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ABSTRACT Facial expression recognition, as part of an affective computing system, usually relies on
solid performance metrics to be successful. These metrics depend significantly on the affective context
in which one evaluates this system. While presenting excellent performance on the dataset it was trained
on, a facial expression recognition model might drastically fail when one assesses it in a different scenario.
Such performance reduction occurs because most facial perception models rely on an extreme generalization
concept, focusing on a universal emotion perception system.With the recent findings on the non-universality
of emotional perception, generalization of facial encoders seems not to be the optimal path to take. Therefore,
exploiting transfer learning toward adapting specific facial features to specific scenarios could address this
problem. This paper proposes and investigates a Spatial Transformer Plugin (STN) to rearrange different
facial encoders towards particular affective representations from different scenarios. We experiment with our
model in eight different facial expression recognition datasets (AffectNet and the derived MaskedAffectNet,
OMG-Emotion, FERPlus, ElderReact, EmoReact, FABOand JAFFE datasets) and obtain competitive perfor-
mance with much less training effort than state-of-the-art models. Besides performance alone, we introduce
the STN as a mechanism towards a non-universal emotional perception system and discuss how it rearranges
learned perception features to address some specific characteristics of each investigated dataset.

INDEX TERMS Affective computing, facial expression recognition, neural networks, transfer learning.

I. INTRODUCTION
One of the key factors in understanding the lack of adapt-
ability in current automatic facial expression recognition
systems comes from the categorization of affect itself. For
a long time, the concept of a universal understanding of
emotions [26] guided the development of facial expression
recognition (FER) systems. The notion that any person in the
world can identify one out of six basic emotions indepen-
dently of their cultural background made the task of labelling
and categorizing facial expressions easier [72]. This led to a
plethora of artificial systems trained and validated over these
predefined concepts. Even affect categorization specializa-
tions, such as the popular dimensional arousal and valence
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models [46], continue to rely on generalizing affect to claim
great performance on emotion expression recognition. This
has become even more evident in a recent publication by
Coen et al. [22] where researchers analysed the presence of
predefined affective expressions over millions of YouTube
videos from all over the world. However, as discussed by
Lisa Feldman [29], Coen et al. trained and evaluated their
automatic perception model based on a set of predefined
and unchangeable emotional concepts, leading their neural
network to classify what it was trained to do: sixteen known
emotional expressions. The ability of such models to recog-
nize affect from any given scenario is therefore restricted by
similar scenarios with which the neural network was trained.

The problem of adaptability is more evident when one
deploys these models in real-world scenarios, such as the
recent applications in social robots [69]. Usually, their
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evaluation in cross-dataset experiments (which simulate their
application in different scenarios), tends to decrease the FER
performance drastically if it is not followed by a computation-
ally heavy fine-tuning or readaptation routine [58]. In most
cases, the cause of this lack of adaptability is usually men-
tioned as different input characteristics and pre-processing,
or label distribution. In reality, the problem could lie in the
task itself. Recent findings on affect categorization show that
emotion perception might not be as universal as we have been
led to believe [39], [40], [45].

These recent investigations discuss how interpreting affect
comes directly from our world understanding; each person,
based on one’s expertise, has a certain way of expressing
and recognizing affect [35]. In other words, every person
sees and understands affect differently, and we adapt and
converge towards a known interpretation while interacting.
Each carries our affective perception world in this regard:
unique and constantly updating.

Translating this view into affective computing, specifically
in the development of heavily supervised learning models,
we hypothesize that the general understanding of how a facial
expression can be categorized is represented by the labelling
procedure. Whoever chooses the labels of a dataset is giving
to that specific contextual scenario (i.e., all the data samples
that compose the dataset) a unique understanding of affect.
One must interpret training and evaluating a model in such
a dataset that can achieve amazing performances by consid-
ering it within the dataset’s own constrained characteristics,
in particular by considering the labelling decision.

In this study, we address the problem of adapting facial
expression recognition by proposing a spatial transformer
network (Face-STN) plugin layer that is trained to specify
high-level affective features of given facial encoders. Dif-
ferent from traditional fine-tuning and transfer learning, our
proposed model is a light-weight neural layer that can be
trained with very little effort to improve facial expression
recognition. Our Face-STN leverages from visual transform-
ers capability to learn specific characteristics of visual rep-
resentations [31], [60], but focused on learning the specific
affective characteristics of each evaluated scenario.

We evaluate our Face-STN model on specifying the fea-
ture representations learned by three different encoders:
the strongly supervised FaceChannel [6],the semi-supervised
PK, a Generative Adversarial Network [7] that learns facial
representations based on self-supervised image reconstruc-
tion, and a Contrastive Predictive Coding Network [65]
that learns representations by contrasting the specific facial
characteristics present on images from the same affective
category.

To help us represent different scenarios and therefore eval-
uate our model in different affective scenarios, we use 8 dif-
ferent datasets in all our experiments. First, we run a baseline
scenario for transfer learning and fine-tuning, training the
encoders on the one million images drawn from the internet
presence on the AffectNet dataset [61]. We then evaluate
how our model compares with traditional transfer learning

in seven different scenarios: The monologues and individu-
alized expressions from the OMG-Emotion dataset [5], the
internet-crawled images labelled with an affective distribu-
tion on the FERPlus dataset [10], the Elder React dataset [56]
with recordings of elderly persons, the EmoReact dataset [64]
with facial expressions from children, the images from FABO
dataset which are composed of acted facial expressions [33],
and the Japanese-woman-only expressions from the JAFFE
dataset [54]. To investigate a constrained interaction scenario
with partial facial expressions, we recently presented a ver-
sion of the AffectNet dataset where all the images have facial
masks added, calling it MaskedAffectNet [9].

