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ABSTRACT As the working efficiency and life span of the shovel plate of a roadheader directly influence
its performance, optimization of the shovel-plate parameters is crucial. For optimizing the shovel-plate
parameters, the variations in the loading capacity and shovel grubbing force with respect to the shovel-
plate parameters are determined in this study. Moreover, the ideal point method and gray weight method are
proposed for multiobjective optimization. The gray weights of the loading capacity and shovel resistance are
determined by investigating existing molded products and through the gray decision method. Thereafter, the
particle swarm optimization (PSO) algorithm is applied for multiobjective optimization of the shovel-plate
parameters. Considering the EBZ230-type roadheader shovel plate as an example, parameter optimization
through multiobjective optimization decreases the mass of the shovel plate by 14.3% and the shovel resis-
tance by 7.3%, while increasing the loading capacity by 1.4%. To demonstrate the influence of optimization,
coal and rock excavationwith a shovel is simulated using the optimized parameters in anANSYS-Workbench
environment. The results indicate that the maximum stress at the front of the shovel plate decreases by
22.1%, minimum fatigue life increases by 139.6%, and minimum safety factor increases by 30.3%. The
obtained results establish that, in multiobjective optimization based on PSO, the ideal point method and gray
weight method optimize the shovel-plate parameters. This optimization can provide a theoretical basis and
reference values for the design of roadheader shovel plates and can be applied for multiobjective optimization
in engineering as well.

INDEX TERMS Multiobjective optimization, particle swarm algorithm, roadheader, shovel plate.

I. INTRODUCTION
According to the BP World Energy Statistical Yearbook and
BPWorld Energy Outlook 2021, over the following 20 years,
coal is expected to account for more than 25% of the global
primary energy consumption, with oil comprising the major
proportion [1]. Thus, coal will remain the primary energy
source in the foreseeable future [2]. China is currently the
largest coal producer and consumer. Due to energy structure
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restrictions and the demand for rapid development of the
national economy, the demand for coal is expected to increase
continuously. Although the coal mining and transportation
efficiencies are superior in China, the coal tunneling effi-
ciency is subject to a bottleneck that restricts the improvement
of coal outputs [3]. Cantilever roadheaders are generally used
for coal roadway excavations [4]. In July 2020, the high-
quality development guidance draft of the 14th five-year plan
by the China coal industry indicated that the degree of coal
mining and excavation mechanization was 90% and more
than 75%, respectively [5]. In December 2021, guidelines for
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safe and efficient coal mine construction in the 14th five-year
plan of the coal industry were issued, and it was noted that
advanced and applicable technologies and equipment should
be popularized. Moreover, it was suggested that automation
and intelligent construction should be promoted for the safe
deepening of small- and medium-sized coal mines and for
enhancing the efficiency of coal mines through mechanized
replacement and automated specialized tasks. By 2025, the
mechanization of coal mining and tunneling is expected to
reach 99% and an average of 90%, respectively [6].

The development of intelligent core technologies and
equipment is expected to increase. Moreover, the develop-
ment of intelligent mining technology and equipment suitable
for different conditions is anticipated, focusing on break-
throughs in applications such as intelligent, fully-mechanized
mining and rapid tunneling under complex conditions [7].
This indicates an improvement in the speed and quality of
roadway excavation; therefore, optimizing the performance
and improving the operational stability of the roadheader
is critical [8]. Wang established a dynamic model for the
transmission system of the cutting unit and analyzed the
torsional vibration characteristics of existing roadheaders [9].
Zhang analyzed the vibration of the roadheader rotary table
based on the finite element method and data from an under-
ground coal mine, where the control parameters could be
adjusted in real time [10]. Furthermore, the dynamic model
and control method were simulated in MATLAB, and the
control method was tested using a roadheader control exper-
iment system [11]; the designed control system satisfied the
control requirements. Shen proposed an error compensation
method based on the vibration characteristics of the road-
header to further analyze the angular and linear vibration
of the fuselage [12]. Experimental results revealed that the
proposed error compensation algorithm could eliminate the
influence of angular and linear vibration on the measurement
accuracy. Ji established kinematic and dynamic models for
the roadheader path rectification at low speeds and under
complex working conditions. The obstacle-crossing ability of
roadheaders was calculated in the course of path rectification
in modes based on the roadway conditions, in addition to
the crawler resistance and driving performance of the road-
header [13]. Liu highlighted the importance of improving the
ecoefficiency and production efficiency, which is coincident
with enterprise requirements [14]. Fang proposed principal
component analysis (PCA) andmultiobjective particle swarm
optimization (MPSO) algorithms to improve the analysis
speed and accuracy of posture deviation; a parallel dynamic
co-operative optimization (PDCO) strategy was incorporated
to accurately adjust posture deviations [15]. Liu proposed
the use of an improved particle swarm optimization (PSO)
algorithm to efficiently optimize the remanufacturing value
of waste parts [16].

