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ABSTRACT The design factors of anchor boxes, such as shape, placement, and target assignment policy,
greatly influence the performance and latency of the 3D object detectors. Unlike image-based 2D anchors,
3D anchors must be placed in a 3D space and determined differently for each class of different sizes. This
imposes a significant burden on the design complexity. To tackle this issue, various studies have been
conducted on how to set the anchor form. However, for practical reasons, anchor-based methods select
the anchor design by compromising between performance and latency. Consequently, only objects that are
similar in shape and size to an anchor can obtain high accuracy. In this paper, we propose a Mixture-Density-
based 3D Object Detection (MD3D) in point clouds to predict the distribution of 3D bounding boxes using
a Gaussian Mixture Model (GMM). With an anchor-free detection head, MD3D requires few hand-crafted
design factors and eliminates the inefficiency of separating the regression channel for each class, and thus
offering both latency and memory benefits. MD3D is designed to utilize various types of feature encoding;
therfore, it can be applied flexibly by replacing only the detection head of the existing detectors. Experimental
results on the KITTI and Waymo open datasets show that the proposed method outperforms its counterparts
that are based on the conventional anchor-based detection head in its overall performance, latency, and
memory. The code is publicly available at https://github.com/sky77764/MD3D

INDEX TERMS Autonomous vehicles, object detection, visual perception.

I. INTRODUCTION
Recently, the industrial demand for autonomous vehicles and
robotics technology is increasing rapidly. With this rising
demand, various sensors, such as monocular cameras, stereo
cameras, light detection and ranging(LiDAR), and solid-state
LiDAR, have been developed to capture the world’s 3D
spatial information in data. LiDAR enables more accurate
and sophisticated distance measurements than other sensors,
hence it has been widely used for the development of 3D
object detection methods.

Raw point clouds obtained by LiDAR sensors have noisy
sparse representation with an imbalance sampling problem,
which causes many occluded surfaces to be without any
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points. Therefore, methods have been devised to compensate
for the weaknesses of point clouds at various levels. Several
methods have been proposed to enhance the performance of
object detectors at the input level [1], [2]. At the feature level,
there are various representation forms, such as raw points [3],
[4], [5], [6], voxels [7], [8], [9], [10], graphs [11], and their
hybrids [12], [13], [14]. Two streams of works based on the
presence or absence of anchor boxes have been proposed
at a higher level. The former is known as an anchor-based
method [7], [10], [12], [13], [15], [16], and the latter is an
anchor-free method [5], [17], [18], [19], [20], [21].

The existing 3D object detectors have mostly adopted
anchor-based detection methods. In this study, we present
the anchor or anchor box as a set of predefined 3D boxes
for each object class by using the scale and aspect ratio of
the class. Anchors are tiled across the scene (gray boxes in
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FIGURE 1. Problems caused by hand-crafting factors of anchor boxes. (a) shows the BEV of a point cloud with the equally spaced anchors and ground
truth (GT) boxes of the car class. The values under each GT represent the maximum IoU with anchors. Most cars have average sizes that match the anchor
well, so the IoU value exceeds the foreground threshold (blue). However, some cars far from the average may not exceed the threshold (red). (b) shows
the IoU value with the best-matched anchor box for all GT boxes in KITTI-train data. The farther the size of the GT box is from the mean size (0), the lower
the maximum IoU of the box. Dotted lines represent foreground IoU thresholds for each class. If the maximum IoU of a GT box does not exceed the
threshold, at least one anchor box with the highest IoU value is forced to be assigned for each GT. (c) the average number of assigned anchors for each GT
box size group. It shows how the number of anchors assigned to foregrounds varies by class and size.

Fig. 1 (a)), and anchor-based detectors detect target objects
by predicting offsets from nearby anchors for each class.
However, anchor-based detectors suffer from a fatal problem;
they must predefine many anchor-related hyper-parameters:
1) anchor size, 2) anchor direction, 3) stride that determines
anchor placement, and 4) target assignment policy. Each
of these factors dominantly influences the performance and
latency of the detectors. Thus, theymust be defined separately
for each class.

