation results of case-3and case-4.

TABLE 9. Single-objective simulation results of case-5.

B. SCENARIO-2
In this scenario, theMOEO algorithmwas applied to optimize
two, three, and four conflicting objectives simultaneously.

The non-dominated sorting EO algorithm is used in the
multiobjective OPF problems to determine the archives of
different objectives simultaneously. The Pareto front for the
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TABLE 10. Obtained simulation results by entirely selected algorithms.

FIGURE 6. Convergence curves obtained by entirely algorithms for Case 1 (Minimization of TFC).

FIGURE 7. Convergence curves obtained by entirely algorithms for Case 2 (Minimization of Emission).

adapted IEEE 30-bus framework is obtained using 30 non-
dominate results. Similar to the previous test scenario, sce-
nario 2 was executed 30 times to get fair results. Cases 6 to 8
are referred to as two objectives optimization problems,
whereas cases 9 and 10 are referred to as three objectives

optimization problems. In case 11, entirely four objectives
are optimized at the same time. The fuzzy membership func-
tion is utilized to determine the best compromising response
from the Pareto archives [57], [58]. Comparing the best
Pareto fronts obtained by the four established multi-objective
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FIGURE 8. Convergence curves obtained by entirely algorithms for Case 3 (Minimization of APL).

FIGURE 9. Convergence curves obtained by entirely algorithms for Case 4 (Minimization of VD).

algorithms are important. The optimal Pareto fronts gen-
erated by entirely algorithms are shown in Figs. 12(a-f).
For cases 6 to 9, the best-compromised responses using the
MOEO algorithm and other well-established algorithms, such
as MOWOA [59], MOGWO [18], [60], and MOIMO [61],
are shown in Table 11, and the best results are shown in
boldface. The selected multi-objective algorithms are applied
to generate the optimal Pareto fronts for case studies. The
population size for entire algorithms is 30, and the maximum
number of generations is 500. Other algorithmic parameters
of entire algorithms are selected as per the respective base
paper. The Pareto fronts obtained for Cases 6-11 are shown
in Fig. 12. As seen in the Pareto fronts, MOEO has more

diversity than other algorithms. In other words, the emission,
TFC, APL, and VD values reached by MOEO is better than
that of selected algorithms, which is true throughout trial
runs.

Compliance with system constraints is a crucial part of the
constraint optimization problem. In a single objective prob-
lem, dealing with constraints is challenging. The scenario
is significantly more complicated for multiobjective prob-
lems, such as the OPF with stochastic renewables because
the Pareto front contains numerous solutions necessary to
be practicable. The Pareto front produced from every test
run contains 30 non-dominated solutions, and algorithms
provide feasible opportunities. However, it is not feasible to
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FIGURE 10. Convergence curves obtained by entirely algorithms for Case 5 (Minimization of VSI).

FIGURE 11. Comparison plot analysis with respect to TFC.

TABLE 11. Multi-objectives simulation results were obtained for different cases.

verify all solutions at this time, and we do focus on choosing
selected solutions from specific test runs and monitoring the
availability of important constraints. When an EO is

combined with a non-dominated sorting and crowding dis-
tance mechanism, the search process of the MOEO can be
systematically guided towards optimal global solutions.
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FIGURE 12. Pareto front obtained by selected algorithms, (a) Case 6, (b) Case 7, (c) Case 8, (d) Case 9, (e) Case 10, (f) Case 11.

VI. CONCLUSION
The research on OPF of hybrid power systems has become
more significant in modern trends in the energy industry
and environmental policy since it analyses sustainable and
constantly replenished renewable resources. Therefore, this

paper suggests an algorithm for locating Pareto’s optimal
solutions to the multiobjective OPF problem, which includes
stochastic solar, wind, and hybrid small hydropower units.
The renewable energy sources studied in this study have
stochastic characteristics that are represented using suitable
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probability density functions. The non-convex, nonlinear, and
multimodal multi-objective OPF problem is solved using the
MOEO algorithm and formulated using EO, non-dominated
sorting, and crowding distance mechanisms. The system’s
constraints, notably network security constraints, have been
satisfied. The obtained results are compared with several
well-established algorithms. The results reveal that the sug-
gested MOEO algorithm obtained higher quality with more
practicable solutions. Without a doubt, entirely of the results
suggest that the proposed algorithm has an advantage in
achieving optimal solutions to single- and multi-objective
OPF problems.

In future studies, theMOEO algorithmmay also be applied
to other engineering problems, including cyber security,
demand forecasting, motor design, optimal reactive power
dispatch, compensator location, transformer design, load
scheduling, distribution planning, and many more.
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