IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 7 September 2022, accepted 24 September 2022, date of publication 26 September 2022, date of current version 5 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3209993

== RESEARCH ARTICLE

Chattering-Free Terminal Sliding Mode Control
Based on Adaptive Barrier Function for Chaotic
Systems With Unknown Uncertainties

MOHAMMADREZA ASKARI SEPESTANAKI ', MOJTABA HADI BARHAGHTALAB',
SALEH MOBAYEN "2, (Senior Member, IEEE), ABOLFAZL JALILVAND “'!, (Member, IEEE),
AFEF FEKIH“3, (Senior Member, IEEE), AND PAWEL SKRUCH 4, (Senior Member, IEEE)

! Department of Electrical Engineering, University of Zanjan, Zanjan 4537138791, Tran

2Future Technology Research Center, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan
3Department of Electrical and Computer Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
“Department of Automatic Control and Robotics, AGH University of Science and Technology, 30-059 Krakéw, Poland

Corresponding author: Saleh Mobayen (mobayens @yuntech.edu.tw)

This work was supported in part by the Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering of
the AGH University of Science and Technology, Cracow, Poland, under Grant 16.16.120.773.

ABSTRACT This paper designs and implements a chattering-free terminal sliding mode control approach
for a class of chaotic systems with unknown uncertainties. It considers sliding mode control (SMC) to
deal with the dynamic model uncertainties of the chaos system, and uses a combination of SMC with an
adaptive control approach to solve the upper boundaries problem of unknown model uncertainties and their
estimation. Chattering is completely eliminated without over estimating the control gains by adopting an
adaptive continuous barrier function in the dynamic switching function. Using the Lyapunov’s stability
theory, it was shown that the proposed scheme can guarantee the convergence of system states to the vicinity
of the sliding surface in finite time. Additionally, the adoption of a sliding surface with a nonlinear and
integral switching function resulted in removing the reaching phase of the sliding surface and yielding a
controller that is robust to uncertainties from the start. The effectiveness of the proposed control method
was assessed using three scenarios implemented to a Liu’s uncertain chaotic system in MATLABSimulink
environment. The obtained results confirmed the ability of the proposed approach to achieve continuous and
smooth control rules for such chaotic systems. Among the main attributes of the proposed control method
are its ability to completely eliminate chattering and yield a robust performance against model uncertainties
and unknown external disturbances; common issues in chaotic systems.

INDEX TERMS Terminal sliding mode control, chaotic systems, adaptive barrier function, chattering-free,
unknown uncertainty.

I. INTRODUCTION
Chaos theory is a branch of mathematics that studies chaotic

its wings in Brazil (under certain circumstances) that could
cause a storm in Texas [2]. Therefore, it is impossible to

dynamic systems. These latter are a class of nonlinear
dynamic systems that are very sensitive to their initial con-
ditionsso that small changes in the initial conditions of such
systems cause large changes in their output [1]. This phe-
nomenon is known as the “butterfly effect” in chaos theory,
which is a metaphor for the behavior of a butterfly flapping
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predict the long-term behavior of such systems. The behavior
of chaotic systems appears to be random; however, there is
no need for the accident element to cause chaotic behavior,
and deterministic dynamic systems can also exhibit chaotic
behavior [3], [4]. It can be shown that the necessary condi-
tion for chaotic behavior in continuous and time-independent
dynamic systems is the existence of at least three state
variables; in other words, it must be at least a third-order
system.
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Chaotic behavior is an attractive and pervasive nonlin-
ear phenomenon that has received more attention in recent
decades due to its many applications. Some of its industry
applications include chemical reactions, electrical convert-
ers, data processing, secure telecommunication systems, etc.
[5], [6], [7], [8]. The chaos control issuein chaotic systems
has been extensively researchedsince the early 1990s [9].
So far,different control methods have been suggestedto con-
trol chaos in such systems; including: the feedback lineariza-
tion method [10], [11], optimal control [12], [13], adaptive
control [1], [14], [15], backstepping control [16], [17], sliding
mode control (SMC) [18], [19], [20], linear matrix inequal-
ities [8], intelligent control methods based on neural net-
works [21], [22], stochastic delay methods [23], and barrier
function-based SMC approaches [24], to list a few.

Among the above control methods, adaptive control is an
effective and relatively suitable method to solve the prob-
lem of parameter uncertainties in nonlinear systems and
has been well used in various aspects to improve controller
performance and solve problems such as input saturation,
immeasurable modes and so on [25], [26], [27]. However,
for a nonlinear system with unknown nonlinear terms and
unknown model uncertainties, simple adaptive control cannot
guarantee ideal control performance. Moreover, the back-
stepping control method is an efficient and robust technique
for high-order nonlinear systems in terms of theoretical and
applied analysis in engineering. In [28], [29], and [30],
adaptive backstepping controllers are designed for nonlinear
systems by combining the backstepping technique and the
adaptive control; However, due to the inherent problem of
“terms explosion,” in the backstepping method, the applica-
tion of this method in high-order nonlinear systems will be
associated with drawbacks and complications [31].

Amongst the available control methods, the SMC is an
efficient and robust method for chaos control in chaotic sys-
tems [32], [33]. Most common SMC approaches, however,
suffer from the chattering phenomenon, which occurs due
to the discontinuous character of the sign function in the
control input signal. Recently in [34], a novel chattering-
free SMC approach was proposed to remove the undesirable
chattering phenomenon. The design was derived based on the
assumption that the upper boundaries of the uncertainty term
and their first derivatives are known. The situation where the
upper boundaries of the uncertainty term and their derivatives
are unknown has not been examined.

The SMC methods have been applied in industrial applica-
tions extensively. In [35], a fractional order sliding mode con-
troller for the sensor-less tele-robotic system with uncertain
time delay, model uncertainty, fractional calculus numerical
approximation bias, and external disturbances was proposed
and optimized based on the greedy algorithm. In [36] the
authors have focused on the fast position tracking problem
for the permanent magnet linear motor (PMLM) system
under a logarithmic sliding mode control signal with reduced
chattering. A novel fractional-order sliding mode control
scheme based on a two-layer hidden recurrent neural network
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(THLRNN) for single-phase shunt active power filter was
proposed in [37]. Research [38] presented an adaptive non-
singular terminal sliding mode (ANTSM) method for motion
tracking control of a nonlinear uncertain bilateral teleop-
eration system with time-varying delays and disturbances.
In [39], some recent advances in SMC for the networked
control systems (NCSs) are reviewed. In particular, first,
some new SMC schemes for NCSs subject to time delay,
packet losses, quantization, and uncertainty/disturbance are
briefly outlined. Subsequently, the problem of SMC for
NCSs under scheduling protocols was discussed, where dif-
ferent communication protocols are introduced for energy-
saving purposes during the synthesis of NCSs. In addition,
in [40] a SMC scheme is proposed for nonlinear systems with
time-delays and packet losses and under uncertain missing
probability.