Existing anchor-based methods usually set their default
anchor size as the average of all ground truth (GT) bounding
boxes with 0 and 90 degrees rotations. Unifying the anchor
size as a representative value, i.e., the average size of objects
in the training data, would be a good compromise in the
trade-off between speed and performance. However, objects
with significant deviations from the default anchor size
inevitably tend to be overlooked. Another hyper-parameter
that biases a detector is the stride between neighboring
anchors. The spatial dimensions of the last feature map
determine the anchor stride. For example, in the KITTI
dataset [22], a typical compact detector has a 200× 176 fea-
ture map; the anchor-to-anchor interval is about 0.4m, which
is relatively narrow for large objects such as Car. Con-
trastingly, for small objects, such as Pedestrian and Cyclist,
it is too wide to cover all GTs. Accordingly, the IoU value
between an anchor and a GT varies significantly for each
object class, and hence the foreground threshold is inevitably
set differently for each class. In addition, calculating the IoU
in a 3D space can result in extremely low IoU values, leading
to multiple placements of anchors on the z-axis (vertical
direction). To mitigate this problem, conventional methods
ignore the z-axis using Bird’s Eye View (BEV) 2D IoU.

Fig. 1 shows the problems caused by hand-crafting factors
in the anchor-based detection methods in detail. Notably,

the average number of assigned anchors for Car with an
extreme size (XS in (c)) is much smaller than the average-
sized Car. Consequently, outlier objects with extreme sizes
show low recognition rates compared to objects within the
normal range because of an insufficient number of assigned
anchors. Moreover, regardless of the GT box size, the number
of foreground anchors for Car is overwhelmingly larger than
those for the other two classes. This is because the strides
of the anchors cannot be assigned differently for each class.
A relatively larger stride for Pedestrian and Cyclist is likely
to cause the objects belonging to these classes to be unable to
match with any of the anchor boxes. Therefore, an unsuitable
anchor box with a low IoU value, which is also the highest
among the other anchor boxes, is forcibly assigned to avoid
the zero assignment. Through this, it can be pointed out that it
is not the number of GT boxes or other biases in the training
data but the inherent structural limitations of the anchor-based
detection methods that severely affect the inferior detection
performance of Pedestrian and Cyclist.

Our proposed Mixture Density network for 3D Object
Detector (MD3D) is amethod of estimating the distribution of
3D bounding boxes in point clouds with a Gaussian Mixture
Model (GMM), which is free from the problems experienced
by anchor-based detectors mentioned above. Another signifi-
cant merit of the MD3D is that it is free from the discrepancy
between classification and regression loss. Most 3D object
detectors use the focal loss [23] for a classification loss to
adjust their weights according to the estimation accuracy,
allowing them to learn well about data with fewer samples.
By contrast, regression loss treats the anchors assigned as
the foreground equally. Therefore, with typical regression
loss, it is inevitable that classes whose GT box shapes are
concentrated close to themean, i.e.,Cars in theKITTI dataset,
have superior performance. Our MD3D estimates the 3D
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bounding box in a distribution form throughout the scenes
without any process of assigning the GT during regression
learning and without distinguishing classes or box sizes.
Thus, it can reduce heuristic design factors and cover a wider
variety of data samples. The contributions of this study are
as follows.

• Among point-cloud-based 3D object detectors, we first
propose an anchor-free detection method that estimates
the density of bounding boxes and no longer requires a
heuristic ground truth assignment.

• Our proposed MD3D is applicable to any type of point
cloud feature encoding methods that enables it to be
plugged and played easily to the existing detectors.

• MD3D shows superior performance and latency com-
pared to the existing detection heads and facilitates
learning by minimizing hand-crafted design factors.

II. RELATED WORK
A. 3D OBJECT DETECTION IN POINT CLOUDS
As point clouds provide accurate geometric scene infor-
mation, point cloud-based methods have achieved high
performance in 3D object detection. However, the inherent
properties of irregular and sparse point clouds impose diffi-
culties in data processing. Therefore, various forms of point
cloud representations have been proposed. SECOND [7]
groups the point clouds into voxels and utilizes spatially
sparse convolution, thereby reducing the computational bur-
den of the 3D convolution. PointPillars [15] encodes point
clouds into stacked pillars and operated all processes with
only 2D convolutions, removing the bottleneck of 3D convo-
lutions. PointRCNN [5] directly learns representations from
raw point clouds using PointNet++ [3], [4] as a backbone
network and generates bounding box proposals efficiently
by taking advantage of point segmentation, which provided
a powerful clue to 3D object detection. VoteNet [24] also
uses PointNet++ as a backbone and detects objects using
a deep Hough voting method. PV-RCNN [12] utilizes both
voxel-based and point-based operations to encodemulti-scale
features and provide accurate location information efficiently.
A graph method is adpoted in [25] to detect objects.

