IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received 9 August 2022, accepted 15 September 2022, date of publication 26 September 2022, date of current version 6 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3210191

== RESEARCH ARTICLE

Alvis Approach to Modeling and Verification
of Real-Time Systems Running on
Single-Processor Environment

MARCIN SZPYRKA™, (Senior Member, IEEE), JAROSEAW BANIEWICZ,
AND ANDREI KARATKEVICH

Department of Applied Computer Science, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of
Science and Technology, 30-059 Krakéw, Poland

Corresponding author: Marcin Szpyrka (mszpyrka@agh.edu.pl)
This work was supported by the Akademia Gorniczo-Hutnicza Krakow (AGH).

ABSTRACT Alvis is a formal modelling language developed primarily for modelling concurrent systems
including real-time systems. The prepared model is compiled, and the resulting runnable model allows,
e.g., to generate the state space and to verify the model using model checking techniques. The default
version assumes that each system component (agent) executes its computations in parallel and that the
hardware platform is not a shared resource. This paper describes an alternative approach in which agents
remain concurrent, but compete for access to a single shared processor. This situation significantly affects
the correctness of the system, in particular from the perspective of the timing properties of real-time systems.
The key element of the presented solution is the fact that changing the runtime environment comes down to
changing compiler options and does not require changes to the original model. This paper presents a method
of designing Alvis language models for a single-processor hardware platform. The presented concepts are
illustrated with examples.

INDEX TERMS Alvis language, discrete-time systems, formal languages, single-processor hardware,

system analysis and design, system verification.

I. INTRODUCTION
The methods of formal modelling and verification of
real-time systems have been developed for a long time; how-
ever, their application in engineering practise is still very
limited. The main obstacles are insufficient knowledge and
understanding of such models by the engineers and a gap
between the models used by engineers and the formal models,
making practical application of the last ones difficult. For this
reason, efforts have been made to design models that can be
both practical enough to allow the modelling of real systems
and formal enough to allow the application of mathematical
verification methods [1], [2]. One of the attempts to create
such a modelling framework is Alvis.

The Alvis language [3], [4] is designed for mod-
elling concurrent systems. The syntax typical of high-level

The associate editor coordinating the review of this manuscript and

approving it for publication was Mauro Gaggero

104178

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

programming languages and a graphical language [5] for
modelling communication connections between agents are
the key elements that distinguish it from popular formal
methods such as Petri nets [6], [7], process algebras [8] or
timed automata [9].

All previous papers on Alvis discussed its multiprocessor
version. It assumes that each agent performs its computations
in parallel, i.e., it has access to its own processor, regard-
less of the number of agents in the model. The assumption
of unlimited parallelism is typical of the formal methods
mentioned above. In practical applications, especially when
we consider embedded systems, a system built based on
such a model and running on an architecture with a lim-
ited number of processors may not possess the properties
that the model possesses. One solution to this problem is
the modelling of the hardware architecture inside the model
itself, which can significantly affect its complexity and design
time.

VOLUME 10, 2022

https://orcid.org/0000-0003-4925-3271
https://orcid.org/0000-0002-5011-8248
https://orcid.org/0000-0002-5048-4141

M. Szpyrka et al.: Alvis Approach to Modelling and Verification of Real-Time Systems

IEEE Access

This paper presents a method for designing Alvis lan-
guage models for a single-processor hardware platform. Such
models are based on the assumption that only one processor is
available and all agents compete for access to that processor.
The key element of the presented solution is the fact that
changing the runtime environment does not require changing
the model at all. From the theoretical point of view, an Alvis
model is a triple. The last element of the triple called system
layer describes the runtime environment. A system layer is
not defined by the user but is chosen from the predefined set
of such layers. The selection of the system layer is realised by
indicating the appropriate option of the Alvis Compiler. This
means that the same model can be verified assuming that it
will be executed in either a multiprocessor environment or
a single-processor environment. To our knowledge, Alvis is
the only formal language that allows this approach to formal
model verification.

In this paper, the models are described with a system layer
denoted by all‘"PPS (Fixed Priority Preemptive Scheduling),
which is an alternative to the only system layer previously
available ¥ (unlimited multiprocessor layer). The relatively
complete description of the timed version of Alvis with the
oV system layer is given in [4]. The main contributions of the
paper can be summarised as follows:

« we show a new single-processor system layer for Alvis
language;

« we provide an updated definition of a model state that
takes into account the hierarchical priority queue and
system interrupts;

« wedescribe the algorithm for LTS generation for the new
system layer;

« the presented idea is illustrated with simple case studies
to show the influence of the choice of a system layer on
the model properties.

The paper is organised as follows. Section II provides
a comparison of Alvis with other formal methods. Section III
contains a short description of the Alvis modelling and ver-
ification process and the related tools. The formal definition
of Alvis models and a description of the a}pp ps System layer
are provided in Section IV. Section V deals with the states
of a model, transitions between states, and the LTS graph
generation algorithm. Models of concurrent systems used to
illustrate the approach are presented in Section VI. A short
summary is given in the final section.

Il. RELATED APPROACHES

One of the popular formalisms used for modelling of concur-
rent systems are the Petri nets. Their classical form is rather
abstract, but there are numerous extensions of the model that
allow us to catch many behavioural details, such as coloured
Petri nets [6]. Such enriched Petri nets are represented, e.g.,
by high-level Petri nets supported by CPN Tools [10], [11],
[12]. Comparing such nets with Alvis, one can see that Alvis
has richer possibilities in data proceeding because the Haskell
language, used in Alvis, is more powerful than the subset of

VOLUME 10, 2022

the standard ML language used in CPN Tools. The structure
of the system can be more complex in CPN nets, as far as
the Petri nets make possible the different ways of forking and
joining of parallel processes; on the other hand, the module
structure of Alvis models makes them more regular and easier
to handle. The communication between agents via ports in
Alvis is similar to the transition firings in CPN, and the sent
and received values can be modelled by the coloured tokens.
However, such Alvis features as the non-blocking instructions
cannot be directly expressed in CPN. Besides, there is no
direct distinction between active and passive agents in CPN,
as it is in Alvis. Such kinds of agents can be modelled with
CPN, but the distinction in Alvis makes the models more
understandable.

Other known Petri net based formalisms used for the mod-
elling of concurrent discrete control systems are Grafcet [13],
[14] and SFC being its further development [15], [16].
An SFC diagram consists of steps connected by transitions.
Actions are associated with steps, and logical conditions are
associated with transitions. The actions can be expressed in
the Pascal-like ST language, which provides possibilities of
data proceeding similar to Haskell used in Alvis. Priorities
and time dependencies can also be used. However, the steps
are typically active for short periods of time, not permanently,
as some agents in Alvis. The possibilities of communication
between parallel steps are limited. They can communicate
via global data, and the parallel sequences of steps can be
synchronised by means of transitions, but there are no direct
mechanisms for sending and receiving data via ports. Like
in the case of CPN, such Alvis possibilities as non-blocking
instructions cannot be represented directly.

The scheduling methods used in the mentioned models
are rather simple. Simulation of a colored Petri net in CPN
tools is performed in such a way that at each step at most
one transition is executed, and if more than one is firable,
one of them is selected randomly. SFC models are supposed
to be synchronous; their execution on a single processor or
controller is performed in such a way that at each scan cycle
the actions associated with each active SFC step are executed.
The order of execution of parallel active steps within a single
scan cycle is undefined [17].

