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ABSTRACT With the popularity of wireless networks, wireless sensor networks (WSNs) have advanced
rapidly, and their flexibility and ease of deployment have resulted in more security concerns, making it
critical to research network intrusion prevention for WSNs. Denial of service (DoS) is a common network
attack, achieving its goal by bringing down the target network. A DoS attack on WSNs devices with limited
resources would be fatal. This paper proposes a method based on principal component analysis (PCA)
and a deep convolution neural network (DCNN) for DoS traffic anomaly detection in WSNs, based on
the vulnerability of WSNs to attacks and the limited storage space of their devices. Compared with the
conventional deep learning structure, the proposed model has a lightweight structure and more effective
feature extraction capability, which can effectively detect network abnormal traffic in WSNs devices with
limited storage capacity. To assure the effectiveness of the proposed model, receiver operating characteristic
(ROC) curves, various classification metrics, and confusion matrices are used to verify the classification
results of the model. Through experimental comparison, the proposed model, with small model size,
outperforms other mainstream abnormal traffic detection models in terms of classification effect.

INDEX TERMS Wireless sensor networks, denial of service, network attack, principal component analysis,
deep convolution neural network.

I. INTRODUCTION
Wireless sensor networks (WSNs) have evolved rapidly in
recent years, and have become one of the critical areas for
research in network applications [1]. Their low cost and
ease of deployment have enabled them to be used in var-
ious smart sensor devices in our lives, such as in-vehicle
communications, smart homes, and remote monitoring. With
the rapid development and widespread application of smart
sensor network devices, many researchers have focused on
the security of WSNs [2]. WSNs can collect and deliver
environmental information in real-time, and their flexible
and efficient features make people’s lives easier. But at the
same time, it also has the disadvantages of limited power,
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low processing capabilities, security, and data trustworthi-
ness [3], these shortcomings lead it can be hacked, cor-
rupted, or exploited at any time [4], and once a network has
been attacked, whether it is via personal devices or public
resources, the loss is enormous. Thus, the detection of traffic
anomalies in WSNs has become increasingly important.

Anomalous traffic in a network varies, and various net-
work attacks exist. Denial of Service (DoS) attack is one
of the most common and achievable attacks in practice due
to its easy implementation [5], it exhausts the resources of
the target system by generating large traffic and prevents
the server from processing legitimate requests from normal
users [6]. There are two main forms of DoS attacks. One
is to create a large number of useless traffic, resulting in
host network congestion; the other is the use of network
protocol implementation flaws so that users can not receive
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traffic information normally, such as the destruction of TCP
protocol connection session during the three handshakes’
process. When the DoS attack takes effect, the normal oper-
ation ability of the host’s CPU is reduced, and the memory
allocation is wrong, resulting in the depletion of network
bandwidth, and even affecting the network systems such as
routers and firewalls. In severe cases, there will be downtime,
resulting in the host not running normally. The most common
distributed DoS (DDoS) is to attack the service availability
of single or multiple victim systems through collaborative
attacks [7], and ultimately make the computer lose the ability
of normal service. For example, in 2018, GitHub, an online
code management platform, suffered a DDoS attack with a
transmission rate of 126.9 million per second at the network’s
peak. Fortunately, GitHub had a DDoS defense system in
place, preventing further damage [8]. DoS attacks, which
are common and vicious, will be fatal in resource-limited
WSNs devices, causing severe damage. Thus, their accurate
and efficient detection in WSNs is critical.

Currently, network environments are complex, network
attacks are diverse, and multivector attacks using multi-
ple protocol combinations for DoS attacks are becoming
more common [9], which all add to the difficulty of net-
work anomaly traffic detection. Network traffic anomaly
detection using machine learning (ML) and deep learning
(DL) has been proven to be reliable. ML has developed
into an effective method for processing complex data in
the past few years [10], and it is widely used in anomaly
traffic detection because of its simplicity and efficiency.
For instance, Monshizadeh et al. [11] used a combination
of conditional variational autoencoder (CVAE) and random
forest (RF) for network traffic anomaly detection, where
CVAE learns the similarity between input features, and then
RF is used to classify the anomalous traffic. Ma et al. [12]
proposed a kernel support vector machine (SVM)-based net-
work traffic anomaly detection method, as well as opti-
mized model hyperparameters, to classify anomalous traffic.
Iranmanesh et al. [13] used the time-homogeneous semi-
Markov process to predict the likelihood of the accuracy of
vehicle mobility patterns in the malicious detection of traffic
flow and then calculated the weight factor through Cloudlets
to determine whether it was malicious traffic flow. However,
ML methods are inadequate for feature learning, especially
in today’s more complex and variable network environments.
As an important tool for data mining and reconstruction
[14], DL methods can extract high-level network traffic
features, so the use of DL methods for traffic anomaly
detection has become mainstream nowadays. For instance,
Patil et al. [15] proposed a network traffic anomaly predic-
tion method based on principal component analysis (PCA)
and a bidirectional generative adversarial network, which
performs feature extraction and classification by bidirectional
generative adversarial network after feature dimensionality
reduction by PCA. Yu et al. [16] combined a convolutional
neural network (CNN) and a recurrent neural network (RNN)
for network traffic anomaly detection, learning data spatial