The latest point-cloud-based methods compensate for the
limitations of the existing detectors and significantly improve
the accuracy and latency. Focal sparse convolution [26] pre-
dicts the importance of features in performing sparse con-
volution and selectively computes high importance features.
IA-SSD [27] reduces the computational overhead of raw
point-based detectors by using a learnable downsampling
strategy. SST [28] improves the detection accuracy by intro-
ducing a single-stride backbone network that utilizes trans-
former blocks. Although the latest works have improved
many aspects of the existing detectors, most have focused on
improving the backbone structure.

Most anchor-free 3D object detectors [17], [18], [19], [20],
[21] use a classification method based on heatmap estima-
tion, which is primarily adopted in 2D object detection [29],

[30], [31]; hence, they can only be used for 2D-projected
features. In addition, the heatmap-based heads still havemany
hand-crafted design factors, such as, the Gaussian radius
of the heatmap and the foreground assignment policy for
regression. Because the proposed method does not require a
GT assignment policy for regression, the design factors can
be significantly reduced. There is no restriction on the input
features, so the proposed method can be flexibly applied to
various types of point cloud features.

B. MIXTURE DENSITY NETWORKS IN COMPUTER VISION
Originally, MDN [32] was proposed to predict a continuous
quantity under uncertainty. The MDN has recently attracted
considerable attention, especially in object detection tasks
because capturing uncertainties and coping with mislocal-
ization have become critical issues. He et al. [33] measured
the uncertainties of bounding boxes to deal with challenging
cases, such as occlusion, while Feng et al. [34] extended it to
LiDAR 3D vehicle detection. The MDN was also utilized to
model the multi-modal nature of object detection and human
pose estimation [35], and to address active learning for object
detection [36].

We address the problem of complex anchor design that
restricts both performance and latency in 3D object detec-
tion and apply MDN to overcome this limitation. This study
is inspired by MDOD [37], which reformulated the 2D
object detection task as a density estimation problem, and it
reduced the complex processing and heuristics in the training.
We extend their works to the 3D object detection task and
improve the existing detectors in a plug-and-play manner
with a flexible detection head that is compatible with any
representation of point clouds. Unlike images, point clouds
have various feature forms (BEV, FV, voxel, point, etc.). The
proposed MD3D can be flexibly applied to these different
types of features and easily replace the detection heads of
existing detectors.

III. METHOD
A. MODELING POINT-CLOUD-BASED 3D OBJECT
DETECTION WITH MIXTURE DENSITY NETWORK
In point cloud-based 3D object detection, the input point
cloud can be expressed as L ∈ RN×4 (3D coordinates and
reflectance), and the position, size, and direction of an object
can be expressed as a 3D bounding box B ∈ RNgt×7. Here,
N represents the number of points in the scene, and Ngt is
the number of GT boxes. To regress object B from input L,
we estimate the conditional probability distribution p(B|L).

A mixture density network (MDN) [32] is a neural net-
work, whose target is to learn the probability density function
(pdf).We appliedMDN to point cloud-based 3D object detec-
tion to predict the distribution of multiple bounding boxes
for a given scene (point cloud), and estimate the target 3D
bounding box B for the input point cloud L as a mixture
model. We use the conventional GMM as the target pdf,
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FIGURE 2. The overall architecture of MD3D. Regardless of the encoding types and feature forms, MD3D is applicable to existing detectors
in a plug-and-play manner. MD3D predicts the mixture parameters φ, µ, and σ2 from a regression branch which compose the distribution
of multiple bounding boxes for a given point cloud. A classification branch predicts class probability p for each class c ∈ [Nc ].

which can be expressed as:

p(B|L) =
K∑
k=1

φk ×N (B|µk , 6k ) (1)

N (B|µk , 6k ) =
exp

(
−

1
2 (B− µk )

>6−1k (B− µk )
)