Timed automata [9] are one more model allowing to
represent time dependencies, delays, and communication.
A timed automaton can be understood as a finite state
machine enhanced with real-valued clocks. Timed automata
can be successively used for modelling real time systems [18].
A network consisting of such automata can specity, in certain
cases, the systems equivalent to Alvis models. However,
timed automata, including some of their extensions (such
as the hybrid automata used for modelling cyber-physical
systems [19]), have no possibility of data processing using the
algorithms described in programming languages, and their
model of communication is simple, compared to communi-
cation in Alvis. Besides, there is no direct way to specify the
duration of execution of an action, unlike in Alvis. Because
of this, the Alvis models can be much more detailed than

104179

IEEE Access

M. Szpyrka et al.: Alvis Approach to Modeling and Verification of Real-Time Systems

the timed automata models. Timed automata are easier for
analysis, but their modelling power is weaker compared to
Alvis. Itis supposed that every automaton in a timed automata
network can have its own clock, there is no global clock (in an
Alvis model such a clock exists), and the scheduling methods
supposing execution on a single processor are not considered
for such networks.

There exists a family of formalisms using parallel and
hierarchical compositions of automata, based on statecharts
[20], [21]. Communication between the state machines in
statecharts is performed via events. Different execution mod-
els, also using preemption, are considered for statecharts.

Hierarchical Concurrent Finite State Machine (HCFSM)
[22], [23], [24] is a further development of statecharts.
It includes, except of the possibility of parallel and hierarchi-
cal composition of automata, also various additional features,
such as timeouts (allowing to model the non-blocking instruc-
tions as in Alvis). A scheduler that manages the execution
of an HCFSM system in a synchronous way is described
in [22].

HCFSMs in their basic form do not allow complex data
proceeding. Such a possibility provides an enhancement with
a sequential program model, known as a Program State-
Machine (PSM) [23]. This formalism is similar to Alvis in
the sense that the modules acting in parallel can execute
complex algorithms. An example of a language that supports
PSMs is SpecCharts [25], later developed as SpecC [26].
SpecCharts are a combination of hierarchical concurrent
state machines and VHDL used for specification of their
behaviour. Communication between automata is based on the
VHDL concept of signals. Each VHDL process is executed
by a separate controller or processor. A SpecCharts model can
be executed on a single processor, using various scheduling
methods.

One of the classical approaches to control the behaviour of
discrete event systems is known as the Supervisory Control
Theory of Discrete Event Systems (SCTDES) [27], [28].
In this approach, which initially was developed for untimed
systems and later extended to timed and real-time DES, a sys-
tem is modelled as one or more automata (timed if necessary),
and a supervisor is synthesised, also being an automaton,
which can disable certain transitions to avoid entering the
system into the undesired states. Such a supervised system
can be represented in Alvis, after applying an appropriate
algorithm of the supervisor synthesis.

There exist methods of scheduling for the parallel systems
running on a single processor based on the SCTDES formal
framework. In such methods, the scheduling is enforced by
the supervisor. Different variants of the approach are intended
to obtain a scheduling that meets the timing constraints under
certain assumptions [29], even when some faults are possible
[30], and to avoid the processor idling in the presence of
ready-to-execute tasks [31]. Introducing a supervising agent
into an Alvis system modelled with a}PPS system layer can
provide the corresponding scheduling if the highest priority
is assigned to the supervisor.

104180

Ill. MODELLING WITH ALVIS

An Alvis model is a set of components called agents (the
name was taken from the CCS process algebra [32]). We dis-
tinguish active and passive agents, which resemble the tasks
and protected objects of the Ada language [33], respectively.
The agents usually run concurrently, communicate one with
another, compete for shared resources, etc. From the user’s
perspective, a model is built as two layers. The code layer
defines the behaviour of individual agents, while the commu-
nication diagram [5] defines the communication connections
between agents. In addition, the communication diagram is
a graphical representation of the model that allows for an
easy understanding of the model structure from the control
and data flow perspective. The behaviour of agents is defined
using Alvis language statements, which are supported by the
Haskell functional language [34]. Haskell is used to define
the data types and functions that manipulate the data. The
user-defined functions in Haskell can be attached to a model.
A call of such a function, for example, to sort a list of
numbers, is considered as a single transition from the model
behaviour perspective. Finally, Alvis Compiler translates an
Alvis model into its Haskell representation, which is used for
simulation and verification purposes. The generated file can
be directly compiled using the GHC Compiler. Nevertheless,
the source code can be modified by the user in an arbitrary
text editor.

The Alvis language is supported by a prototype modelling
and verification environment that includes an editor and a
compiler. The editor is used to design a model (communica-
tion diagram and code layer) and the compiler translates the
model into an executable file. The compilation result depends
on the compiler options selected. By default, the resulting
executable file is used to generate an LTS (Labelled Tran-
sition System) for model verification. It is also possible to
obtain a file for simulation purposes, as well as to implement
the user’s own verification methods. An LTS can be exported
to the DOT, Aldebaran and CSV file formats. These formats
are used for model checking verification using external tools
such as nuXmv [35] and CADP [36]. Statistical analysis using
the R and Python languages is also possible.

IV. MODELS WITH o' SYSTEM LAYER

The Alvis Editor supports hierarchical modelling. Using
of hierarchies is convenient when designing the complex
models. Before compilation, a model must be transformed
into the equivalent non-hierarchical version. Because the
purpose of the paper is to provide the semantics of Alvis
models with single-processor layer, it is enough to consider
non-hierarchical models only [4], [37].

Definition 1: An Alvis model is a triple A = (D, B, ¢),
where D = (A, C, o) is a non-hierarchical communication
diagram, B is a syntactically correct code layer, and ¢ is
a system layer. Moreover, each agent X belonging to the
diagram D must be defined in the code layer, and each agent
defined in the code layer must belong to the diagram.

VOLUME 10, 2022

M. Szpyrka et al.: Alvis Approach to Modelling and Verification of Real-Time Systems

IEEE Access

We need to introduce some notation to give the definition
of a non-hierarchical communication diagram:

e P(X) — the set of all ports of agent X,

e Pin(X) — the set of input ports of agent X,

o Pou:(X) — the set of output ports of agent X,

o Pproc(X) — the set of procedure ports of agent X,

o P(W) = Uyew P(X), where W is a set of agents,

similarly P, (W), Pour(W), Pproc(W),

o P —the set of all model ports, similarly P, Pour, Pproc-
An input (output) port is a port with at least one one-way
connection leading to (from) it or with at least one two-
way connection. In the case of passive agents, the ports can
represent the procedures (services) provided by the agent.

Definition 2: A non-hierarchical communication diagram
is a triple D = (A, C, o), where: A = Ay U Ap is the set of
agents, A4 and Ap are the disjoint sets containing active and
passive agents respectively; C C P x P is the communication
relation, such that:

VxeA(P(X) x PX)NC =0, ey
Pproc N Pin N Pour = 9, (@)
P, q) € (P(Ax) x P(Ap)) N C = q € Pproc, 3
P, @) € (P(Ap) x P(A4) N C = p € Pproc, “
P, q) € (P(Ap) x P(Ap) NC =

P € Pproc N4 ¢ Pproc) V (q € Pproc AP & Pproc), (5)

and o : Ay — {False, True} is the start function that denotes
the initially activated agents.

Each element belonging to C is called a communi-
cation channel (connection). A communication channel
always connects two ports, with the following restrictions:
(1) — A connection cannot be defined between ports of
the same agent. (2) — Procedure ports are either input
or output ones. (3), (4) — A connection between an
active and a passive agent must be a procedure call.
From conditions (2)-(4), it follows that any connection
with a passive agent must be an one-way connection.
(5) — A connection between two passive agents must be
a procedure call from a non-procedure port. If (p,q) € C
then p is an output port and ¢ is an input port of the (p,)
connection.

A syntactically correct code layer means not only the cor-
rect syntax of both Alvis and Haskell statements, but also that,
for example, only the input ports may be used as arguments
of in statements, and only the output ports may be used as
arguments of out statements. Syntax validation of the code
layer is carried out by the compilers.