To provide a complete understanding of the impact of our
Face-STN plugin, we also run a feature analysis that com-
pares the learned representations of each encoder in different
transfer learning scenarios and when trained with the plugin.
We discuss how our solution compares to existing state-of-
the-art results in terms of FER performance for each of these
datasets, and how our approach leverages the non-universal
affective perception theory to provide a competitive FER
solution in most of the evaluated scenarios. Our results show
that different from what is believed, training these mod-
els with more data would achieve better feature recombi-
nation and decision boundary for each specific task. Doing
so would not lead to better feature representation, which
directly impacts stagnation of the performance observed
when applying full-network fine-tuning. Our dataset-specific
models achieve competitive performance when compared
with complex models, validating our investigation on bias-
ing facial features towards specific tasks. We proceed with
an in-depth discussion, through facial features visualization,
on how the differences in deep learned facial expressions rely
mostly on the dataset chosen to train and evaluate the model,
representing a specific task. We conclude by connecting
our observations with the non-universal expressions theory,
by exemplifying the impact that each affective scenario has
on learning emotional representations, and that to have an
artificial system able to deal with different scenarios, it is
necessary to have fast readaptation on a decision-making
level.

Our paper is organized as follows: in the next section
(Section II), we introduce our related work and situate
the reader about the facial expression adaptability problem;
In Section III, we introduce the encoders and detail their
implementation, the Face-STN model and all its training and
updating mechanisms are proposed; Section IV describe our
evaluation and experimental effort, followed by Section V,
which exhibits all our results. We discuss our findings in
Section VI, and finally conclude the paper in Section VII.

II. RELATED WORK AND IMPORTANT ARGUMENTS
To separate facial representation from affect understanding
is somehow intuitive, and in fact has been addressed by
several solutions in the past [13], [24]. Most of these have
taken this path due to technological limitations. Once con-
volutional neural networks became a universal solution for
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data representation, researchers began giving most of their
attention to end-to-end learning of facial expressions [38].
In this section, we present our view on how end-to-end affec-
tive perception goes against the concept of non-universality
of emotion representation, and thus, presents a limitation on
automatic facial expression recognition. We also consider
how the current solutions that claim adaptability and transfer
learning do not address the problem properly – they provide
a shallow layer as a solution instead of dealing with the root
of the problem.

A. THE GENERAL END-TO-END AFFECTIVE PERCEPTION
Most of the current state-of-the-art solutions for automatic
facial expression recognition (FER) claim to have addressed
the problem of global FER by approaching maximum gen-
eralization [8], [49], [63]. The majority of these approaches
deploy the computational power of artificial neural networks,
boosted by data-driven deep learning of faces. The modus
operandi of these solutions is to use millions of examples
to tune these networks to extract specific facial features that
represent and categorize affect. Unfortunately, the learned
facial features are biased owing to the very specific scenarios
represented by the datasets on which these models are trained
and validated. In most of these models, the learned features
are comparable with existing human-made modelling such
as the Facial Action Units [21], [25], [27]. Coupled with a
case-specific good performance, these Units are being per-
ceived as good candidates for a general facial representation
system.

The problem these models face when deployed in different
or socially constrained scenarios appears when combining
these representations into affective categories [51]. Most of
these models, mostly for commodity and data availability,
categorize affect using standard representations, whether by
means of a strict set of categories or dimensional plea-
sure/arousal/dominance scales. They are not only sensitive
to representing only the facial features that are present on
the training data, but they are also sensitive to categorizing
such features based on given affective labels. Such labels are
usually obtained using a transitive bias of giving instructions
based on constrained options: the already specified set of cat-
egories, or the predefined boundaries for dimensional scales.
The generalization aspects of the trained model are bounded
to the capability of the labelling procedures.

B. THE RELATION BETWEEN FACES AND
CONVOLUTIONAL-BASED RECOGNITION MODELS
If one is to minimize the bias from a pretrained model
for affective categorization by providing a computationally
light and effective adaptation mechanism, focusing on the
representation of facial structures, we could increase the
adaptability of affective recognition models in different sce-
narios. Faces change little. The position of eyes, mouth, and
cheeks will be always relatively close to each other [78].
Their representations, different from an affective category,
are universal [28], [78]. A healthy person will detect

FIGURE 1. Facial features are differently exposed when expressing affect
while using a mask.

different facial structures [75] even on non-facial images [42],
leading them to be easy to identify and adapt. This is the
case for most facially constrained interactions, like when
participants use facial masks.Most current convolution-based
emotion expression recognition solutions (the most common
ones) already rely on a general facial representation [51],
even if implicitly learned by strongly supervised end-to-end
learning. Once we can present a soft separation between
these facial representations and the affective categorization,
it would be much easier to recombine their meaning into a
unique world understanding of affective category.

C. THE ARGUMENT OF ADAPTABILITY
When deployed in scenarios that are different from the ones
for which models were tuned, most recent affective per-
ception models present difficulty to perform and even to
adapt, given that deep neural networks are known to require
extreme resources and data-hungry [80]. These models are
thus extremely biased towards their application, and they are
most often difficult to adapt to specific scenarios [73].Models
without a popular interest and those that do not provide large
amounts of available or labeled data are underrepresented
world views. One of these scenarios, now in strong evidence
given the COVID-19 pandemic, is when social interactions
are constrained using personal protective equipment such as
facial masks. As most of these neural networks learn how
to recognize affect based on a collection of facial features,
when some of these features are absent, which is the case
when using a mask (illustrated by Figure 1), these models
tend to fail [2]. This effect is also observable, albeit on a
smaller scale, in humans. However, due to our capability
of changing the way we recognize emotions when seem a
partially covered face [57], [76], we learn to compensate
much better than any deep learning system.

D. THE CURRENT PROBLEMS ON PERSONALIZING
AFFECT
The models that get closer to the concept of a strong
separation between facial representation and affective
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under-standing are the ones that claim to provide personalize
perception. In these models, the affective concept usually is
specialized to a single individual, or a group of individuals
that share the same contextual background [67]. Such mod-
els generally rely on strong feature representation and on
mechanisms to specify features away from the initial affective
estimation [70]. Most current solutions focus more on an
auditory representation of affect [18], [19], [47]. Although
it may be easy to assume that this happens due to the avail-
ability of personal auditory information, the reality is other:
convolutional neural networks have become experts on image
representation, while still struggling to represent auditory
features, and specifically speech [53].Most convnets that deal
with speech are extremely complex, and not easily accessible
without access to very specific and powerful hardware [1].
Representing speech, and auditory signalling in general,
therefore typically occurs with traditional feature extractors
that hinder an end-to-end learning approach and facilitate a
strong separation between signal representation and affect
categorization.

