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ABSTRACT An interesting application of the link prediction technique is detecting the potential new links
in collaboration networks. In this study, we construct collaboration networks based on the co-authorship
information of the papers published in 43 statistical journals from 2001 to 2018. We construct training and
testing networks according to the timestamps of the papers and construct a classification dataset for link
prediction. We calculate 20 similarity indices based on the training network to perform link prediction.
Additionally, we consider nodal attributes (institutes and research interests) to develop two novel predictors
called the same institute (SIN) and keywords match count (KMC). Several machine-learning classifiers
including support vector machine, XGBoost and random forest are implemented to combine all predictors.
After incorporating SIN and KMC, we observe that the area under the receiver operating characteristic curve
values of all classifiers improved, indicating that SIN and KMC can significantly improve classification
accuracy. Finally, we provide collaborative recommendations for researchers based on the proposed model.

INDEX TERMS Collaboration network, link prediction, nodal attribute, similarity-based approach.

I. INTRODUCTION on community development, research patterns, and trends [9]

Scientific collaboration has the advantages of saving costs
and diffusing ideas and insights among collaborators [1].
Therefore, establishing new collaboration links among sci-
entists is one of the main drivers of scientific progress, and
it is important to conduct a statistical analysis of scien-
tific collaboration. A scientific collaboration network is a
popular tool for analyzing and modeling the relationships
among scientific collaborators based on co-authorship [2],
[3]. Many studies have been conducted on scientific collabo-
ration networks in different disciplines, including biology [4],
[5], physics [6], mathematics [1], computer science [7], and
statistics [8]. Through network analysis, interesting results
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can be extracted.

With an ever-increasing number of researchers, it is not
always possible to determine which researchers should col-
laborate. Therefore, it is important to develop techniques
to generate collaborative recommendations. In the context
of network science, the collaboration relationships can be
described by the collaboration networks, in which nodes
represent authors and links between two authors represent
they have at least published one paper together. Recommend-
ing partnerships is type of a link prediction problem [10].
Link prediction is the task of estimating the likelihood of an
unobserved link between two nodes [11], [12]. Such estimates
are generated based on the information of other observed
links and the attributes of nodes. Many studies have been
conducted on link prediction in collaboration networks. In the
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field of theoretical high-energy physics and lattice high-
energy physics, Chuan et al. [13] find that the accuracy of
link prediction can be improved by considering the similar-
ities among authors, their papers, and common co-authors.
In the field of quantum communication, Lande et al. [14]
use authors’ information and keywords in articles to predict
collaboration among scientists. Instead of focusing on a par-
ticular discipline, Tuninetti et al. [15] restrict their analysis
to papers published in Physical Review Letters. They demon-
strate that scientific credit and common scientific interests are
predictive of new collaborations among scientists.

Link prediction is a prolific subject in network research.
Kumar et al. [16] classify link prediction methods into
three categories: similarity-based metrics, probabilistic and
maximum likelihood methods, and dimension reduction
approaches. Similarity-based metrics are the simplest and
most widely used methods. A similarity score is calculated
between pairs of nodes, where higher-scoring pairs tend to
have more links between them [12], [16]. Similarity-based
metrics can be broadly divided into topology-based and
node-based metrics [17]. Topology-based metrics are based
on topological information such as the number of common
neighbors (CN) [18] and parameter dependence [19]. Node-
based metrics primarily use the attributes and actions of
nodes, which can represent an individual’s interests or social
behaviors [17]. Attributes can be abstracted from node pro-
files or metadata. For example, Bhattacharyya et al. [20]
study the similarity of users based on keywords from their
profiles. Tuninetti et al. [15] use mutual citations and com-
mon keywords to predict collaboration between two authors.
Both topology-based and node-based metrics provide abun-
dant information for link prediction from different perspec-
tives. Therefore, it is natural to combine these methods to
analyze networks.

In this study, we mainly use similarity-based metrics to
perform link prediction in collaboration networks. Specifi-
cally, we introduce 20 topology-based and two node-based
indices. Based on the calculation of these metrics, we explore
collaboration recommendations and the following research
questions are addressed.

o What are the properties or features of the collaboration
network of statisticians, particularly from a dynamic
perspective?

« In addition to topology-based metrics, can the similarity
metrics among nodes be extracted from other infor-
mation? Are these metrics helpful for link prediction?
Previous research has mainly focused on topology-based
metrics, but some studies have shown that node-based
metrics are also helpful for link prediction. This study
proposes two node-based metrics called the same insti-
tute (SIN) and keywords match count (KMC) metrics,
which improve predictive performance.

o How can we integrate multiple predictors to recom-
mended collaborators? Previous studies have mainly
used a single predictor to recommend collabora-
tors (e.g., [10], [21]). However, different predictors
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may represent different collaboration characteristics.
We apply several machine learning classifiers to com-
bine different predictors for link prediction. Specifically,
we combine similarity-based metrics and learning-based
frameworks to solve the link prediction problem.

Our analysis makes the following main contributions to
the literature. First, we provide a comprehensive comparison
of 20 similarity indices, including local, quasi-local, and
global indices, for collaboration networks based on statistics.
Second, author institutes and research interest are considered
in this study and the results prove that these information can
improve the performance of link prediction. Third, we apply
a link prediction method to statistical papers from 2001 to
2018 to derive useful insights into the comparisons among
different disciplines.