√
(2π )7|6k |

(2)

where K is the number of mixture components, which is
determined by the spatial resolution of the BEV feature or the
number of point features N , and φk is the mixing coefficient.
For the efficiency of the model, we assume that each element
of µk ∈ R7 is independent and the covariance matrix is
diagonal, that is, 6k = diag(σ 2

k ) where σ
2
k ∈ R7, rather than

dealing with a full covariance matrix 6k ∈ R7×7.
B is composed of the center position, box dimension, and

yaw angle, so Borigin = {xc, yc, zc, l,w, h, θ}. We encode
the Borigin as Bcorner = {Cflt ,Cbrb,w} ∈ R7, which consists
of the front-left-top corner Cflt = {x, y, z}flt , the back-right-
bottom corner Cbrb = {x, y, z}brb, and width w. Among the
various ways to encode bounding box B, encoding it with
two opposite corners and width can result in a more accurate
regression for the bounding box. This can be attributed to the
nature of the point clouds obtained by LiDAR, in which the
points are not in the center of an object but are concentrated in
one corner. The corner on the hindside without points can be
easily regressed using peripheral point features owing to the

symmetry of the target object. As part of the post-processing,
we decode the Bcorner back to the Borigin.
Existing anchor-based regressionmethods learn severalB’s

separately in L, where each anchor’s design and matching
algorithm become critical elements in training. However,
because our method learns by representing the distribution
of multiple B’s as one mixture model with the conditional
distribution p(B|L), unnecessary heuristic design can be elim-
inated.

B. NETWORK ARCHITECTURE
The MD3D consists of a regression branch that predicts three
mixture parameters φk , µk , and σ 2

k for k ∈ [K ], and a
classification branch that predicts class probability p. The
backbone of the existing 3D object detectors, which encodes
the feature of a point cloud, remains unchanged. We apply
the MD3D to most commonly used forms of head features,
BEV-type features, and point-type features. Their structures
are shown in Fig. 2; MD3D can be applied to any form and
is compatible with many different methods of encoding point
cloud features.

The MD3D for BEV features has a structure similar to that
of MDOD [37], an MDN-based 2D object detector. The BEV
feature has the shape ofH×W×C , whereH ,W , andC repre-
sents the height, width, and number of channels, respectively.
Accordingly, the number of mixture components K becomes
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FIGURE 3. Illustration of corner regression. MD3D does not predict the
corners (Cflt and Cbrb) of bounding boxes directly but rather predicts the
offsets (1(x, y, z)flt and 1(x, y, z)brb) from Mxy or Mxyz , the center
coordinates of the BEV feature or point feature, respectively.

H × W , and the mixing coefficient φ ∈ RH×W×1 is forced
to satisfy

∑
k φk = 1, using softmax for the feature output.

As shown in Fig. 3 (a), µ ∈ RH×W×7 does not predict Bcorner
directly but predicts the offsets from the center coordinates of
each feature Mxy. For z and w, we use the raw output rather
than the offset. The process is formulated as follows:

µBEV = (Mx +1xflt ,My +1yflt , zflt ,

×Mx +1xbrb,My +1ybrb, zbrb,w). (3)

σ 2
∈ RH×W×7 predicts values greater than zero using

softplus activation. p ∈ RH×W×Nc predicts the classification
probability for each class using sigmoid activation, where
Nc denotes the number of classes which is set to 3 (Car,
Pedestrian, Cyclist) in our experiments.

Existing anchor-based regression methods use anchors
defined differently per class, and generally they use anchors
in the two directions of 0 and 90 degrees. Therefore, the
number of output boxes is H × W × Nc × 2, which is
Nc × 2 times higher than that of our MD3D. Consequently,
MD3D has advantages in terms of the number of parameters,
inference time, and post-processing time.

The MD3D for the point feature has some minor modifi-
cations from that of the BEV feature because the input shape
is slightly different. Because the point feature has the form
of N × C , where N is the number of points in a scene, the
number of mixture components becomes K = N . Accord-
ingly, it becomes φ ∈ RN×1, µ ∈ RN×7, σ 2

∈ RN×7, and
p ∈ RN×Nc . Furthermore, as shown in Fig. 3 (b), the reference
point Mxyz becomes the original (x, y, z) coordinates of the
point, and µ predicts an offset fromMxyz, except for w:

µpoint = (Mx +1xflt ,My +1yflt ,Mz +1zflt ,

×Mx +1xbrb,My +1ybrb,Mz +1zbrb,w).