Modelling assuming a single-processor environment
requires a process scheduling algorithm. There exists a range
of such algorithms used in operating systems and real-time
systems [38]. The simplest of them is First Come First
Served (FCFS) algorithm, which uses a single queue. This
method can lead to long waiting times, and it is nonpreemtive.
Virtually all modern systems use various forms of preemptive
multitasking. Among them, one of the simplest is Shortest

VOLUME 10, 2022

Job First (SJF), which requires the evaluation of the time
amount required for the processes to be completed. There
are difficulties with using it when the evaluation cannot be
performed exactly enough or when the processes are cyclic,
which is typical for real-life systems. Besides, the algorithms
which do not allow to assign priorities to the processes are
not sufficient for complex systems.

The algorithms for priority scheduling usually have to deal
with situations where there are still several processes with
the same priorities. Then, a queue can be created for every
priority level, and within the same priority the FCFS approach
is used. The Fixed Priority Preemptive Scheduling is the basic
variant of such algorithms. As far as a scheduling policy
in a general modelling method cannot be too specific and
complicated, but - especially for real-time systems - has to
take into account priorities and preemption, the Fixed Priority
Preemptive Scheduling (FPPS) algorithm is selected for Alvis
models for a single-processor platform.

To add the scheduling algorithm to Alvis, we provide a new
system layer denoted by « },PPS. The basis of this system layer
is the assumption that only one processor is available, and
all active agents compete for access to this processor. This
means that at most one agent can be in the running mode
(executing statements), but many agents may be ready to
execute statements, waiting for access to the processor (Ready
mode). The Fixed Priority Preemptive Scheduling algorithm
is used to rank the agents. The algorithm is embedded in the
oz}pPPS system layer.

A priority can be assigned to each agent in an Alvis model.
The highest priority is represented by 0. The agents in the
ready mode are placed into a two-dimensional queue struc-
ture Q. The structure can be treated as a sequence of the FIFO
queues (levels Qo, Q1, . .., On), each of which stores agents
with the same priority (see Fig. 1). The first agent at the given
level is placed at position 0. The agent at position O at the
highest level in the two-dimensional queue is the first to take
over the processor. Of course, any queue Q; may be empty in
the current state. The highest level means here the non-empty
queue Q; with the highest priority.

-<«—— position
Qo [(0,0)]0, D](0,2)[(©,3)] --- |
Q|10], 2))a3)] - |
Q: |20] 2)]|23)] -]

priority —

0, [0[(n, Dl(n,2)|(n,3)] --- |

FIGURE 1. Priority queue.

To promote an agent from the ready to running mode, the
scheduler performs the following steps:
o The highest level Q, is selected.
o Assume that X, is at position 0 in @, and X, is the agent
that controls the processor currently. If the priority of X,

104181

IEEE Access

M. Szpyrka et al.: Alvis Approach to Modeling and Verification of Real-Time Systems

SysTick SysTick SysTick SysTick
A
Running Ready Running Finished
SRS S S ! el gy
! Lo —e_d_J ! !
.X 1 1 ‘ X e
\ \ NN | \
[[N\ | [
oy b NN R TR RO N N >
time

FIGURE 2. System interruption SysTick breaks a statement execution.

is greater than or equal to the priority of X, then X, is
promoted to the Running mode and removed from Q,.
Otherwise, the queue remains unchanged and agent X,
remains in the running mode.

o If X, is promoted to the running mode remaining agents
in Q, are shifted by one position.

« If the new mode of X, is ready (X, is ready to continue
the current instruction or to execute the next one), X, is
placed at the end of the corresponding level.

The scheduling algorithm is called every ¢ time-units,
where the value of 7 is fixed for the given model. The Alvis
time model is based on the idea of a global clock used to
measure the duration of executed statements (transitions).
To each statement in the model its duration is assigned. The
time-units used in a given model are strictly connected with
the model interpretation.

A fixed period for calling the scheduling function means
that it may be called when the current statement is not com-
plete. In this case, the execution of the statement is interrupted
and postponed until the agent accesses the processor again.
The scheduling function may also be called additionally when
the agent using the processor cannot execute another state-
ment (it has finished its work or must wait, for example, for
another agent to finish a communication).

Let us consider the example presented in Fig. 2. Agent
X executes a sequence of statements a, b, ¢, d and finishes
its work. The SysTick interruption occurs every 10 time-
units. During the first period in the running mode, the agent
completed statements a and b but failed to complete c. One
time-unit is missing to complete the statement. The execution
of the ¢ statement is divided into two phases: ¢’ in the first
period in the running mode and ¢” in the next.

V. STATES, TRANSITIONS AND LTS GRAPHS
To describe the state of an Alvis model with the oz}pp ps System
layer we need some information: states of the agents, contents
of the O queue, and the number of time-units until the next
call of the scheduling function.

Definition 3: A state of an agent X is a tuple

S(X) = (am(X), pc(X), ci(X), pr(X)), (6)

where am(X), pc(X), ci(X) and pv(X) denote agent mode,
program counter, context information list and parameters
values of the agent X respectively.

104182

The mode specifies the current activity of the agent.
In addition to the already mentioned running (X) and ready
(R) modes, the following modes are allowed: init (I — the
agent is idle before any activity), finished (F — the agent
finished its activity), faken (T — the passive agent is running
one of its procedures) and waiting (W). The last mode in
the case of active agents denotes that the agent performed an
action and is waiting for an event, e.g., releasing a currently
inaccessible procedure after calling it. For passive agents,
it means that the agent is idle (it is possible to call its acces-
sible procedure).

The program counter stores the ordinal number of the
current statement. The context information list contains some
extra information about the current state (see Table 1 for more
details). The parameters values tuple contains the current
values of the local agent’s variables.

Definition 4: LetA = (D, B, a}pPPS) be a non-hierarchical
Alvis model, where D = (A,C,0) and A = {X1, ..., X,}.
Let QO be a a two-dimensional priority queue as described in
Section IV and ¢ be the number of time-units to the next call
of the scheduling function. A state of a model A is a tuple

S Z(S(Xl),,S(Xn), Q? t)v (7)

where S(X) is the state of agent X.

To define the initial state of a model, we must define in
what order the active agents X; and X; are placed in the queue,
if they have the same priority. Some model verification tools,
for example, CADP, require that the initial state be specified
unambiguously. For these practical reasons, it is assumed that
the compiler places agents of the same priority in the order in
which they are defined in the code layer. The user can modify
the generated Haskell file and define a different initial state.

The initial state is defined as follows:

o am(X) = R, for any active agent X such that 0(X) =
True; am(X) = |, for any active agent X such that
0 (X) = False; and am(X) = W, for any passive agent X ;

e pc(X) = 1 for any active agent X in the R mode and
pc(X) = 0 for other agents.

e ci(X) = [] for any active agent X; and ci(X) contains
names of all accessible procedures of X together with
the direction of parameters transfer, e.g. in(a), out(b),
etc. for any passive agent X.

« For any agent X, pv(X) contains X parameters with their
initial values.

VOLUME 10, 2022

M. Szpyrka et al.: Alvis Approach to Modelling and Verification of Real-Time Systems

IEEE Access

TABLE 1. Context information list entries.

[Entry [Agent [Description |
in(a) active X is waiting for finalization of a communication via port X.a (X.a is the input port for the communication)
n(a) passive | input procedure X.a is accessible
out(a) active X is waiting for finalization of a communication via port X.a (X.a is the output port for the communication)
out(a) passive | output procedure X.a is accessible
proc(Y.b,a) | any X has called the Y.b procedure via port a and this procedure is being executed in the X agent context
timeout(s) any a timer signal for the statement number s has been generated and is waiting for serving
timer(s,n) any a timer signal for the statement number s will be generated in n time-units
sft(n) any the current step needs n time-units to be finished
lock any the agent is blocked by an ongoing communication transition

« All agents that are in ready mode are placed in the Q
queue according to their priority value and the order in
which their behaviour is defined.

« Agent X, determined according to the method presented
in Section IV is removed from Q and its mode is set to X.

From a theoretical perspective, each Alvis statement is

represented by one or more transitions. The exception is the
proc statement, which is only used to enclose a piece of code
that defines a single service and to define a condition for the
availability of that service. The list of all Alvis transitions for
the models is given in Table 2.

