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ABSTRACT The use of Kalman filtering techniques for landslide monitoring has proved effective as a
tool for estimating and predicting land displacements. Ground-Based Synthetic Aperture Radars (GBSAR)
are popular remote sensing instruments able to provide displacement maps of the investigated area, with
submillimeter precision. These instruments outperform other sensors in several respects, such as all-weather
and all-day monitoring. However, in some cases, for instance in vegetated scenarios, the displacement is
affected by a significant uncertainty due to the decorrelation of the radar signal. In such a case, to retrieve any
reliable information, noise must be filtered out using appropriate methods. Given the success of kinematic
modeling of landslide movements through Kalman filtering, this technique seems to be the optimal candidate
for processing the displacement measured by interferometric GBSAR data. This paper investigates this
idea, by applying Kalman Filter to GBSAR measurements acquired in two different campaigns: a landslide
monitoring in north Spain, and a sliding glacier monitoring in the Alpes, Italy. A proper initialization of the
algorithm parameters is fundamental for a correct application of the Kalman filter. In this work, we present
a strategy that exploits information from coherent pixels for tuning the filtering parameters and optimizing
the filter performance on areas with low coherence.

15 INDEX TERMS Ground-based synthetic aperture radar, interferometry, landslide monitoring, Kalman filter.

I. INTRODUCTION16

Slope landslide monitoring is a research field of paramount17

importance for hazard assessment, risk mitigation, and the18

prevention of natural disasters. Numerous sensors and tech-19

niques have been developed for this purpose in recent decades20

[1]. Field observations of changing topology features, along21

with in situ ground-based observations, and remote sens-22

ing techniques are the three main category of monitoring23

methods [2].24

Among the latter, Ground-Based Synthetic Aperture25

Radars (GBSAR) achieved success as remote sensing tools26

for environmental monitoring. GBSAR sensors allow to scan27

the desired scenario and detect possible displacements of28

targets in the radar line of sight [3], [4]. The use of interfer-29

ometric techniques permits to measure targets displacement30
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with an accuracy of a fraction of the signal wavelength. The 31

achievable high resolution coupled with the return time of 32

few minutes, make them optimal candidates for real time 33

monitoring, which is of great importance on active landslides. 34

These sensors are now widely used for environmental mon- 35

itoring, especially in areas not directly accessible with other 36

instruments [5], [6]. 37

The quality of the interferometric radar data strongly 38

depends on the characteristics of the investigated scenario. 39

For instance, vegetated areas are typically characterized by 40

low coherence [7], [8], i.e., the signal is subject to decorre- 41

lation effects, which results in noisier interferometric data. 42

In these cases, standard data interpolation or filtering tech- 43

niques could lead to an underestimation of the actual result, 44

thus, to a misinterpretation of the data. Therefore, it is of 45

paramount importance to find a way to correctly weight the 46

obtained measurements. To this end, the authors of this article 47

identified the Kalman Filter as a tool to perform dynamic 48
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filtering that adequately weights the information coming49