Although improvements in roadheader performance, such
as those in the cutting stability and walking reliability, have
been researched extensively, studies on roadheader shovel
plates remain limited. The shovel plate is one of the main

working parts of the roadheader, and its working efficiency
and life span directly influence the roadheader performance.
Therefore, optimization of the shovel-plate parameters is
critical for improving the overall performance of the road-
header [17]. Shovel plate parameters optimization are multi
- objective optimization problems. Many scholars have used
intelligent algorithms to deal with multi - objective optimiza-
tion problems and have achieved great results. Ulu builded
orientation optimization algorithm, and demonstrated their
method on a variety of 3D models and validate it by 3D print-
ing [18]. Moore and Venayagamoorthy proposed a quantum
PSO for combinational logic circuits [19].Mikki andKishk21
proposed a quantum PSO algorithm for optimizing electro-
magnetism problems [20]. Zhang proposed a PSO algorithm
based on the mixture of priority and simulated annealing
sampling to handle the problem of hybrid assembly lines
[21]. Wei improved PSO based on a globally optimal leading-
particle-selection strategy with individual disturbance for
rolling schedule optimization of a five-stand tandem cold
mill [22].

In view of the above, this study performs multiobjective
optimization of the shovel-plate parameters for the opti-
mal design to improve the load capacity and reduce the
propulsive resistance of the shovel. The ideal point method
and gray weight are incorporated in the multiobjective opti-
mization [23], [24]. As the PSO has a high-convergence
speed, is simple to implement, and involves only a few
parameters that require adjustment [25]. Therefore, based
on the PSO algorithm, the ideal point method and gray
weight multiobjective processing method are adopted to
determine the optimal shovel-plate parameters. Furthermore,
the results before and after optimization are compared and
analyzed.

In this study, based on the particle swarm optimization
algorithm, the multi-objective processing method combining
ideal point method and gray weight is used to optimize the
shovel plate parameters, and the results before and after opti-
mization are compared and analyzed. Major contributions of
the study are outlined as follows:

1) This study developed a method combining the ideal
point method and gray weight method for constructing an
objective function for multiobjective optimization. In addi-
tion, a method for objectively determining the index weight
coefficient is provided. It can avoid the organization and
coordination of field experts and professionals to determine
the weight and can also overcome the ideal point method can
not reflect each the importance of the target function.

2) The above method is used to carry out multi-objective
optimization of shovel plate parameters. The optimization
results are obtained using PSO, and the results before and
after optimization are compared and analyzed.

The remainder of this paper is organized as follows:
Section II introduces the formulation method combining the
ideal point and gray weight for multiobjective optimization.
In Section III, the application of the method for multiobjec-
tive optimization of roadheader shovel-plate parameters is
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demonstrated. In Section IV, simulation analysis and com-
parative analysis before and after optimization are presented.

II. MATERIALS AND METHODS
A. METHOD FLOW
Multiobjective optimization is a critical process in scientific
research and engineering applications [26]. Most practical
engineering optimization problems are multiobjective ones.
Each objective function of a multiobjective optimization
problem is maximized or minimized. The dimensions and
significance of each objective function are entirely differ-
ent, resulting in complexity. Hence, it is necessary to unify
the goals of the objective functions, i.e., convert functions
that require maximization to those that require minimiza-
tion: max fi (X) = −min(fi (X)). Similarly, the inequality
constraint gi ≥ 0(i = 1, 2, . . . , k) can be converted to
gi (X) ≤ 0(i = 1, 2, . . . , k). Thus, any form of multiobjec-
tive optimization problem can be transformed into a unified
expression as follows [27]:

min f (X ) = (f1(X ), f2(X ), . . . , fr (X ))
s.t. gi(X ) ≤ 0, (i = 1, 2, . . . k)
hj(X ) = 0, (j = k + 1, . . . ,m)
xmin
i ≤ xi ≤ xmax

i , (i = 1, 2, . . . , n)

