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ABSTRACT The use of Kalman filtering techniques for landslide monitoring has proved effective as a
tool for estimating and predicting land displacements. Ground-Based Synthetic Aperture Radars (GBSAR)
are popular remote sensing instruments able to provide displacement maps of the investigated area, with
submillimeter precision. These instruments outperform other sensors in several respects, such as all-weather
and all-day monitoring. However, in some cases, for instance in vegetated scenarios, the displacement is
affected by a significant uncertainty due to the decorrelation of the radar signal. In such a case, to retrieve any
reliable information, noise must be filtered out using appropriate methods. Given the success of kinematic
modeling of landslide movements through Kalman filtering, this technique seems to be the optimal candidate
for processing the displacement measured by interferometric GBSAR data. This paper investigates this
idea, by applying Kalman Filter to GBSAR measurements acquired in two different campaigns: a landslide
monitoring in north Spain, and a sliding glacier monitoring in the Alpes, Italy. A proper initialization of the
algorithm parameters is fundamental for a correct application of the Kalman filter. In this work, we present
a strategy that exploits information from coherent pixels for tuning the filtering parameters and optimizing
the filter performance on areas with low coherence.

INDEX TERMS Ground-based synthetic aperture radar, interferometry, landslide monitoring, Kalman filter.

I. INTRODUCTION

Slope landslide monitoring is a research field of paramount
importance for hazard assessment, risk mitigation, and the
prevention of natural disasters. Numerous sensors and tech-
niques have been developed for this purpose in recent decades
[1]. Field observations of changing topology features, along
with in situ ground-based observations, and remote sens-
ing techniques are the three main category of monitoring
methods [2].

Among the latter, Ground-Based Synthetic Aperture
Radars (GBSAR) achieved success as remote sensing tools
for environmental monitoring. GBSAR sensors allow to scan
the desired scenario and detect possible displacements of
targets in the radar line of sight [3], [4]. The use of interfer-
ometric techniques permits to measure targets displacement
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with an accuracy of a fraction of the signal wavelength. The
achievable high resolution coupled with the return time of
few minutes, make them optimal candidates for real time
monitoring, which is of great importance on active landslides.
These sensors are now widely used for environmental mon-
itoring, especially in areas not directly accessible with other
instruments [5], [6].

The quality of the interferometric radar data strongly
depends on the characteristics of the investigated scenario.
For instance, vegetated areas are typically characterized by
low coherence [7], [8], i.e., the signal is subject to decorre-
lation effects, which results in noisier interferometric data.
In these cases, standard data interpolation or filtering tech-
niques could lead to an underestimation of the actual result,
thus, to a misinterpretation of the data. Therefore, it is of
paramount importance to find a way to correctly weight the
obtained measurements. To this end, the authors of this article
identified the Kalman Filter as a tool to perform dynamic
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filtering that adequately weights the information coming
from consecutive acquisitions. having a method that ade-
quately filters the measured displacements of low coherence
pixels would be a valuable resource, as it would improve the
deformation detection capability of GBSAR sensors.

The Kalman Filter (KF) [9] is a powerful technique that
enables to estimate and predict unknown variables starting
from noisy measurements of a given quantity. It is currently
used in several fields, and in a wide range of applications [10],
[11], such as orbit calculation, target tracking and navigation.
In landslide monitoring the application of KF techniques
has recently gained attention, as it proved to be effective
in estimating and forecasting ground displacements [12],
[13], [14]. This technique has been applied to displacement
measurements acquired with different sensors, and success-
fully managed to filter out noise and properly predict ground
displacement.

Since the last century, KF has been used for Synthetic
Aperture Radar (SAR) applications, for addressing the phase
unwrapping problem. For instance, authors of [15] proposed
the use of KF as a tool to simultaneously unwrap and
filter the interferometric phase of the two dimensional SAR
image. This approach was based on data fusion of interfer-
ometric phase and phase slope information, extracted from
the power spectral density of the interferogram. However,
this approach did not provide satisfying results in areas
of low coherence [16] where, in order to obtain reliable
results, an a priori information is needed. This field of
application proved successful and efforts are currently been
made to optimize this technique, for instance by using an
Unscented KF [17], [18].

The KF has been used also for other SAR purposes;
for instance authors of [19] proposed a Kalman-filter-
based approach to determine 3-D surface deformations
by using multisensory, multitrack, and multitemporal SAR
interferograms.