Terminal sliding mode control (TSMC) has widely been
used recently as a suitable approach for finite-time control
of mechanical and chaotic systems with model uncertainties
and external disturbances. In standard SMC, the system state
trajectories converge to the origin in finite time, and the con-
troller is not robust to the uncertainties in the reaching phase.
In the TSMC method, on the other hand, due to the nonlinear
term of the sliding surface, the system state trajectories con-
verge to the origin in finite time, and the controller is quite
robust to the uncertainties in the reaching phase [38]. In [41],
an adaptive fractional high-order TSMC for the nonlinear
robotic manipulator under alternating loads is provided. The
work in [42] proposed a combined terminaldynamic sliding
mode controller based on an adaptive observer for the sta-
bility of nonlinear uncertain SISO systems. Also in [43],
an adaptive TSMC scheme for controlling chaotic systems
is proposed, in which the proposedcontroller has fast finite-
time stability and strong robustness against uncertainties.
Controllingchaotic systems despite unknown disturbances
using a nonsingular TSMC is presented in [44], in which
the switching surface is technically designed to achieve fast
convergence. Moreover, in [18], an adaptive TSMC scheme
with a fractional-order sliding surface has been used to syn-
chronization fractional-order uncertain chaotic systems with
parameter uncertainties and external disturbances. An adap-
tive TSMC was proposed in [45] to stabilize the system states
of port Hamiltonian chaotic systems while counteracting
system chaotic behavior. Recent research works [46], [47],
[48] have considered finite-time SMC (terminal SMC) in
industrial, and,medical systems; thus further motivating the
use of terminal SMC in this work.

Recently, a new control technique for removing the chat-
tering problem in sliding mode controllers has been used as
an excellent alternative to the saturation function method,
the high-order derivative of the sliding surface, as well as
other conventional approaches of removing chattering, which
is simple, robust and practically efficient. This technique is
known as “sliding mode control based on the adaptive con-
tinuous barrier function,” in which an adaptive continuous
barrier function is used to provide a smooth and continuous
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control rule for the switching surface and completely solve
the chatting problem in SMC. The SMC based on the barrier
function was first proposed in [49] by Plestan et al. for con-
trolling an electro-pneumatic actuator system. An adaptive
continuous barrier function TSMC scheme was proposed
in [50] to control a Three-degrees of freedom manipulator
subject to external disturbances. In [51], A barrier func-
tion adaptive nonsingular TSMC approach was designed to
control quad-rotor unmanned aerial vehicles with external
disturbances, in which a novel nonsingular terminal sliding
surface is suggested to guarantee convergence of the sliding
surface to the origin in a limited time. The work in [52]
provides a quasi-adaptive sliding mode method based on
the barrier function to control the motion of the hydraulic
servo-mechanism with modeling uncertainty. Also, barrier
function-based adaptive high-order SMC has been used for
the fast stabilization of a perturbed chain of integrators with
bounded uncertainties in [53]. Recently in [54], a TSMC
based on the continuous barrier function along with a fuzzy
estimator has been designed to control an inverted pen-
dulum. The approach resulted in the creation of continu-
ous and smooth control rules. In addition, a novel barrier
function-based on the adaptive technique for the first-order
SMC was proposed in [55]. This technique was applied to a
class of first-order disturbed systems whose upper boundaries
of the uncertainty are unknown. The proposed barrier tech-
nique can guarantee the convergence of the output variables
independently of the uncertaintyboundaries and keep it in
a neighborhood of the origin without overestimating the
control gain.

In [1], it was shown that using a dynamic sliding mode
surface with both integral operator and differential opera-
tor significantly reduces chattering but does not eliminate
it completely. Thus, in this paper, in addition to using a
dynamic sliding mode surface with both integral and dif-
ferential operators to reduce the chattering phenomenon,
we propose using an adaptive continuous barrier function
in the switching function to completely eliminate chatter-
ing, which is the main innovation of this article. Hence,
we propose a chattering-free TSMC strategy for a com-
plete class of uncertain chaotic systems with unknown upper
boundaries of the uncertainty terms and their first deriva-
tives; In a way that the chaotic system presented in [34] is
considered as a special case. For this purpose, in order to
overcome the problem caused by the upper boundaries of
unknown uncertainty, the SMC method is combined with
the adaptive control technique, and a novel strategy enti-
tled “chatter-free TSMC based on adaptive continuous bar-
rier function” is proposed. Its main contributions are as
follows:

« A novel adaptive control to tune the controller’s adap-
tation gain parameters to estimate the boundaries of the
uncertainty terms.

« An adaptation gain that is not overestimated, so only the
convergence of the system state variables in a predefined
neighborhood of the origin is guaranteed.
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o A design that considers a barrier function as a simple
switching function to completely eliminate the chatter-
ing phenomena.

o A design that guarantees the convergence and main-
tenance of the system state variables to a predefined
neighborhood of the origin in finite time.

« A control design that covers a complete class of uncer-
tain chaotic systems which upper boundaries of the
uncertainty are assumed to be unknown.

The remainder of this article is organized as follows.
In section 2, the chaotic system under study is described and
formulated. Section 3 details the proposedTSMC approach
based on the adaptive barrier function for controlling uncer-
tain chaotic systems and proves its stability. The simulation
results in the MATLAB/Simulink environment are shown in
section 4 to display the efficiency of the proposed control
method under tripl control scenarios. Finally, section 5 is
devoted to the conclusion.