When applied to facial expression recognition, the few
models that approach personalization focus on over-
specifying the learned features to unique persons [7], [20].
Recently, facial expression representation was attempted to
be separated from affective understanding [4], but the pro-
posed model relied on the unique world view of a specific
dataset to accomplish both feature representation and affec-
tive under-standing. Adapting it towards a universal feature
representation would demand retraining the entire neural
network, and thus, adaptability and representation transfer is
not feasible

III. BIASING FACIAL EXPRESSION REPRESENTATION
WITH THE FACE-STN
There exist many facial representation models, most of which
are based on convolutional neural networks (ConvNets).
Hierarchical representation of a ConvNet allows the repre-
sentation of facial features to emerge within the network
layers [14], [62]. The typical facial representation learned by
these networks resembles human-made Facial Action Units,
which measure different muscle movements to describe a
facial expression [43], [55].

Most of these models rely on explicit supervision, com-
ing in the form of a given label, to learn feature maps that
represent faces. This process specifies the features towards
that specific unique world, represented by the datasets and
associated labels that the model is trained with. Other solu-
tions focus on learning facial representations through implicit
supervision, such as in the case of convolutional auto-
encoders [68], [79], andmost recently Generative Adversarial
Networks [15], [52], [77].

Most of these solutions bias facial expression repre-
sentation models towards a unique affective world repre-
sentation both in the data distribution and presentation,
as well as in the labelling process. In this way, most of

these models remain very difficult to adapt towards a novel
scenario.

To perform a complete analysis of facial representation,
we investigate how different learning schemes contribute to
emerging facial representations. In this regard, we investi-
gate the FaceChannel [6], a ConvNet trained with explicit
labels; the Prior-Knowledge Generative Adversarial Network
(GAN), part of the P-AffMemory model [7], that learns facial
representations by identifying real and generated faces; and a
novel facial representation based on a Contrastive Predictive
Coding network [65], that learns to represent faces based on
reconstructing latent representation space itself. Each of these
models implements convolutional layers to highlight facial
features, and we are interested in investigating the similarities
of such features and how we may reuse them on different
affective worlds representation.

A. THE IMPACT OF EXPLICIT LABELS WITH THE
FaceChannel
The FaceChannel is a recently proposed convolutional neural
network with a light-weighted architecture that implements
inhibitory layers to improve facial expression representation.
It has a total of 2 million parameters, allowing it to be trained
from the scratch while making it easily adaptable to other
tasks. Our implementation of the FaceChannel has 10 convo-
lutional layers. The last of them is represented by a shunting
inhibitory layer [30] and 4 pooling layers. An inhibitory
neuron Sxync , present at position (x,y) of the nth receptive field
in the cth layer is defined as:

Sxync =
uxync

anc + I
xy
nc

(1)

where uxync is the activation function of the convolution unit,
in our case ReLu, and I xync is the activation of the inhibitory
units. The passive decay term anc is also updated during
training and is shared among each inhibitory filter.

When training, after the convolutional layers, the
FaceChannel implements a fully connected hidden layer
implementing a ReLu activation function. This layer is fol-
lowed by an output layer that implements the direct label
decision of the network. This involves a set of neurons
implementing a SoftMax activation for categorical classifi-
cation, or linear activation for a continuous and dimensional
representation of affect.

The convolutional layers of the FaceChannel demon-
strate the capability of learning different facial representa-
tions based on the dataset with which it was trained [6].
The changes are modulated directly from the output layer;
the facial representation reflects the labelling distribution
of the dataset with which the network is trained. In our
investigations, we are interested in understanding the strength
of this modulation, and how different the learned feature
representation is when training this model with faces col-
lected from different scenarios. Figure 2 illustrates the facial
representation layers of the FaceChannel.
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B. THE IMPACT OF A RECONSTRUCTION ERROR WITH
THE PRIOR-KNOWLEDGE GAN
The Prior-Knowledge (PK) is an autoencoder that learns
facial representations by applying an adversarial training
routine between real and generated faces. It implements a
controllable term that allows the change of affective charac-
teristics, in terms of continuous arousal and valence, to the
decoded faces. Besides the encoder and decoder/generator
architecture (E and G respectively), the PK also implements
three discriminators: the arousal/valence enforcer (Dem), the
discriminator that guides the latent representation to follow
a uniform distribution (Dprior ), and the adversarial discrim-
inator that ensures the decoded image contains the desired
affective information (Dreal). The PK receives an image (x)
and a continuous arousal/valence label (y) as an input and
produces a facial latent representation (z) as well as an edited
image expressing the chosen arousal/valence (xgen).
The encoder architecture (E) is implemented as four con-

volutional layers and one fully connected output layer struc-
ture. The decoder (G) implements the same structure, though
inverted. We do not apply pooling; we use a strided convo-
lution with an order of 2 to provide a dimensional reduction
and reduce the network’s number of trainable parameters. The
encoder represents an RGB image into a latent representa-
tion (z), then feeds it concatenated with the desired affective
label (y) to the decoder. The entire autoencoder is trained
with an image reconstruction loss (Lrec) using mean squared
error.

The affective information discriminator (Dem) guides the
encoder to learn facial representations. Recent experiments
show that, without this discriminator, the network learned
facial representations that did not carry affective content like
hair and eye colour [7]. It is implemented as two fully con-
nected hidden layers followed by two linear neurons: one for
arousal and one for valence. It is trained using amean-squared
error loss (Lem).