The remainder of this paper is organized as follows.
Section II explores the characteristics of collaboration net-
works and presents a dataset for link prediction. Section III
describes similarity-based and nodal-attribute-based predic-
tors for link prediction. Section IV presents comparison
results between different similarity indices and models.
Collaboration recommendations are also discussed in this
section. Section V summarizes our conclusions.

Il. DATA DESCRIPTION

In this section, we introduce detailed information regarding
the dataset developed in this study and the construction of a
collaboration network. We also present a statistical analysis
of the collaboration network. Furthermore, to perform link
prediction, we construct training and testing networks accord-
ing to the time stamps of papers. Finally, we introduce three
types of relationships in dynamic networks and formulate
them for data processing for link prediction.

A. THE COLLABORATION NETWORK

Our publication dataset is collected from the “Web of Sci-
ence Core Collection” (www.webofscience.com). Specifi-
cally, we first select 43 statistical journals and then collect all
of the publications from these journals from January 2001 to
May 2018. The journals are listed in Table 8. An example
of a publication is presented in Table 1. The paper’s title,
publication year, keywords, and authorship information are
obtained. Based on this information, we can construct the
collaboration network with abundant nodal attributes such as
an author’s institute and research interests. Additionally, col-
laboration relationships can be studied at the institutional or
regional level, which can be explored in future research. After
cleaning the data, we identify 47,546 unique authors. Two
authors are considered to be co-authors if they have published
at least one paper together. To describe the relationships
among authors, we construct a collaboration network. In this
network, a node represents an author, and an edge (i.e., link)
represents a collaborative relationship. The network contains
95,666 edges and the density is only 8.46 x 1072, indi-
cating an extremely sparse network. Mathematically, we let
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TABLE 1. Example of a paper published in the Annals of Statistics.

Year Title
Convexified Modularity Maximization
2018 for Degree-Corrected
Stochastic Block Models

Authorship Information
Yudong, Chen
@Cornell University, USA

Keywords

community detection,

modularity maximization,

Xiaodong, Li .
. . . i . degree-corrected stochastic block model,
@University of California Davis, USA R
- convex relaxation,
Jiaming, Xu

. k-medians, social network
@Purdue University, USA

A = (aj) € R™ denote the adjacency matrix, where n is
the number of authors. If author i collaborates with author j,
then a; = 1. Otherwise, a; = 0. We always set a;; = 0 for
1 < i < n. It should be noted that the collaboration network
is undirected, meaning that a;; = a;;.

In a collaboration network, the nodal degree represents
the number of unique collaborators for an author, that is,
di = Zj#i a;j. Fig 1 is the histogram of nodal degree in
the collaboration network. It can be observed that the dis-
tribution is highly right-skewed. After detecting, we find
that more than half of the authors have only one or two
collaborators in our network, whereas a few authors have a
large number of collaborators. Authors with high degrees are
identified as important nodes in the network. Specifically,
the author with the largest degree (Professor Narayanaswamy
Balakrishnan at McMaster University) has 292 collaborators.
He has published 385 papers in 43 statistical journals over
18 years. For the node with the largest degree, we extract its
second-order neighborhoods and preserve all edges included
in these neighborhoods. The resulting network is presented
in Fig. 3. The node with the largest degree is in the center
and other nodes with high degrees are also labeled in this
figure. To further study the characteristics of the structure
of the collaboration network, we extract the core network
of the entire collaboration network. A g-core network is
obtained by removing nodes whose number of neighbors is
less than g, as well as the edges connected to them [22].
Fig. 2 shows the sizes of a series of core networks when
g=1,2,...,10. One can see that the sizes of core networks
become stable when g > 6, which shows the 6-core network
removes nodes at the periphery and contains most of the
core nodes. Therefore, we choose the 6-core network for
further analysis, and it is presented in Fig. 4. A core network
is helpful for understanding the most important parts of a
network. In the 6-core network, we find that the node in the
center is Raymond J Carroll, with a degree of 109. When
considering the importance of neighbors, the center node in
Fig. 4 also plays a significant role in forging strong links
between statisticians.

Transitivity is an important property of social net-
works [23], [24]. It refers to the tendency of two nodes
to form a mutual relationship if they are connected to a
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FIGURE 1. The distribution of nodal degrees in the collaboration network.
It is highly right-skewed.
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FIGURE 2. The number of nodes and edges in a series of core networks.
The x-axis represents different values of ¢, g =1,2,...,10. When q is
small, the size of the network changes drastically. When q > 6, the sizes
of core networks become stable.

third node. A network with high transitivity is clustered, and
there are communities in which nodes are densely connected.
This phenomenon can be observed in Fig. 4, where many
groups of researchers are observed to have close collaborative
relationships. For example, the group around John Shawe-
Taylor includes 58 authors. These authors can be further
categorized into three subgroups. We detect that there are
two papers written by 38 and 35 authors, which exactly
define the left and right subgroups of authors, respectively.
The authors who participate in both studies lie in the center
subgroup. John Shawe-Taylor, who has links with all the
authors in this group, also has links with authors outside
the group, indicating that he plays a key role in connecting
the group to other authors in the entire network. This also
reflects why some of the similarity indices in link prediction
are constructed based on common neighbors. Newman [24]
has used the clustering coefficient to describe transitivity in
collaboration networks, which is defined as C = 3T/V,
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FIGURE 3. Second-order neighborhood network of the node with the
largest degree. This network contains 1,745 nodes and 4,148 edges. The
density is 0.003. The greater the degree of a node, the darker the color of
the node and the greater the size of the node.
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FIGURE 4. The 6-core of the collaboration network. This network contains
2,675 nodes and 13,322 edges. The density is 0.004. The greater the
degree of a node, the darker the color of the node and the greater the
size of the node. A great number of groups in which nodes are densely
connected can be observed. The clustering coefficient of this network is
0.797.