TABLE 2. Transitions.

Transition Description

TDelay a delay statement execution

STDelayEnd || termination of agent’s suspension

TExec an exec statement execution

TExit an exit statement execution

TIn initialisation of communication when no peer is available
(execution suspension) or reading data from a procedural
port — in statement

TInAP calling a procedure by an active agent — in statement

STInAP system version of TInAP — for wake up purposes

TInPP calling a procedure by a passive agent — in statement

STinPP system version of TInPP — for wake up purposes

TInF finalisation of a communication with an active agent — in
statement

STInEnd abandonment of communication — non-blocking in state-
ment

TJump a jump statement execution

TLoop entering a loop statement

TLoopEvery entering a loop every statement

STLoopEnd termination of current loop every run

TNull null statement execution

TOut initialisation of communication when no peer is available
(execution suspension) or writing data to a procedural
port — out statement

TOutAP calling a procedure by an active agent — out statement

STOutAP system version of TOutAP — for wake up purposes

TOutPP calling a procedure by a passive agent — out statement

STOutPP system version of TOutPP — for wake up purposes

TOutF finalisation of a communication with an active agent —
out statement

STOutEnd abandonment of communication — non-blocking out state-
ment

TSelect entering a select statement

TStart a start statement execution

STTime passage of time

STSysTick running the scheduling algorithm

Simple statements such as exec, exit, jump, loop, null,
select and start are represented by single transitions that
denote the execution of such a statement. In some cases, it is
necessary to have a pair of transitions; for example, TDelay

VOLUME 10, 2022

represents the execution of a delay statement and as a result
the suspension of the agent. To terminate this suspension
after the suitable period of time, the transition STDelayEnd
must be executed. The latter transition belongs to the set of so-
called system transitions. The names of these transitions start
with a capital S. All these transitions represent some activities
of the model run-time environment. A special system transi-
tion, named STTime, represents a passage of time. It is used
when there are no transitions available at the current moment
(e.g. all active agents are in the waiting mode) but at least one
of them will be enabled in some future moment. It is used to
shift the value of the global clock. Other system transitions
are used for waking up agents that, for some reasons, are in
the waiting mode.

Finally, due to the different ways in which communication
between agents is interpreted (communication between active
agents, communication between an active and a passive agent,
communication between passive agents, blocking commu-
nication, non-blocking communication, initiating communi-
cation, ending communication), in and out statement are
represented by several transitions. More details on the mean-
ing of the different transitions can be found in [4] and in the
Alvis language manual [39].

For each transition the enable and firing rules are defined
(see [4], [39] for details). The enable rule specifies when
the given transition can be executed, while the firing rule
specifies what can be the result of the transition execution.
The activity of a transition is always considered for a given
agent and statement. An active agent can execute its state-
ments independently, but a passive agent always works in the
context of an active agent.

Assume A = (D, B, a}PPS) is an Alvis model with the
current state S and consider a non-system transition ¢ for
agent X . Let context(X) denote the active agent whose context
is used by the passive agent X. The general conditions for the
activity of ¢ are as follows:

1) If X is an active agent, then X is in the running mode,
otherwise X is in the taken mode, and context(X) is in
the running mode.

2) The transition ¢ refers to the current agent’s statement,
i.e. for the TDelay transition the current agent statement
must be a delay statement, for the TExec transition
the current agent statement must be an exec statement
etc.

104183

IEEE Access

M. Szpyrka et al.: Alvis Approach to Modeling and Verification of Real-Time Systems

1: sg < wnit_state > read the initial state from the model
2: to <+ init_time > read the SysTick period from the model
3: qo < createPriorityQueue(sy) > generate the initial priority queue
4: > A node contains: number, state, queue, time to the next SysTick, list of outgoing arcs
5: unprocNodes + [(0, so, qo, to, [])] > unprocessed nodes
6: trans < alphalEnableTransitions(so, o, to) > list of enabled transitions
7. auzList < [(0, so, qo, to, [])] > already generated nodes
8: lts < ltsgen(unprocNodes, trans, auzList) > recursive LTS generation
9:

10: function ltsgen(unprocNodes, trans, auxList)

11: if unprocNodes # [] A trans # [] then

12: (number, state, queue, time, arcs) < head(unprocNodes)

13: tr < head(trans)

14: trs < tail(trans)

15: shift <— timeShift(state, tr, time)

16: results < timeFire(shift, tr, state, queue, time)

17: (newUnprocNodes, newAuzList) < update((unprocNodes, auxList), tr, shift, results)

18: return ltsgen(newUnprocNodes, trs, newAuzList)

19: else if length(unprocNodes) > 1 A trans = [] then

20: node < head(unprocNodes)

21: nodes < tail(unprocNodes)

22: (number, state, queue, time, arcs) < head(nodes)

23: trans < alphalEnable Transitions(state, queue, time)

24: return [node| + ltsgen(nodes, trans, auzList)

25: else > length(unprocNodes) = 1 A trs = []

26: return unprocNodes

27: end if

28: end function

FIGURE 3. LTS graph generation algorithm.

Some extra conditions must be fulfilled for communication
transitions (T1n, TInAP, TInPP, TInF, TOut, TOutAP, TOutPP,
TOutF). For example, for calling procedure p of passive agent
Y by an active agent X (transition 7/nAP), agent Y must be in
the waiting mode, and output procedure p must be accessible
(see [4], [39] for details).

The modelling environment for the Alvis language does
not offer the built-in formal analysis methods, except
where the user provides the analysis methods implemented
in Haskell. Verification is carried out using the exter-
nal model checkers. An Alvis model is compiled into its
Haskell representation (Intermediate Haskell Representa-
tion — IHR). This version is used to generate the state
space of the model and store it into a Labelled Transition
System.

Definition 5: A Labelled Transition System (LTS) is a
four-tuple LTS = (S, E, L, Sp), where: S is the set of states,
L is the set of action labels, E C § x L x § is the set of arcs,
and Sy is the initial state.

ForamodelA = (D, B, o }PPS), the set S contains the states
as defined in Definition 3. Each label contains two pieces of
information: the name of the transition and the number of
time units that have elapsed between the states connected by
the corresponding arc.

104184

A pseudocode representation of the LTS graph generation
algorithm is shown in Fig. 3. We start with collecting infor-
mation about the initial state (line 1) and the SysTick period
(line 2) from the considered model. Then the initial value for
the priority queue is generated (line 3). The algorithm uses
a recursive function /tsgen for the LTS generation (line 10).
The function takes three arguments:

1) alist of unprocessed nodes,

2) the list of transitions enabled in the first state of the

unprocessed nodes,

3) an auxiliary list of already generated nodes.

As the initial value for both lists of nodes, a list with the initial
node is taken (lines 5 and 7). A node is a Haskell wrapper for
a state. It contains some extra information, such as the node
number or agent names, to make an LTS more readable. See
Fig. 7 for more details.

We use the alphal EnableTransitions function (line 6) to
generate the list of transitions enabled in the initial state.

We consider three cases within the function Iltsgen. The
first case is when there is at least one enabled transition
for the first state in the unprocNodes list. We take the first
of the enabled transitions (line 13) and determine by how
many time units the realisation of the model can proceed
for this transition (function fimeShift, line 15). The function

VOLUME 10, 2022

M. Szpyrka et al.: Alvis Approach to Modelling and Verification of Real-Time Systems

IEEE Access

determines the maximal time shift for the transition. This
value is selected so as not to lose any information about the
changes of states of the analysed system. Then we use the
determined value to calculate the result of the #r transition
firing (line 16). The update function (line 17) udpates the list
of unprocessed nodes and the list of auxiliary nodes. For each
state from the list of new states, the function checks whether
the auxiliary list already contains a node with such a state.
If so, only a new arc is added to the first node of unprocessed
nodes. Otherwise, a new node is added to both lists (and the
corresponding arc to the first node of unprocessed nodes).
Finally, the ltsgen function is called again with updated node
lists and a reduced list of enabled transitions.