The uniform distribution discriminator (Dprior ) enforces
the latent facial representation (z) to be uniformly distributed.
It showed to be important to increase the generalization of the
model, and to help on the imposition of the affective features
within the latent representation [7]. It implements four fully-
connected layers, and it is trained using an adversarial loss
(minE maxDz Lprior) between the original distribution of z
and an artificial uniform distribution pprior (z).
Finally, the last discriminator (Dreal) imposes the photore-

alistic characteristics and enforces that the affective labels (y)
are present on the generated images. It implements four con-
volutional layers, which receive the generated image (xgen),
followed by two fully connected layers. Each of the convo-
lutional layers also receives the desired affective informa-
tion (y), to enforce that it is present on the generated image.
This discriminator is trained using an adversarial loss that
implements a mean-squared error on the original image and
the generated one (minGmaxDimg Limg).
Previous experiments with the PK demonstrated that gen-

erated images carried affective information, but did not

maintain the personal identity [7]. To solve this, we imple-
mented a identity-preserving loss (minE,G Liden) on the recon-
structed image. This loss is computed between the original
image and the generated one by using the mean-squared error
from the last layer representations from a pretrained VGG
face [16] encoder.

As is typical for GANS, the PK is quite a sensitive model to
be trained, and the impact of each of these losses was defined
based on a grid-search focused on minimizing a total loss:

min
E,G

max
Dz,Dimg

Ltotal = λ1Lrec + λ2Lem + λ3Liden

+ λ4Lz + λ5Limg (2)

The coefficients λ1, λ2, λ3, λ4 and λ4 served as a balance
between each discriminator. Figure 3 illustrates the final
architecture of the PK with all the parameters.

C. THE IMPACT OF LATENT REPRESENTATION
PREDICTION WITH CPC
Contrastive Predictive Coding (CPC) [65] is a recent
self-supervised model that learns to predict the entangled
representations of sequences of input stimuli using auto-
regression. It applies a contrastive InfoNCE loss [65] to
enforce data representation which maximizes the reconstruc-
tion of future stimuli. For that, it uses an encoder (E) to learn
the representation of an image (i) from a sequence (T ) of
observed stimuli (xi) and outputs a latent state (zx = E(xi)),
and an autoregressive neural network (A) that integrates
a sequence of latent representations (w <= T ) into a
temporally-contextual latent representation (Cw = A(zw) ).
This context representation is then used to predict the next
element on the sequence (xk ).
Differently from traditional generative models, which

focus on learning a representation that is useful to generate
or reconstruct the original stimuli, CPC focuses on encod-
ing information that is present on the data sequence. For
that, it predicts future stimuli by modeling a log-bilinear
model of a density ratio (fk ) between the perceived stimuli
sequence (xw) and the contextual latent representation (Cw):

fk (xi + xk ,Cw) = exp(zi+kT WkCt ) (3)

where WkCt is a linear transformation used for the predic-
tion of the next element in the sequence. The entire net-
work is trained to optimize (fk ) by distinguishing the density
ratio between positive and negative samples. Thus, the CPC
model learns in a self-supervised manner, estimating the
labels directly from the density ratio. As we are interested
on learning affective information from the facial expressions,
we create positive and negative examples directly from the
training data distribution, by clustering samples from the
same categorical, or dimensional, representation into positive
samples.

We implement our encoder as a series of convolutional lay-
ers, and the autoregressor as a GRUnetwork. The entire archi-
tecture, with the detailed parameters, is illustrated in Figure 4.
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FIGURE 2. FaceChannel architecture used to learn facial expression representations using an explict supervision.

FIGURE 3. PK network with all four discriminators used to enforce a
high-fidelity image editing.

Because the learning of the representations in a CPC net-
work is made directly on the latent representations them-
selves, it does not require many training epochs, neither many
examples, as demonstrated by its recent applications in the
representation of phonemes [36] and EEG signals [3].

D. THE FACE-STN
One of the most common strategies when adapting facial
expression recognition towards different scenarios is to
retrain, entirely or partially, a neural network such as any
of the three models we introduced in the last section. This
enforces that the affective information, from both facial repre-
sentation and emotional categorization, is somehow depicted
by both the convolutional channels and the decision-making
layers. The problem when readapting this network towards
a novel scenario, is that both the facial representation and
the decision-making layers carry an inductive bias from the
dataset the model was originally trained with. So, if the new
scenario carries any similarity with the originally trained
dataset, the tendency is that the emotion recognition perfor-
mance improves; however, when the scenario is very differ-
ent, a new and expensive training scheme is usually necessary
to achieve a good performance. In doing so, we also change
the entire affective representation present on the network and
make it less probable to deal with other scenarios.

Spatial Transformer Networks (STNs) have recently been
used to learn specific facial characteristics that help on

FIGURE 4. Architecture of the Contrastive Predictive Coding (CPC)
network used in our experiments.

emotion expression recognition on specific datasets [31],
[60]. An STN relies on a localization convolutional neural
network that learns specific image transformation parame-
ters, biased by the strongly supervised learning. For faces,
making an STN learn different affine transformations can
help it to identify specific geometrical characteristics of faces,
which might be unique for each dataset.

Our Face-STN is composed of a set of convolutional layers,
usually referred to as localization network (L), and receives as
input feature maps (Fi) from the convolutional encoder. Often
STNs process the input image, but as faces do not change
much, and the convolutional channels of the encoders are
known to depict facial information, having it applied directly
to the feature maps allows us to recombine the learned facial
features to deal with the characteristics of a specific dataset.
Also, this allows the training of the Face-STN with less data,
as it has to learn useful transformations based on already
processed input stimuli, and not on the raw image. The
Face-STN has as a role to learn the parameters Tθ to perform
the affine transformations on the feature maps. After the set
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FIGURE 5. Proposed architecture of the Spatial Transformer Network
(Face-STN) Plugin.

of convolutional layers of the Face-STN, a grid generator (G)
is used, to apply the transformations into different patches of
the feature maps. A bilinear sampling kernel [41] (S) sampler
is used to select transformations from the grid generator and
use them as an additional input to the decision-making of
the encoder. Our Face-STN is then trained in a supervised
manner, together with the decision-making of each of the
encoders.

As the Face-STN is applicable to any convolutional con-
nection to the encoder network, we conducted an exploratory
experiment to identify where we want to apply it. The results
of this experiment show us that using the feature maps from
the last channel of each encoder as input to the Face-STN
allowed the best ratio between the number of training param-
eters and the performance of the network. As such, we illus-
trate the final Face-STN architecture in Figure 5.