(4)

At inference time, because the values ofµ are highly likely
to be close to the local maximum of the predicted GMM,
we use µ of each mixture component as an independent
output box. To improve the inference speed, σ 2 is not used
and φ is used to filter out unnecessary boxes. In addition,
the mixing coefficient φ is very low for the location where

no object exists, as in the example in the Fig. 2, hence many
output boxes can be filtered out. Then, using non-maximum
suppression (NMS), boxes in which p is the local maximum
are finally extracted.

C. LOSS FUNCTION
LMDN , the regression loss, is used to learn the GMM param-
eters φ,µ, and σ 2 with a negative log-likelihood as follows:

LMDN = −
1
Ngt

Ngt∑
n=1

log

(
K∑
k=1

φk ×N (Bn|µk , 6k )

)
. (5)

Here, Ngt is the number of GT bounding boxes in the scene.
For classification loss, we use the most commonly used

focal loss [23], as shown below:

Lfocal = −αt (1− pt )γ log(pt )

where pt =

{
p for foreground box
1−p otherwise.

(6)

Among the boxes predicted in the regression branch, when
the 3D IoU of a box exceeds 0.5, we assign it to the fore-
ground; otherwise, we assign it to the background. We use
αt = 0.25 and γ = 2.

The loss of the MD3D head is the sum of the MDN loss
and focal loss, as follows:

LMD3D = LMDN + β · Lfocal . (7)

For one-stage detectors, we use MD3D loss as a final loss,
and for two-stage detectors, we replace the region proposal
network (RPN) losswithMD3D loss because theMD3Dhead
is utilized in the RPN. We use β = 500.

IV. EXPERIMENT
A. DATASETS
We evaluated the proposed method on the KITTI dataset [22],
one of the most popular datasets for 3D object detection for
autonomous driving. It consists of 7,481 training samples
and 7,518 testing samples, where the training samples are
generally divided into train split with 3,712 samples and val
split with 3,769 samples. Because the KITTI dataset contains
only 90-degree annotation, we clipped the scenes into (0,
70.4)m, (−40, 40)m, and (−3, 1)m for the X, Y, and Z axis
ranges. We also experimented on a large-scale Waymo Open
dataset [38] to verify whether the performance of the MD3D
improved regardless of the data size. The Waymo dataset
includes 798 training sequences with approximately 160k
samples and 202 validation sequences with 40k samples.
Because of limited resources, we trained the models with
20% samples at regular intervals for each sequence, using a
total of 32k training samples. The Waymo dataset contains a
complete 360-degree annotation, and we clip the scenes into
(−75.2, 75.2)m, (−75.2, 75.2)m, and (−2, 4)m for the X, Y,
and Z axis ranges. We primarily focused on outdoor scene
datasets whose target objects are occlusion-free in the BEV.
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TABLE 1. Performance comparison on the KITTI-val set. The results were evaluated by the AP with 11 recall positions, and the average values of three
repeated experiments were reported for each AP.

TABLE 2. Performance comparison on the Waymo open dataset with 202 validation sequences.

B. EXPERIMENT SETTINGS
We conducted the experiments with the same factors as the
existing 3D object detectors, except that the detection head
was replaced with MD3D. Most of the configurations are
fromOpenPCDet [39], one of the most commonly used code-
bases for 3D object detection. The detailed network structures
of each detector are shown in Tables 7 and 8. The baseline
detectors may differ slightly in performance owing to the
gap between the settings of the original paper. As MD3D
is plugged and played with the existing detectors, the only
modification in the MD3D experimental setting is the detec-
tion head for one-stage detectors, and RPN head for two-stage
detectors.

C. RESULTS ON KITTI DATASET
As shown in Table 1, we conducted the KITTI-val dataset
experiment to compare the performance and speed of the
baselines, three anchor-based detectors, and two anchor-free
detectors. We mark ‘+MD3D’ when the proposed method,
MD3D, is applied. We calculated the average precision (AP)
by creating a precision-recall curve along with changes to
the confidence threshold and averaging the precision values
at 11 recall points. The IoU thresholds for 3D AP were set
to 0.7, 0.5, and 0.5 for Car, Pedestrian, and Cyclist, respec-
tively, and mAP is the mean 3D AP score for all classes.
Latency was measured as the total inference time, including
post-processing with a batch size of 1, using Titan RTX.