Il. SYSTEM DESCRIPTION AND ITS FORMULATION
Chaotic systems are nonlinear systems whose dynamic equa-
tion can generally be represented as follows:

x=f(,x)+d ¢, x)+u@), (1)

where x = [x7,x2,...,x,]7 € R" represents the system state
vector, f(t,x) : Rt x R* — R" indicates a nonlinear vector
field, d(t,x) : RT x R* — R" is the unknown uncertainty
term that denotes model uncertainties and unknown external
disturbances and system unmodeled dynamics, and u(t) € R"
is the control input. The dynamic equation of the chaotic
system (1) is based on the assumption that the number of state
variables x is equal to the number of control inputs u.

The goal of this article is to design an adaptive TSMC rule
for chaotic systems with model uncertainties and unknown
external disturbances; so that the closed-loop system states
are asymptotically stable for any specified initial condition,
that means, the system states vector converges to zero:

Jim X = 0. (@)

Note 1: It can be easily seen that if f (f,x) = Bx+ F(t,x) and
d(t,x) = d(t) conside; In fact, dynamic Eq. (1) is the reduced
form of the dynamic following equation given as Eq. (1) in
[34].

% = Bx + F(t.x) + d(t) + u(1), 3)

In this article, the problem is described and formulated
based on the assumption that in the uncertainty term d(x, t),
the state variable vector x depends on the unknown time 7,
which is different from the uncertainty term d(¢) defined in
[34] where the state variable x is independent of the time 7.

Lemma 1 [38]: Considerif x € M C R" and x =
Qx),Q : R" — R" acontinuous nonlinear system on the
region M as the open neighborhood of the origin and local
Lipschitz at M {0} and €2 (0) = 0; And also assuming that
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there exists a continuous Lyapunov’s function V : M — R
wherein the following conditions hold:
(D V is positive-definite; (IT) V is negative-definite
on M {0}; (IIT) There are positive real values m and
0 < a < 1, and a neighborhood M C M of the
origin such that:

V +mV® <0; onthe M \{0}. 4)

Then, the origin is a stable finite-time equilibrium point for
the nonlinear system x = 2 (x) and in this case, the system
state trajectories converge to the origin in a finite time.

Next, in the above lemma, for the initial time f¢, let the
Lyapunov’s function V : M — R converge to zero in a finite
time. As a result, we have:

V! =4(19)
r(l—a)’
where r is a positive constant, and #; is the system
settling-time.

ty =10+ &)

Ill. CONTROLLER DESIGN AND STABILITY ANALYSIS

In order to obtain continuous, smooth, and differentiable con-
trol inputs and further weaken the chattering phenomenon,
the idea of diverting the switching term of the discontinuous
sliding surface into the first derivative of the control input
is adopted. As a result, the dynamic sliding mode surfaces
resulting in a smooth adaptive SMC law are defined as
follows:

oi (1) = $i (1) + Aisi (1), (6)
where A;, i = 1,2, ..., n are positive constants, and sliding
surfaces s; with the integral operator are defined as follows:

t
510 =k [ 3500 de +x0), ™
0
where k;, i = 1,2,...,n are positive constants, and x;(t),
i =1,2,...,n are system state variables. The main advan-

tage and feature of (7) is that the use of a sliding surface
with this nonlinea and integral switching function makes
the SMC become a global sliding mode control (GSMC)
because the nonlinear sliding surface (7) has both GSMC
conditions, i.e.s(0) = 0 and s(co) = 0. Accordingly, one
of the main advantages of selecting th mentioned nonlinear
and integral sliding surfaces is that the proposed controller
becomes GSMC and the phase of reaching the sliding surface
is removed. This results in placing the sliding surface at the
initial moment, and yielding a controller that is robust to
uncertainties from the beginning.

A. ANALYZING THE STABILITY AND CONVERGENCE OF
SYSTEM STATES

In the proposed control method, SMC is used to deal with
the dynamic model uncertainties of the chaos system, and
a combination of SMC with the adaptive control approach
is used to solve the upper boundaries problem of unknown
model uncertainties and their estimation.
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In this section, to analyze the stability of system states,
we first make the following assumption.

Assumption 1: Here, we assume that the unknown positive
constants ¢; and i = 1, 2, ..., n exist as the upper boundaries
of the system uncertainty term, so that the following inequal-
ity holds:

no 9d;(t,x), 9d;(t,x)
> i+ (i + ki) [ds (6, 0] <cr,
j=1 8x]' ot
®)

where d; (t,x) and i = 1,2, ..., n are the unknown uncer-
tainty terms in Eq. (1).

Note 2: Contrary to the assumption in [34], here we allow
the upper boundaries of the uncertainty term, i.e., ¢;, to be
unknown.

Theorem 1 [1]: Considering assumption 1, if the adaptive
TSMC rule is written as follows:

. no dfi (f,x) .
i = — i+ k) (u; +f; (¢, - i
i = = Gui k) @i i (0) =D T
of; (t, x .
- U0 ki — eitsign (a0, ©
where ¢, > 1,and i = 1,2,...,n are some constant

parameters related to the controller design, ¢; is the upper
boundary estimate of c¢;, which displays the adaption gain,
and is obtained from the following equation:

Gi=elol; € >1, (10)

Then, for each specified initial condition, the closed-loop
system state vector x(¢) becomes asymptotically stable, lead-
ing to the convergence of the system states to the origin.

Proof: To prove Theorem 1, consider a Lyapunov’s can-
didate function as follows:
1

M RS T

Therefore, the time derivative of Lyapunov’s function will
be as follows:

v=3" [oia'i + (@ — ci) éi], (12)

By combining Eq. (12) with Egs. (6) and (7), the following
equation is achieved:

. n n 8fl (t,x) . 8ﬁ (t,x)
V= Zi:l |:ai <Zj—l x; oA ot

n oad;(t,x) . ad; (t,x) .
+ Zj:l axj K + ot i

+ i + k)i (8, x) +di (¢, %) +u) + )»ikixi)

+ (6‘, — Ci) é‘,’i|, (13)

By applying the inequality (8) of assumption 1, the follow-
ing relation will be obtained:

’ n n aﬁ(ta-x). aﬁ(tvx) .
Ve [a’ (ijl o I T T
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+ i+ k) (fi (0, 0) +uy) + Mkixi> + ¢ilojl

+@_@ﬁ, (14)

Substituting the control rule of the adaptive sliding mode
(9) in inequality (14), yields the following relation:

. n ~ . ~ X
V= Zi:l [—éiCiUiSlgn (0i) + ciloil + (& — ¢ Ci]
n A A A
= Zi:l [—Eici loil + ciloil + (& — ci) Ci]
n ~ A~
= Zi:l [—e€iciloil + ciloil + (& — ci) €iloil ]
n
=—2_._, &= Deilail. (15)
Thus, if €; > 1 is selected according to the assumptions of

Theorem 1, the derivative of the candidate Lyapunov function
is less than or equal to zero. That is, the following inequality

holds:
. n
V=- Zi:l

Now, based on Eq. (16), we define the variable y(¢) as the
following relation:

y =Y (- eiloil. (17)

Then, by integrating both parts of (17), we will have the
following inequality:

(¢; = Deiloi| <0. (16)

t
/ y (@dt =V ©0) -V @) =V(0. (13)
0

Bytaking the limits of both parts of relation (18) and con-
sidering the existence and finiteness of the limit fot y (r)dr,
using Barbalat’s lemma, the following result will be obtained:

tllngoy (1) =0. (19)

From Eq. (19) and Egs. (6) and (7), the following result
is obtained, which means that the system states eventually
converge to zero, and the closed-loop system state vector x(¢)
is asymptotically stable.

lim 6;=0= lim |x@®| =0 (20)
—00 —00

O

B. IMPROVING THE PROPOSED CONTROLLER WITH
ADAPTIVE BARRIER FUNCTION

In this study, to improve and develop the proposed control
method, the chatterring-free TSMC based on the adaptive bar-
rier function is used for the robust stability of chaotic systems
with unknown external disturbances. For this purpose, a novel
adaptive control rule based on the adaptive continuous barrier
function is suggested in this section.

The block diagram of the proposed adaptive continuous
barrier function-based chattering-free TSMC aproach is illus-
trated in Fig.1.

Lemma 2 [50]: To improvethe proposed control method,
theunknown uncertainties of the system can be estimated
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sliding | oi(t)
Surface |

x;(t)

Dynamical ui(t) [ Adaptive
System Control Input
—_—
I,
Adaption
Law

FIGURE 1. Block diagram of the proposed adaptive continuous barrier
function-based TSMC approach.

more effectively by employing the on adaptive barrier
function-based TSMC, in which case the closed-loop system
will be more stable. For this purpose, the adaptation gain
parameter ¢; in the adaptive TSMC rule (9) can be written
as follows

Ei(t)z{éi“(l)’ if0<t<t 21

Cipg @), it >1

where 7 represents the time when the system state trajecto-
ries converge to the neighborhood t of the sliding surface
dynamics o;(7), and when ¢ = 7, the smallest root of the
equation |o; (#)] < 7 is obtained.In the proposed control
method, the adaptation rule and positive-semi-definite (PSD)
continuous barrier function are created by the following equa-
tions, respectively:

Cia = €iloi (1)), (22)
& (1) = loi ()] 23)
tpsd 7 — loi ()]

where in (23), T is a positive scalar parameter.

Note 3: The adaption rule (22) is extracted from Eq. (10)
in Theorem 1.

Employing the adaptation rule (22), the adaption gain is
adjusted to increase until the state trajectories reach the neigh-
borhood t of the sliding surface at the time 7. For times greater
than 7, the adaption gain shifts to the PSD barrier function to
reduce the convergence region and hold the state trajectories
in it.

For time 0 < ¢t < 7, the controller design is suggested
by the control rule defined in Eq. (9) of Theorem 1, and
for conditions when the time is longer than 7 (t > 7), the
controller is designed by the adaptive control rule based on
the barrier function as follows:

. no 3fi (1, x) .
it = — (i + k) (i + £ (1,0) = Y LGRS
j=1 3Xj
afi (t, x A ,
— fi E()t ) _ hikixi — €iCi, ., sign (07), (24)

Then, the system state trajectories reach the convergence
region |o; ()| < 7 in a finite time. As a result, the system
state trajectories converge to the origin in a finite time, and
the closed-loop system will reach stability in finite time.
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Note 4: The process of designing and generating adaptive
control rules (9) and (24) according to the method [34] is
briefly illustrated in Appendix.

Note 5: According to lemma 2, using the adaptive barrier
function in the SMC, the proposed controller will be auto-
matically finite-time; in other words, the closed-loop control
system will be stable in a finite time.

Proof: The controller stability with the control rule (9)
was proven in the previous subsection. Here again, the proof
is based on Lyapunov’s approach and is shown according to
[49] thatthe system state trajectories reach the convergence
region |o; (f)| < t in a finite time. To prove the controller
stabilitywith the control rule (24), we can consider a Lya-
punov’s candidate function which includes both sliding sur-
face dynamics and adaption gain dynamics (barrier function),
as follows:

Vi) = 0.5 (0,- (0 + (0 () = &y (0))2), (25)

Taking the time derivative of the Lyapunov’s function (25),
yields:

Vi (1) = 07 (1) 67 (6) + (ipyy (1) = Cipy (0)) Eipg (1), (26)
) Substituting the sliding surface derivative o¢;(f) and
Ci,y (0) = 0in Eq. (26), yields:

¥ _ n aﬁ(tvx). af;(t’x)

Vi (t) = 0 (1) (Z,-_l w9t

noddi(t,x) .  ddi(t,x) |
+ Zj:l axj 5+ ot i

+ Qi+ k) (fi (0, x) +d;i (2, x) +uwi) + ?»ikixi>

+ &g (1) iy (0, 27)
Applying the inequality (8) of assumption 1 and placing
the control input i; of Eq. (24) in Eq. (27) yields:
Vi (1)
= 0; (1) (—€iCi,yy (1) sgn (07 (1)) +d (&, %)+, (1) Cipyy (1)
< loy (O] x {Id (t, )| = €&y (O} + &g (1) &1y (1)
< loy (O] x {Id (t, )| = €&y (O} + &g (1)

T
X o 4 ) i (O s )]

x sgn (0i(1)), (28)

From Eq. (28), the following inequality can be obtain:

Vi (1) < — €y, () — |d (.01} loj (0] — &, (1)
.[ A
T o )2 [Gici,nd @) —ld (@, x)l]. (29)

~

Since from (29), we have: eiCiM () > |d(,x)| and
m > 0; an upper boundary can be found as follows:
loi (2)]

V2

Vit = —v2{aCp, 0 —1d @0l
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2 R
% [e,.c,»psd ) —|d (t,x)I]

(t —loi

éi,,xd (t)
V2

) <-zv;0)", (30)

< _7 |U[ (t)| + eiéipa'd (t)
- V2 V2
where Z = \/E{Eiéiwd ) —|d (t,x)l}min {1 L}

T (r—loi()])?

is defined.