from consecutive acquisitions. having a method that ade-50

quately filters the measured displacements of low coherence51

pixels would be a valuable resource, as it would improve the52

deformation detection capability of GBSAR sensors.53

The Kalman Filter (KF) [9] is a powerful technique that54

enables to estimate and predict unknown variables starting55

from noisy measurements of a given quantity. It is currently56

used in several fields, and in a wide range of applications [10],57

[11], such as orbit calculation, target tracking and navigation.58

In landslide monitoring the application of KF techniques59

has recently gained attention, as it proved to be effective60

in estimating and forecasting ground displacements [12],61

[13], [14]. This technique has been applied to displacement62

measurements acquired with different sensors, and success-63

fully managed to filter out noise and properly predict ground64

displacement.65

Since the last century, KF has been used for Synthetic66

Aperture Radar (SAR) applications, for addressing the phase67

unwrapping problem. For instance, authors of [15] proposed68

the use of KF as a tool to simultaneously unwrap and69

filter the interferometric phase of the two dimensional SAR70

image. This approach was based on data fusion of interfer-71

ometric phase and phase slope information, extracted from72

the power spectral density of the interferogram. However,73

this approach did not provide satisfying results in areas74

of low coherence [16] where, in order to obtain reliable75

results, an a priori information is needed. This field of76

application proved successful and efforts are currently been77

made to optimize this technique, for instance by using an78

Unscented KF [17], [18].79

The KF has been used also for other SAR purposes;80

for instance authors of [19] proposed a Kalman-filter-81

based approach to determine 3-D surface deformations82

by using multisensory, multitrack, and multitemporal SAR83

interferograms.84

Recently, KF was used also in the processing of GBSAR85

interferometric data [20], [21]. Specifically, in [21] the KF is86

used to implement a near real-time interferometric analysis87

with low computational effort. Furthermore, authors of [20]88

used the KF technique to filter out noise from the timeseries89

of cumulative displacements obtained with interferometric90

analysis.91

In this paper, we further analyze the application of92

Kalman filtering techniques to the processing of GBSAR93

interferometric data. Our intent is to optimize KF to treat94

noisy, low coherence, pixels in the radar image, which would95

be discarded for interferometric analysis, so as to retrieve96

reliable information from them.97

One of the main challenges in the application of the KF98

algorithm, is the parameter initialization. To deal with this99

task, in this work we propose a procedure based on the100

so-called Permanent Scatterers [22]. The algorithm param-101

eters are first optimized for these pixels, and then used to102

treat noisier ones, with appropriate modifications based on103

the pixel signal noise. This way, it is possible to filter the104

displacement measured on low coherence pixels in the radar 105

image, and extract information from them. 106

Compared to the study illustrated in [20], we apply Kalman 107

algorithms to GBSAR measurements acquired in different 108

scenarios, thus, characterized by a great variety of backscat- 109

tered signals. The case studies reported in this paper are those 110

of a slidingGlacier in theAlpes,Monte Rosa, Italy, and a slow 111

active landslide near Formigal, Spain. These two case studies 112

provide useful insights into the application of Kalman filter 113

on interferometric GBSAR data. 114

The paper is organized as follows: section II reviews the 115

basic concepts of GBSAR interferometry, while in section III 116

the mathematical formulation of the Kalman filter is pre- 117

sented. Finally, in section IV, the experimental results are 118

presented and discussed. 119

II. GBSAR INTERFEROMETRY 120

Interferometry techniques allow to determine the displace- 121

ment of a target between two radar acquisitions. The displace- 122

ment is obtained by manipulating the phase of the complex 123

valued GBSAR images. The phase ϕ of a complex valued 124

image I , relative to a pixel, is the sum of three terms 125

ϕ = ϕdist + ϕatm + ϕnoise, (1) 126

where ϕdist is a phase contribution which depends on the 127

relative distance between radar and the imaged target, ϕatm is 128

the phase contribution due to the atmospheric conditions, and 129

ϕnoise is the noise term. By subtracting the phases of images 130

acquired at different times, we get 131

1ϕ = 1ϕdist +1ϕatm +1ϕnoise. (2) 132

After estimation and removal of the atmospheric contri- 133

bution, the phase difference is directly related to the target 134

displacement in the radar line of sight, through the equation 135

1d =
λ

4π
(1ϕdist +1ϕnoise), (3) 136

where λ is the wavelength associated to the central frequency 137

of the radar signal. Whether the noise term is present or not 138

determine the possibility of correctly measuring the displace- 139

ment of a target. In fact, interferometric analysis is usually 140

performed on pixels characterized by high signal quality, for 141

which the noise phase term ϕnoise in (1) can be considered 142

negligible. For these pixels, by cumulating the displacements 143

retrieved using consecutive GBSAR acquisitions, it is pos- 144

sible to obtain the target movement over time. However, 145

if the noise term greatly affects the interferometric phase, it is 146

difficult to retrieve the correct displacement information. The 147

presence of noise can be due for instance because of resid- 148

uals of the atmospheric phase screen correction or to non- 149

compensated phase wrapping. The latter effect is common in 150

vegetated scenarios, where decorrelation can cause a loss of 151

phase information, which makes measurement data difficult 152

to interpret. 153

In order to single out high quality pixels in a GBSAR 154

image, the amplitude dispersion index parameter (DA) is often 155
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used [22], [23]. It can be defined for each pixel of a GBSAR156