Recently, KF was used also in the processing of GBSAR
interferometric data [20], [21]. Specifically, in [21] the KF is
used to implement a near real-time interferometric analysis
with low computational effort. Furthermore, authors of [20]
used the KF technique to filter out noise from the timeseries
of cumulative displacements obtained with interferometric
analysis.

In this paper, we further analyze the application of
Kalman filtering techniques to the processing of GBSAR
interferometric data. Our intent is to optimize KF to treat
noisy, low coherence, pixels in the radar image, which would
be discarded for interferometric analysis, so as to retrieve
reliable information from them.

One of the main challenges in the application of the KF
algorithm, is the parameter initialization. To deal with this
task, in this work we propose a procedure based on the
so-called Permanent Scatterers [22]. The algorithm param-
eters are first optimized for these pixels, and then used to
treat noisier ones, with appropriate modifications based on
the pixel signal noise. This way, it is possible to filter the
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displacement measured on low coherence pixels in the radar
image, and extract information from them.

Compared to the study illustrated in [20], we apply Kalman
algorithms to GBSAR measurements acquired in different
scenarios, thus, characterized by a great variety of backscat-
tered signals. The case studies reported in this paper are those
of asliding Glacier in the Alpes, Monte Rosa, Italy, and a slow
active landslide near Formigal, Spain. These two case studies
provide useful insights into the application of Kalman filter
on interferometric GBSAR data.

The paper is organized as follows: section II reviews the
basic concepts of GBSAR interferometry, while in section III
the mathematical formulation of the Kalman filter is pre-
sented. Finally, in section IV, the experimental results are
presented and discussed.

Il. GBSAR INTERFEROMETRY

Interferometry techniques allow to determine the displace-
ment of a target between two radar acquisitions. The displace-
ment is obtained by manipulating the phase of the complex
valued GBSAR images. The phase ¢ of a complex valued
image I, relative to a pixel, is the sum of three terms

© = @Qdist + Patm + Pnoises (D

where @gisc is a phase contribution which depends on the
relative distance between radar and the imaged target, @y, is
the phase contribution due to the atmospheric conditions, and
®noise 18 the noise term. By subtracting the phases of images
acquired at different times, we get

Ap = A@gist + A@aim + A@noise- 2)

After estimation and removal of the atmospheric contri-
bution, the phase difference is directly related to the target
displacement in the radar line of sight, through the equation

A
Ad = 4 (A@dist + A¢noise)s 3)
TT

where A is the wavelength associated to the central frequency
of the radar signal. Whether the noise term is present or not
determine the possibility of correctly measuring the displace-
ment of a target. In fact, interferometric analysis is usually
performed on pixels characterized by high signal quality, for
which the noise phase term ¢ppise in (1) can be considered
negligible. For these pixels, by cumulating the displacements
retrieved using consecutive GBSAR acquisitions, it is pos-
sible to obtain the target movement over time. However,
if the noise term greatly affects the interferometric phase, it is
difficult to retrieve the correct displacement information. The
presence of noise can be due for instance because of resid-
uals of the atmospheric phase screen correction or to non-
compensated phase wrapping. The latter effect is common in
vegetated scenarios, where decorrelation can cause a loss of
phase information, which makes measurement data difficult
to interpret.

In order to single out high quality pixels in a GBSAR
image, the amplitude dispersion index parameter (Dy) is often
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used [22], [23]. It can be defined for each pixel of a GBSAR
image as
Dy= 2, 4)
HA

where o4 and pu are respectively the standard deviation
and mean value of the pixel signal amplitude time series.
It quantifies the pixel signal quality and is used in radar
interferometry to preliminary select candidate areas to carry
out the analysis. Indeed, this parameter is related to the cor-
responding coherence value [24], but is easier to calculate.

The D4 provides us also with an estimation of the
displacement measurement error. Indeed, for pixels with suf-
ficiently high signal to noise ratio, the interferometric phase
standard deviation can be approximated to the corresponding
Dy value [22], [25],

6, & Dy. ®)

Since o, can be regarded as an estimate of the interferometric
phase error, by combining (3) and (5), one can conclude that
also the displacement error scales according to the corre-
sponding D4. This expression has been taken into account
for initializing the measurement error parameter of the KF.

lll. KALMAN FILTER
In this section the mathematical formulation of the KF algo-
rithm, relative to our case studies, is reviewed.