The second case is when there are no enabled transitions
for the first state in the unprocNodes list. In such a case,
the first node is omitted (it is included into the final LTS),
and the ltsgen function is called again with the updated list
of unprocessed nodes, and a new list of enabled transitions
generated for the first of these nodes. Finally, if the list of
unprocessed nodes contains only one node and the list of
enabled transitions is empty, we finish the generation of the
LTS.

The process of building an LTS graph poses many prob-
lems due to the state-space explosion. The factors that mostly
affect the number of states are the number of active agents in
the modelled system and the number of local variables that
can potentially have many internal states. It is easy to define
an agent with an infinite number of states. In the most general
case, the time complexity is O(n log n), where n is the number
of states, and the memory complexity is O(n).

V1. CASE STUDIES

A. EXAMPLE 1

Let us consider the example of an Alvis model shown in
Fig. 4. The model is composed of four agents — two active
agents Bl and B2, and two passive agents A and C. Each of
the active agents collects an initial value for computation from
the passive agent A, runs its function, and places the result
in the passive agent C. Because all communication channels
are defined between the active agents and the passive agents,
they are treated as the procedure calls of the passive agent.
The model under consideration also shows how easily we can
add our own functions implemented in Haskell to a model
in Alvis. It is worth mentioning that an execution of such
a function is treated as a single transition in the corresponding
LTS, regardless of body of the function. The comments in
Fig. 4 contain the instruction numbers and their assumed
execution times.

The same model can be compiled with different sets of
options. By default, the a” system layer is used. The LTS
generated for the model shown in Fig. 4 is presented in Fig. 5.
The LTS contains two paths because all agents have been
assigned the same default priority, so the selection of the
agent who first calls the procedure A.g is non-deterministic.
Labels of arcs provide two pieces of information: a set of

VOLUME 10, 2022

A

O—

9
9 B1 9 B2
p p
]
agent A { -—- stat. no, duration
x :: Int = 3;
proc g {
out g x; -— 1 1
exit; -— 2
}
}
agent Bl {
y :: Int = 0;
in g y; -— 1 1
y = fl vy; -— 2 3
out p y; -- 3 1
}
agent B2 {
y :: Int = 0;
in g y; -— 1 1
y = f2 vy; -— 2 3
out p vy; -—- 3 1
t
agent C {
x :: [Int] = [];
y :: Int = 0;
proc p {
in p y; -— 1 1
X = y:ix; -— 2 1
exit; -— 3 0

—-— Example functions for data processing
fl x = x*"3 + 2%x
f2 x = x*"3 - x + 7

FIGURE 4. Parallel data processing.

transitions that are executed in parallel and lead from the arc
source state to the destination state and the time that elapses
between these two consecutive states. It is easy to calculate
that in both cases it takes 10 time-units to do all calculations.

Including the —-al option when calling the compiler
changes the system layer to a11<"PPS' The LTS generated for

104185

IEEE Access

M. Szpyrka et al.: Alvis Approach to Modeling and Verification of Real-Time Systems

Bl: (X.1,[.0)

0)
A: (W,0,[out(g)).3)

B!

BI: (X,1,[proc(A.2)1.0)
2: (W1, [in(g)],0)

B2: (X,1,[],0) B2: (R.1,[].0) ft(1)].3)
C: (W,0,[in(p)],([1.00) C: (W,0,[in(p)].([1.0)) C (T.3,[1,([33]1,33))
[(3.0)], (4) (3.0, (0)
{TIn(B2.g). TInAP(B1.g, A.g)}/1\{TIn(B1.g). TInAP(B2.g. A.g)}/1
TnAP(BL.g. A.g)/l SysTick/0

(1
A: (T,1[1.3)

B2: (X.1.[proc(A.g)1.0)

2
A:(T,L[1.3)
BI: (W, 1,[in(g),.0)

B2: (W, 1,[in(2)].0)
C: (W.0.[in(p)].([1.0)

B2: (X, 1,[proc(A.g)].3)
C: (W,0,[in(p)],([1.0))

{TExec(B1),STInAP(B2.g, A.g)}/0

A: (T, 1|
BI: (X.2,[5ft(3)].3)

(7)
1.3)

BI: (X.1,[proc(A.g)1,0)

(8)
A: (T,1,[1,3)

B2: (X, [proc(A.g)1,0) B2: (X.2,[5ft(3)].3)
C: (W.0,[in(p)].([1.0)) C: (W.0,[in(p)).([1,0))
o A Wo(l[m 13
)) A (W,0[out(@)].3) (W:0,[out(p)].3)
&TOul(A.g).TExchl))/l (TOut(A.g). TExec(B2))/1 BI: (sz(mq) BI: (R,3.[proc(C.p)].33)
B2: (W,3,[out(p)],31)

© 10y C: (T.3,[1,(1331,33))
A T2003) AT203) 0. (0) 1201 ©
BI: (X.2,[5ft(2)],3) BI: (X, 1,[proc(A.g)1.3)
B2: (X,1,[proc(A.g)].3) 2: (X, 2)1.3) sysTick
& W.0linp)L([1.0) (SIS pysTicki T
5) 19

&TEXH(A).TEXCC(B]))/O

l(TExil(A),TExeC(BZ))/O

C: (W,

(13,
Az (W0, [Oul(g)] 3)

B2: (X2, [\H(I)] 3)

0.[in(p)1.([1,0)

Az (W,0,[out(g)].3)

X,z,[,n(l)] 3)
B2: (X,3,[1,31)

C: (W0, n(Dll (ﬂ 0)

&TOuIAP(BI p, C.p), TExec(B2)}/1 l(TF,xec(Bl).TOulAF(BZ p. CpY/1

A: (W0, out(@)].3)
BI (x 3| [me(C p)] 33)

C (T L0 (ﬂ 0))

(15)

B2: (X,3,[proc(C.p)1,31)

(16)
A: (W0, out(g)].3)
BI: (X,3,[1,33)

C: (T, LI([1.0)

{ TOuL(B2.p), TIn(C.p)}/1

l{TOul(BI). TIn(C.p)}/1

At (W.0,[out(g)].3)
BI (x 3,[proc(C.p)],33)

(17

[out(p)],31)
L[1.(10,33))

B1: (W,3,[out(p)].33)
B2: (X

(18)
Az (W,0,[out(2)].3)

(19)
A: (W,0,[out(g)].3)
BI: (X.3,]

C: (W.0in(pL([1.0) C: (T1L{1([331,33)
[TExec(C)}/1 { TExec(C)}/1 2,001, 2)), (0)
(20 xec(B2)/2 sysTick/0

B1: (W.3,[out(p)].33)
B2: (X,

Az (W.0.[out(g)].3)

[proc(C.p)1,31)

C: (T311,133133) C: (TAMLBI3D) '
BI: (R2,[5fi(1)].3) BLROY
- - B2: (X,2,[sft(1)].3) B2: (X.3,[proc(C.p)].31)
&TEX:I(L))N l(TExA(((_))/() o Ms.D.lulu\p)(],()[Jl,n); RS
1201,) I
)

@1
A: (W,0,[out(g)].3)

Bl

B2: (W,3,[out(p)].31)

C: (W.0,[in(p)],([331,33)) C: (W,0,[in(p)].(1311.31))

(F0.[1.33)

B1: (W.3,[out(p)).33)

Az (W,0,[out(g)).3)

B2: (F0.[131)

(STOWAP(B2.p, C.p)}/0

{(STOUtAP(B1.p, C.p)}/0

(23)
A (W0, out(g)].3)

Bl

B2: (X3, [proc(C.p)1.31)
C: (T,

(F0.[).33)

LIL(1331,33)

B

(24)
A: (W.0,[out(g)].3)
1: (X,3,[proc(C.p)].33)
B2: (F0,[131)
C: (T.1L1.(311.31)

&Tln(c.p))/l

l(’l‘ln(c.p) M

(25)
A (W.0,[out(g)].3)