image as157

DA =
σA

µA
, (4)158

where σA and µA are respectively the standard deviation159

and mean value of the pixel signal amplitude time series.160

It quantifies the pixel signal quality and is used in radar161

interferometry to preliminary select candidate areas to carry162

out the analysis. Indeed, this parameter is related to the cor-163

responding coherence value [24], but is easier to calculate.164

The DA provides us also with an estimation of the165

displacement measurement error. Indeed, for pixels with suf-166

ficiently high signal to noise ratio, the interferometric phase167

standard deviation can be approximated to the corresponding168

DA value [22], [25],169

σϕ ∝ DA. (5)170

Since σϕ can be regarded as an estimate of the interferometric171

phase error, by combining (3) and (5), one can conclude that172

also the displacement error scales according to the corre-173

sponding DA. This expression has been taken into account174

for initializing the measurement error parameter of the KF.175

III. KALMAN FILTER176

In this section the mathematical formulation of the KF algo-177

rithm, relative to our case studies, is reviewed.178

The FK algorithm allows to estimate/predict an unknown179

variable xk , possibly multidimensional, at the discrete time180

k , from a collection {zk} of noisy measurements of a certain181

quantity. Specifically, the KF consists of two iterative steps:182

the prediction process and the estimation process.183

A. THE PREDICTION PROCESS184

The variable xk to be estimated is called the state variable.185

In the first phase, the state variable prediction x̃k , at time k ,186

is determined using the estimate obtained at the previous time187

step, xk−1. To compute this process, a priori information on188

the evolution of the state variable is required. This informa-189

tion is encapsulated in the state transition equation, which190

describes the state variable evolution,191

xk = Axk−1 + wk . (6)192

Here, A is a matrix that recursively relates the state variable193

xk to the state variable at time k − 1, xk−1; wk is a vector194

of zero-mean gaussian errors. The variable wk is called the195

model error.196

In our case the measurements {zk} are the cumulative dis-197

placements of a selected target in the scene, obtained using198

interferometric techniques. The multidimensional variable to199

be estimated is composed by the position and velocity com-200

ponents of the displacement in the radar line of sight, relative201

to the selected pixel, at time k . That is, xk = (pk , vk)T .202

The matrix A represents the kinematic model describing203

the target movement. In the case studies analyzed in this204

paper, we are interested in the ground displacement due to 205

the sliding of a glacier or a landslide. 206

In both cases, the ground motion results from the sum 207

of gravitational and frictional forces acting on the selected 208

target of the slope/glacier. Furthermore, in interferometric 209

analysis a single pixel is monitored during a certain period. 210

Therefore, the retrieved displacement is relative to a point of 211

the scenario with fixed coordinates. The point is characterized 212

by a constant inclination. Thus, in most cases, the dynamics 213

will evolve towards a stationary situation, where the ground 214

is subject to constant motion. In this case, the matrix A reads 215

A =
(
1 1t
0 1

)
, (7) 216

where1t is the value of the time interval between successive 217

acquisitions. 218

From a practical viewpoint, the prediction process of 219

the KF algorithm consists of two steps; the computation of 220

the state variable prediction x̃k , and the computation of the 221

covariance state variable prediction P̃k . The state variable 222

prediction for the k-th time step, is given by the transition 223

equation 224

x̃k = Axk−1, (8) 225

with matrix A defined in (7), and xk−1 the final estimate from 226

the previous iterative step. The prediction of the state variable 227

covariance matrix is given by 228

P̃k = APk−1AT + Q, (9) 229

where the matrix Q is the covariance of the model error wk . 230

If a white noise acceleration model is assumed [14], [25], 231

[26], the Q matrix is equal to 232

Q = σ 2
w

(
1t4/4 1t3/2
1t3/2 1t

)
, (10) 233

Where 1t is the time interval between consecutive acquisi- 234

tions, and σ 2
w is the covariance of the white noise acceleration 235

process. One of the main challenges to properly apply KF, 236

is the choice of σ 2
w. 237

B. THE ESTIMATION PROCESS 238

In the estimation process the measurement zk is used to 239

correct the prediction x̃k , and to obtain the final estimate 240

xk . In fact, each element zk of the measurement collection, 241

is related to the variable xk , through the so-called measure- 242

ment equation 243

zk = Hxk + ek , (11) 244

where H is the state-to-measurement vector, and ek is a 245

zero-mean gaussian error, called the measurement error, 246

whose variance is R = σ 2
e . 247

The estimation process involves three steps: the computa- 248

tion of the so-called Kalman gain Kk , the correction of the 249

prediction estimate x̃k to get the final estimate xk , and the 250
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correction of the covariance prediction. The Kalman Gain is251