where T denotes the number of triangles in the network and
V denotes the number of connected triples. A triangle is a set
of three nodes i, j, k satisfying aj;ajxajx = 1, and a connected
triple is a single node that is connected to two other nodes. In a
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FIGURE 5. Nodes, edges, and average degrees in each year's network.
Both graphs exhibit increasing trends, indicating that researchers have
become more collaborative over the past 17 years.

collaboration network, the clustering coefficient represents
the likelihood of cooperation between two researchers if they
have collaborated with a third researcher [24]. In our network,
the clustering coefficient is 0.23. Compared to the collabora-
tion networks in other fields, the clustering coefficient of our
network is much higher than that of the biological network
(0.066). However, it is lower than that in theoretical physics
networks, which ranges from 0.33 to 0.43 [24].

To explore the dynamics of these collaboration pat-
terns, we construct collaboration networks year-by-year
from 2001 to 2017. Fig. 5(a) presents the number of nodes
and edges (i.e., collaborative relationships) observed over
these years, both of which exhibit an increasing trend. This
indicates that an increasing number of researchers are col-
laborating with each other and that new collaborations are
emerging. Specifically, the number of researchers in the
network increased from 2,811 to 8,466 during this period,
and the number of collaboration relationships increased from
2,844 to 12,271. Fig. 5(b) presents the average nodal degrees
from 2001 to 2017. The average number of collaborators per
author increased from 2.02 to 2.90, indicating that researchers
have become more collaborative over the past 17 years.
Therefore, it is of great importance to predict and recommend
new collaborators to researchers, which can be accomplished
through link prediction in collaboration networks.

B. DATASET FOR LINK PREDICTION

Recall that our dataset represents the period from 2001 to
2018. To perform link prediction, the collaboration network is
split into two parts according to the timestamp ¢ = 1, - - - , 18.
Specifically, we use data from 2001 to 2015 to construct an
original collaboration network. As some similarity indices
have been designed for connected graphs [10], we consider
the giant component Gy = (Vp, Ep) as a training network,
where V) is the node set and Ey is the edge set of Gy. The giant
component is the largest connected subgraph in the network.
In this case, it contains 72.0% of the nodes (i.e., 26,943) in
the original network (2001 to 2015). Motivated by the study
of Chuan et al. [13], which leaves 3-years data for testing,
we use the data from 2016 to 2018 to construct a testing
network G| = (Vy, E}), where V| and E| are the node and
edge sets of G1, respectively. Additional details regarding the
two networks are presented in Table 2.
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TABLE 2. Details of the training and testing networks. The time period,
number of nodes and edges, density, and average degree are reported.
The density of G, is slightly higher than that of Gy, whereas the average
degree is lower than G,. This is because G, covers a longer timespan.

Network Time No. of nodes No. of edges Density Average degree
Training(Go) 2001-2015 26,943 60,420 0.017% 4.49
Testing(G1) 2016-2018 16,734 27,973 0.020% 3.34

‘We now discuss the dynamic patterns of collaborative rela-
tionships among authors during these two periods. We let
Djj = (ajj,aj;) denote the relationship between nodes i
and j. There are two types of pairwise relationships in the
collaboration network: mutual relationships D;; = (1, 1), and
null relationships D;; = (0, 0). Additionally, we let Dg. and
Dl.lj denote the relationships between the nodes in Gg and G1,
respectively. According to Kim and Diesner [25], three types
of relationships in dynamic collaboration networks are of
particular interest. The first type includes Dg. = (1, 1) and
Dl.lj = (1, 1). It represents the collaborative relationships that
exist in both the training and testing networks, indicating an
ongoing collaborative relationship between authors i and j.
The second type includes Dg = (0,0) and Dl-lj = (1,1).
This type of relationships involve scenarios in which poten-
tial links can be predicted. This type of a phenomenon has
attracted significant interest in link prediction problems. The
third type is D}j = (1, 1), where at least one of the nodes
i or j is not in the training network. It is difficult to predict
these types of relationships because the training data lack
information regarding newly appearing nodes. Motivated by
previous studies on link prediction, we mainly focus on the
second type of nodal pair in our research.