The FK algorithm allows to estimate/predict an unknown
variable xj, possibly multidimensional, at the discrete time
k, from a collection {z;} of noisy measurements of a certain
quantity. Specifically, the KF consists of two iterative steps:
the prediction process and the estimation process.

A. THE PREDICTION PROCESS

The variable x; to be estimated is called the state variable.
In the first phase, the state variable prediction X, at time k,
is determined using the estimate obtained at the previous time
step, xx—1. To compute this process, a priori information on
the evolution of the state variable is required. This informa-
tion is encapsulated in the state transition equation, which
describes the state variable evolution,

X = Axp_1 + wy. (6)

Here, A is a matrix that recursively relates the state variable
X to the state variable at time k — 1, x;_;; wy 1S a vector
of zero-mean gaussian errors. The variable wy is called the
model error.

In our case the measurements {z;} are the cumulative dis-
placements of a selected target in the scene, obtained using
interferometric techniques. The multidimensional variable to
be estimated is composed by the position and velocity com-
ponents of the displacement in the radar line of sight, relative
to the selected pixel, at time k. That is, x; = (pk, vk)T.

The matrix A represents the kinematic model describing
the target movement. In the case studies analyzed in this
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paper, we are interested in the ground displacement due to
the sliding of a glacier or a landslide.

In both cases, the ground motion results from the sum
of gravitational and frictional forces acting on the selected
target of the slope/glacier. Furthermore, in interferometric
analysis a single pixel is monitored during a certain period.
Therefore, the retrieved displacement is relative to a point of
the scenario with fixed coordinates. The point is characterized
by a constant inclination. Thus, in most cases, the dynamics
will evolve towards a stationary situation, where the ground
is subject to constant motion. In this case, the matrix A reads

1 At
A=<01), )

where At is the value of the time interval between successive
acquisitions.

From a practical viewpoint, the prediction process of
the KF algorithm consists of two steps; the computation of
the state variable prediction X, and the computation of the
covariance state variable prediction Py. The state variable
prediction for the k-th time step, is given by the transition
equation

X = Axi—1, ()

with matrix A defined in (7), and x;_; the final estimate from
the previous iterative step. The prediction of the state variable
covariance matrix is given by

Py = AP 1AT 4 Q, ©)

where the matrix Q is the covariance of the model error wy.
If a white noise acceleration model is assumed [14], [25],
[26], the Q matrix is equal to

oAt/ NP2
Q“’W(Az3/2 At ) (10)

Where At is the time interval between consecutive acquisi-
tions, and av% is the covariance of the white noise acceleration
process. One of the main challenges to properly apply KF,
is the choice of o2

B. THE ESTIMATION PROCESS

In the estimation process the measurement z; is used to
correct the prediction Xi, and to obtain the final estimate
xi. In fact, each element z; of the measurement collection,
is related to the variable xj, through the so-called measure-
ment equation

2% = Hxp + ex, (11

where H is the state-to-measurement vector, and e; is a
zero-mean gaussian error, called the measurement error,
whose variance is R = o 2.

The estimation process involves three steps: the computa-
tion of the so-called Kalman gain Kj, the correction of the

prediction estimate X; to get the final estimate x;, and the
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correction of the covariance prediction. The Kalman Gain is
given by the following expression

~ - —1
K = P HT (HPkHT + R) . (12)

Here, R is the covariance of the measurement error e, and
13k is the prediction of the state variable covariance matrix,
calculated in (9). In our case, the state-to-measurement vector
H is equal to

H=( 0). (13)

The correction of the predicted value X is realized by
properly weighting the deviation of the measurement z; from
the predicted value, with the Kalman gain. Specifically, the
final estimate of the state variable is given by

Xy =X + Ky (z — HXy) . (14)

Finally, the correction of the covariance prediction is cal-
culated with the following expression

Py = Py — KyHPy. (15)