features using the CNN and data temporal features using the
RNN, with good detection accuracy on two datasets, namely,
DARPA1998 and ISCX2012. KarunKumar Reddy [17] et al.
investigated the advantages of DL methods over traditional
ML methods for network traffic anomaly detection, and the
results showed that the deep neural network structure (i.e.,
DL) has high accuracy. The more complex model struc-
ture of DL methods ensures their superior feature extraction
capability.

Based on the above studies, traditionalML algorithms have
insufficient feature learning capability, and DL methods have
an oversized model that cannot be well deployed on WSNs
devices. For effective traffic anomaly detection inWSNs, it is
necessary to combine the shortcomings of the above studies
and meet the following two requirements: first, sufficient
feature learning to ensure good detection accuracy and, sec-
ond, a small model size to meet the lightweight requirements
of WSNs devices. Based on the above two requirements,
this paper proposes a method based on PCA and a deep
convolution neural network (DCNN) for DoS traffic anomaly
detection in WSNs, meeting the requirements of good detec-
tion accuracy and lightweight. The contributions of this paper
are as follows.

1 We propose a DL model integrating PCA and DCNN
to detect the abnormal traffic of WSNs. PCA is used to
reduce the dimension of the initial data, remove redundant
features and extract more important features. The DCNN
learns the traffic characteristics after dimensionality reduc-
tion, and classifies the normal traffic and abnormal traffic.

2 We construct a new DCNN structure to meet the require-
ments of lightweight and good feature extraction ability,
which includes convolution layers, depthwise separable con-
volution layer, attentionmechanism, and global average pool-
ing (GAP). The proposed deep convolution structure has
good feature learning ability and a lightweight model struc-
ture, which is more suitable for traffic anomaly detection on
WSNs.

3 The proposed DCNN has a smaller model structure and
higher detection rate than conventional CNN and depthwise
separable convolution neural network (SNN) and performs
better in terms of four classification evaluation metrics,
namely, accuracy, recall, precision, and F1-score, than other
mainstream network traffic anomaly detection methods,
as validated on the KDDcup99, NSL-KDD, and UNSW-
NB15 datasets.

This paper is organized as follows. Chapter 2 provides
an introduction to the research related to network traffic
anomaly detection and lightweight network. Chapter 3 intro-
duces the three methods, namely PCA, DCNN, and attention
mechanism; describes the dataset; and finally, derives the
overall structure of the model. Chapter 4 conducts classifica-
tion experiments on each dataset, evaluates the classification
results, and finally provides a comparative assessment of
the lightness of the models. Chapter 5 presents a summary,
followed by an outlook on future work. Table 1 shows the
abbreviations used in this paper.
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TABLE 1. Summary of abbreviations.

II. RELATED WORK
Network attacks have continued to occur in recent years, and
the detection of network abnormal traffic has always been
studied. At this stage, the main research direction in recent
years has been focused on ML and DL.

ML-based network traffic anomaly detection has been
evolving, and several studies on DoS detection using a
single ML algorithm have been conducted. Adel, et al.
[18] studied the use of SVM to detect DoS attacks.
Alharbi et al. [19] used K-nearest neighbor (KNN) for DoS
detection. Wazirali et al. [20] conducted an experimental
comparison of various ML techniques and evaluated each
method. They all achieved good results. However, as net-
work attacks have become more diverse, a single ML tech-
nique for DoS detection has become insufficient, and other
techniques such as feature selection and feature learning
are now combined with ML techniques for DoS detection.
Ahmad et al. [21] used a decision tree (DT) to detect DoS
attacks; they combined the DT with a feature selection tech-
nique before classification to ensure good detection accuracy.
Kiran Varma et al. [22] used a whale optimization algorithm
to reduce feature dimensionality after using a joint RF algo-
rithm for classification, outperforming a single detection
algorithm in terms of detection accuracy. Mihoub et al. [23]
used the concept of ’ Look-Back ’ and RF to detect DoS
attacks and used the attack list detected before to strengthen
the feature learning ability of the model. Finally, compared
with a variety of ML and DL methods, it achieved better

results. ML methods are also combined with unsupervised
learning methods in network abnormal traffic detection.
Drăgoi et al. [24] used unsupervised learning methods to
analyze the distribution transfer of network abnormal traffic
data and used a variety of machine learning methods to test
the model. The final results show that the appropriate solution
to the problem of data distribution transfer can improve the
performance of the model.