Our goal is to identify the nodal pairs that belong to the
second type of relationship. Whether a new link forms in the
future between a pair of nodes can be seen as a dependent
variable. From this perspective, link prediction is a binary
classification problem. Therefore, it is necessary to construct
classification dataset. The process of constructing the classifi-
cation dataset is illustrated in Fig. 6. First, we obtain the node
set V = VpNV, which contains nodes in both Gy and G;. The
size of V is 5,638, which is also the number of unique authors
in the classification dataset. These authors are represented by
green circles in Fig. 6. The blue and yellow circles represent
nodes that only appear in Gg and Gy, respectively. Then, the
subgraph Go derived from Go based on the node set V is
obtained. Next, we select the nodal pairs (i, j) that do not
have a link in 50 (i.e,i,j € V and D; = (0,0)). These
pairs are represented in Fig. 6 as the dotted lines in Go. The
selected nodal pairs are labeled as positive (1) or negative (0)
depending on whether the two nodes have a link in G1. This
classification serves as the dependent variable in the classi-
fication dataset. The data are extremely unbalanced. Only a
small fraction of nodal pairs generate new links in the testing
network. Therefore, we use the undersampling method and
randomly remove some negative samples to make the positive
samples account for 10% and negative samples account for
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FIGURE 6. Process for constructing the classification dataset. The set of
green nodes refers to V. Blue circles and yellow circles represent nodes
that only appear in Gy or Gy, respectively. G is the subgraph derived
from G, based on the vertex set V. The dotted lines in G, refer to nodal
pairs that do not have a link. Black lines in G; represent newly appearing
links among V. For each of the non-linked nodal pairs in Gy,

we determine if it has a link in G; and accordingly label it as positive or
negative. In the classification dataset, Y = 0 indicates negative and Y =1
indicates positive.

90% of the classification dataset [13]. After undersampling,
the numbers of positive and negative samples are 3,435 and
30,915, respectively.

ill. METHODOLOGY

As mentioned in II-B, link prediction is essentially a binary
classification problem. In this section, we illustrate the pre-
dictors of the classification problem. Specifically, we intro-
duce the definitions of the 20 similarity indices used in
this study. These indices are classified into three cate-
gories, as shown in Table 3. We then present a descrip-
tive analysis of the two nodal attributes. We also explain
the derivation of novel predictors based on the nodal
attributes. The relationships between the novel predictors
and dependent variable in the classification dataset are also
discussed.

A. SIMILARITY-BASED APPROACHES

First, we introduce the similarity-based indices considered
in this study. Similarity-based approaches are widely used
for link prediction [16], [17]. For a pair of nodes i and j,
a similarity score s;; is calculated. The scores between all
pairs of nodes in the network are represented by a symmetric
matrix § = (s;;) € R"*". It is observed that nodal pairs with
higher scores are more likely to form links.

Table 3 lists the 20 similarity indices considered in our
study. According to Kumar et al. [16], these indices can be
grouped into three categories of local, quasi-local, and global
indices. One of the most commonly used local indices is the
CN, proposed by Newman [18]. We use I'(i) to denote the
set of neighbors of node i (i.e., ') = {I' : ay = 1}).
Furthermore, |I"(7)| denotes the size of I'(i), which is the nodal
degree of i and is exactly equal to d;. Consequently, CN (i, j)
is defined as |I"(i) N ['(j)|, which represents the number of
common neighbors of nodes i and j. A series of indices
based on CN have been proposed. For example, the Jaccard
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(JC) index [26] represents the normalization of CN. Other
similarity indices related to CN include the Salton cosine
similarity (SC) [27], Sgrensen index (SI) [28], Leicht-Holme-
Newman (LHN) index [29], hub promoted (HP) index, and
hub depressed (HD) index [30]. The preferential attachment
(PA) index differs from these indices [31] and is defined as the
product of the nodal degrees d; and dj; this indicates that the
nodes with higher nodal degrees are more likely to form new
links. Additionally, it is also natural to consider the degrees of
common neighbors, where neighbors with high degrees tend
to contribute less to the network. Two examples of this kind
of indices are Adamic-Adar (AA) index [32] and resource
allocation (RA) index [33]. One can see that most of the local
indices are neighbor-based methods, so they require little
computational time. In contrast, quasi-local indices require
additional computational time because they use more infor-
mation from the graph. For example, the shortest path (SP)
index [10] is the inverse of d(i, j), where d(i, j) is the length
of the shortest path between nodes i and j. The local path (LP)
index [34] considers the number of paths of lengths two and
three between nodes i and j. SP and LP are both path-based
methods.

Global indices use the complete topological information of
a network [16], leading to higher computational complexity.
The Katz index and LHN global (LHNG) index are path-
based methods from a global perspective. The Katz index [35]
considers all paths between two nodes. We let | paths§9|
denote the number of paths of length / (I > 1) between
nodes i and j. The Katz index is the sum of |paths§?| with
a weight B!, where B! is a predetermined parameter. The
LHNG index is a variant of the Katz Index. In the definition of
LHNG [29], m is the total number of edges, 11 is the greatest
eigenvalue in the adjacency matrix A, D = (d;) € R"™" is a
diagonal matrix, and « is a free parameter (see Table 3). Some
global indices are related to random walks in a graph and are
called random-walk-based methods. In the average commute
time (ACT) index, m(i, j) refers to the average number of
steps taken by a random walker starting at node i and reach-
ing node j for the first time. The normalized ACT (NACT)
introduces 7; = d;/Y_,; d; as a normalization term [36]. The
random walking with restarting (RWR) index also adopts
the concept of a random walk. Specifically, in Table 3, g;;
is the probability that a random walker starts at node i and
is located at node j in the steady state [37]. Other indices
include LT, the cosine based on L™ (cos L), and the matrix
forest index (MFI), which are related to the Laplacian matrix
L = D — A. Specifically, L™ denotes the pseudoinverse of
the Laplacian matrix. According to Fouss et al. [38], each
node can be represented by a vector that forms a Euclidean
space. The elements of L™, namely l; = [L™];, represent
the inner product between node vectors. Therefore, L™ can
be considered as a similarity matrix. The cosine based on L™
is the cosine of the angle between the same node vectors as
L. The MFI differs from the above indices and is based on
the matrix forest theorem [39].
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TABLE 3. Definitions of 20 similarity indices.