Therefore, due to Eq. (30) and according to Lyapunov’s
stability theorem and lemma 2,we can conclude that the
proposed control system will be stable in a finite time.

IV. NUMERICAL SIMULATION OF THE PROPOSED
CONTROL ON CHAOTIC SYSTEMS

The performance of the proposed approach is assessed in this
section using three scenarios implemented in the MATLAB-
Simulink environment. For this purpose, first, consider Liu’s
uncertain chaotic system [56] with the following dynamic
equation:

x=f@+dEx)+u@), 3D
[ —10x; + 10x;
40x; — x1x3 |, (32)
| 4x? — 2.5x3
sin(xj)
sin(t) , (33)
| sin (x1) + sin (¢)

f) =

d(t,x) =

where in Eq. (31), x = [x7, x2, x3]7 represents the system
state vector, f(x) is a known vector field and displays the
dynamic system whose values are shown in Eq. (32) and
d(t,x) is the unknown uncertainty term related to the model
uncertainties and the unknown external disturbances of the
system whose values are shown in Eq. (33).

Note 6: Here, Liu’s chaotic system is a time-independent
system, and as we know, time does not occur in dynamics;
Accordingly, in Eqs. (31) and (32) instead of the function
f (x), the function f (¢, x) has been used.

The effect of chaos in Liu’s chaotic system is shown in
Figs. 2 to 4, considering the initial states based on refer-
ence [1] as: x(0) = [—0.2,0.3,0.2]" has been brought.
Fig. 2 shows the 3D phase diagram of Liu’s chaotic system
states before applying the proposed controller. In addition,
Fig. 3 depicts the phase diagrams of Liu’s chaotic system
states in terms of time for each of the state variables each
X1, X> and X3 separately, and the closed-loop system state tra-
jectories before applying the proposed controller in Fig. 4 is
displayed. From Figs. 2 to 4, it can be easy to observe and
analyze the effect of chaos on each of the state variables
X1, X5, and X3 in Liu’s chaotic system. Figs. 2 and 3 show
how the state trajectories of the X1, X», and X3 reaching the
origin and the path these trajectories take to reach the origin.

Note 7: In this study, the variable values of the initial states
of the system according to [1] are considered as: x(0) =
[—0.2,0.3,0.2]F so that we can compare two controllers in
a similar and fair condition. It is also necessary to explain
that the values of the initial conditions of any chaotic system
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FIGURE 2. 3D phase diagram of Liu’s chaotic system states before
applying the proposed controller.
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FIGURE 3. Phase diagrams of states X;, X, and X5 of Liu’s chaotic system
in terms of time.

are inherently related to that system, and that the system
becomes chaotic in that particular initial condition, and by
changing the values of the initial conditions, the system may
no longer become chaotic; Therefore, we are not allowed
to change the values of the initial conditions of the chaotic
system optionally.
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FIGURE 4. Closed-loop system state trajectories before applying the
proposed controller.

By performing the necessary calculations according to
Theorem 1, the rule of chattering-free TSMC based on adap-
tive barrier function is obtained as follows for the above-
mentioned system:

it = — O + k1) (w1 — 10x; + 10%2) 4+ 1061 — o)
— X1 — €1C1,,,5ign (o1),

up = — (A1 + k1) (ur — 10x; + 10x2) + 1001 — x2)
— X1 — €1C1,,,5ign (01),

i5 = — (\3+k3) (u3 +4x%—2.5x3)—(8x1X1—2.5X3)

— X3 — €3C3,,,5ign (03),

o)

Cpa O = 0 O

. 10

O = o

)

G = T or G4

In the following, simulations of the proposed controller are
designed and implemented based on three scenarios so that
system responses can be better and more desirable in a step-
by-step process.In scenario 1, in order to make it possible
to compare the simulation results of the proposed control
method with the adaptive sliding mode method presented
in [1], the parameters of the control law have been chosen
exactly in accordance with [1]. In scenario2, the control law
parameters are chosen in such a way that the convergence
rate to the origin of the system state trajectories and the
sliding surface curves is increased. In scenario 3, the control
law parameters are chosen in such a way that, in addition
to increasing the convergence rate, the overshoot and under-
shoot of the system state trajectories and the sliding surface
curves are eliminated as much as possible.
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FIGURE 5. Comparison of closed-loop system state trajectories of the
proposed method with the method in [1].

A. SCENARIO 1

In this scenario, the proposed control method is compared
with the adaptive sliding mode method presented in [1] to
observe the efficiency of the proposed control method; For
this purpose, the control law parameters are exactly in accor-
dance with the parameters in [1] are chosenas: A; = 1,k; = 1,
i=1,2,3,¢e; =5, ¢ = 4, 3 = 4; and the initial states
are considered as: x(0) = [-0.2, 0.3, 0.217. Now, for sim-
ulation,we place the values of the above control parameters
in Eq. (34) and apply unknown uncertainties and external
disturbances to the proposed control system. Accordingly,
based on scenario 1, the simulation results in the Simulink-
MATLAB environment are obtained as Figs. 5to 11 as fol-
lows; In which the transient and steady-state behavior of the
system in the proposed control method is compared with the
adaptive chattering-free TSMC method presented in [1].

The behavior of the closed-loop system state variables is
given and compared in Fig. 5. Also, the behavior of state
variables in the system steady-state is shown in Fig. 6, and
Fig. 7 depicts the 3D phase diagram of Liu’s chaotic system
states after applying the proposed controller. In Fig. 8, the
control input signals are given. Fig. 9 shows the sliding
surface curves, and the sliding surface dynamics are displayed
in Fig. 10. Finally, the time responses of the adaptation gains
are displayed in Fig.11.

In addition, to show the high efficiency of the proposed
controller, Table 1 shows the transient system specifica-
tions for the quantitative comparison of the proposed con-
trol method with the control method presented in [1], and
Table 2 shows the qualitative comparison of the proposed
control method with the control method presented in [1]
in all respects; These two tables clearly show the effi-
ciency and practical superiority of our proposed control
method.