IV. EVALUATING THE LEARNED FACIAL
REPRESENTATIONS AND ADAPTATION
MECHANISMS
In our evaluations, we want first to investigate the role of
traditional fine-tuning and transfer learning mechanisms on
learning affective information from faces. Second, we want
to evaluate the impact of the Face-STN on biasing the deep
visual representations towards affective information. And
finally, we want to contrast all these approaches, in objective
performance terms, but also on visualizing learned represen-
tations.

We have divided our experiments into three settings: first,
we run a baseline study to establish the best architectural
design of each proposed encoder. We do this by training,
evaluating, and fine-tuning them using the AffectNet dataset.
Our second experimental setting consists of investigating the
capability of each facial encoder to represent the unique char-
acteristics of each dataset and to evaluate if the learned repre-
sentations can be transferred from one affective to another,
with traditional transfer learning and fine-tuning methods.
For that, we contrast four training routines: first, we train
the entire encoder and the decision-making layer (All lay-
ers). Second, we train the last-convolutional layer of the
encoder and the decision-making layer (Last Conv-Layer).
Third, we train only the decision-making layer (Decision-
Making) and fourth we train the entire network from the
scratch (Scratch).

We then attach the Face-STN plugin to each encoder,
and train them, together with the decision-layer, with all
the datasets. This way we can compare the impact of the
Face-STN alone with all the other fine-tuning and transfer
learning routines. Besides our baseline investigations, we also
compare our performance results with existing state-of-the-
art models for each dataset. This allows us to evaluate the
overall performance of our proposed model, and its impact
on the field of facial expression recognition.

For each setting, we propose and explain a series of exper-
iments in the following writeup. We also present specific
metrics for each dataset. Each of the used datasets has a
unique characteristic, either regarding the image selection
and processing, or the affect representation, or both.

A. UNIQUE AFFECTIVE DATASETS
Each of the datasets we use in our experiments (illustrated
in Figure 6) has specific characteristics which include image
selection and processing, labelling strategy, and data distribu-
tion. We also derive a unique decision-making layer for each,
illustrated in Figure 13. We individually optimized these as
described in our Appendix A. The decision-making layers are
connected to the encoder of each model to provide the best
performance. The sessions below present each dataset, their
unique characteristics, and information about how they were
evaluated.

AffectNet [61] is our main baseline and comparison point.
It has over 1 million images drawn from the internet,with half
of them manually annotated using mechanical Turk. Each
image has a single label based on a continuous arousal and
valence value. It provides a specific training and validation
subset, and we use the concordance correlation coefficient
(CCC) [48] for arousal and valence between the models’
predictions and the true labels as a performance metric. The
images of the AffectNet are centred and are provided as
cropped faces. This enforces the encoders to learn facial
representations from a large variance of faces, but with a
very predictable facial structure, which together with good
data distribution, contributes to it mostly be used to train
facial expression encoders for other tasks [51]. The labels,
although crawled from the internet, were collected based
on given concepts of arousal and valence, and thus follow
a very specific rule, which makes it possible to be used
for benchmarking automatic facial expression recognition
models. A simple decision-making layer, composed of fully
connected units, and two linear output heads, one for arousal
and one for valence, provided the best results for in our
exploratory experiments.

The FER+ [10] dataset contains around 31, 000 grey-
scaled face images crawled from the internet. Each image has
a small resolution, of 48× 48, and has a centred and cropped
face. To label the images, a crowd-sourced strategy was used,
where each labeller was given one out of seven affective
categories to choose from: Angry, Disgust, Fear, Happy, Sad,
Surprise, and Neutral. The authors obtained 10 labellers per
image and provide the final label as a distribution of the
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FIGURE 6. Examples of all the datasets used in our experiments.

10 votes. This means that each image is labeled using a
composition of the given 7 concepts. The decision-making
layer for the FER+ is also based on a fully connected layer
but followed by a single SoftMax output.We use the provided
train, test, and validation separations in our experiments, and
use the accuracy over all the classes as our main performance
metric.

The JAFFE [54] dataset contains 213 images from
10 Japanese women performing facial expressions. Each per-
son was asked to perform 3 times each of the seven desired
expressions (Angry, Disgust, Fear, Happy, Sad, Surprise, and
Neutral), and a series of independent Japanese evaluators
gave the images a label, to validate the expressions, however,
each of these evaluators was given a set of adjectives to be
identified in each image, heavily biasing the categorization
of the images. The images are presented centralized and in
greyscale, and given the dataset size and the reduced amount

of training images, this dataset will help us to evaluate a
very specific scenario. In our experiments, we follow the
proposed evaluation scheme of leave-one-emotion-out and
calculate the models’ accuracy. The decision-making layer
for this dataset is also composed of a fully connected layer
followed by a SoftMax layer, to provide a one-hot-encoding
classification.

TheMaskedAffectNet [9] dataset represents a constrained
interaction scenario. It is composed of the same images of the
AffectNet dataset, but with the artificial addition of a facial
mask. The mask is added in a postprocessing scheme that
finds the facial points of the mouth. It then uses a geometrical
transformation on a standard face mask image and fixes the
mask on top of the mouth. The results closely resemble
mask-use in a real-world environment.

The OMG-Emotion [5] dataset contains around 10 hours
of recordings from persons performing monologues. Each of
the 675 videos has a single person and contains about one
minute in length. The study collected the videos from the web
and they were manually annotated by an internet crowd using
an arousal and valence scale. This dataset contains a very
specific world representation, as each video has a unique per-
son expressing a continually changing emotional behaviour
across a certain topic, so there exists a gradual transition of
expressions. The labelling process, although developed from
different persons, is based on utterances. This means that a
sequence of frames represents the entire labelling scheme,
instead of relying on facial expressions alone. Benchmark-
ing facial expression recognition models with this dataset is
challenging, as the individual and unique components of how
each person expresses emotions are present on the video.
The dataset is available in the form of video files, and we
pre-process them by cropping faces using the OpenCV face
localizer [12]. The authors propose a specific training and val-
idation separation, and we use CCC per arousal and valence
as a main performance metric. The decision-making layer is
composed of a GRU layer to process sequences, followed by a
fully-connected layer and two linear outputs – one for arousal
and one for valence.