(1)

Optimization involves determining X∗ = (x∗1 , x
∗

2 , . . . , x
∗
n )

such that f (X∗) is optimal for a set of constraints. However,
in general, X∗ such that the objective functions are optimal
for all r do not exist. Therefore, different methods should
be adopted to handle multiobjective problems based on their
characteristics. Several methods are available for overcoming
this problem, such as transformation into single-objective
problems, which is common practice [28], [29], [30].The
most common way to deal with multiobjective optimization
problems is to transform them into single objectives [31],
[32], [33].

The underlying principle of the ideal point method is to
determine a point situated maximally close to the ideal point
under the guidance of modules. In general, the objective func-
tion is constructed using the modulo distance in Euclidean
space z = min

(∑r
i=1 (fi − f

∗
i

)2), where f ∗i is the ideal value
of each objective function under the constraint conditions.

The core idea of the linear weighting method is the
assignment of a non-negative weight coefficient accord-
ing to the importance of each objective function, wi ≥
0(i = 1, 2, . . . , r),

∑r
i=1 wi. These weighted objectives

are then added to construct an evaluation function z =
min(

∑r
i=1 wifi(x)).

Each objective function has a different physical meaning
and dimensionality in engineering practice, and the degree
of consideration is not uniform [34], [35]. The ideal point
method cannot be used to distinguish the importance of each
objective function [36], [37]. However, the simple linear
weighting method is excessively subjective, and it is diffi-
cult and expensive to organize and coordinate experts and
professionals in the field to ascertain the weights [38], [39].

FIGURE 1. Flowchart of proposed method.

In this study, an attempt was made to construct an objective
function for multiobjective optimization by combining the
ideal point method and gray weight (the weight of each
index is calculated using the gray relational degree theory)
to overcome the abovementioned shortcomings.

The multiobjective optimization processing function con-
structed based on the ideal point method and gray weight can
be expressed as follows:

min f (X ) = min(Wi

√√√√ r∑
i=1

(fi − f ∗i )
2)

s.t. gi(X ) ≤ 0, (i = 1, 2, . . . k)
hj(X ) = 0, (j = k + 1, . . . ,m)
xmin
i ≤ xi ≤ xmax

i , (i = 1, 2, . . . , n)
(2)

The flowchart for multiobjective optimization based on the
PSO combining the ideal point method and gray weight is
depicted in Fig. 1. The pseudocode [40] for the proposed PSO
combining the ideal point method and gray weight is detailed
in Algorithm 1.

Computational complexity is an important indicator to
measure algorithm efficiency [41], [42]. The complexity of
the proposed method combining the ideal point method and
gray weight PSO is as follows.

1) TIME COMPLEXITY
The initialization particle of the proposed ideal point method
and gray weight PSO has of complexity of O (N × Dim),
where N represents the particle size and Dim represents the
variable dimension. The calculated fitness value of the parti-
cle takes O (N × f × S) time, where f is the objective func-
tion that defines the problem, and S represents the maximum
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Algorithm 1 The PSO Combining the Ideal Point Method
and Gray Weight
Input: The population size N; accelerated factor c1, c2; iterative
algebra S;
Output: The best particle zbest and its fitness value fitnesszbest;

the best group gbest and its fitness value fitnessgbest
1: Initialize the population randomly
2: Combining the ideal point method and gray weight deal with the
individual target functions using Eq. (2)
3: Calculate the fitness value f of each particle fitnesszbest
4: Determine the particle optimum position zbest and the swarm
optimum position gbest
5: Update each particle using Eq. (10)
6: The particles generated in each iteration are checked by constraint
popmax and popmin (for ii= 1:sizepop;for jj=1:size(pop,2);if
pop(ii,jj)<popmin(jj);pop(ii,jj)=popmin(jj);end)
7: The new particles are produced again for
inspection(pop(j,:)=pop(j,:)+V(j,:));
8: Recalculated the fitness value of each particle fitnesszbest
9: Compare the fitness value of each particle(if fitness_Q(j) >
fitnessgbest(j); gbest(j,:) = pop(j,:); fitnessgbest(j) = fitness_Q(j);
end )
10: Update group optimal location(if fitness_Q(j) > fitnesszbest;
zbest =pop(j,:); fitnesszbest= fitness_Q(j);end)
11: End if
12: End while
13: Return gbest and fitnessgbest

number of iterations. In each iteration, it takes O (M) time to
find the current optimal solution. The total time complexity
of the ideal point method and gray weight PSO in the iteration
stage is O (M × S × N × f × Dim).