C. PARAMETERS INITIALIZATION

The performance of the KF mainly depends on the choice of
the state transition kinematic model (the matrix A), and on the
model and measurement error covariance Q and R, whose val-
ues must be initialized a priori. Therefore, once the kinematic
model is selected, the performance of the algorithm strongly
depends on the choices made for the error covariances Q
and R. Changing one of this two quantities, dramatically
modifies the filter result. Specifically, once the value of R
is fixed, increasing Q means that the kinematic model is
more influenced by the error. Thus, in calculating the final
estimate, the filter gives more relevance to the measurement
outcomes. On the other hand, by decreasing Q values, the
filter relies more on the dynamic model entering the state
transition equation. As a result, the measurement outcomes
have less weight in the final estimate. The initialization of
the error covariance parameters determines the success or
failure of the filtering procedure. Unfortunately, there is not a
universal standard for initializing Q and R values, but they
must be tuned case by case, depending on the signal and
scenario characteristics. Care must be taken in this choice,
since in some cases, place too little or too much weight to the
experimental measurements, can lead to a loss of information.

In fact, like many other filtering algorithms, KF can lead
to excessive filtering of the variable of interest. To solve this
issue, the first setting of the parameters must be performed
by an operator who, on the basis of a priori knowledge of the
physical scenario under investigation, can determine whether
the result is reliable or not.

To address the challenging choice of model and error
covariances and avoid over-filtering, in this work the KF is
first applied to a coherent group of pixels for optimizing the
filtering parameters. Indeed, these high quality pixels can
be considered as benchmarks, for which the corresponding
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FIGURE 1. Example of filtered displacement trend obtained with different
values for the measurement uncertainty. Red dots represent the
measurement outcomes from interferometric analysis, dashed blue and
green lines the filtered variables obtained with se = 0.1 mm and

ge = 1 mm, respectively.

measured displacement is reliable. When KF is applied to
coherent pixels, we keep fixed the R value, determined by
the sensor uncertainty, and optimize the Q parameter accord-
ing to the scenario characteristics. For GBSAR sensors the
theoretical measurement uncertainty on high quality pixels,
in an optimal scenario, is of the order of 0.1 mm [27]. How-
ever, especially in natural scenarios, many factors introduce
additional sources of uncertainty. For instance, natural envi-
ronments are in general characterized by a lower reflectivity.
Moreover, the large distance of targets from the sensor, leads
to a decrease in the intensity of the backscattered signal,
hence, to a decrease of the signal to noise ratio. For these
reasons, we estimated the measurement uncertainty directly
from the scenario under investigation, as the average of the
standard deviation of the displacement of coherent pixels of
the scenario. Doing so, we obtained a measurement uncer-
tainty of the order of 1 mm. Nevertheless, we experienced to
substantial deviation by tuning the measurement uncertainty
o, from 0.1 mm to 1 mm, as can be seen in Figure 1.
In this figure, we show results of KF filtering of a measured
interferometric displacement, with fixed Q, and o, = 0.1 mm
and 0, = 1 mm. This evidences that the algorithm is robust
to a fine tuning of the R parameter within this range.

We then proceed as follows: by keeping fixed the R value,
determined by o, = 1 mm, we are able to properly tune 0»%9
and hence, Q values, considering high quality pixels. Once
determined the proper choice for Q for the investigated sce-
nario, we apply KF to noisier pixels in the image. This time,
we keep the Q parameter constant, and tune the measurement
error variance R, according to the noise that affects the data,
based on (5).

IV. EXPERIMENTAL RESULTS
In order to study the applicability of KF techniques to

GBSAR interferometric data, measurements acquired in two
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FIGURE 2. Map of cumulative displacements calculated using
interferometric techniques, in the Macugnaga campaign. Black dots
indicate the targets used for the analysis.

different scenarios have been analyzed. They were obtained
in measurement campaigns performed on Monte Rosa, near
the village of Macugnaga, Italy, and near Formigal, Spain.

Our purpose is to use the KF to extrapolate displace-
ment information from noisy pixels with low signal quality,
by tuning the algorithm parameters based on the information
retrieved from high quality neighboring pixels. As already
said, to identify high- and low-quality pixels we used the Dy
parameter. Pixels whose Dy is less than 0.15 are identified as
stable targets, whose signal has a high quality.

A. MACUGNAGA CASE STUDY

The objective of the Macugnaga measurement campaign was
to test the ability of a GBSAR system working in C-band,
to monitor a sliding glacier. The sensor was able to acquire
an image almost each 30 minutes.