Local indices

CN(4,4) = |T'() N T(4)]

IC(4,5) = IT'(¢) N T(G)I/IT(4) VT (H)]

SC(i,4) = |T(i) NT(5)I//di * d;

SI(4,5) = 2|T'(i) NT(5)I/(di + dj)

HP(i, j) = (i) N T'(4)|/ min {d;, d; }

HD(i, j) = [T'(¢) N T(5)|/ max {ds, d; }

LHN(, j) = 2|T'(&) N T(5)|/(di * dj)

PA(%,5) = di * d;

AA(3,7) = (logd,)~*
z€|T()NT ()]

RA(i, j) = !
Z€|T(i)NT(5)|

Common Neighbors

Jaccard Index

Salton Cosine Similarity
Sgrensen Index

Hub Promoted Index

Hub Depressed Index
Leicht-Holme-Newman Index
Preferential Attachment

Adamic-Adar Index

Resource Allocation Index

Quasi-Local indices
SP(i, j) = d(i,5) "
LP = A% + aA®
Global indices
S m
Katz(i, j) = > ,Bl|pathsi jl
=1 ’
Leicht-Holme-Newman Global Index LHNG = 2mA; D~ (I — %A)*lD*1
ACT(i, j) = [m(i, 5) + m(j, )] "
Normalized Average Commute Time NACT(4, j) = [m(i, 5)m; + m(j, i)m;] ~*
RWR(%, ) = qij + ¢ji
S=1L%
i)y — gt ++
(i, 4) = U5 /1555
MFI = (I + L)™'

Shortest Paths
Local Path Index

Katz Index

Average Commute Time

Random Walk with Restart
LT directly
Cosine based on L+

Matrix Forest Indexc

University of California System
University of North Carolina
Harvard University

State University System of Florida

University of London

Institutes

University of Texas System

University of North Carolina Chapel Hill
University of Washington Seattle
University of Washington q

University of Michigan -

o

50 100 150 200
Number of Authors

FIGURE 7. Top-10 most-frequent institutes. The University of California
System includes UC Berkeley, UCLA, UC Santa Barbara, and many other
universities.

B. NODAL-ATTRIBUTE-BASED PREDICTORS

One can see that the similarity indices focus only on the
network topology. However, nodal attributes can also provide
information for link prediction. We can derive a series of
predictors using nodal attributes. Specifically, we take advan-
tage of two attributes in this study, namely, institutes and
research interest. For institutes, we let 7; denote the set of
institutes of author i, which contains the institutes (referred
to as universities in most cases) at which the author worked
during the period of 2001 to 2015. Among the 5,638 authors
in the classification dataset, 65.9% are affiliated to one or two
institutes, indicating that researcher affiliations typically do
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not change over a short period of time. Fig. 7 presents the
10 most-frequent institutions in the dataset. The University
of California System ranks first with 233 authors. Excluding
the University of London, all the universities are located in
the United States.

Intuitively, if two authors work at the same institute during
the same period, they are more likely to collaborate with
each other. Some related works [10], [24], [40] have high-
lighted this concept, but none have applied it to collaboration
networks at the author level. Accordingly, we construct a
variable called the same institute (SIN) variable. This cate-
gorical variable holds true if two authors work at the same
institute, is false if they do not work at the same institute, and
is unknown if the institute is missing for either of the authors.
Therefore, the SIN can be expressed as

SIN(, j)
True, if T;NT; # @,

= { False, fTiNTj=a, Ti #Jand T; # @;
Unknown, if ;=@ or Tj = @.

ey

Among the 34,350 pairs of authors, 4% worked at the same
institutes during the period from 2001 to 2015, leading to a
much higher proportion (74.0%) of collaboration in the future
(2016 to 2018). Only 7.3% of the authors whose SIN values
are false or unknown later collaborate with each other. It is
reasonable for authors working in the same location to collab-
orate more frequently. Therefore, collaborative relationships
can be developed easily [10], [21].

Another nodal attribute is research interest. We extract
all keywords from papers written by each author and count
the corresponding frequencies. We let W; denote the key-
word set for node i. Fig. 8 presents the word clouds of
the top-100 most-frequent keywords. Popular topics include
the Markov chain Monte Carlo (MCMC), variable selec-
tion, maximum likelihood (ML), EM algorithms, and model
selection methods. Table 4 lists the frequencies of the top-
20 keywords. According to Wang et al. [41], if the research
interests of two authors are similar, they are usually more
likely to collaborate. We use the KMC to quantify the similar-
ity between the research interests of two authors. According
to Al Hasan et al. [42], this method is simple but effective.
Specifically, for nodes i and j, we obtain W;; = W; N W; as
a co-keyword and let |W;;| denote the size of W;;. For each
word wy in Wj;, we let njy and nj denote the frequencies of
word wy in nodes i and j, respectively. The KMC is defined
as follows:

Wil

> ik + mi). (@)

k=1

KMC(, j) =

A high KMC value indicates that two authors have sim-
ilar research areas. Therefore, they are more likely to form
collaborative relationships. Evidence shows that the authors
who share the same keywords tend to collaborate with each
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FIGURE 8. Top-100 keywords of papers in 43 statistical journals
from 2001 to 2015. Research fields in the MCMC and variable selection
methods attract significant interest.