According to the results obtained from the simulations,
we can clearly see from Fig. 5 and the data in Table 1 that
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FIGURE 6. Comparison of closed-loop system state trajectories for the
steady-state of the proposed method with the method in [1].

—Proposed Method
— — —Method in [1]

0.2.

gt " 04

05 T 0.2

X,(t) 1 02 X,(0)

FIGURE 7. Comparison of the states phase diagram of Liu’s chaotic
system of the proposed method with the method in [1].
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FIGURE 8. Comparison of sliding surface curves of the proposed method
with the method in [1].

the state trajectories X1, X, in the proposed control method
converge to the origin after a suitable time and with less
overshoot and undershoot compared to [1]; Also, the state
trajectories X3 converge to the origin almost the same as [1]
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FIGURE 9. Comparison of the sliding surface dynamics of the proposed
method with the method in [1].
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FIGURE 10. Comparison of the control input signals of the
proposedmethod with the method in [1].

without any jumps. In addition, in Fig. 6, it can be observed
that in the system steady-state, the state trajectories X1, X2, X3
in the proposed control method, compared to the method
presented in [1], converge to the origin almost without any
oscillation.

Fig. 7 shows the effect of the proposed controller on
the state trajectories of X1, X», X3 in Liu’s chaotic system
after applying the proposed controller and the effect of the
proposed controller on the stability of Liu’s chaotic system.
By comparing Fig. 7 with Fig. 2, it is clearly observed that
applying the proposed controller has stabilized Liu’s chaotic
system so that the chaotic behavior of the system has been
controlled. Due to Figs. 5 to 7, the transient and steady-state
behavior of the system in the proposed control method in
this paper, compared to the control method presented in [1],
has been significantly improved, and the control system has
become more stable.
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TABLE 1. Transient system specifications for the quantitative comparison
of control methods.

Chaotic Proposeld Method The Method In [1]
System
State X1 X, X3 X1 X, X3
Variables
Overshoot 0.3526 0.2557 0 0.529 0.2947 0
Undershoot -0.1182 | -0.7716 0 -0.1646 | -0.9588 0
Control
Inputs Uy Uz us Uy Uz us
Overshoot 11.33 39 0.005 14.43 5.727 0.005
Undershoot -3.633 -16.89 -0.6383 -4.436 -22.22 -1.347

In addition, due to the control input signals shown in
Fig. 8 and the data in Table 1, the control inputs in the
proposed control method have less overshoot and undershoot
compared to [1], and their signals are smoother and flatter.
Also,as can be clearly seen in Figs. 9 and 10, the sliding
surface curves and sliding surface dynamics in the proposed
control method are significantly improved compared to [1]
and have less oscillationand jumps, and their chatting has
been removed. Finally, it can be seen from Fig. 11 that since
the time-derivative of the adaptation gains ¢; (¢) is an absolute
value term; As a result, the estimation of system uncertainties
is almost without slope. Also, the terminal values of the adap-
tation gains are obtained as ¢; (f) = [2.775 3.793 0.8133 ]

As seen in Table 2, the results of the simulations dis-
play well the efficiency and practical superiority of “‘the
chatter-free TSMC based on adaptive barrier function” in
avoiding the chattering phenomenon and overcoming model
uncertainties and unknown external disturbances in chaotic
systems.

B. SCENARIO 2
This scenario has been designed and implemented to improve
the convergence rate to the origin of the system state trajec-
tories and sliding surface curves. With the help of scenario 2,
we can observe the effect of changing the control law parame-
ters of the A; and k; on the convergence of the system state tra-
jectories, sliding surface curves, and other system responses.
For this purpose, the control law parameters are chosen as:
AM=15k =15i=1,2,3,¢1 = 5,6 =4,¢3 =4; and
the initial states are considered as: x(0) = [—0.2, 0.3, 0.2]" .
In scenario 2, like the previous scenario, after placing the
value of the above control parameters in Eq. (34), the results
of the simulations in the MATLAB-Simulink environment are
obtained as follows, according to Figs. 12 to 17. The closed-
loop system state trajectories and state variables behavior
under scenario 2 is displayed in Fig. 12. Fig. 13 depicts the
state phase diagram of Liu’s chaotic system of the proposed
method under scenario 2. In Fig. 14, the control input signals
under scenario 2 conditions are given. Fig. 15 indicates the
sliding surfaces curves in scenario 2, and the sliding surface
dynamics are shown in Fig. 16. Finally, the time responses of
the adaptation gains are displayed in Fig. 17.
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TABLE 2. Qualitative comparison of the proposed method and the method in [1].

Jump in the Oscillation in Jump in the Oscillation & Oscillation & Oscillation &
Control transient state of the steady-state of control input Chattering in the chattering in chattering in
Approach state trajectories the state signals control input sliding surface sliding surface
trajectories signals curves dynamics
The method in [1] Yes Yes No Yes Yes
Proposed method Yes No No No No
4 T T T T
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FIGURE 11. Dynamics of the adaptation gains.

In addition, as in scenario 1, in Table 3, the transient system
specifications of the control system in the scenario 2 condi-
tions are given quantitatively to show the high efficiency of
the proposed controller in the new conditions.

According to the results obtained from the conditions of
scenario 2, Fig. 12 shows that the state trajectories X1, X2, X3
converge to the origin in less than one second; Whereas in
Fig. 5 the system state trajectories X1, X2, X3 converge to the
origin in almost 3 seconds. Therefore, it can be concluded
that the convergence rate to the origin of the system state
trajectories in scenario 2 has improved significantly from
scenario 1, and the control system has reached stability faster.
Also, according to Table 3 and its comparison with Table 1,
it can be seen that the overshoots and undershoots of the
system state trajectories Xi, X, X3 in scenario 2 have not
changed much compared to scenario 1 and sometimes they
have become worse.

In addition, similar to scenario 1, in scenario 2, by com-
paring Fig. 13 with Fig. 2, it can be seen that applying the
proposed controller has led to the stabilization and control of
chaotic behavior of Liu’s chaotic system.