Fig. 2 shows a map of cumulative displacements of the
scenario, retrieved from interferometric analysis, performed
over a time series lasting about 5 days. Before performing
the interferometric analysis, the atmospheric phase compo-
nent was estimated and compensated by using a linear range
model.

Fig. 2 was obtained by applying a threshold on D4 values.
Only pixels with D4 < 0.4 appear in the image. The part of
the glacier which is sliding is clearly visible. In this case the
movement is rapid, at a speed of about 2 cm per hour.

In this scenario, we selected pixels with different features.
In what follows we show the results obtained for a stable
pixel, with D4 = 0.11 (target A in Fig. 2), and a pixel with
Dy = 0.35 (target B in Fig. 1), at about the same range value.
We calculated the displacement of the targets over time, using
the cumulative interferometric phase according to (3).

Fig. 3 shows the result obtained for target A by applying
the KF to the measured displacement over time. The blue
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FIGURE 3. Displacement trend over time obtained for target A, of the
glacier scenario. Red dots represent the displacement measurement
outcomes from interferometric analysis, while the blue line is the result
of the Kalman Filter with oy = 3.6 mm/min2.
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FIGURE 4. Blue dots represent the residual between displacement
measured value and the corresponding filtered quantity, obtained for

target A and oy = 3.6 mm/min?. The green line highlights the perfect
agreement.

line represents the filtered variable, while the red points
represent the measured displacement before filtering. In this
case, the variable o,, which defines the Q covariance matrix
was set equal to 3.6 mm/min?. Tt can be noted that, the
blue line representing the filtered displacement over time,
partially deviates from the measured values. This is better
evidenced by the results shown in Fig. 4, where the deviation
of filtered values from the measured ones is represented. The
residual clearly shows systematic behaviour. This suggests
that this filter does not adequately reproduce real motion.
In this case, the model has been assigned too much weight
with respect to the measurements. Therefore, we repeated the
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FIGURE 5. Displacement trend over time obtained for target A, of the
glacier scenario. Red dots represent the displacement measurement
outcomes from interferometric analysis, while the blue line is the result
of the Kalman Filter with oy = 36 mm/min?.

10+ target A
=
E
g7
3
E ]
7
5 ol {\,MMWMV. \L’
en \J
.5
2
g -5
5
<
-10 ’ : : ’ :
0 20 40 60 80 100

time [h]

FIGURE 6. Blue dots represent the residual between displacement
measured value and the corresponding filtered quantity, obtained for

target A and oy = 36 mm/min?. The green line highlights the perfect
agreement.

filtering procedure by increasing the Q values, in order to give
greater relevance to the measurements. The obtained results
are shown in Fig. 5 and Fig. 6, for 0,, = 36 mm/min. In this
case, the measurement trend is better reproduced, despite
the noise being filtered, and the residuals appear symmetric,
which suggests a more reliable estimation.

Once optimized the KF parameters, for high quality pixels
of the scenario, we repeated the processing for low coherence
pixels, by scaling the measurement error variance R, based on
the corresponding Dy value, according to (5). Fig. 7 shows
the results obtained for target B (see Fig. 2). In this case, the

VOLUME 10, 2022

0x target B
——measured position
—Kalman filtered position
=501
F)
=-100}
!
=)
g
Tg-'l 50F
2
=200
=250 ; : . : : !
0 20 40 60 80 100 120
time [h]

FIGURE 7. Displacement trend over time obtained for target B, of the
glacier scenario. Red dots represent the displacement measurement
outcomes from interferometric analysis, while the blue line is the result
of the Kalman Filter with oy = 36 mm/minz.

measured displacement was noisier, and the filter success-
fully reduced the noise.

Since this scenario was subject to a rapid movement,
the displacement trend was already evident even before
the filtering operation. However, the filtered displacement
is smoother, as the KF is able to filter out non-physical
fluctuations.

B. FORMIGAL CASE STUDY

To further test the performance of the proposed method,
we analyzed a second series of GBSAR measurements,
acquired in Spain, near Formigal, with a C-band system.
The system return time was of about one hour. Aim of the
experimental campaign was to monitor a slope landslide, just
above a road. In this case, the slope was subject to a slow
movement, with a velocity of about 1 mm per day. Moreover,
the slope was partially covered by grass and low vegetation.
These two aspects make this scenario the perfect candidate for
our study, as it comprises both high- and low-quality pixels,
subject to slow movements, hence, more difficult to measure.