Although ML algorithms achieve good network traffic
anomaly detection results, the rapid change of network data
and the large data volume have caused more attention to
be given to DL techniques. Yue et al. [25] combined back-
propagation neural networks (BPNN) in software-defined
networks (SDN) for DoS detection, achieving a detection
rate. Shi and Shen [26] proposed an unsupervised network
anomaly traffic detection method based on an artificial
immune network (UADAIN), which has a better detection
effect than unsupervised methods such as K-means clus-
tering. With the rapid advancement of CNN and RNN in
recent years, they have been used in network traffic anomaly
detection. Wu et al. [27] used a binary recurrent convolution
method based on a coherent detection method for low-rate
DoS attacks, achieving high detection performance. SaiSind-
huTheja and Shyam [28] used the opposing crow search
algorithm (OCSA) for feature selection and an RNN for
classification. This combination of feature selection and DL
classification methods achieved good results. Polat et al. [29]
combined long short-term memory (LSTM) and gated recur-
rent units for DDoS feature extraction and classification. This
combination of multiple DL algorithms has also been con-
tinuously investigated in recent years. The method of com-
bining multiple algorithms based on deep learning models
has also been studied. Kopp [30] Using a convGRU-based
autoencoder method for unsupervised learning of network
abnormal traffic, a trained autoencoder can effectively detect
abnormal traffic. Duan et al. [31] used wavelet transform and
residual learning to construct residual features in network
anomaly traffic detection, used a multi-layer autoencoder to
calculate the error vector, and finally learned the error through
the residual network to give abnormal traffic classification
results.

With the continuous development of DL-based network
traffic anomaly detection, its drawbacks of large model size
andmany parameters have gradually emerged. Al-Turaiki and
Altwaijry [32] designed a network intrusion detection system
that combines a two-step data preprocessing method with a
DLmodel. The two-step preprocessing method includes PCA
and deep feature synthesis. By combining dimensionality
reduction with feature engineering to retain more important
features in the data, the classification performance of the
algorithm is improved. The designed DL model is based on
the CNN model, including five convolutional layers, two
pooling layers, and four fully connected layers, and skip
connections are added to prevent gradient disappearance. The
proposed model has achieved good results in both binary
classification and multi-classification, but at the same time,
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TABLE 2. Comparison of some DL models in network anomaly traffic detection.

its multi-layer traditional convolution structure and multiple
fully connected layers also cause the model to have more
parameters and cannot be well applied to some abnormal
traffic detection devices with small memory. Although the
computing power of today’s computers is being strength-
ened to support the requirements of excessive computation of
deep networks, lightweight models are still needed in some
specific environments, such as mobile devices and wireless
sensors. Some progress has been made in lightweight traffic
anomaly detection, and reducing the dimensions of input
data can effectively reduce the model size and increase the
computational rate. For instance, Roy et al. [33] reduced the
training time by removing multicollinearity, sampling, and
dimensionality reduction of input data to make the model
more lightweight. For lightweightmodels, not only should the
input data be processed, but also the model should be simpli-
fied. DoriguzziCorin et al. [34] and McCullough et al. [35]
detected DDoS attacks by building more simplified CNN
models, and the results show that the simplified models
have fewer parameters and shorter training time than ordi-
nary CNN models. Thus, dimensionality reduction of input
data combined with model simplification has become a
general lightweight network approach. Kravchik et al. [36]
constructed a lightweight network attack detection model
using a one-dimensional (1D) CNN and an autoencoder and
applied PCA to the input data for dimensionality reduc-
tion. Zhao et al. [37] simplified a con-based CNN model
by extending and compressing its structure, improving the
model’s feature extraction capability using a residual inverse
structure and channel shuffling operation, and performed
dimensionality reduction on the initial data by PCA, resulting
in high accuracy with a smaller model structure.