2) SPACE COMPLEXITY [43]
Initializing the particle can be regarded as the maximum
amount of space occupied by the ideal point method and gray
weight PSO at any time. Therefore, the space complexity of
the proposed algorithm is O (N × Dim).

B. GRAY WEIGHTS
Based on the gray relational degree theory, a method for
objectively determining the index weight coefficient is pro-
vided using the gray relational degree of the factor index,
as follows:

1) Obtain the initial data based on research and with refer-
ence to relevant literature.

2) Select the most critical factors influencing the scheme
as the mother index and denote the index value corresponding
to the parent index as X0 = (x10, x20, . . . xn0)T and a parent
sequence. Select the other factors as subindices. Thereafter,
the index value corresponding to the subindex is denoted as
Xj = (x1j, x2j, . . . xnj)T (j = 1, 2, . . . ,m) and a subsequence.
3) Initialize X0 and Xj and denote

x ′i0 = xi0/x10, x ′ij = xij/x1j

X ′0 = (x ′10, x
′

20, . . . x
′

n0)
T (3)

and X ′j = (x ′1j, x
′

2j, . . . x
′
nj)

T . The initialization index value
matrix is obtained as A = (X ′0,X

′
j ).

FIGURE 2. Schematic of shovel plate parameters.

FIGURE 3. Accumulation of coal and rock on shovel surface.

4) Thereafter, calculate the correlation coefficients rij of
Xj and X0 to construct correlation coefficient matrix R =
(rij)n×m.

rij =
min min
1≤i≤n1≤j≤m

∣∣∣x,ij − x,oj∣∣∣+ ρ max max
1≤i≤n1≤j≤m

∣∣∣x,ij − x,oj∣∣∣∣∣∣x,ij − x,oj∣∣∣+ ρ max max
1≤i≤n1≤j≤m

∣∣∣x,ij − x,oj∣∣∣ , (4)

where ρ(0 < ρ < 1) is the resolution coefficient, which is
generally set as 0.5, reducing the distortion and improving the
difference between the correlation coefficients.

5) Average the columns of matrix R as rj = 1
n

n∑
i=1

rij and rj

as follows:

Wj = rj/
m∑
j=1

rj, j = 1, 2, . . . ,m. (5)

Gray weightsW1,W2, . . .Wm are obtained for the indicators.

C. ESTABLISHMENT OF OPTIMAL MODEL FOR SHOVEL
PLATE
1) RELATIONSHIP BETWEEN LOADING CAPACITY AND
SHOVEL-PLATE PARAMETERS
Considering the amount of material that can enter the chute
of the first transport plane, the accumulation of coal rock, the
shovel-plate schematic (Fig.2), and the accumulation of coal
rock on the shovel-plate surface (Fig.3).

The accumulation of coal rock on the shovel surface can
be determined as follows:

Q =
πDηmn

2
(B+ 2D+ 2lxi − l)(2h+

D
4
tanβ)Kz, (6)
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where Q is the load capacity in cubic meters per minute
(m3/min), D is the outer-diameter of the star wheel in
meters (m), n is the star wheel speed in revolutions per
minute (r/min), B is the conveyor trough width in meters (m),
lxi is the gap between the outer-edge of the wheel claw and the
shovel plate in meters (m), l is the width of the shovel plate
in meters (m), H is the height of the wheel claw in meters
(m), β is the inclination angle of the shovel plate in degrees
(◦), KZ = 0.25 ∼ 1 is the loading coefficient, and ηm is the
motor efficiency.