MD3D improves the performance of all anchor-based
detectors for most classes and difficulty levels. In the case
of SECOND, a significant improvement was achieved in all

settings, especially in the Pedestrian and Cyclist classes. This
difference in performance gain arises from the difference in
the feature dimension size. Unlike PointPillars, which use
248× 216 features, SECOND uses 200× 176-size features.
In other words, PointPillars has a lower anchor stride than
SECOND, so its anchor boxes have already been exces-
sively assigned as a foreground for even small-size GTs
of Pedestrian and Cyclist, which enables sufficient learning
for both classes at the cost of latency. As a result, even
if MD3D was applied, a significant performance improve-
ment would not be achieved. However, with a larger anchor
stride, SECOND assigns an average of 1.4 and 1.6 anchors
to Pedestrian and Cyclist, respectively, so they are not trained
sufficiently. Therefore, with MD3D learning a single GMM
regardless of the size of the object, SECOND + MD3D
significantly improves the performance for Pedestrian and
Cyclist compared to SECOND. The performance improve-
ment of PV-RCNN is marginal because MD3D is applied
only to the RPN of the first stage. Regardless of the precision,
in the RPN, the recall value increases with the increase in
number of proposal boxes. However, as can be seen in Fig. 7,
MD3D is more effective at removing false positives than the
existing head; therefore, the performance improvement of an
RPN head is insufficient.

The MD3D also shows superior performance and latency
compared to anchor-free detection heads. Compared to Cen-
terPoint [17], which uses a heatmap-based detection head and
regresses the bounding box with center coordinates, MD3D
significantly improves the performance for all classes and
reduces latency. This performance improvement is inherently
attributed to MD3D’s effective learning for small classes,
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FIGURE 4. Recalls on the KITTI-val set. MD3D offers a clear advantage in
predicting small objects, where only a limited number of anchor boxes
are assigned to the existing detectors.

such as Pedestrian and Cyclist, in addition to the change
of box encoding scheme from center to corner. The Gaus-
sian radius of the heatmap depends on the size of the GT
box; therefore, small objects are not sufficiently trained as
large ones. For another anchor-free detector, PointRCNN [5],
which is a two-stage detector that utilizes point features,
we replace only the regression branch with MD3D while
leaving the classification branch that performs foreground
segmentation in the RPN as it is. With this modification, the
mAP is increased slightly, and the latency was significantly
reduced. This shows that our MDN-based corner regression
offers an advantage over PointRCNN’s bin-based residual
regression. The latency of our method is significantly reduced
because unnecessary boxes are removed using φ before the
NMS. For both the training and inference phases, we keep the
top 512 proposals for refinement of the stage-2 sub-network.

D. RESULTS ON WAYMO OPEN DATASET
For the Waymo dataset, we report the AP and the average
precision weighted by heading (APH) of SECOND [7] with
and without the MD3D head, respectively. The AP was cal-
culated by averaging the precision values at 11 recall points
identically to that of the KITTI dataset. APH is calculated
similarly to AP but uses precision values weighting each true
positive by heading accuracy. We evaluated the models into
two difficulty levels: LEVEL 1 includes GT boxes with at
least five inside points, and LEVEL 2 includes GTs with at
least one inside point. As shown in Table 2, the proposed
MD3D improved the baseline at all levels and all classes.
Note that the MD3D leads to a significant gain in Pedestrian
and Cyclist classes, whose GTs are relatively small. This
verifies the advantages of the MD3D predicting bounding
boxes in a probabilistic and anchor-free manner.