The ElderReact [56] dataset has 1,323 videos of
46 elderly individuals, all collected from the internet. Each
video contains one person naturally expressing emotions.
Each video has a few seconds of length and is annotated
with the presence of absence of seven affective states: Uncer-
tainty, Excitement, Happiness, Surprise, Disgust, Fear, and
Frustration. Each video has eight binary labels, one for each
affective state. We process each video by cropping the face,
using the OpenCV face localizer [12], and training themodels
using sequential decision-making. Like the OMG-Emotion,
we use a GRU layer, followed by a fully connected layer and
a SoftMax output layer for each affective state. The dataset
authors provide specific training/validation separation that
we use in our experiments.We calculate the F1-score between
all the affective states as our main performance.

The EmoReact [64] dataset is similar to the ElderReact
in construction and labeling proceeding but is composed of
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FIGURE 7. Decision making layers of all networks investigated in our experiments. For each evaluated
dataset, we implement, optmize and experiment with an individual decision making layer.

videos from children. A total of 1200 videos are available,
all of them with a few seconds, and annotated using the same
categories present on the ElderReact. Also for this dataset,
we use the same sequential decision-making, composed of
one GRU, one fully-connected, and one softmax layer per
affective category. We use the available training/validation
separation in our experiments.

The FABO [33] dataset is our last experimental scenario.
It contains short videos of actors performing expressions by
request. The dataset has a total of 284 videos, each containing
2 to 4 executions of the same expression. Each execution
starts from a neutral position followed by the facial expres-
sion apex. There is then a return to the neutral position.
Each video is labeled using one out of 9 expressions (Anger,
Anxiety, Boredom, Disgust, Fear, Happiness, Puzzlement,
Sadness, and Surprise) associated with the apex of each
video. We process each video by extracting the face using
the OpenCV face localizer [12], then feed the apex of each
sequence to a sequential decision-making layer with the same
structure as the EmoReact and ElderReact models.We use the
given training and validation sets and calculate the accuracy
as our main performance metric.

B. EVALUATION METRICS
The AffectNet, MaskedAffectNet, FER+, EmoReact, Elder-
React, and OMG-Emotion datasets have a standard sepa-
ration between training and validation samples, which we
follow in all our experiments. The JAFFE evaluation follows
a leave-one-emotion-out classification scheme, which is the
most common evaluation metric in the literature. The FABO
dataset follows this as well.

The AffectNet, MaskedAffectNet, and the OMG-Emotion
datasets are evaluated in terms of concordance correla-
tion coefficient (CCC) [48] for both arousal and valence
representations. The CCC is computed as:

CCC =
2ρσxσy

σ 2
x + σ

2
y + (µx − µy)2

(4)

where µx and µy represent the mean for model predictions
and the annotations and σ 2

x and σ 2
y , are the corresponding

variances. ρ is Pearson’s Correlation Coefficient between
model prediction labels and the annotations.

The FER+, JAFFE, and FABO datasets use accuracy
as the main performance metric, while the EmoReact and
ElderReact datasets use the F1-Score averaged per emotional
category.

We ran each of our experiments 30 times, and we calcu-
lated the average performance, exhibiting it herein. We pre-
trained each of the models with the AffectNet dataset, and
the facial expression encoders are then used as input to the
decision-making layers. The final performance of eachmodel
is calculated using a combination of the facial encoder and
decision-making.

V. RESULTS
A. AffectNet BASELINE
Our first experimental setting calculates the performance of
each model when fully trained with the AffectNet dataset.
Figure 8 reports the final performance. The FaceChannel
shows slightly better performance on valence, reaching a
CCC of 0.46, while the CPC encoder achieves the best arousal
with 0.63. In general terms, the performance of all three
encoders was similar, showing that all three encoders do learn
efficient facial expression representations.

B. FACIAL REPRESENTATION PERFORMANCE
The entire experimental result for the MaskedAffectNet and
OMG-Emotion, in terms of CCC, are reported in Figure 9.
In general terms, the best results on all four training settings
were achieved by fine-tuning all the layers of the network,
which is somehow expected, as both datasets have a large
amount of data. In our recent published paper [9], we report
a similar experiment with the MaskedAffectNet and the
FaceChannel encoder and obtained the same results.
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FIGURE 8. Baseline experiment where each of the models (the
FaceChannel, the PK network and the CPC network) were trained with the
AffectNet dataset. The performance is reported in terms of Concordance
Correlation Coeficient (CCC) for arousal and valence.

Training only the decision-making layer presented the
worst performance on the MaskedAffectNet dataset, which
could indicate that the emotional representation learned from
the AffectNEt dataset was not enough. This is somehow
expected, given the presence of the masks covering much of
the faces in this dataset. For the OMG-Emotion, training from
the scratch presented the worst results, which leads to the
understanding that the dataset alone does not have enough
data samples to train these encoders. In both cases, when the
Face-STN is present, the results improve drastically, in some
cases surpassing the total fine-tuning routine. Both datasets
have their own labeling process, and thus, affective represen-
tation. The high performance achieved by the Face-STN is
clear indication that it can focus the general features learned
by the encoders into very specific affective representation.

Similar behavior can be found when evaluating the
accuracy-based datasets (FABO, FER+, and JAFFE),
reported in Figure 9. The JAFFE dataset is quite particular
here because the PK encoder seems to not be able to perform
as well as the other two encoders. Probably an indication
that the facial representations depicted by the encoder are not
enough for the very specific characteristics from the JAFFE
dataset. Again, the presence of the Face-STN improves dras-
tically the performance of all encoders. In evaluating the
models on the ElderReact and EmoReact datasets that we
report in Figure 11, we observe that full retraining obtains
the best results, while exclusively training decision-making
achieves the worst results. In terms of encoder, all three
models achieve similar results.

The presence of the Face-STN also impacts positively the
encoders when evaluated with the ElderReact and EmotReac
datasets, reported in Figure 11. These datasets show the
least variance in the performance range between all the
experiments, which shows that their facial representation is
not heavily affected by the facial features coming from the
encoders.