2) RELATIONSHIP BETWEEN SHOVEL RESISTANCE AND
SHOVEL-PLATE PARAMETERS
Considering the material pushed by the shovel plate, in addi-
tion to the compression, fracture, shear resistance of coal and
rock and themigration resistance along the shovel surface, the
propulsive resistance can be calculated based on the material
[44] and ground mechanics [45], as follows:

Ft = 0.001ηc(l0δ0σn + µWt cos2(β + α)

+Wt sin(β + α) cos(β + α)

+
lhcτ 2

G
+
lδ0σ 2

e

E
+ µρkclAc cos2(β + α)), (7)

where Ft is the propulsive resistance in kilonewtons (kN),
δ0 is the front-end thickness of the shovel plate in meters (m),
l0 is the cutting length of the front-end of the shovel plate in
meters (m), σn is the equivalent compressive resistance of the
interaction between the shovel plate and extracted material in
megapascals (MPa), Wt is the weight of the material on the
shovel surface in newtons (N), µ is the friction coefficient
between the collected material and shovel surface, hc is the
insertion depth of the shovel loading material in meters (m),
τ is the shear stress of thematerial inmegapascals (MPa),G is
the shear modulus of the material (mainly coal and rock), E
is the bending modulus of the material, kc is the migration
length coefficient of the material, σw is the bending stress
of the material in megapascals (MPa), ρ is the density of
the material in kilograms per cube meter (kg/m3), α is the
inclination angle of the shovel-plate hinge with the ground in
degrees (◦), Ac is the sectional area of the material in square
meters (m2), and ηc is the mechanical efficiency.

3) CONSTRAINTS ON SHOVEL-PLATE PARAMETERS
According to the shovel-plate working characteristics, struc-
tural characteristics, and the actual working conditions shown
in Fig. 4, the shovel-plate parameters can be expressed as
follows: 

L0 ≤ l ≤ L
l − 2D− 2lxi > 0
lztanβ ≥ lq

tan(β + arctan
lx
l2
) ≤ µ.

(8)

where L0 is the lateral width of the track along the displace-
ment direction in meters (m), L is the maximum width for

FIGURE 4. Shovel-plate working characteristics.

cutting in meters (m), lz is the distance between the centerline
of the star wheel drive and the front-end of the shovel plate
in meters (m), Iq is the thickness of the star wheel drive
in meters (m), lx is the maximum undercover amount of
the shovel-plate in meters (m), and l2 is the length of the
shovel-plate in meters (m).

Based on a combination of the ideal point method and the
gray weight multiobjective processing method, for increasing
the loading capacity and reducing the drag shovel, the result-
ing multiobjective optimization model can be expressed as
follows:

min f (X) = min(W1 ×

√
(Ft − F∗t )2

+W2 ×
√
(−Q+ Q∗)2)

L0 ≤ l ≤ L
l − 2D− 2lxi > 0
lztanβ ≥ lq

tan(β + arctan
lx
l2
) ≤ µ.

(9)

III. APPLICATION
A. PARAMETER DETERMINATION OF PARTICLE SWARM
OPTIMIZATION ALGORITHM
Particle swarm optimization is based on the simulation of the
foraging patterns of birds and the determination of the opti-
mal global solution according to the current optimal solution.
In PSO, each individual is referred to as a ‘‘particle’’ and
represents a potential solution. We assumed a d-dimensional
search space with a population of N particles, where Xi =
(xi,1, xi,2, . . . , xi,d ) and vi = (vi,1, vi,2, . . . , vi,d ) are the
d-dimensional position and velocity vector of the i− th parti-
cle, respectively. For evaluating the fitness value of each par-
ticle, the optimal position (pbest) pi = (pi,1, pi,2, . . . , pi,d )
of each particle in the t-th iteration is determined, and the
optimal position (gbest)pg = (pg,1, pg,2, . . . , pg,d in the
group is elucidated. In each iteration, the particle updates its
speed and position according to (10):

vi,j(t + 1) = wkvi,j(t)+ c1r1[pi,j − xi,j(t)]

+ c2r2[pg,j − xi,j(t)]

× xi,j(t + 1) = xi,j(t)+ vi,j(t), j = 1, . . . , d .

(10)

VOLUME 10, 2022 104559



Q. Li et al.: Multiobjective Optimization of Roadheader Shovel-Plate Parameters Using Gray Weight and PSO

The meaning and value of each parameter in the for-
mula and PSO are based on previous research [28] and are
determined as follows: accelerated factor c1 = c2 = 2,
population size N = 20, and iterative algebra S = 100. The
maximum speed vmax is limited by the range of the parameter
values, i.e., vimax = ximax − ximin. The inertia factor w is
dynamic and decreases linearly, i.e.,w (t) = wmin+

wmax−wmin
N

(N-t). The obtained maximum and minimum inertia factors
are wmax = 0.9 and wmin = 0.4; r1 and r2 are random
numbers in the set [0,1]; pi = (pi,1, pi,2, . . . , pi,d ) are the cur-
rent optimal individual positions of each generation particle,
and pg = (pg,1, pg,2, . . . , pg,d ) are the current optimal global
positions of each generation population.