Fig. 8 shows the cumulative displacement map, obtained
using interferometric techniques, after atmospheric phase
compensation, for a time series lasting 8 days. Only pixels
with Dy < 0.4 are shown in the image.

As done for the Macugnaga case study, KF was applied
first to high quality pixels, in order to optimize the algo-
rithm parameters for this scenario. Here, we report the results
obtained for target A (see Fig. 8), which has D4, = 0.15.
Fig. 9 shows the result of the filtering operation once the
parameter Q has been optimized for this scenario. In this
case, the covariance noise model o,, has been set equal to
0.04 mm/min>. Fig. 10 shows the residual between the mea-
sured and filtered displacements.
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FIGURE 8. Map of cumulative displacements calculated using

interferometric techniques, in the Formigal campaign. Black dots indicate
the targets used for the analysis.
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FIGURE 9. Displacement trend over time obtained for target A, of the
slope landslide scenario. Red dots represent the displacement
measurement outcomes from interferometric analysis, while the blue line
is the result of the Kalman Filter with oy = 0.04 mm/minz.

Once optimized the algorithm parameters, the KF was
applied to noisier targets, characterized by a higher Dy.
As done for the Macugnaga case study analysis, the R param-
eter was tuned according to the Dy value of the pixels.
InFig. 11 and Fig.12 we show the results obtained for target B
(Da = 0.39), and target C (D4 = 0.33), respectively. In both
cases, it can be seen that the measured displacements (red
dots) are much noisier. For these targets, without any filtering
operation, it is not easy to identify which is the displacement
trend over time. On the other hand, the filtered variables
clearly outline a decreasing trend in the target position over
time. It is worth noting that target B and C present different
displacement velocity. These results suggest that the algo-
rithm can successfully be applied to pixels subject to different
deformation rate.
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FIGURE 10. Blue dots represent the residual between displacement
measured value and the corresponding filtered quantity, obtained for
target A and oy = 0.04 mm/min2. The green line highlights the perfect
agreement.
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FIGURE 11. Displacement trend over time obtained for target B, of the
slope landslide scenario. Red dots represent the displacement
measurement outcomes from interferometric analysis, while the blue line
is the result of the Kalman Filter with o,y = 0.04 mm/min2.

It must be noticed that for short time intervals (for instance
time below 20 hours in Fig. 11), the filtered displace-
ment trend shows a probably non-physical peak. However,
for times beyond 20 hours, such peaks are less and less
pronounced. This is because the KF algorithm relies on the
pixel’s displacement history and, in case of noisier mea-
surements, it takes longer to converge. Therefore, in case
of low coherence pixels care must be taken when starting
to trust the filtering result. For instance, in case of target B
(Fig. 11), measurements acquired in the first 20 hours should
be discarded for the analysis. However, this is not a problem
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FIGURE 12. Displacement trend over time obtained for target C, of the
slope landslide scenario. Red dots represent the displacement
measurement outcomes from interferometric analysis, while the blue line
is the result of the Kalman Filter with oy, = 0.04 mm/minz.

for modern instrumentations, which have acquisition rates
of the order of minutes. Indeed, modern sensors can acquire
enough measurements for the algorithm to gather information
about the movement history and, thus, converge within few
hours.

These results show that by using the KF it is possible
to extract displacement information also from noisy pixels,
which would have been discarded for standard interferomet-
ric analysis.

V. CONCLUSION

This work explores the possibility of using the Kalman
filter as a tool to extract displacement information from
low-coherent pixels of a GBSAR image.

The mathematical formulation of the Kalman filter is
examined and the application to cumulative interferometric
radar data is discussed. Particular attention is paid to the cor-
rect way to initialize the algorithm parameters. Specifically,
we implement a procedure to optimize KF parameters to treat
low coherence areas, based on information from few high-
quality pixels.

The method is tested on data resulting from GBSAR
measurement campaigns representative of two different sce-
narios: a sliding fast moving glacier, and a slow-moving slope
covered by grass.

The results obtained show that in both situations the KF
successfully filters out noise and outlines a clear trend for
the targets position over time. The algorithm proved to be
robust for the application on noisy targets and targets subject
to displacements of different intensity. This method can be
used to extract useful information from areas characterized
by low coherence, improving the performance of GBSAR
measurements in slope monitoring.
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