Because DLmethods can fully extract and classify the data
[38], it has great potential in DoS detection. In this paper,
combined with previous research, a network anomaly traffic
detection model based on PCA combined with DCNN is
proposed. Based on meeting the high detection rate of DL
model, the model is lightweight. Table 2 shows the compar-
ison between the network anomaly traffic detection method
of the DL model introduced above and the method proposed
in this paper.

III. METHODOLOGY
A. PCA
PCA is a feature extraction method that reduces the dimen-
sionality of data by extracting features from the original data
while retaining variance information in the original data.
The core idea is to achieve dimensionality reduction by cal-
culating the correlation between data points and removing
data points with high correlation. By applying dimensionality
reduction, several data attributes can be converted into a few
data attributes without losing substantial important informa-
tion [39], and the influence of redundant information can
be reduced in subsequent feature learning. Furthermore, the
reduction of the number of input features reduces the number
of model parameters, improving computational efficiency.
The main steps of PCA are as follows.

1 Standardization of data: The standardization process
normalizes the size of all data points to the same range to
avoid some oversized data points causing large errors. The
standardization formula is as follows.

Xnew =
Xi − µ
σ

(1)
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2 Calculation of covariance matrix: The correlation
between data points is obtained by calculating the covariance
matrix of the data points. The covariance matrix is as follows.

Cov =


Cov11 Cov12 . . . Cov1M
Cov21 Cov22 . . . Cov2M
...

... . . .
...

CovM1 CovM2 . . . CovMM

 (2)

3 Calculate the eigenvalues of the covariance matrix and
the corresponding eigenvectors: this method is used to deter-
mine the principal components in the data.

4 Ranking selection of principal components: Feature
vectors are arranged in rows from top to bottom according
to the magnitude of feature values to form a vector matrix,
and the order from top to bottom indicates the decreasing
importance.

5 Dimension of data after dimensionality reduction: When
the data dimension is to be reduced to n dimensions, i.e.,
the first n rows of the directional volume matrix form a new
matrix.

B. DCNN
CNN [40] is widely used as a powerful feature extraction
tool for target recognition, text classification, and anomaly
detection. The traditional CNN mainly consists of three lay-
ers: convolution, pooling, and fully connected layers [41];
the SNN [42] is obtained by improving the convolution layer
based on the traditional CNN.

The convolution layer is the most important in the CNN
structure, and its function is to perform feature extraction
on the target to obtain more advanced features by convolv-
ing local regions. Depthwise separable convolution consists
of depthwise convolution and pointwise convolution, which
compute channel and spatial features separately and then add
them together, reducing the number of parameters and com-
putational effort. The formula is as follows. Figure 1 shows
the comparison between traditional convolution and depth-
wise separable convolution. The upper half of the figure is the
traditional convolution, and the bottom half is the depthwise
separable convolution. The traditional convolution is calcu-
lated usingC1×n×n×C2 parameters, whereas the depthwise
separable convolution is calculated separately using depth-
wise convolution and pointwise convolution, which only
requiresC1×n×n+C1×1×1×C2 parameters, significantly
reducing the number of parameters.

Depthwise− Conv(W , y)(i,j) =
∑K ,L

k,l
W(k,l) · y(i+k,j+l)

(3)

Pointwise− Conv(W , y)(i,j) =
∑M

m
W(m) · y(i,j,m) (4)

The pooling layer follows the convolutional layer, and its
main role is to compress the feature map generated by the
convolutional layer and extract the main features of each
local region. Pooling is divided into two methods: maximum
pooling, which outputs the maximum value of each region,

FIGURE 1. Traditional convolutional structure and depthwise separable
convolutional structure.

and average pooling, which calculates the average value of
the region. The pooling method can reduce the number of
features and the complexity of the network structure. How-
ever, pooling will reduce the number of original features,
and there will be less repetition among the network traffic
features. Some important features may be lost through pool-
ing, affecting the accuracy of the overall network. Therefore,
in this paper, we replace the pooling layer with an attention
mechanism to extract the main features, thereby avoiding the
loss of relevant features.

The fully connected layer acts on the pooling layer to
achieve the weighted classification of features by mapping
the previously extracted features to the sample space. How-
ever, the fully connected layer has many parameters, which
significantly increases the complexity of model construction.
After the last convolution, the shape of the feature map input
to the fully connected layer is W × H × C . When the fully
connected layer has N neurons, the fully connected layer will
contain W × H × C × N parameters, and this huge number
of parameters increases the size of the model and affects
computational efficiency.