Optimization is performed iteratively according to the
following process. The population is randomly initialized.
Thereafter, the fitness value of each particle is calculated,
and pbest and gbest are determined. Each particle is then
adopted according to (7). The fitness values of each particle
are recalculated and compared. If the current target value is
superior to the previous one, it is used as the updated value.
All the current pbest and gbest are compared, and gbest is
updated. If the termination condition is satisfied, the algo-
rithm is terminated and the output is optimized; otherwise,
the iteration and update are continued.

B. DETERMINATION OF THE IDEAL POINT OF A
SINGLE-OBJECTIVE FUNCTION
We considered the EBZ230 roadheader in this study, with
basic parameters of B = 0.62 m, D = 1.52 m, ηm = 0.87,
ηc = 0.85 and n = 33 r/min. Considering that β and l are
the most important factors affecting the loading capacity and
resistance of the shovel plate and are the most concerned
factors of the shovel plate designer, they were selected as
design variables. Based on the literature [30], the values of
other parameters in Equations (6) to (7) can be determined.
Based on the PSO and under the constraints of (8), at l =
3.14 m and β = 19.32◦, the ideal loading capacity is Q∗ =
4.19 m3/min. Moreover, at l = 3.1732 m and β = 14.6◦, the
ideal shovel resistance is F∗t = 4.14 kN. TheQ∗ and F∗t were
obtained through single-objective optimization. The calcula-
tion of Q∗ and F∗t are consistent with the optimal solution
calculation of the multiobjective function constructed below
and are, therefore, not detailed further in this manuscript. The
change diagram between the functions (6) and (7) with β and
l are shown in Fig. 5.

C. DETERMINATION THE GRAY WEIGHT OF THE SHOVEL
RESISTANCE AND LOADING CAPACITY
By visiting several domestic manufacturers of large road-
headers and the associated components, and with reference to
relevant information, the parameter values of the shovel-plate
series were obtained. The shovel resistance and loading
capacity of the roadheader series were calculated according
to (6) and (7); these are listed in Table 1.

The shovel resistance and loading capacity data in Table 1
(The EBZ230 parameter is the optimization object and does

FIGURE 5. Diagram of relationship between loading capacity and
resistance with shovel plate parameters.
TABLE 1. Parameter values of existing shovel plates and calculated
shovel resistance and loading capacity.

not participate in this step) were denoted as A0. Moreover,
the shovel resistance was selected as the mother index and
the loading capacity was adopted as the subindex. The index
value that initializes matrixA and the correlation coefficient
matrix R can be obtained using (4). The columns of R can
be averaged to obtain r1 = 1 and r2 = 0.6371; the gray
weights of the shovel resistance and the loading capacity of
the roadheader were obtained as W1 = 0.61 and W2 = 0.39,
respectively, via substitution in (5).

D. MULTIOBJECTIVE OPTIMIZATION PROCESS AND
RESULTS
The corresponding parameter values [30], and W1 = 0.61,
W2 = 0.39, F∗t = 4.14 kN, and Q∗ = 4.19 m3/min were
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FIGURE 6. Optimization process.

substituted in the multiobjective function constructed based
on (6). The results are expressed by (11):

min f (X)=min(0.61×
√
(Ft − 4.14)2 + 0.39

×

√
(−Q+ 4.19)2)

3.14 < l < 6.3
14.5 < β < 19.32.

(11)

Based on PSO, the particle fitness value and iterative opti-
mization can be realized by considering (11) as the fitness
function and restricting the particle activity within the scope
of the constraint conditions. PSO algorithm can be applied
to constraint optimization problems by limiting the range of
particles and adding particle checking mechanism. The parti-
cles generated in each iteration are checked by the constraint;

FIGURE 7. Non-inferior solution accumulation regularity with the
optimization process.

the particles out of range are deleted, and the new particles
are produced again for inspection. The optimization process
is shown in Fig. 6 which shows that the objective function
reaches the optimum when the iteration reaches 100 genera-
tions. And the non-inferior Q and Ft solution accumulation
regularity with the optimization process is shown in Fig. 7
(the optimum particle in each generation of Q and Ft ).