TABLE 4. Top-20 keywords and their corresponding frequencies.

Keywords Frequency Keywords Frequency
MCMC 1361 Bayesian inference 609
ML 977 empirical likelihood 543
bootstrap 918 robustness 537
variable selection 840 survival analysis 517
EM algorithm 837 lasso 506
asymptotic normality 809 missing data 498
nonparametric regression 744 order statistics 476
model selection 710 measurement error 440
consistency 638 functional data analysis 424
longitudinal data 610 classification 377

other. The proportion of collaboration among such authors
is 26.7%, which is much higher than the rate of 6.3% for
those who do not share a common research interest. Addi-
tionally, only 18.1% of the author pairs share the same key-
words and the highest value of the KMC is 268, indicating
a high degree of overlap between the research fields of two
authors. It is found that both authors are prolific and partic-
ipate in 144 and 33 papers from 2001 to 2015, respectively.
They have published various articles in both Biometrika and
the Journal of the American Statistical Association. Fre-
quently occurring keywords in their papers include non-
parametric regression, functional data analysis and mixed
models.

IV. RESULTS

Link prediction can be performed using any of the aforemen-
tioned similarity indices. However, it is also meaningful to
use more than one predictor to obtain more accurate results.
In this section, we first use the similarity indices separately
and then calculate area under the receiver operating character-
istic (ROC) curve (AUROC) values. We consider several clas-
sifiers, namely a support vector machine (SVM), XGBoost,
and random forest (RF), to combine all similarity indices and
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TABLE 5. AUROC values of 20 similarity indices.

Similarity indices AUROC Similarity indices AUROC

CN 0.642 SP 0.798
iC 0.642 LP 0.724
SC 0.642 Katz 0.802
SI 0.642 LHNG 0.801
HP 0.642 ACT 0.645
HD 0.642 NACT 0.625

LHN 0.642 RWR 0.829
PA 0.619 Lt 0.833
AA 0.642 cos LT 0.833
RA 0.642 MFI 0.826

present the results. These classifiers are popularly used in link
prediction [43], [44], [45]. To determine the effects of nodal
attributes, we incorporate nodal-attribute-based predictors
into the models and compare the results. Finally, we present
collaborative recommendations for statisticians based on the
best model.

A. PERFORMANCE OF SIMILARITY INDICES

The performance of link prediction can be evaluated using
ROC curves and corresponding AUROC values [46], [47].
First, we use the 20 similarity indices listed in Table 3
separately to complete link prediction in our statistical col-
laboration network. Fig. 9 presents the Pearson correlation
coefficients of 20 similarity indices [45]. It is clear that most
similarity indices have strong positive relationships with each
other. Furthermore, there are stronger positive correlations
between local and quasi-local indices than between global
indices. Indices such as CN and JC, AA and RA, LP and
Katz, and L™ and cos L™, whose definitions are very sim-
ilar, exhibit strong correlations. Fig. 10 presents the ROC
curves of the indices for the three categories. Generally,
global indices outperform quasi-local indices, and quasi-
local indices outperform local indices. This is because global
indices use the topological information of the entire graph,
whereas quasi-local and local indices only use a portion of
the information. Among the 10 local indices presented in
Fig. 10(a), excluding PA, the prediction ability of the other
nine indices is almost the same. This is partly because of the
strong correlation among these indices. Fig. 10(b) presents
the ROC curves for the SP and LP indices. One can see
that SP leads to better performance. The results of the global
indices are presented in Fig. 10(c). Katz, LHNG, RWR, LT,
cos LT, and MFI outperform ACT and NACT. The AUROC
values are presented in Table 5. L™ and cos L™ exhibit the
highest AUROC value of 0.833. RWR ranks second with an
AUROC of 0.829, and MFI also performs well. PA exhibits
the lowest AUROC value of 0.619, which indicates that
using nodal degrees alone to predict new partnerships is very
insufficient.
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FIGURE 9. Pearson correlation coefficients of 20 similarity indices. Strong
positive correlations can be observed.

B. PERFORMANCE OF MACHINE LEARNING
APPROACHES

To combine the 20 similarity indices, SIN, and KMC effec-
tively, we apply several machine learning algorithms for
classification. Specifically, we use two models and three
classifiers to compare the results. The first model contains
the 20 similarity indices listed in Table 3 without the nodal-
attribute-based predictors, whereas the second model uses
all 22 predictors, including KMC and SIN. The machine
learning approaches applied in this study are SVM, XGBoost,
and RF. These approaches are frequently used in learning-
based link prediction methods [43], [44], [45]. An SVM is an
extension of support vectors that results from enlarging the
feature space using kernels [48]. We apply a linear kernel to
our problem. XGboost is a scalable, distributed, and gradient-
boosted decision tree machine learning method [49]. RF is
an ensemble learning method using decision trees as base
learners [50]. The number of trees in all RFs is 500 in this
study. In addition to the AUROC, we use the true positive
rate (TPR) and precision to evaluate performance. Addition-
ally, the 10 fold cross-validation is implemented for each
algorithm.