given by the following expression252

Kk = P̃kHT
(
HP̃kHT

+ R
)−1

. (12)253

Here, R is the covariance of the measurement error ek , and254

P̃k is the prediction of the state variable covariance matrix,255

calculated in (9). In our case, the state-to-measurement vector256

H is equal to257

H = (1 0) . (13)258

The correction of the predicted value x̃k is realized by259

properly weighting the deviation of the measurement zk from260

the predicted value, with the Kalman gain. Specifically, the261

final estimate of the state variable is given by262

xk = x̃k + Kk (zk − H x̃k) . (14)263

Finally, the correction of the covariance prediction is cal-264

culated with the following expression265

Pk = P̃k − KkHP̃k . (15)266

C. PARAMETERS INITIALIZATION267

The performance of the KF mainly depends on the choice of268

the state transition kinematic model (the matrix A), and on the269

model andmeasurement error covarianceQ andR, whose val-270

ues must be initialized a priori. Therefore, once the kinematic271

model is selected, the performance of the algorithm strongly272

depends on the choices made for the error covariances Q273

and R. Changing one of this two quantities, dramatically274

modifies the filter result. Specifically, once the value of R275

is fixed, increasing Q means that the kinematic model is276

more influenced by the error. Thus, in calculating the final277

estimate, the filter gives more relevance to the measurement278

outcomes. On the other hand, by decreasing Q values, the279

filter relies more on the dynamic model entering the state280

transition equation. As a result, the measurement outcomes281

have less weight in the final estimate. The initialization of282

the error covariance parameters determines the success or283

failure of the filtering procedure. Unfortunately, there is not a284

universal standard for initializing Q and R values, but they285

must be tuned case by case, depending on the signal and286

scenario characteristics. Care must be taken in this choice,287

since in some cases, place too little or too much weight to the288

experimental measurements, can lead to a loss of information.289

In fact, like many other filtering algorithms, KF can lead290

to excessive filtering of the variable of interest. To solve this291

issue, the first setting of the parameters must be performed292

by an operator who, on the basis of a priori knowledge of the293

physical scenario under investigation, can determine whether294

the result is reliable or not.295

To address the challenging choice of model and error296

covariances and avoid over-filtering, in this work the KF is297

first applied to a coherent group of pixels for optimizing the298

filtering parameters. Indeed, these high quality pixels can299

be considered as benchmarks, for which the corresponding300

FIGURE 1. Example of filtered displacement trend obtained with different
values for the measurement uncertainty. Red dots represent the
measurement outcomes from interferometric analysis, dashed blue and
green lines the filtered variables obtained with σe = 0.1 mm and
σe = 1 mm, respectively.

measured displacement is reliable. When KF is applied to 301

coherent pixels, we keep fixed the R value, determined by 302

the sensor uncertainty, and optimize the Q parameter accord- 303

ing to the scenario characteristics. For GBSAR sensors the 304

theoretical measurement uncertainty on high quality pixels, 305

in an optimal scenario, is of the order of 0.1 mm [27]. How- 306

ever, especially in natural scenarios, many factors introduce 307

additional sources of uncertainty. For instance, natural envi- 308

ronments are in general characterized by a lower reflectivity. 309

Moreover, the large distance of targets from the sensor, leads 310

to a decrease in the intensity of the backscattered signal, 311

hence, to a decrease of the signal to noise ratio. For these 312

reasons, we estimated the measurement uncertainty directly 313

from the scenario under investigation, as the average of the 314

standard deviation of the displacement of coherent pixels of 315

the scenario. Doing so, we obtained a measurement uncer- 316

tainty of the order of 1 mm. Nevertheless, we experienced to 317

substantial deviation by tuning the measurement uncertainty 318

σe from 0.1 mm to 1 mm, as can be seen in Figure 1. 319

In this figure, we show results of KF filtering of a measured 320

interferometric displacement, with fixedQ, and σe = 0.1 mm 321

and σe = 1 mm. This evidences that the algorithm is robust 322

to a fine tuning of the R parameter within this range. 323

We then proceed as follows: by keeping fixed the R value, 324

determined by σe = 1 mm, we are able to properly tune σ 2
w, 325

and hence, Q values, considering high quality pixels. Once 326

determined the proper choice for Q for the investigated sce- 327

nario, we apply KF to noisier pixels in the image. This time, 328

we keep theQ parameter constant, and tune the measurement 329

error variance R, according to the noise that affects the data, 330

based on (5). 331

IV. EXPERIMENTAL RESULTS 332

In order to study the applicability of KF techniques to 333

GBSAR interferometric data, measurements acquired in two 334
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FIGURE 2. Map of cumulative displacements calculated using
interferometric techniques, in the Macugnaga campaign. Black dots
indicate the targets used for the analysis.