Furthermore, due to the control input signals under sce-
nario 2 in Fig. 14 and the data in Table 3, it can be concluded
that the overshoots and undershoots of the control inputs and
their level of smoothness have not changed much compared
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FIGURE 12. Closed-loop system state trajectories of the proposed
method under the conditions of scenario 2.

to scenario 1 and sometimes they have become worse. Also,
as can be seen in Figs. 15 and 16, the sliding surface curves
and sliding surface dynamics in the proposed control method
under scenario 2 conditions converge to the origin in less than
one second, and compared to scenario 1, their convergence
rate to origin has improved significantly and the control
system has reached stability faster. Finally, like scenario 1,
the terminal values of the adaptation gains are obtained as
¢i(t) = [2.78 3.812 0.8945].

In general, in scenario 2, we were able to significantly
improve the convergence rate of system state trajectories,
sliding surface curves, and other system responses compared
to scenario 1, by appropriately changing the control law
parameters of A; and k;. Therefore, it can be concluded that
system state variables, sliding surfaces, and other system
responses are sensitive to changing the parameters of A; and
ki. On the other hand, comparing the simulation results of
scenario 2 with scenario 1, it can be said that although the
convergence rate to origin system state trajectories, sliding
surface curves, and other system responses has increased in
scenario 2, but overshoots, undershoots and jumps have not
changed much and sometimes they have become worse; As
a result, the need to solve this problem in another scenario
is strongly felt. Accordingly, we designed and presented sce-
nario 3 as follows.

C. SCENARIO 3
This scenario has been designed and implemented so that,
in addition to increasing the convergence rate to the origin
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FIGURE 13. Phase diagram of Liu’s chaotic system states of the proposed
method under the conditions of scenario 2.
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FIGURE 14. Control input signals of the proposed method under the
conditions of scenario 2.

TABLE 3. Transient specifications of the proposed control system under
the conditions of scenario 2.

Chaotic System Proposed Method

State Variables X, X, X3
Overshoot 0.3021 0.8781 0
Undershoot -0.2767 -0.7986 -0.02889
Control Inputs Uy Uy U
Overshoot 10 21.413 0
Undershoot -8.815 -13.019 -2.08

of the system state trajectories and sliding surface curves and
other system responses in simulations, can also be eliminated
their overshoots, undershoots and jumps. For this purpose,
the control law parameters are chosen as: A; = 15, k; = 15,
i=1,2,3,¢ =50, ¢y = 40, €3 = 40; and the initial states
are considered as: x(0) = [—0.2, 0.3, 0.2]" . Here, in addition
to changing the parameters of A; and k;, other parameters in
the control law (34) including ¢;, have also been changed and
more optimal values have been replaced them.
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FIGURE 15. Sliding surface curves of the proposed method under the
conditions of scenario 2.
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FIGURE 16. Sliding surface dynamics of the proposed method under the
conditions of scenario 2.

Note 7: In this study, the optimal values of the control
law parameters have been obtained by trial-and-error method
based on the best and most optimal responses of the system
in the simulation results.

In scenario 3, similar to the previous two scenarios, after
placing the value of the above control parameters in Eq. (34),
the simulation results are obtained as follows, in accordance
with Figs. 18 through 23. The closed-loop system state tra-
jectories and state variables behavior under scenario 3 is
displayed in Fig. 18. Fig. 19 depicts the state phase diagram of
Liu’s chaotic system of the proposed method under scenario
3. In Fig. 20, the control input signals under scenario 3 con-
ditions are given. Fig. 21 indicates the sliding surfaces curves
in scenario 3, and the sliding surface dynamics are shown in
Fig. 22. Finally, the time responses of the adaptation gains are
displayed in Fig. 23. In addition, to show the superiority of
scenario 3 over scenarios 1 and 2, the qualitative comparison
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FIGURE 17. Time responses of system adaptation gains under the
conditions of scenario 2.

0.05 T T T T T T T T 1

0 2 4 6 8 10 12 14 16 18 20

005 L L L L L L L L |
0 2 4 6 8 10 12 14 16 18 20

t(sec)

FIGURE 18. Closed-loop system state trajectories of the proposed
method under the conditions of scenario 3.

of the triple scenarios for the proposed controller is given in
Table 4.

According to the results obtained from the simulations
under the conditions of scenario 3, we can see from Fig. 18,
that not only the state trajectories X1, X», X3 have converged
to the origin in less than one second, but also their overshoots
and undershoots have been completely eliminated. Therefore,
it can be concluded that scenario 3 has significantly improved
in terms of the convergence rate to the origin of system state
trajectories and in terms of removing their overshoots and
undershoots compared to scenarios 1 and 2. From Fig. 19 and
comparing it with Figs. 2, 7 and 13, it can be seen that in
scenario 3, by applying the proposed controller, not only Liu’s
chaotic system has been stabilized and its chaotic behavior
has been controlled, but also the phase diagram has reached
the origin in the shortest path and without deviation, which is
very ideal.

In addition, according to the control input signals in
Fig. 20, and comparing it with Figs. 8 and 14, it can be
concluded that in scenario 3, the overshoots and under-
shoots of the control inputs are almost eliminated, and their
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FIGURE 19. Phase diagram of Liu’s chaotic system states of the proposed
method under the conditions of scenario 3.
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FIGURE 20. Control input signals of the proposed method under the
conditions of scenario 3.

level of smoothness is relatively improved compared to sce-
narios 1 and 2. Furthermore, as it can be clearly seen in
Figs. 21 and 22, not only the sliding surface curves and the
sliding surface dynamics under scenario 3 conditions have
converged to the origin much faster, but also their over-
shoots and undershoots have been completely eliminated.
This shows a significant improvement in this part of the
simulations compared to scenarios 1 and 2. Finally, from
Fig. 23, the final values of the adaptation gains under scenario
3 conditions are obtained as ¢; (f) = [ 2.78 3.812 0.8945 ].

In general, by designing and implementing scenario 3 and
using the optimal values of the control law parameters of A;,
k; and €;; Not only we were able to increase the convergence
rate of system state trajectories and sliding surface curves,
and other system responses, but also we were able to elimi-
nate their overshoots, undershoots and jumps. In fact, at the
same time, we have improved the convergence rate and the
stability of system responses compared to scenario 1 and 2.
Furthermore, from the information in Table 4, which briefly
provides a qualitative comparison of the triple scenarios for
the proposed controller, it can be concluded that scenario 3 is
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TABLE 4. Qualitative comparison of three scenarios for the proposed controller.