The performance results are listed in Table 6. One can
see that all the three algorithms exhibit improvements when
incorporating SIN and KMC, indicating that the nodal-
attribute-based predictors can significantly improve predic-
tion accuracy. For example, the value of the AUROC for
RF increases from 0.870 to 0.904 when SIN and KMC are
added, and the TPR increases from 0.441 to 0.480. The
RF with all predictors yields the highest AUROC (0.904).
AUROC measures the overall performance of a classifica-
tion model. An SVM with all predictors yields the highest
TPR of 0.483, indicating the ability of SVM to detect newly
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FIGURE 10. ROC curves of 20 similarity indices in three categories. Global indices outperform the other two categories. L+ and
cos L have the best prediction ability.

TABLE 6. Comparison of models with/without SIN and KMC using SVM,
XGBoost, and RF. The RF with both the similarity indices, and SIN and
KMC yields the highest AUROC value.

Predictors Classifiers AUROC TPR Precision

SVM 0.809 0309 0.874

o . XGBoost  0.878 0.409 0.800

Similarity Indices

RF 0.870 0.441 0.829

SVM 0.855 0483 0.778

o . XGBoost  0.889 0.442  0.789
Similarity Indices+SIN+KMC

RF 0.904 0480 0.847

formed links. However, the TPRs of the same predictors in
the RF are similar, and the RF yields higher AUROC and
precision values. The SVM with only the similarity indices
yields the highest precision of 0.874, meaning that it yields
the highest proportion of correct predictions among the sam-
ples predicted to be positive. However, this model yields the
lowest AUROC and TPR values. Considering that finding
positive samples is important for solving the link prediction
problem, the RF with all predictors outperforms the other
combinations.

Next, we explore the effects of each variable. We use two
metrics (mean decrease in accuracy and mean decrease in
Gini) to measure the importance of variables in the RF (see
Fig. 11). One can see that the nodal-attribute-based predictors
KMC and SIN are the two most important variables in terms
of the metric of mean decrease in accuracy. Furthermore,
NACT, RWR, and PA are also important. According to the
Gini importance (right side of Fig. 11), the important vari-
ables include RWR, cos Lt, SP, MFI, and LHNG.

C. RECOMMENDATIONS

By applying an RF with all the 22 predictors listed in Table 6,
we calculate the probability of the collaboration of nodal pairs
in our dataset. Collaboration recommendations are based on
the results. As mentioned in II-B, the author pairs in our
dataset do not collaborate with each other in the training net-
work. There are 40 pairs of authors that are predicted to col-
laborate, and all of them generate collaborative relationships
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FIGURE 11. Variable importance measured by the mean decrease in
accuracy and mean decrease in Gini.

in the testing network. Table 7 lists these pairs. The last row in
this table presents the mean values of the indices. One can see
that there are strong similarities between each pair of authors.
For example, each pair has at least one common neighbor.
Based on the large scale and low density of the training
network, 96.7% of the author pairs in the dataset did not
have common neighbors. Common neighbors are common
collaborators, and researchers can easily learn about each
other through common collaborators. The shortest path length
between each pair is two, yielding an SP equal to 0.5 for all
author pairs. Additionally, the values of L* and cos L™ for
these pairs are greater than those of 97% of the author pairs
in the dataset. Regarding the values of the nodal-attribute-
based predictors, most of the recommended author pairs are
related to the same institute and share common keywords,
indicating that it is convenient for them to collaborate based
on common research interests. Our method can provide useful
insights for researchers seeking new potential collaborators.
For example, Xueying Zheng and Jie Mao are predicted to
collaborate with Guoyou Qin. These three researchers are
affiliated to the Fudan University in China and are interested
in longitudinal data analyses. Xueying Zheng and Jie Mao
published articles on longitudinal data with Guoyou Qin in
the Journal of Statistical Computation and Simulation in
2016 and 2018, respectively.
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TABLE 7. Top-40 pairs of predicted authors who are most likely to share
collaborative relationships. The values of some similarity indices and
predictors are also reported for each pair. The mean values for these
indices are presented in the last row.