Bl

B2: (X,3,[proc(C.p)].31)
C: (T,

(F0.[).33)

2[1,(1331,31)

B

26)

Az (W,0,[out(g)].3)

1 (X,3.[proc(C.p)33)
B2: (F.0.[1.31)

C: (T.2,[1([311,33))

[(TExec(O)}/1

(TExec())/1

(27)
A: (W.0,[out(g)].3)

Bl

B2: (X,3,[proc(C.p)l.31)
C: (T3.[1.(131.33],31))

(F0.[1.33)

B

C: (T.3,[0.(133,31].33))

(28)
A: (W,0,[out(g)],3)
1: (X3 [proc(C.p)].33)
B2: (F0,[].31)

ETEXH(C) 1o

l(TExit(CWO

A: (W, 0 Ioul(g)l 3)

Bl

(30)
A (W.0,[out(g)].3)
BI: (F.0.[).33)

(0)
Az (W,0,out(g)],3)
B1: (X, 1,[1.0)

)
T.L[.3)
Bl (x | |proc(A 21.0)

C: (W.0.lin(p).([1.0)) C: (W.0,[in(p)],(11,0)) 0) B2: (X,2,[sft(1)],3)
C:tW.D.[m(P)]J[l»O)D C: (T.3,[1(1331,33))
l('l‘O\mAg))/l l('l'Ou((Ag\)/l 13.0)]. 3) , 4)
3) (4) Out(A.g)/1 Exec(B2)/1
A(T201.3) A(T201.3)
BI: (X, L[proc(A.g)).3) BI: (W, [in(g)1.0) 6

[¢)
A:(T.2,[].3)
B: (K1 |pm(Agﬂ,3>

&STIHAPABI .g. A.g). TExec(B2)}/0

3003
{ TExit(A)}/0 | TExit(A)}/0 C: (w n [m(p)j (|| 0) C: (T 3] [] ([33].. %3))
GO @) 120, 3)
) (6)
A (W.0,out(g)].3) Az (W.0,[out(g)].3) TEXit(A)/0 Out(B2.p)/1
BI: (X.2.[]3) BI: (W,1,[in(g)].0)
B2: (W.1.[in(g)].0) B2: (X.2,[].3) 3) (17
C: (W.0.[in(p)].([].0)) C: (W.0.[in(p)].([1.0) A (W(OA{QU((E)JJ) A: (W,0,[out(g)].3)

BI: (X.2,[1,3)
B2: (R.1,[].0)
C: (W,0,[in(p)1,(11,0)
(3,001, (2)

Exec(B1)/2

2: (R, 1,[1.0)
C: (W Dlm(pﬂ (IIO))

A: (W.0.[out(g)].3)
BI: (R.2,[sft(1)].3)

AC
BI: (R2[sfi(1)],3)
B2: (X,1,[proc(A.g)].0)
C:(W.0.[in(p)1.(11.0)
[2,0)], 3)

TOut(A.g)/1

(7

: (T,2,[1,3)
BI: (R.2,[sft(1)].3)
B2: (X, 1.[proc(A.g)1,3)
C:(W,0,[in(p)],(11.0)
(2,001, @

Exit(A)/0

(8)
Az (W,0,out(g)],3)
Bl: (R2,[sft(1)].3)
2: (X.2.[1.3)

9)
Ar (W,0,[out(g)].3)

SysTick/0

(10)
A (W.0,[out(g)].3)
BI: (X.2[sfi(1)].3)
B2: (R.2,[sft(1)].3)
C: (W,0.[in(p)],([1.0))
[3,0)], (4)

TExec(B1)/1

(11)

A (W.0,[out(@)],3)
BI: (X.3,[1.33)
B2: (R.2,[sft(1)].3)
C: (W,0,[in(p)1(11.0))
(3,001, 3)

AP(B1.p, C.

(12)

A: (W,0,[out(g)],3)
BI: (X.3.[proc(C.p)],33)
B2: (R2,[sft(1)].3)
C: (T,LI.(10.0)
[(3.0)], (2)

iﬂn(Cvp)/l

(13)
A: (W,0,[out(g)].3)
BI: (X.3.[proc(C.p)1,33)

(14)
Az (W,0,[out(g)],3)
BI: (X3 proctCpl33)
L2,

(15)
A: (W0, out()].3)
BI: (R.3.[proc(C.p)].33)

A (W,0,[out(g)],3)
Bl: (R 2 [plm(C p)] 33)

BI: (R,3,[proc(C.p)],33)
B2: (W3, [out(p)],31)
C: (T.3.[1.(1331.33))
[2.0)]. (2)

}TTlme(Z)ﬁ

A: (W,0,[out(g)].3)
B1: (X.3,[proc(C.p)].33)

o o 2: (X,1,[1,0) B2: (W.3,[out(p)].31)
§|“&°z[fl"rff%’f;’ A é‘.”‘“%"“,}‘ﬁ’”’ C: (W.0,[in(p)].((1.0)) C: (T,3,1,(331,33))

B2: (X.2,[1.3) B2: (X.2,[sft(2)].3) [2.0)]. 4) 0. @)

C: (W.0.[in(p)).(1).00) C: (W.0,[in(p)].([1.0))
b‘[nAP(B_ g Agll Exit(C)/0
(TExec(B1), TExec(B2)}/2 (TExec(BI). TExec(B2)}/2

(©) (20)

(14) T.1[1,3) A: (W,0,[out()],3)

BI: (F,0,[1,33)
B2: (W.3,[out(p)].31)
C: (W,0,[in(p)],(1331,33))
(. 4

TOUAP(B2.p. C.p)/0

(1)
AW o [oul(gﬂ 3)
0.[1,33)
B2: (R 3 [pch P30
c rr 1.[0.(1331.33))
(3.0)]. (4)

TTime(4)/4

(22
A (WD[mll(")]Si
BI: (F.0.[1.33)
B2: (R.3,[proc(C.p)],31)

(23)
A (W0, out()].3)
0.[.33)

In(C.p)/1

24)
A (W,0,[out(g)],3)
B1: (F0,[1,33)
B2: (X.3.[proc(C.p)].31)
C: (T.2.[1.(133].31))
1. 3)

f’Exw(C)/ 1

(25)
Az (W,0,[out(g)].3)
B1: (F.0.[1,33)
B2: (X,3,[proc(C.p)].31)
C: (T.3,[0.(131.33].31)
0. 2

xit(C)/0

6)
A: (W,0.[out(g)].3)
BI1: (F.0,[].33)

(F0,[1,31)
C: (W,0,[in(p)],([31,33],31))
. @

(R2,[5ft(1)).3)

B2 (Fod131)
c (WO[m(p)J ([31,33,31))

B!
B2: (F.0,[].31) X TExec(C)/1
C: (W.0.[in(p)].([33.31].33)) C: ‘;é?(}l)l\:([(]|.?3)'

FIGURE 5. LTS - parallel version. FIGURE 6. LTS - single processor version.

104186 VOLUME 10, 2022

M. Szpyrka et al.: Alvis Approach to Modelling and Verification of Real-Time Systems

IEEE Access

the oz}VPPS system layer is shown in Fig. 6. This time there
is only one path in the LTS and we need 22 time-units to
perform calculations. Let us focus on the initial state for
a moment. Both passive agents are in the Waiting mode and
their procedures are accessible. Agent Bl is in the Running
mode, while B2 is in the Ready mode. The Alvis Compiler
encodes the priority queue with a list of pairs of integers. The
first element indicates the order number of the agent in the
agent list, and the second element indicates the agent priority.
Finally, the last integer indicates the number of time-units
to the next SysTick event. This initial state results from the
order in which the agents are placed in the model. If we
change the order of agents B1 and B2, agent B2 will be in the
Running mode in the initial state. Of course, using different
agent priorities will result in the agent with the higher priority
being started from the initial state regardless of the order in
which the agents are placed in the model.