C. STATE-OF-THE-ART COMPARISON
The Face-STN achieves a competitive performance compared
to the current state-of-the-art results on the OMG-Emotion
dataset [23], [66], [81], as Table 1 exhibits. All the reported

models use deep neural networks with strong pretraining
and fine-tuning routines. Using attention mechanisms [81]
to process the continuous expressions in the videos pre-
sented the best results of the challenge, such as achieving
a CCC of 0:35 for arousal and 0:49 for valence. Temporal
pooling, implemented as bi-directional LSTM, achieved the
second best, with a CCC of 0:24 for arousal and 0:43 for
valence. Late-fusion of facial expressions, speech signals,
and text information reached the third-best result, with a
CCC of 0:27 for arousal and 0:35 for valence. The com-
plex attention-based network proposed by Huang et al. [37]
achieved a CCC of 0:31 in arousal and 0:45 in valence, using
only visual information. Our Face-STN achieve a maximum
of 0.38 arousal (with the PK encoder), and 0.44 valence (with
the CPC encoder) without needing to retrain the convolu-
tional layers, reducing the fine-tuning effort.

TABLE 1. CCC, for arousal and valence when evaluating the Face-STN
together with the FaceChannel (FC), PK and CPC encoders compared
with state-of-the-art models on the OMG-Emotion dataset.

Table 2 presents the results of training and evaluating
with the FER+ model, wherein our Face-STN achieved
better results compared to the dataset authors [10]. They
focus on using a fine-tuned VGG13 encoder that updates
all the convolutional layers. We also outperform the results
Miao et al. [59], Li et al. [50], and Siqueira et al. [71]
reported, all of which employ different types of com-
plex neural networks to learn facial expressions. On the
FABO dataset, the Face-STN achieves higher results than
reported in the literature, including Chen et al. [17], who pro-
posed a frame-based recognition and a bag-of-words-based
model, or even Gunes et al. [32] who used an SVM-based
implementation.

When evaluated on the JAFFE dataset, the Face-STN
attached to the FaceChannel achieves the best results when
compared with the fine-tuning of the DeepEmotion [60] and
the attention-based salient patch neural network [34].

The performance of the Face-STN on the EmoReact and
ElderReact, reported in Table 3, is better than the models
reported by the authors. On the EmoReact, the FaceChannel
encoder achieves the best results, while on the ElderReact,
the CPC encoder has the highest F1-Score.

Some of the models with which these datasets were eval-
uated seem to be outdated for other computer vision tasks.
In our experiments, however, we do evaluate the performance
of three very recent deep neural networks (FaceChanel, PK,
and CPC) on each of the datasets. The Face-STN comple-
ments these models and presents results that are competitive
with them.
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FIGURE 9. Performance in terms of Concordance Correlation Coefficient (CCC), when evaluating the three encoders (FaceChannel, PK, and CPC) on
the MaskedAffectNet and OMG-Emotion datasets in five settings: Training the entire encoder and the decision-making layer (All layers), training the
last-convolutional layer of the encoder and the decision-making layer (Last Conv-Layer), training only the decision-making layer (Decision-Making),
training the Face-STN and the decision making layer (STN-Face), and training the entire network from the scratch (Scratch).

FIGURE 10. Performance, in terms of accuracy, when evaluating the three encoders (FaceChannel, PK and CPC) on the FER+, JAFFE and FABO
datasets in five settings: Training the entire encoder and the decision-making layer (All layers), training the last-convolutional layer of the encoder
and the decision-making layer (Last Conv-Layer), training only the decision-making layer (Decision-Making), training the Face-STN and the decision
making layer (STN-Face), and training the entire network from the scratch (Scratch).

FIGURE 11. Performance, in terms of F1-Score, when evaluating the three encoders (FaceChannel, PK and CPC) on the EmoReact and
ElderReact datasets in five settings: Training the entire encoder and the decision-making layer (All layers), training the last-convolutional layer
of the encoder and the decision-making layer (Last Conv-Layer), training only the decision-making layer (Decision-Making), training the
Face-STN and the decision making layer (STN-Face), and training the entire network from the scratch (Scratch).

VI. DISCUSSIONS
Our experimental results confirm that the Face-STN can be
used to adapt different facial encoders towards specific affec-
tive worlds. To obtain a holistic understanding of the impact

of the plugins, we must disentangle their training efforts from
their final performance and contrast this information with
all other training settings. Besides performance, understand-
ing the impact of the Face-STN on the facial representation
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TABLE 2. Accuracy when evaluating the Face-STN together with the
FaceChannel (FC), PK and CPC encoders compared with state-of-the-art
models on the FER+, FABO and JAFFE datasets.

TABLE 3. F1-Score, when evaluating the Face-STN together with the
FaceChannel (FC), PK and CPC encoders compared with state-of-the-art
models the EmoReact and ElderReact datasets.

of each encoder is needed to ground its true contributions.
We perform feature formation analyses, especially on the
representation of very specific affective worlds.

Our main contribution of this paper regards the connection
between the Face-STN and the non-universal perception of
affect theory. Our experimental setup initially indicates how
we can continue this quest, and we further discuss current
advantages and limitations of this approach.

A. TRAINING EFFORT VS PERFORMANCE
When we analyse performance alone, our experiments show
that retraining all the encoders, in a full training setting,
increases drastically the performance in all the datasets.
Although it is relatively easy to obtain computational power
on demand to train large and complex models, the number
of trainable parameters of a model continues to indicate the
training effort this model takes to be updated. When compar-
ing the relative performance and number of parameters from
the full-training setting and the Face-STNs for each encoder
type in each dataset, displayed in Table 4, we observe that the
Face-STNs outperform the full training in most datasets.

For most cases, we observe that the Face-STN has a sim-
ilar performance when compared to the full-training, but
even in the worst case, the relative performance achieved
by the Face-STN is over 93% of the full-training perfor-
mance. On the other hand, the training effort, represented
by the number of updatable parameters, drastically reduces,
especially for the FaceChannel. In the extreme case of the

PK encoder with the JAFFE dataset, the Face-STN achieved
almost double the performance.