Author i Author j CN LT csLt SIN KMC
Alireza Asgharzadeh S.M.T.K. MirMostaface 1 0.02 0.08 True 4
Anthony J. Hayter Fang Wan 3004 017 True 12
Brian Claggett Marc Alan Pfeffer 30002 009 True 0
Brian Williams Brian Phillip Weaver 1 0.04 0.13 Unknown 6
Changchun Xie ‘Wanrong Liu 1 0.03 0.09 False 0
Changjun Yu Xijun Liu 1 0.23 0.35 Unknown 2
Edgar Brunner Frank Konietschke 4 0.05 0.27 False 6
Guoyou Qin Xueying Zheng 2 0.02 0.06 True 22
Guoyou Qin Jie Mao 2 0.02 0.06 True 6
Hardegen, A. Gopalan Nair 1 0.06 0.16 True 2
Hussein R. Al-Khalidi Jie Li 1 0.32 0.4 False 0
Italia De Feis Luisa Cutillo 1 0.04 0.09 Unknown 6
Jan De Neve Donald John Best 1 0.22 0.33 True 4
Jan De Neve John Rayner 1 0.19 0.35 True 4
Joanne Wendelberger Christine Anderson-Cook 2 0.04 0.2 Unknown 2
Julia Braun Stefanie Muff 1 0.03 0.07 True 0
Limin Peng Michele Marcus 2 0.03 0.14 True 2
Lisa Doove Tom Wilderjans 1 0.09 0.17 True 0
Luciana Dalla Valle Fabrizio Leisen 1 0.04 0.11 False 2
Mahbubul Majumder Xiaoyue Cheng 1 0.08 0.16 True 2
Miguel Angel Uribe Opazo Audrey HM.A. Cysneiros 2 0.03 0.1 True 16
Minh Tang Yongjin Park 1 0.21 0.36 True 0
Minh-Ngoc Tran Mattias Villani 2 0.03 0.11 False 12
Muhammad Azam Mohammad Aslam 1 0.11 0.27 Unknown 0
Noel Veraverbeke Candida Geerdens 1 0.02 0.06 True 4
Paul Garthwaite Andre Charlett 1 0.1 027  Unknown 2
Pauliina IImonen Klaus Nordhausen 2 0.03 0.13 True 10
R K Milne Gopalan Nair 1 0.06 0.16 True 2
Seiya Imoto Hidetoshi Matsui 1 0.43 0.49 True 4
Tom Loeys Beatrijs Moerkerke 1 0.06 0.1 True 2
Weihua Zhao Jianbo Li 2 0.03 0.14 True 8
Woncheol Jang Sunghoon Kwon 1004 006 False 0
Woo-Dong Lee Yongku Kim 1008 015 Unknown 0
Xin Chen Zhihua Su 1 0.04 0.06 False 0
Yan-Yong Zhao XingFang Huang 1004 01 True 0
Yee Whye The Prunster Igor 2 0.02 0.14 False 20
Yongku Kim Sang-Gil Kang 1 0.08 0.15 Unknown 0
Zhonghua Li Qin Zhou 1 0.05 0.17 False 0
Zhonghua Li Bin Chen 1 0.05 0.15 False 0
Ziding Feng Adi Gazdar 1 0.02 0.06 True 0

Mean 0.043 0.002  0.004 - 1.32

V. CONCLUSION

In this study, we collect co-authorship information from
43 statistical journals from 2001 to 2018. We then construct
collaboration networks for different time periods based on
this information. Statistical analyses are conducted to explore
the characteristics and evolution of the collaborative network.
The results suggest that researchers have become more col-
laborative over the past 17 years. We use data from 2001 to
2015 to construct a collaboration network and extract its giant
component as a training network. A corresponding testing
network is constructed using data from 2016 to 2018. The
goal of link prediction is to use information from the train-
ing network to predict the possible new links in the testing
network. Therefore, a classification dataset is constructed.
To predict new links, 20 similarity indices are calculated
and two novel nodal-attribute-based predictors are developed.
After comparing the prediction capabilities of the 20 similar-
ity indices, we discover that the global indices L™ and cos L™
outperform the others. We further improve prediction accu-
racy by applying machine learning approaches to combine
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TABLE 8. List of 43 journals in statistics. The journals are ordered
alphabetically by name.

Journals
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION
AMERICAN STATISTICIAN
ANNALS OF APPLIED STATISTICS
ANNALS OF STATISTICS
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS
ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION
BAYESIAN ANALYSIS
BERNOULLI
BIOMETRICS
BIOMETRIKA
BIOSTATISTICS
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS
COMPUTATIONAL STATISTICS
COMPUTATIONAL STATISTICS & DATA ANALYSIS
ELECTRONIC JOURNAL OF STATISTICS
INTERNATIONAL STATISTICAL REVIEW
JOURNAL OF APPLIED STATISTICS
JOURNAL OF BUSINESS & ECONOMIC STATISTICS
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS
JOURNAL OF MULTIVARIATE ANALYSIS
JOURNAL OF NONPARAMETRIC STATISTICS
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION
JOURNAL OF STATISTICAL PLANNING AND INFERENCE
JOURNAL OF STATISTICAL SOFTWARE
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN
JOURNAL OF TIME SERIES ANALYSIS
R JOURNAL
SCANDINAVIAN JOURNAL OF STATISTICS
SPATIAL STATISTICS
STATISTICA SINICA
STATISTICAL ANALYSIS AND DATA MINING
STATISTICAL METHODOLOGY
STATISTICAL METHODS AND APPLICATIONS
STATISTICAL MODELLING
STATISTICAL SCIENCE
STATISTICS
STATISTICS & PROBABILITY LETTERS
STATISTICS AND COMPUTING

similarity indices with KMC and SIN. The AUROC value
of the best model is 0.904, indicating excellent performance.
Finally, we apply the best model to the nodal pairs in the
dataset and present the top-40 recommended author pairs.
They formed collaborative relationships in the testing net-
work, demonstrating that our model has a good recommen-
dation capabilities. However, there are still some limitations
of this study which need further advancement. For example,
calculating global indices on large-scale networks requires
high computational time. It is inefficient so new methods
applicable to large-scale networks deserve to be explored.
Several directions for future research are possible. First,
additional link prediction approaches can be applied to col-
laboration networks using statistics. For example, the proba-
bilistic and maximum-likelihood models can be implemented
in such networks. The comparison of these approaches is
worth studying. Second, collaboration networks can be con-
structed with different structures such as weighted or directed
networks. This could provide more information and lead to
improved results. Additionally, our methods can be applied to
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the networks in various fields such as economics. We can then
compare the results of networks across disciplines to draw
rich conclusions.

APPENDIX A JOURNAL LIST
See Table 8.
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