E. ANALYZING RECALL BY OBJECT SIZE
As shown in Fig. 1, anchor-based detectors have an insuf-
ficient number of anchors assigned to the foreground for
extremely small objects. We measured recall by object size
to verify that the proposed method, not in the use of anchors,
could improve this inherent limitation. We used SECOND

FIGURE 5. Illustration of various box encoding methods. The Borigin
consists of the center coordinate (xc , yc , zc ), the dimension (l,w,h), and
the yaw angle θ . The Bcenter consists of the center coordinate (xc , yc , zc ),
the front-center coordinate (xfc , yfc ), and the dimension (w,h). We use
Bcorner consisting of the front-left-top corner Cflt = (xflt , yflt , zflt ), the
back-right-bottom corner Cbrb = (xbrb, ybrb, zbrb), and width w .

as the base model, and considered bounding boxes before
NMS to focus on the regression results. As shown in Fig. 4,
there is an improvement for XS-sized GT boxes in the Car
class, where the lack of assigned anchors has caused harm to
the performance of the existing detector. The improvement is
insignificant for other sizedCar boxes because the basemodel
has already assigned an excessive number of anchors to the
foreground. In addition, in Pedestrian and Cyclist classes, the
recall of GT with a size close to the average is already high
enough for the base model, so the increase is small; however,
for extremely small size cases, the increase is noticeably sig-
nificant. Therefore, the proposedMD3D can delicately detect
small objects compared to anchor-based detection heads.

F. ABLATION STUDY
1) BOX ENCODING METHODS
As shown in Fig. 5, we conducted an ablation study of the box
encoding method on the KITTI validation dataset with mod-
els applying MD3D to PointPillars. To better demonstrate
the performance of each box encoding method regarding the
headings of predicted boxes, we used the average orientation
similarity (AOS) metric, along with 3D AP, which assesses
cosine similarities between the angles of the estimated and
GT heading orientations. The results are presented in Table 3.
First, using the GT box in its original form, Borigin =
{xc, yc, zc, l,w, h, θ} results in a very low AOS AP and thus a
low 3D AP. This is because of discontinuous θ , which is the
same boxwhen the yaw angle θ is 0 and 2π , but the loss is cal-
culated differently. Therefore, we experimented with Bsincos,
which changes θ to a continuous value, (sin(θ), cos(θ )) ∈
R2, to avoid ambiguity. Both AOS and 3D AP have some
increases. Still, because sin(θ) and cos(θ ) aremutually depen-
dent and periodic, Bsincos is not entirely appropriate for our
GMM modeling, leaving room for improvement. Therefore
we devised a novel method of finding the front-center coordi-
nate value of the box, as shown in (b), to predict the box with-
out θ . This Bcenter = {xc, yc, zc, xfc, yfc,w, h} has a notable
improvement over the previous two approaches. In addition,
another variant method, Bcorner , predicting two corners with
w, yields the highest performance. This is because it is easy
to localize the corner of an object owing to the characteristics
of the point clouds obtained by LiDAR.
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TABLE 3. Comparison of box encoding methods.

FIGURE 6. Pdfs of the Gaussian, Cauchy, and laplace distributions.

TABLE 4. Comparison of probability distributions.

2) PROBABILITY DISTRIBUTIONS
InMD3D, it is essential to choose a proper probability density
function that fits the data characteristics of the input point
clouds and the output 3D bounding boxes, because it sub-
stantially impacts the model’s performance. We consider the
Laplace, Cauchy, and Gaussian distributions, which are sym-
metric and have the same number of parameters. We applied
them to PointPillars and SECOND baselines and compared
them to the KITTI-val dataset. As shown in Fig. 6, the shapes
of the three distributions differ in peak height and tail length.
The point clouds have sparse representations, implying that
the area occupied by actual points is very small compared
with the space of the entire area when voxelized. This makes
our MD3D have a considerable number of mixture compo-
nents because MD3D requires output for the entire feature
space. Therefore, the Gaussian distribution with the shortest
tail is the most suitable for MD3D because it can effectively
suppress the probability of boxes with high uncertainty from
unnecessary empty spaces. Table 4 also shows that the Gaus-
sian distribution was the most effective for both models.

3) THE NUMBER OF MIXTURE COMPONENTS
Table 1 shows that MD3D has a significant performance
improvement for detectors with smaller input feature dimen-
sion and therefore fewer anchors. To verify the effect of the
number of anchors and the number of mixture components
K , we set SECOND as the base model and compared the

TABLE 5. Effect of the number of mixture components.