GAP is a good alternative to fully connected layers [43],
and Figure 2 illustrates the process of classifying fully con-
nected layers with GAP. GAP obtains M feature maps of
shape W × H after the last convolution, where M represents
the number of categories. The final classification result is
obtained by averaging each feature map and converting it into
a 1D vector. GAP has no parameter settings, which avoids the
risk of overfitting while reducing the redundant parameters
of the fully connected layer. The number of parameters is
reduced by replacing the fully connected layer with GAP to
improve computational efficiency.

C. ATTENTION MECHANISM
The development of the attention mechanism [44] in ML
was inspired by the human visual mechanism, and when
humans observe a group of things, they always focus on the
important parts, and this method of observation improves
the efficiency of observation and helps capture the impor-
tant information accurately. The attention mechanism is
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FIGURE 2. Fully connected layer structure and GAP structure.

used in practice to assign different weights to different fea-
tures according to their importance among features. Greater
weights are assigned to features with high importance so
that the important information can be better captured during
feature learning.

The attention mechanism embodies different functions
depending on the position it is located. By replacing the
pooling layer with the attention mechanism in the DCNN,
feature loss caused by pooling downsampling is avoided; the
main features are extracted by finding themore important fea-
tures and assigning greater weights to each feature map after
convolution by performing feature learning separately. The
inclusion of the attention mechanism improves the DCNN’s
feature learning capability, which proved effective in subse-
quent experiments. The output formula is as follows.

Attention(Q,K ,V ) = softmax
(
QKT
√
dk

)
V (5)

D. DATASET DESCRIPTION
1) DATASET INTRODUCTION
Three datasets, namely, KDDcup99 [45], NSL-KDD [46],
and UNSW-NB15 [47], were used for the experiments. The
KDDcup99 dataset is a classic network intrusion detection
dataset containing several DoS attack data points, which
is very suitable for DoS attack detection experiments. The
UNSW-NB15 dataset was created by the Australian National
Security Center in 2015, which has more types of attacks
on the current network and better reflects the actual situa-
tion of the current network. As shown in Table 3, there are
41 feature types in the KDDcup99 and NSL-KDD datasets
and 47 feature types in the UNSW-NB15 dataset; however,
some of them are redundant, too repetitive with the oth-
ers, or have insignificant effective features for the labels,
so dimensionality reduction is needed to reduce the number of
features and reduce redundancy. The three datasets, namely,
KDDcup99, NSL-KDD, and UNSW-NB15, are divided into
two parts, i.e., training and testing datasets, where the KDD-
cup99 and NSL-KDD datasets contain four attack types, and
the UNSW-NB15 dataset contains nine attack types. In this
paper, only their DoS attack types are extracted and studied,
and Table 4 shows the number of normal and DoS attacks in
their training and testing datasets.

2) DATASET PREPROCESSING
Firstly, we divide the training dataset, in which 90 % is the
training set, and 10 % is the validation set. Since the model

TABLE 3. Feature list of KDDcup99, NSL-KDD, and UNSW-NB15 dataset.

TABLE 4. KDDcup99, NSL-KDD, and UNSW-NB15 dataset categories.

only allows numerical data input, data features are numeri-
cally encoded to convert nonnumerical features into numer-
ical features. After numerical encoding, the normalization
operation is performed in preparation for the subsequent PCA
dimensionality reduction. PCA is an unsupervised dimen-
sionality reduction method. Before dimensionality reduc-
tion, the feature items of the training dataset and testing
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FIGURE 3. Dimensionality reduction effect.

dataset need to be merged to maintain the data distribution of
training set, validation set, and testing set is the same after
dimensionality reduction. In the dimensionality reduction
stage, we reduce the features of KDDcup99, NSL-KDD, and
UNSW-NB15 datasets to 30 dimensions, and the effect of
dimensionality reduction is depicted in Figure 3. The his-
togram represents the degree of variance explained by each
principal component, and the curve represents the degree
of cumulative interpretation. From the figure, 30 principal
components were extracted by PCA, and their cumulative
principal component variance explained approximately 100%
of all features, which contains a large amount of original fea-
ture information, indicating that the dimensionality reduction
was successful. After dimensionality reduction, numerical
normalization is also required to enable good model training,
speed up convergence, and prevent gradient explosion. The
normalization is given by the following equation.