Consistent with the optimization objectives, the load
capacity converges after gradually increasing, and the propul-
sive resistance gradually decreases until convergence to a
small value. Both Q and Ft are optimized. The non-inferior
solution distribution agrees with the overall optimization goal
of improving the load capacity and reducing the propulsive
resistance. The optimization trends are reasonable, indicating
the effectiveness of the PSO algorithm.

IV. RESULTS AND DISCUSSION
A. COMPARISON BEFORE AND AFTER OPTIMIZATION
The obtained optimal particle parameters l = 3.148 and
β = 16.48◦ were substituted in (6) and (7), and the three-
dimensional (3D) model of the shovel plate was established
to compare the shovel resistance, loading capacity, and plate
quality before and after optimization, as shown in Table 2.
To further facilitate comparison, Table 2 lists the optimization
results by single ideal point method and single gray weight
based on particle swarm optimization algorithm, and the
optimization results of genetic algorithm (GA) [46], [47]
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FIGURE 8. Roadheader shovel-plate stress nephogram before and after optimization.

TABLE 2. Comparison of EBZ230 Roadheader shovel parameters before and after optimization.

based on the combination of ideal point method and gray
weight. The optimization process is similar to the one detailed
above.

Table 2 shows that the ideal point method and gray
weight method for constructing an objective function for
multiobjective optimization can achieve better optimization
results and every goal has been optimized. The ideal-point

method is just a single goal to achieve the optimum. The sin-
gle gray weight ensures optimization of every goal, although
with a low degree of optimization. The combination of ideal
point method and gray weight based on PSO and GA achieve
similar optimization results, while the PSO is a slightly better.

With a change in the shovel parameters after optimiza-
tion, the mass of the shovel plate decreases by 14.3%, the
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FIGURE 9. Roadheader shovel-plate fatigue life nephogram before and after optimization.

TABLE 3. Key mechanical properties of Q345.

propulsive resistance decreases by 7.3%, and the load capac-
ity increases by 1.4%.

To analyze the mechanical properties of the shovel plate
in the ANSYS-Workbench environment, propulsive coal rock
with the shovel plate before and after optimization was simu-
lated at the maximum propulsive resistance. The actual mate-
rial used for the shovel plate is Q345. And the keymechanical
properties of the Q345 is given in table 3.

The mean-stress theory used in the ANSYS fatigue tool
is Goodman theory. The stress, fatigue life, and safety factor
nephograms of the shovel-plate before and after optimization
are shown in Figs. 8–10, respectively.

Fig. 8 displays the stress nephogram before and after
optimization. Before and after optimization, the position of
the maximum stress area did not change, which was in the
middle position of the front section of the shovel plate. After

optimization, the area with large force is larger than that
before optimization, which means that the stress is more
uniform. After optimization, some forces are evenly loaded
to the rear of the shovel plate (the wathet blue part in the
FIG. 8), which shows that the bearing design of the shovel
plate is more reasonable. The maximum stress at the front of
the shovel plate before and after optimization is 257.5 MPa
and 200.5MPa, respectively, which corresponds to a decrease
of 22.1%.

Fig. 9 presents the fatigue life nephogram before and after
optimization. The fatigue life danger area after optimiza-
tion is smaller than that before optimization (colored area
in Fig. 9). The minimum fatigue life of the shovel plate
before and after optimization is 1.06 × 104 and 2.54 × 104,
respectively, which corresponds to an increase of 139.6%.

Fig. 10 depicts the safety factor nephogram before and
after optimization. After optimization, the safety area of the
shovel plate becomes more uniform than that before opti-
mization (green and yellow parts in Fig. 10), which also
shows that the load bearing design of the shovel plate is more
reasonable. The minimum safety factor of the shovel plate
before and after optimization is 0.33 and 0.43, respectively,
which corresponds to an increase of 30.3%.
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FIGURE 10. Roadheader shovel-plate safety factor nephogram before and after optimization.

After optimization, the loading capacity improves, the
shovel resistance and mass reduce, and the mechanical prop-
erties are enhanced. These results indicate improvement
in the EBZ230 roadheader shovel plate, previously mass-
produced without optimization. The abovementioned find-
ings demonstrate the potential for enhancement through
optimization of previously manufactured roadheader shovels.