TABLE 6. Effect of constraint on the covariance matrix. Assuming
independence between elements achieves relatively efficient and
effective results.

performance by adjusting the horizontal and vertical dimen-
sions of the input feature by 1/4, 1/2, and 2 times, respectively.
As shown in Table 5, anchors are placed separately in two
directions, 0 and 90 degrees for each class. Thereby, anchor-
based detectors output anchor boxes six times more than K ,
even for features of the same size. The anchor-based detector
with more anchors achieves higher performance in obtaining
better foreground GT assignments, whereas MD3D with an
unnecessarily large K tends to learn poorly and achieve lower
performance. However, comparing them in a small feature
dimension of 50 × 44, SECOND achieves a very low mAP
(50.10) despite predicting six times more boxes than MD3D
(64.86). SECOND needs to predict 200 × 176×6 boxes,
96 times more boxes than MD3D, to achieve similar per-
formance (67.28). Therefore, the performance of MD3D is
maximized when used in compact detectors.

4) COVARIANCE MATRIX
We modeled the point cloud-based 3D object detection with
the multivariate GMM using only the diagonal elements of a
covariance matrix rather than a full matrix. Training with a
full covariance matrix means that a detector learns the corre-
lation of the elements of Bcorner ∈ R7, whereas the diagonal
matrix does not. Table 6 presents the results of applying
these two methods to PointPillars. In the case of Pedestrian,
whose intraclass correlation is high because the objects share
similar shapes, the full covariance model achieves higher per-
formance. Except for Pedestrian, the models using only the
diagonal matrix outperformed those using the entire matrix.
Therefore, we decided to use only the diagonal elements of
the covariance matrix because it achieves a slightly better
mAP and uses half the number of parameters.

G. DISCUSSION
MD3D showed superior performance and latency regard-
less of the backbone network types and the use of anchors
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FIGURE 7. Qualitative results for the KITTI-val set. Green boxes indicate GT boxes, and blue boxes indicate predicted boxes with the
confidence of over 0.1. MD3D improves the existing detector regarding precision and recall, whereas the mixing coefficient φ efficiently
filters out unlikely boxes. We filtered out the predictions with φ

max(φ) < 0.001 before the NMS. We used SECOND with a 50× 44 feature
as the base model for this comparison.

TABLE 7. Detection heads. The structures and parameters of the original heads are the default settings of OpenPCDet [39]. The structures and parameters
of the MD3D BEV-heads (PointPillars, SECOND, PV-RCNN, and CenterPoint) follow the simplest original BEV head and the MD3D point-head (PointRCNN)
follows the original PointRCNN head. σ2 (dotted line) is not used in the inference phase.

(Tables 1 and 2). It is especially effective for one-stage
detectors, such as SECOND and CenterPoint, which out-
put relatively small feature maps (Table 5). The reason for

their dramatic increase in performance is the higher recall
than that of existing heads for small objects, such as Pedes-
trian and Cyclist (Fig. 4). However, MD3D has an advan-
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TABLE 8. Backbone network architectures. The backbone structures of SECOND(50× 44, 100× 88, and 400× 352) were designed by adding some sparse
convolution blocks or changing the stride parameters of the default structure of SECOND(200× 176). Other models used the default settings of
OpenPCDet [39].
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tage in terms of recall rather than precision (Fig. 7), the
performance improvement for two-stage detectors, such as
PV-RCNN and PointRCNN is marginal. In addition, MD3D
has advantages regarding the number of parameters and
latency because the box prediction channels are not separated
by class. However, because of the unified channel across
classes, the performance on datasets with many classes may
be limited, which we will attempt to overcome in the future
work.

V. CONCLUSION
Most of the existing point cloud-based 3D object detectors
apply a specific target assignment policy to the GT boxes
to regress 3D bounding boxes. Because this training method
needs to optimize many hand-crafted design factors, it takes
significant amount of effort to utilize and places many restric-
tions on the network structure. In this paper, we proposed
MD3D, which reformulates the regression of 3D bounding
boxes in point clouds as a density estimation problem. The
MD3D is easy to use and can be applied to various types
of feature encoding methods without considering the target
assignment policy and network structure. Experiments on the
KITTI and Waymo datasets show that the proposed method
outperforms conventional methods in terms of performance,
speed, ease of use, and flexibility. Although we only consid-
ered point clouds as inputs, theMD3D can be easily applied to
other various types of inputs. Furthermore, we expect MD3D
is utilized for multi-modal inputs by fusing the mixture den-
sity outputs.
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