Xnorm =
X − Xmin

Xmax − Xmin
(6)

E. MODEL STRUCTURE
Figure 4 shows the deep convolution structure constructed in
this paper, which consists of convolution layers, depthwise

separable convolution layers, attention mechanism layer, and
GAP layer. Firstly, we combine the traditional convolution
layer with the depthwise separable convolution. In the ini-
tial layers, the traditional convolution is used to strengthen
the feature learning ability, and in the subsequent layers,
the depthwise separable convolution can greatly reduce the
model parameters. Secondly, we use the attention mechanism
to replace the pooling layer after each convolution. The mul-
tiple pooling during deep convolution operations leads to the
loss of important features in the network traffic information.
By replacing the pooling layer with an attention mechanism,
the main features are extracted and the loss of important
features is avoided. Moreover, the attention mechanism only
adds a small amount of parameters, which does not affect
the lightweight design of the model. Finally, GAP is used to
replace the fully connected layer. The fully connected layer
has complex redundant parameters, which greatly increases
the complexity of the model. The replacement of GAP makes
the model lighter.

Figure 5 shows the overall structure of the proposedmodel.
The model is divided into two parts: data preprocessing and
feature extraction and classification. The first part is data
preprocessing. The training data and testing data should be
processed through four steps: numericalization, standard-
ization, PCA dimensionality reduction, and normalization.
The preprocessing operations in each step are prepared for
the next step. The second part is the feature extraction and
classification of data, which is an end-to-end model. Firstly,
the proposed DCNN is used to extract the feature of the
preprocessed data, and then the softmax function is used to
classify and evaluate the classification results of the testing
set. The operation process of the proposedmodel is illustrated
by Algorithm 1.

IV. EXPERIMENT AND RESULTS
A. IMPLEMENTATION
In this paper, simulation experiments are conducted with
three datasets, namely KDDcup99, NSL-KDD, and UNSW-
NB15. The experimental environment is set up on a personal
host, and Table 5 presents the overall configuration.

We selected four classification evaluation metrics: accu-
racy, recall, precision, and F1-score. The four classifica-
tion metrics can evaluate the model’s performance in many
aspects to avoid errors caused by a single evaluation index.
The formulas of the evaluation metrics are as follows, which
mainly consist of four indicators: true positive (TP), true
negative (TN), false positive (FP), and false negative (FN).
TP is a positive case for both model prediction and the target
sample’s true category; TN is a negative case for both model
prediction and the target sample’s true category; FP is a
positive case for model prediction but a negative case for
the target sample’s true category; FN is a negative case for
model prediction but a positive case for the target sample’s
true category. From the formula, accuracy is the proportion of
correct predictions among all predictions, which is typically
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FIGURE 4. The Proposed DCNN model.

FIGURE 5. The framework of the proposed model.

Algorithm 1 The Computational Flow of the Proposed
Model

Input: Training dataset, Testing dataset
Output: Classification metrics

1 Extract Features (x) and Labels (y) from Training
dataset and Testing dataset

2 while data pre− processing do
3 Perform numerical encoding;
4 Standardization of features;
5 Feature reduction with PCA;
6 Normalized features;

7 for i in {1, 2, . . . , n} do
8 Load DCNN model
9 Input Training dataset to DCNN model
10 Calculate training loss
11 Backpropagation update weight
12 Save the updated model
13 Repeat until the cycle is complete

14 Testing model with Testing dataset
15 Calculate Classification metrics
16 end

used as an indicator to evaluate the overall classification
performance of a model; recall is the proportion of positive
predictions among the true categories of samples, which is
more important than accuracy in abnormal traffic detection,
as it reflects the recognition of abnormal traffic by a model.
Precision is the percentage of correct predictions among
positive predictions; F1-score is the average of recall and
precision. In addition to the four evaluation metrics, we also
visualize the detection effect through ROC curves and confu-
sion matrices. The ROC curve indicates the trade-off between

TABLE 5. Experimental operating environment.

the TP rate and the FP rate of the estimated classes [48],
and the confusion matrix is composed of TP, TN, FP, and
FN. The model size and number of parameters are chosen for
evaluation in terms of the lightweight property to determine
how lightweight the model is.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(7)

Recall =
TP

FN + TP
(8)

Precision =
TP

TP+ FP
(9)

F1− score =
2PR
P+ R

(10)

Experimental simulation is divided into two parts, classi-
fication metrics analysis, and lightweight metrics analysis.
In the classification comparison experiments, we used seven
models, namely, logistic regression (LR), DT, KNN, LSTM,
bidirectional LSTM (Bi-LSTM), CNN, and SNN, for com-
parison with the DCNN model. It includes the classical ML
method and the current mainstream DL method to verify the
effectiveness of the model. In the lightweight evaluation of
the model, we compare the proposed model with the original
CNN and SNN, and Table 6 shows their model structures. All
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TABLE 6. The respective model parameters of CNN, SNN, and DCNN.

three models have a four-layer 1D convolutional structure.
SELU is chosen as the activation function. SELU has the fea-
ture of self-normalization compared with ReLU, which can
further prevent gradient disappearance and gradient explo-
sion problems.