Jump in Rate of Jump in Jump in the Rate of Jump in the Rate of Deviation of the
Con‘tl:‘)l the state convergence the control sliding convergence in sliding surface convergence in phase diagram
Conditions | trajectories in the state input surface the sliding dynamics the sliding in reaching the
trajectories signals curves surface curve surface dynamics origin
Scenario 1 Yes Low Yes Yes Low Yes High Yes
Scenario 2 Yes High Yes Yes High Yes High Yes
Scenario 3 No High No No High No Very High No
3 x10% T T T T T T 4 I I I
2 1 <G 2 ( b
o
1 7 O 1 1 L
0 5 10 15 20
OD 2 4 6 8 10 1‘2 14 16 18 20 t(SeC)
t(sec)
2 107 T T T T T m| 5 I I
or ~ (
. ( , §
~
%)
-4 4
0 . . .
6 1 0 5 10 15 20
-ED 2 4‘ 6‘ l; 1‘0 1‘2 |‘A 1‘6 1‘8 20 t(SeC)
t(sec)
2 T T
0.04 - .| o~
0.02 - 1 <U 1 [ -
w0
-0.02 - .| 0 L 1 1
sl ] 0 5 10 15 20
06! . | | | | | | | t(sec)

2 4 6 8 10 12 14 16 18 20
t(sec)

FIGURE 21. Sliding surface curves of the proposed method under the
conditions of scenario 3.
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FIGURE 22. Sliding surface dynamics of the proposed method under the
conditions of scenario 3.

superior to scenarios 1 and 2 both in terms of convergence rate
and system stability. The simulation results in all three sce-
narios show the feasibility and effectiveness of the proposed
control scheme under different conditions.
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FIGURE 23. Time responses of system adaptation gains under the
conditions of scenario 3.

Some of the major problems encountered in this research
were: the problem of unbounded disturbances and the upper
boundaries of unknown uncertainty, the problem of the con-
trol input not being smooth and continuous in SMC and
the complete elimination of chattering, the problem of the
convergence rate to the origin of system state trajectories
and sliding surface curves and the problem of undershoots
and overshoots. To overcome the mentioned problems, the
following efforts have been taken. In order to overcome
the problem caused by the upper boundaries of unknown
uncertainty, the SMC method is combined with the adaptive
control technique. The control inputs in most standard SMC
suffer from the chattering phenomenon. In this research,
a dynamic sliding model controller (DSMC) is suggested to
solve this problem. Using the dynamic sliding mode surface
with the integral operator, along with the use of the adap-
tive continuous barrier function, has played an essential role
in eliminating chattering in the controlled chaotic system.
In addition, to solve the problem of the convergence rate to
the origin of the system state trajectories and sliding surface
curves, by changing the parameters X; and k;, scenario 2 has
been designed and implemented. To eliminate the problem
of the existence of undershoots and overshoots in the system
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state trajectories and the sliding surface curves, using the
optimal values of parameters A;, k; and €;, scenario 3 has been
designed and implemented. The simulation results confirmed
the effectiveness of the proposed control scheme to control or
synchronize chaos in chaotic systems with uncertainties.

V. CONCLUSION AND FUTURE WORKS

This study proposed a chattering-free and finite-time SMC
approach based on Lyapunov’s stability theory and adap-
tive control for a class of uncertain chaotic systems subject
to model uncertainties and unknown external disturbances,
in conditions where the upper boundaries of the uncertainty
term and their first-derivatives are unknown. According to
the simulation results, it is clear that the proposed controller
can control chaotic systems well, even with model uncer-
tainties and unknown external disturbances. The proposed
control scheme using a smooth and continuous control rule
can eliminate the chatting phenomenon, which occurs due
to the discontinuity of the sign function in the control input
signal in ordinary sliding mode controllers. The obtained
results confirmed the efficiency of the proposed control tech-
nique in eliminating the chattering phenomenon and main-
taining effective and robust controller performance of chaotic
systems albeit the unknown uncertainties and disturbances.
In addition, the simulation results of the triple scenarios
showed that the system responses can improve during a step-
by-step process, and by using the optimal values of control
parameters, the simulation results can further be improved
both in terms of system stability convergence rate. Our future
work will focus on extending the application of the proposed
approach to time delay systems [38], [39], [40]. The aim
would be to design a barrier function-based SMC approach
to yield smooth and continuous control rules for uncertain
chaotic systems with multiple time-delays.

APPENDIX

PROCESS OF GENERATING EQUATIONS (9) AND (24)

To design and generate the adaptive control rules (9) and (24)
according to the method [34], first, consider the derivative of
the sides of Eq. (6) as follows:

o = S; + \iSi, 35)
Then, substitute the sliding surfaces of s; from Eq. (7) into
Eq. (35); As aresult, we will have:
o =X+ (A + ki) Xi (1) + Aikix; (1), (36)
Now, by placing the system states x; from Eq. (1) into Eq.
(36), the following equation is obtained:
. . n OFi(t,x), OF;(t, x)
= A ‘
F=AREY oy U e
no9d;i(t,x), ~0di(t,x) .
+ ijl o Xj + o1 + u;
+ (Ai + ki) (Aix + Fi (1, x) + d; (1) + wi) + Aikixi,
(37)
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where f; (t, x) denotes the i row of the matrix or vector
f @, x).

By generating the appropriate dynamical sliding mode
surface (6), the next step is to design a SMC scheme to drive
the system trajectories on the dynamical sliding mode surface
0;=00=1,2,...,n).

In the following, according to Note 1 and the relation
f(tx) = Ax+ F(t,x) and by placing 6; = 0 and transferring i;
to the other side of the Eq. (37), the following equation will
be generated:

. o 0fit,0) X)) g ddi(tx)
! =1 9x; at =1 dx;
ad; (¢,
—%x) = O+ ki) (i (1.) + oy (2,%) + )
— Aikixi, (38)

Finally, according to Assumption 1 and Eq. (7), we can
estimate the disturbance values d; in Eq. (38) as follows:

. no 0fi(t,x) .
i = = O+ k) (i (0) = 30 “on
A
ot

In Eq. (39) above, by estimating c; as ¢; = €;¢;sign (o7) and
ci = eiéips 25ign (0;), Eqs. (9) and (24) appear respectively.

— Aikix; — ¢, (39)
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