As mentioned above, a node is a wrapper for a state.
By modifying a function in Haskell, the user can easily
change the way nodes are printed. The default version is
shown in Fig. 7.

node number

©)
A: (T,2,[1,3)
B1: (X,2,[sft(2)],3)
B2: (X,1,[proc(A.g)],3)
C: (W,0,[in(p)].([1,0))

program context parameters

mode

name

counter list values

NI 74

A: (T,2,[1,3)

B1: (R,2,[sft(1)],3)
B2: (X,1,[proc(A.g)],3)
C: (W,0,[in(p)].([1.0))
[(2,0)], (2)

priority queue time to SysTick

FIGURE 7. Elements of node description.

B. EXAMPLE 2

The LTS graphs presented in the previous subsection are
small, so it is easy to calculate how many time-units the
system needs to complete the required computations. The
situation changes when the state space grows so large that
we need the automatic methods to analyse an LTS. Let us

VOLUME 10, 2022

consider modified versions of the model shown in Fig. 4.
Suppose there are more active agents that perform the compu-
tation. The behaviour of all agents is very similar. Each agent
collects an initial value from agent A (1 time-unit), performs
its function (3 time-units), and saves the result to agent C
(1 time-unit).

Let us focus on a single time property — the maximal time
necessary to complete all computations. We analysed five
models with 3, 4, 5, 6, and 7 active agents. Each model was
compiled using the default «” system layer and the presented
a}PPS system layer. The results of the analysis are given in
Table 3.

TABLE 3. Maximal time time necessary to complete all computations.

0 1
@ Yrpps

No of agents | Time | No of nodes | Time | No of nodes

3 12 118 34 54
4 14 529 46 129
5 16 2716 58 432
6 18 16489 70 2007
7 20 108718 82 11802

We can further modify the model under consideration.
Suppose that each active agent runs in an infinite loop, and
the computation (collect, call function, save) is a single run of
such a loop. In the Alvis language, we can use the loop every
statement to define a loop that is run periodically every given
number of time-units. Thus, the above analyses allow us to
assess whether the loop resumption time is defined correctly.
In other words, we may check if the system manages to per-
form all calculations before the loop is scheduled to resume.

C. EXAMPLE 3

Let us focus on the model shown in Fig. 8. There are
two active agents that perform their calculations in infinite
loops. The null statements are used to model the calculations
performed by agent A. Communication between the agents
is used to synchronise their behaviour. It is assumed that
the execution time of each statement takes one time-unit.
It should be noted that agent A uses non-blocking commu-
nication on port s. When a non-blocking communication is
used, the agent that initiates the communication may abandon
it when the second side is not ready to finalise it. In this case,
agent A waits at most two time-units for finalisation.

The Labelled Transition Systems generated for the o® and
a}PPS system layers are shown in Fig. 9 — left and right
figures, respectively. In the first case, we have a system
in which five states are cyclically repeated. The system is
deadlock-free, the initial state is reversible, and each of these
five states is a home state (it is reachable from any reachable
state).

The LTS generated for o }PPS system layer consists of one
path containing 13 states. As a result of the lack of interop-
erability on agent B’s side, synchronisation on port s is aban-
doned, leading to a deadlock represented by state 12 — agent

104187

IEEE Access

M. Szpyrka et al.: Alvis Approach to Modeling and Verification of Real-Time Systems

agent A { -— stat. no, duration
loop { -— 1 1
null; -— 2 1
out (2) s; -— 3 1
null; -— 4 1
out p; -—- 5 1
}
}
agent B {
loop { -— 1 1
in s; -— 2 1
in p; -—- 3 1
}
}
FIGURE 8. Data processing with synchronization points.
(0))
A (X,LIL0) A (XLILO)
B: (X,1,[1,0) B: (R,1[1,0)
[(2,0)], (4)
{TLoop(A),TLoop(B)}/1
TLoop(A)/1
(1)
A (X.2,[1.0) (1)
B: (X.2,[1.0) A (X,2,[1.0)
B: (R,1[1.0))
{TNull(A),TIn(B.s)}/1 [(2,0)], (3)
) TNull(A)/1
A (X310 {TOutF(A.p, B.p)}/1
B: (W,2,[in(s)],0)) @
Ar (X3.1.0)
{TOutF(A.s, B.s)}/1 B: (R,L[1,0)
[(2,0], (2)
(3) lTOut(A.s)/l
A: (XA[1.0)
B: (X.,3,[1,0)
{TNull(A), TIn(B.p)}/1 iTO“‘(A'p)/l
(12)
4) Az (W,5,[out(p)].0))

A (X,5,010) B: (W.2,[in(s)1,0)
B: (W.3.[in(p)1.0) 1.2

FIGURE 9. LTS - parallel version (left), single processor version (right).

A is waiting for the finalisation of the communication on port
p, while B is waiting for the finalisation of the communication
on port s. In this case, the model does not have any of the
properties mentioned above.

VIl. SUMMARY AND FUTURE WORK

The Alvis language has been developed and efficiently used
for modelling and formal verification of a wide range of
parallel discrete systems. However, the convention used in
the implementation and in all research papers on this topic

104188

up to now, has certain limitations which may cause problems
in the formal analysis. The system layer «” supposes an
unlimited number of available processors to carry out the
system activities and hence full physical parallelism of the
processes which are logically parallel in a modelled system.
It is not always adequate, as far as in real life systems the
number of processors is often smaller than the number of
agents. The single-processor systems are still widespread.
One of the problems related to the formal analysis here is
that a system with the assumption of unlimited parallelism
may meet some properties, but the system having a single
processor and executing parallel activities in an interleaving
mode may fail to meet them. It is possible that a formal
analysis of such a system using «® layer may be unable to
detect that. Another problem is, the unlimited parallelism
easily leads to a state explosion.

The paper presents an ! system layer providing the pos-
sibility to verify systems and to generate state spaces for
single processor platforms. A formal description of the layer
is presented, together with a realistic algorithm of preemptive
scheduling. The experiments and case studies demonstrate
that the presented approach allows to verify time dependen-
cies for single processor systems and, when there are different
priorities of the simultaneously acting agents, to avoid or to
significantly reduce the state explosion.

As a future work, developing of «” system layer is consid-
ered, in which a multiprocessor platform with a given limited
number of processors is supposed. This requires, among oth-
ers, developing and implementation of a proper scheduling
algorithm and an algorithm of LTS generation. Such a layer
is going to be, in a sense, the most universal one, applicable
to modelling and formal verification of a wide range of real
life systems.

In addition, if the application of the o' layer will demon-
strate that it is necessary, other scheduling algorithms for
a! can be considered, different from the fixed priority pre-
emptive scheduling described in this paper.

REFERENCES

[1] H. Kopetz, Real-Time Systems. Design Principles for Distributed Embed-

ded Applications. New York, NY, USA: Springer, 2011.

1. Bicchierai, G. Bucci, L. Carnevali, and E. Vicario, “Combining

UML-MARTE and preemptive time Petri nets: An industrial case study,”

IEEE Trans. Ind. Informat., vol. 9, no. 4, pp. 1806—-1818, Nov. 2013.

[3] M. Szpyrka, P. Matyasik, and R. Mrdéwka, “Alvis—Modelling lan-
guage for concurrent systems,” in Intelligent Decision Systems in Large-
Scale Distributed Environments (Studies in Computational Intelligence),
P. Bouvry, H. Gonzalez-Velez, and J. Kotodziej, Eds. Berlin, Germany:
Springer-Verlag, vol. 362, 2011, ch. 15, pp. 315-341.

[4] M. Szpyrka, M. Wypych, J. Biernacki, and L. Podolski, “Discrete-time
systems modeling and verification with Alvis language and tools,” IEEE
Access, vol. 6, pp. 78766-78779, 2018.

[5S] M. Szpyrka, P. Matyasik, J. Biernacki, A. Biernacka, M. Wypych, and
L. Kotulski, “Hierarchical communication diagrams,” Comput. Informat.,
vol. 35, no. 1, pp. 55-83, 2016.