B. CLASSIFICATION METRICS ANALYSIS
Figure 6 shows the training accuracy, training loss, validation
accuracy, and validation loss of the DCNNmodel on the three
datasets, and it can be seen that with the increase of period,
the accuracy and loss of the model eventually converge to
the maximum and minimum values. In general, the training
and validation accuracy of KDDcup99 dataset is the best, fol-
lowed by NSL-KDD dataset, and the worst is UNSW-NB15
dataset. However, in terms of the detection effect of binary
classification, the model can achieve satisfactory results on
three datasets. This shows that the model structure design is
good, and the model can effectively learn the characteristics
of different datasets through training.

Figure 7 shows the ROC curve of different models on
three datasets. The ROC curve is composed of FP rate and
TP rate. When the Area Under ROC Curve (AUC) is larger,
it represents the better performance of the model. It can be
seen that on the KDDcup99 dataset, each model has a good
performance, and the best performance is CNN, followed by
DCNN. On NSL-KDD and UNSW-NB15 datasets, DCNN
performed the best, with AUCs of 0.945 and 0.993, respec-
tively. On the whole, the performance of the DL model on
the three data sets is better than that of the ML model, which
is due to the more stable feature learning ability of the DL
model. The MLmodel is more superficial in feature learning,
and it is difficult to achieve good results in the face of complex
data distribution. At the same time, it can be seen that the
AUC of the NSL-KDD dataset is much lower than that of the
KDDcup99 dataset and the UNSW-NB15 dataset, which is
related to the distribution of the NSL-KDD dataset. Its test set

FIGURE 6. Accuracy and loss of training set and validation set.

TABLE 7. Different methods on the KDDcup99 dataset.

contains more feature distributions that the training set does
not have, which ismore to test the generalization performance
of the model.

Tables 7, 8, and 9 show the two classification results for
the Normal category and the DoS attack category for the three
datasets, namely, KDDcup99, NSL-KDD, andUNSW-NB15,
with the overall evaluation metrics. From the tables, for the
KDDcup99 dataset, DCNN outperforms the other methods
in terms of all evaluation metrics. Nonetheless, the metrics of
the other methods are all above 97%, indicating that the meth-
ods are effective in detecting the KDDcup99 dataset. For the
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FIGURE 7. ROC curves comparison.

TABLE 8. Different methods on the NSL-KDD dataset.

NSL-KDD and UNSW-NB15 datasets, DCNN also achieves
the best result. and the DL models outperform the traditional
ML models, reflecting the stronger feature extraction ability
of DLmethods. It can also be seen that the DCNN designed in
this paper has a better performance compared with CNN and
SNNmodels, and its Accuracy improves by 0.31% and 0.41%
on the KDDcup99 dataset, 0.36% and 2.22% on the NSL-
KDD dataset, and 0.57% and 1.24% on the UNSW-NB15
dataset, respectively. It indicates that the model proposed in
this paper has a better overall detection effect.

To thoroughly evaluate the proposed model’s performance,
we evaluated the model’s classification performance for the

TABLE 9. Different methods on the UNSW-NB15 dataset.

TABLE 10. Classification performance on the KDDcup99 dataset.

Normal category and the DoS attack category separately
in terms of the metrics, as shown in Tables 10, 11, and 12.
Wemainly focus on the recall of DoS categories in the model.
A higher recall represents a higher correct detection rate of
DoS categories. It can be seen from the table that on KDD-
cup99 and NSL-KDD datasets, DCNN recall is the highest,
followed by CNN.On the UNSW-NB15 dataset, CNN has the
highest recall, followed by DCNN. It shows that DCNN has
higher detection performance for DoS attack traffic. For F1-
score of normal and DoS categories, DCNN is also the best,
indicating that DCNN has better feature learning ability than
other models. Also overall, the DL model performs better
compared to the ML model.