B. APPLICATION PROSPECTS
As previously mentioned, multiobjective optimization is a
critical aspect of scientific research and engineering practice
[48]. On the one hand, traditional methods for solving multi-
objective problems including the constraintmethod, weighted
combination method, and goal programming method require
considerable prior knowledge and experience. In addition,
they are only effective for specific problems, and cannot
yield satisfactory results [49]. On the other hand, in engi-
neering practice, each objective function has a different
physical meaning and dimensionality, and the degree of
consideration is not consistent; thus, the importance of each
objective function cannot be distinguished based on the ideal
point method [50]. Moreover, the simple linear weighting
method is excessively subjective, complex, expensive, and
difficult to implement, as experts and professionals in the
field are required to determine the weights [51].

This study developed a method combining the ideal point
method and gray weight method for constructing an objective
function for multiobjective optimization.

The advantages of the proposed method as follows: 1) The
importance of each objective function is considered, and the
weight of each objective function can be determined without
the need for organizational domain experts, which can reduce
organizational costs and realize multiobjective optimization
more rapidly and conveniently. 2) It can also overcome the
problem of the ideal point method not being able to reflect
the importance of each objective function.

The limitations of the proposed method are as follows:
1) The data on existing series of products is required for
determination of gray weight. 2) Gray weights need to be
calculated by the method and process described in this
paper, which is not yet integrated with the optimization
algorithm.

The proposed method was successfully applied for the
multiobjective optimization of the shovel-plate parameters of
a roadheader, and a significant degree of optimization was
realized. Themethod and application process can be extended
to the multiobjective optimization design of other devices
as well. The proposed method is applicable to other types
of machines and is particularly suitable for multiobjective
structure optimization.
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V. CONCLUSION
To optimize the roadheader shovel-plate parameters, we pro-
posed the ideal point method and gray weighting for mul-
tiobjective optimization. We performed simulation analyses
and compared the excavation of coal rock with a shovel plate
before and after optimization. The study can be summarized
as follows:

1) This study developed a method combining the ideal
point method and gray weight method for constructing an
objective function for multiobjective optimization.Moreover,
a method for objectively determining the index weight coef-
ficient is provided.

2) The gray weights of the loading capacity and shovel
resistance were determined as W1 = 0.6108 and W2 =

0.3892, respectively, by investigating the existing molded
products and objectively determining the index weight
coefficient.

3) A mathematical model of the loading capacity and
shovel grubbing force with the shovel-plate parameters was
established. Particle swarm optimization was used to opti-
mize the multiobjective parameters of the shovel plate. Con-
sidering the EBZ230-type roadheader shovel plate as an
example, the optimized scraper parameters through multiob-
jective optimization decreased the mass of the shovel plate by
14.3% and shovel resistance by 7.3%, while increasing the
loading capacity by 1.4%.

4) Coal and rock excavation before and after shovel-plate
optimization was simulated in an ANSYS-Workbench envi-
ronment. The simulation results indicated that the maximum
stress at the front of the shovel plate was 257.5 MPa and
200.2 MPa before and after optimization, respectively, cor-
responding to a decrease of 22.1%. The minimum fatigue life
was 1.06× 104 and 2.54×104 before and after optimization,
respectively, corresponding to an increase of 139.6%. More-
over, the minimum safety factor was 0.33 and 0.43 before and
after optimization, respectively, corresponding to an increase
of 30.3%.

The abovementioned results demonstrate that the method
combining the ideal point method and gray weight method
for constructing an objective function for multiobjective
optimization and with PSO optimizes the shovel-plate
parameters. The findings of this study can provide a spe-
cific theoretical basis and reference values for the design of
roadheader shovel plates and can serve as a reference for
multiobjective optimization problems in engineering.In this
study, the multiobjective optimization of roadheader shovel
plate was verified theoretically and through simulations. And
we hope that this method can be applied to more optimiza-
tion design of roadheader parts. We are working on other
applications such as cutting head optimization for shield
machines. The proposed method is applicable to other types
of machines and is particularly suitable for multiobjective
structure optimization.

However, to compare the theoretical and experimental
results remains to be addressed. Moreover, the sensitivity of
weight coefficient has not been analyzed. In future, we plan

to continue our experimental and theoretical comparative
studies, including sensitivity analysis of weight coefficient.
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