[6] K. Jensen and L. Kristensen, Coloured Petri Nets: Modelling and Valida-
tion of Concurrent Systems. Heidelberg, Germany: Springer, 2009.

[7] M. Szpyrka, J. Biernacki, and A. Biernacka, ‘“Tools and methods for
RTCP-nets modeling and verification,” Arch. Control Sci., vol. 26, no. 3,
pp. 339-365, Sep. 2016.

[2

VOLUME 10, 2022

M. Szpyrka et al.: Alvis Approach to Modelling and Verification of Real-Time Systems

IEEE Access

[8]
[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]
[20]
[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

J. A. Bergstra, A. Ponse, and S. A. Smolka, Handbook of Process Algebra.
Upper Saddle River, NJ, USA: Elsevier, 2001.

J. Bengtsson and W. Yi, “Timed automata: Semantics, algorithms and
tools,” in Lectures on Concurrency and Petri Nets, vol. 3098. Berlin,
Germany: Springer, 2004.

K. Jensen, L. M. Kristensen, and L. Wells, “Coloured Petri nets and CPN
tools for modelling and validation of concurrent systems,” Int. J. Softw.
Tools Technol. Transf., vol. 9, nos. 3—4, pp. 213-254, 2007.

V. Gehlot and C. Nigro, “‘An introduction to systems modeling and simula-
tion with colored Petri nets,” in Proc. Winter Simulation Conf., Dec. 2010,
pp. 104-118.

M. Westergaard, “CPN tools 4: Multi-formalism and extensibility,” in
Application and Theory of Petri Nets and Concurrency, J.-M. Colom and
J. Desel, Eds. Berlin, Germany: Springer, 2013, pp. 400-409.

R. David, “Petri nets and Grafcet for specification of logic controllers,”
IFAC Proc. Volumes, vol. 26, no. 2, pp. 683-688, 1993.

Y. Qamsane, A. Tajer, and A. Philippot, “A synthesis approach to dis-
tributed supervisory control design for manufacturing systems with Grafcet
implementation,” Int. J. Prod. Res., vol. 55, no. 15, pp. 4283-4303, 2017,
doi: 10.1080/00207543.2016.1235804.

M. Adamski and M. Chodan, Modelling the Discrete Control Devices
with the SFC Nets. Zielona Gora, Poland: Wydawnictwo Politechniki
Zielonogorskiej, 2000.

(2006). SFC for SIMATIC S7. [Online]. Available: https://cache.industry.
siemens.com/dl/files/748/24451748/att_96723/v1/s7sfcs7b_e.pdf

Series 90 Sequential Function Chart Programming Language, GE Fanuc
Automat., Charlottesville, VA, USA, 1994.

P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, J. Ouaknine,
and J. Worrell, Model Checking Real-Time Systems. Cham, Switzerland:
Springer, 2018, pp. 1001-1046, doi: 10.1007/978-3-319-10575-8_29.

L. S. Kamireddy, “Real-time systems modeling and analysis,” 2018,
arXiv:1811.10083.

D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comput. Program., vol. §, no. 3, pp. 231-274, Jun. 1987.

H. Giese and S. Burmester, ‘‘Real-time statechart semantics,” Universitit
Paderborn, Paderborn, Germany, Tech. Rep., tr-ri-03-239, 2003.

B. Lee and E. A. Lee, “Hierarchical concurrent finite state machines
in Ptolemy,” in Proc. Int. Conf. Appl. Concurrency Syst. Design, 1998,
pp. 34-40.

F. Vahid and T. D. Givadrdis, Embedded System Design: A Unified Hard-
ware/Software Introduction. Hoboken, NJ, USA: Wiley, 2002.

C. Ptolemaeus. (2014). System Design, Modeling, and Simulation using
Ptolemy II. [Online]. Available: http://ptolemy.org/books/Systems

F. Vahid, S. Narayan, and D. D. Gajski, “SpecCharts: A VHDL front-
end for embedded systems,” IEEE Trans. Comput.-Aided Design Integr.,
vol. 14, no. 6, pp. 694-706, Jun. 1995.

D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao, SPECC: Specifi-
cation Language and Methodology. Boston, MA, USA: Springer, 2000.
W. Wonham, K. Cai, and K. Rudie, “Supervisory control of discrete-
event systems: A brief history—1980-2015,” in Proc. IFAC World Congr.,
Toulouse, France, 2017, pp. 1791-1797.

C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems.
Boston, MA, USA: Springer, 2021.

P. C. Y. Chen and W. M. Wonham, “Real-time supervisory control of
a processor for non-preemptive execution of periodic tasks,” Real-Time
Syst., vol. 23, no. 3, pp. 183-208, 2002.

R. Devaraj, A. Sarkar, and S. Biswas, “‘Fault-tolerant scheduling of non-
preemptive periodic tasks using SCT of timed DES on uniprocessor sys-
tems,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 9315-9320, Jul. 2017.

R. Devaraj, A. Sarkar, and S. Biswas, ““Optimal work-conserving scheduler
synthesis for real-time sporadic tasks using supervisory control of timed
discrete-event systems,” J. Scheduling, vol. 24, no. 1, pp. 69-82, Feb. 2021.
R. Milner, Communication and Concurrency. Upper Saddle River, NJ,
USA: Prentice-Hall, 1989.

VOLUME 10, 2022

(33]

(34]

(35]

(36]

(37]

(38]

(39]

A.Burns and A. Wellings, Concurrent and Real-Time Programming in Ada
2005. Cambridge, U.K.: Cambridge Univ. Press, 2007.

B. O’Sullivan, J. Goerzen, and D. Stewart, Real World Haskell. Sebastopol,
CA, USA: O’Reilly Media, 2008.

R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The NUXMV symbolic model
checker,” in Computer Aided Verification (Lecture Notes in Computer
Science), vol. 8559. Cham, Switzerland: Springer, 2014, pp. 334-342.

H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “CADP 2011: A toolbox
for the construction and analysis of distributed processes,” Int. J. Softw.
Tools Technol. Transf., vol. 15, no. 2, pp. 89-107, Apr. 2013.

M. Szpyrka, P. Matyasik, R. Mréwka, and L. Kotulski, “Formal descrip-
tion of Alvis language with a® system layer,” Fundamenta Informaticae,
vol. 129, nos. 1-2, pp. 161-176, 2014.

A. Silberschatz, P. Gavlin, and G. Gagne, Operating System Concepts.
Hoboken, NJ, USA: Wiley, 2009.

M. Szpyrka, P. Matyasik, M. Wypych, J. Biernacki, and
L. Podolski. (2017). Alvis Modelling Language. [Online]. Available:
http://alvis.kis.agh.edu.pl

MARCIN SZPYRKA (Senior Member, IEEE) is
a Full Professor with the Department of Applied
Computer Science, AGH University of Science
and Technology, Krakéw, Poland. He is a Leader of
the Alvis Project. He has authored over 140 publi-
cations in the domains of formal methods, software
engineering, knowledge engineering, and data sci-
ence. His research interests include the theory
of concurrency, systems security, and functional
programming.

JAROSEAW BANIEWICZ received the Ph.D.
degree from the Department of Applied Com-
puter Science, AGH University of Science and
Technology, Krakéw, Poland. His research inter-
ests include the theory of concurrency, algorithms
(including parallel algorithms), and the process of
creating and managing the IT projects in Agile
methodologies.

ANDREI KARATKEVICH is a Professor with the
Department of Applied Computer Science, AGH
University of Science and Technology, Krakéw,
Poland. He has authored over 100 publications in
the domains of petri nets, control systems, and
formal verification. His research interests include
the theory of concurrency, algorithms (including
parallel algorithms), and formal methods.

104189

http://dx.doi.org/10.1080/00207543.2016.1235804
http://dx.doi.org/10.1007/978-3-319-10575-8_29