To more intuitively visualize how the model improvements
help in the detection of DoS categories, Figures 8, 9, and
10 show the classification confusion matrices of CNN, SNN,
and DCNN on the three datasets, namely, KDDcup99, NSL-
KDD, and UNSW-NB15. From the confusion matrices, it can
be seen that compared with CNN and SNN, the number
of correct DoS detections of DCNN on KDDcup99 dataset
increased by 1029 and 1342, respectively, and the number of
correct DoS detections on NSL-KDD dataset increased by
61 and 393, respectively. For the UNSW-NB15 dataset, the
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TABLE 11. Classification performance on the NSL-KDD dataset.

TABLE 12. Classification performance on the UNSW-NB15 dataset.

number of correct detections of DoS is reduced by 38 and
increased by 62 for DCNN compared to CNN and SNN,
respectively. Because SNN adopts the structure of separable
convolution, its feature extraction ability is not as good as
CNN composed of traditional convolution structure. It can
also be seen from the confusion matrix that the detection rate
of SNN for DoS is lower than CNN on all three data sets.
DCNN adopts the combination of traditional convolution and
separable convolution, and replaces the maximum pooling
layer with attention mechanism. Its feature extraction ability
can reach the same level as CNN, so the detection rate of DoS
on three data sets is similar to CNN.

FIGURE 8. Confusion matrices on the KDDcup99 dataset.

C. LIGHTWEIGHT METRIC ANALYSIS
In this section, we compare the degree of lightness of DCNN
with CNN and SNN. In the lightweight comparison, the
model size and the number of parameters were mainly cho-
sen to measure whether the model has an appropriate size
for deployment on WSNs devices, and Table 13 shows the
comparison results. For the three datasets, DCNN reduces
the size of CNN and SNN models by 87.46% and 84.77%,
respectively, and the number of parameters is reduced by
69496 and 55483 compared with CNN and SNNmodels. The
reduction of model parameters is mainly due to the use of
separable convolution and GAP.DCNN introduces separable
convolution and GAP into the traditional convolution struc-
ture to reduce the overall calculation of the model and has
a smaller model size. Experiments demonstrate that DCNN
is more suitable for WSNs devices with a small memory
footprint.

D. DISCUSSION AND ANALYSIS
In this chapter, the DCNNmodel is used to detect and analyze
DoS traffic in KDDcup99, NSL-KDD, and UNSW-NB15
datasets. Compared with other models, DCNN has better
experimental results, which proves the superiority of DCNN

103146 VOLUME 10, 2022



C. Yao et al.: Traffic Anomaly Detection in WSNs Based on PCA and DCNN

FIGURE 9. Confusion matrices on the NSL-KDD dataset.

TABLE 13. Compare model size and number of parameters.

model in detecting abnormal traffic on WSNs devices. The
following information is also available.

(1) TheNSL-KDDdataset has aworse detection effect than
the KDDcup99 and UNSW-NB15 datasets. This is because
the test set has more unknown data features than the training
set. This feature makes it possible to better test the general-
ization of the model.

(2) Although separable convolution can reduce model
parameters, its feature extraction ability is also worse than

FIGURE 10. Confusion matrices on the UNSW-NB15 dataset.

traditional convolution. The combination of traditional con-
volution and separable convolution has better feature extrac-
tion ability, and using attention mechanism to replace the
maximum pooling layer can also make up for the lack of
feature extraction ability of separable convolution.

(3) Separable convolution and GAP have fewer parameters
than traditional convolution and fully connected layers, which
benefits from their less computation and simplifies the model
operation process.

V. CONCLUSION AND FUTURE WORK
In this paper, we proposed an effective traffic anomaly detec-
tion method given that WSNs are vulnerable to attacks and
their devices have limited storage space. First, PCA was used
for data dimensionality reduction to eliminate redundancy
and reduce the number of parameters for subsequent model
training. A new DCNN structure is constructed to meet the
requirements of lightweight and high detection ability of
the model. On the construction of DCNN, the traditional
convolution layer and depthwise separable convolution layer
are combined, and the pooling layer was replaced by atten-
tion mechanism for feature extraction while avoiding the
feature loss caused by pooling. Finally, the GAP is used to
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replace the fully connected layer to reduce the number of
parameters of the model. The model was validated on three
datasets, namely, KDDcup99, NSL-KDD, andUNSW-NB15.
The results showed that the proposed model achieved better
ROC curves performance, and has a higher correct detection
number for DoS attacks than other ML and DL models.
It also has the same feature extraction capability as CNN
while reducing the model size compared to CNN and SNN.
We provide a feasible scheme for traffic anomaly detection
in WSNs. In future work, we aim to make the model more
lightweight and to investigate more novel network attacks.
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