Besides discussing the numbers and performance bits, the
Face-STN displayed an important behaviour that is lacking in
most automatic affective perception models: fast adaptability.
It could, based on prior perception models (the pretrained
encoders), modify the affective representations, embedded
on the latent space of each encoder, towards the specific
characteristics of each dataset. By doing so, we could reuse
the encoder in every dataset without retraining or readapting
them. When we did the same by retraining only the convolu-
tional layer, the performance dropped considerably, and we
were modifying these encoders drastically, needing one set
of encoders per dataset. When not readapting the encoders at
all, only updating the decision-making layer, the performance
dropped to the lowest levels, making this option the worst of
our experiments.

B. HOW THE FACE-STN ALLOWS AFFECTIVE BIASING?
Our results show that the Face-STN networks are able to
improve performance in most cases, or at least match the per-
formance of full-retraining on each of the datasets. The main
contribution of the Face-STN involves using a bottom-up
training scheme to try to adapt the last convolutional lay-
ers towards the unique affective characteristics that each of
the datasets possesses. That means the affective information
coming from the labelling scheme of each dataset directly
impacts the selection of specific features that each encoder
can extract.

The Face-STN does not update the weights of the last con-
volutional layer, but it rearranges the features to highlight the
most important ones for that specific dataset. If the original
encoders, trained on the AffectNet dataset, already have a
similar representation to the ones found on the images from
a dataset, the impact of the Face-STN is reduced, as one
can see in the case of the FABO dataset. When the facial
representations learned by the encoders differ from the ones
present on the dataset, which is the case of the JAFFE images,
the Face-STN could repurpose the learned representations to
fit the JAFFE requirements. To illustrate this behaviour better,
Figure 12 displays the differences between the entangled rep-
resentations of the JAFFE dataset of the three encoders when
training all layers and Face-STN settings. The entangled rep-
resentations are passed through a t-SNE calculation to obtain
the two most important components. For the PK and CPC
encoders, training all layers does not produce distinguishable
representations, while when the Face-STN is present, the rep-
resentations are rearranged and better distinguishable from
each other, based on their original labels.

C. AND WHY ARE FACE-STNs NON-UNIVERSAL?
Independently of the affective representations with which
we are dealing, faces do not change. The general physical
structure and characteristics of a face endure, which is a
good start for artificial facial expression recognition because
they can focus on which features to adapt. Convolutional
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TABLE 4. Relative performance and number of parameters when training and evaluating the Face-STNs, for all encoders, compared to retraining the full
network, which usually achieved the best results, for all datasets.

FIGURE 12. Visualization of the entangled representation of all images of
the JAFFE dataset when represented by the FaceChannel (A), PK (B), and
CPC (C) using the training all layers (ALL) setting and the Face-STN (STN)
setting.

neural networks can depict facial characteristics quite
well [44], [74], but because they learn it using a strongly
supervised process, the given labels still bias the learned
representation. This was the case in our experiments in terms
of a performance drop, especially when evaluating the pre-
trained encoders on very specific affective world representa-
tions, such as the JAFFE, the EmoReact, and the ElderReact
datasets.

Fitting our experiments within the concept of non-
universality of emotional perception can seem contradictory,

as our model focuses on rearranging pretrained perception
towards very well-defined-by strong labels-affective worlds.
However, the adaption that the Face-STNs achieve allows a
pre-existing perception model to deal with unknown condi-
tions from different datasets. Our experiments demonstrate
that our model addresses the problem of learning facial repre-
sentations by reorganizing the existing facial features. It does
by by biasing the high-level represenations towards the labels
of each dataset, improving the overall model‘s performance.
This demonstrates that, at least for a well-defined encoder,
different scenarios can share the learned features. By biasing
these features we demonstrate that in most cases it is a more
beneficial solution than retraining the encoders even partially.
Understanding this problem as a continual rearranging of a
perceptionmechanism, based on the specific affective context
given by each dataset, is how we address the non-universality
of emotional perception.

VII. CONCLUSION AND FUTURE WORK
In this paper, we present a facial expression percep-
tion study where we investigate the readaptation of facial
features as a mechanism for achieving non-universal affec-
tive perception. In this regard, we present a Spatial Trans-
former Network (Face-STN) that one may attach to any
convolution-based encoder to rearrange learned features
without the need of retraining the entire encoder. We perform
a series of experiments with three different convolution-based
encoders and with eight different datasets, representing dif-
ferent affective worlds. Our experiments demonstrate that
when the Face-STNs are present, we reduce the training effort
and maintain high performance, sometimes even surpassing
the state-of-the-art performance on each of the evaluated
datasets.

Besides performance, we discuss how our Face-STNs
adapt the concept of non-universal emotional perception and
put it into practice by understanding its impact on the different
affective representations of each dataset. We establish and
present our networks as one tool that will help us approach
non-universal perception in affective computing, which will
help develop truly adaptable emotional perception models.

Furthermore, the major contribution of this study regards
discussing the impact and responsibility when developing
facial expression research. We should consider the soft
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separation of face representation from affect understanding,
following the recent trend on affective perception of humans,
to provide reliable and adaptable facial expression recogni-
tion solutions. Focusing on adaptable affective recognition,
instead of a general one, will allow us to be much more
flexible when dealing with underrepresented scenarios.

Although we demonstrate the capability of the Face-STNs
to adapt towards very specific affective worlds, we are still
dealing with perception alone. All our experiments consider
as granted that the labels derived from the datasets are reliable
and represent the truth of that affective scenario. In future
work, we will continue our search for non-universal emo-
tional modelling from the affective understanding perspec-
tive, primarily addressing the problems of emotional ground-
ing in different scenarios. We will address this problem by
adapting the Face-STN to consider other aspects of the sce-
nario, such as using reinforcement learning to address the
congruence of the affective responses of a person.

APPENDIX A
DECISION-MAKING NETWORKS
For each of the datasets, we propose one decision-making
network that is attached to each of the encoders. The final
architecture, and topological and training parameters, of these
networks were found using a tree-parzen search [11] through
the search space found in Table 5.

TABLE 5. Search space used to optimize all of our decision-making
networks for all datasets.

FIGURE 13. Final architecture of each decision-making layer for each of
the datasets.

TABLE 6. Final architecture of each decision-making network for each of
the datasets.

The final architecture of each decision-making network is
reported in Table 6, and illustrated in Figure 13.
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