different scenarios have been analyzed. They were obtained335

in measurement campaigns performed on Monte Rosa, near336

the village of Macugnaga, Italy, and near Formigal, Spain.337

Our purpose is to use the KF to extrapolate displace-338

ment information from noisy pixels with low signal quality,339

by tuning the algorithm parameters based on the information340

retrieved from high quality neighboring pixels. As already341

said, to identify high- and low-quality pixels we used the DA342

parameter. Pixels whose DA is less than 0.15 are identified as343

stable targets, whose signal has a high quality.344

A. MACUGNAGA CASE STUDY345

The objective of the Macugnaga measurement campaign was346

to test the ability of a GBSAR system working in C-band,347

to monitor a sliding glacier. The sensor was able to acquire348

an image almost each 30 minutes.349

Fig. 2 shows a map of cumulative displacements of the350

scenario, retrieved from interferometric analysis, performed351

over a time series lasting about 5 days. Before performing352

the interferometric analysis, the atmospheric phase compo-353

nent was estimated and compensated by using a linear range354

model.355

Fig. 2 was obtained by applying a threshold on DA values.356

Only pixels with DA < 0.4 appear in the image. The part of357

the glacier which is sliding is clearly visible. In this case the358

movement is rapid, at a speed of about 2 cm per hour.359

In this scenario, we selected pixels with different features.360

In what follows we show the results obtained for a stable361

pixel, with DA = 0.11 (target A in Fig. 2), and a pixel with362

DA = 0.35 (target B in Fig. 1), at about the same range value.363

We calculated the displacement of the targets over time, using364

the cumulative interferometric phase according to (3).365

Fig. 3 shows the result obtained for target A by applying366

the KF to the measured displacement over time. The blue367

FIGURE 3. Displacement trend over time obtained for target A, of the
glacier scenario. Red dots represent the displacement measurement
outcomes from interferometric analysis, while the blue line is the result
of the Kalman Filter with σw = 3.6 mm/min2.

FIGURE 4. Blue dots represent the residual between displacement
measured value and the corresponding filtered quantity, obtained for
target A and σw = 3.6 mm/min2. The green line highlights the perfect
agreement.

line represents the filtered variable, while the red points 368

represent the measured displacement before filtering. In this 369

case, the variable σw which defines the Q covariance matrix 370

was set equal to 3.6 mm/min2. It can be noted that, the 371

blue line representing the filtered displacement over time, 372

partially deviates from the measured values. This is better 373

evidenced by the results shown in Fig. 4, where the deviation 374

of filtered values from the measured ones is represented. The 375

residual clearly shows systematic behaviour. This suggests 376

that this filter does not adequately reproduce real motion. 377

In this case, the model has been assigned too much weight 378

with respect to the measurements. Therefore, we repeated the 379
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FIGURE 5. Displacement trend over time obtained for target A, of the
glacier scenario. Red dots represent the displacement measurement
outcomes from interferometric analysis, while the blue line is the result
of the Kalman Filter with σw = 36 mm/min2.

FIGURE 6. Blue dots represent the residual between displacement
measured value and the corresponding filtered quantity, obtained for
target A and σw = 36 mm/min2. The green line highlights the perfect
agreement.

filtering procedure by increasing theQ values, in order to give380

greater relevance to the measurements. The obtained results381

are shown in Fig. 5 and Fig. 6, for σw = 36 mm/min2. In this382

case, the measurement trend is better reproduced, despite383

the noise being filtered, and the residuals appear symmetric,384

which suggests a more reliable estimation.385

Once optimized the KF parameters, for high quality pixels386

of the scenario, we repeated the processing for low coherence387

pixels, by scaling the measurement error variance R, based on388

the corresponding DA value, according to (5). Fig. 7 shows389

the results obtained for target B (see Fig. 2). In this case, the390

FIGURE 7. Displacement trend over time obtained for target B, of the
glacier scenario. Red dots represent the displacement measurement
outcomes from interferometric analysis, while the blue line is the result
of the Kalman Filter with σw = 36 mm/min2.

measured displacement was noisier, and the filter success- 391

fully reduced the noise. 392

Since this scenario was subject to a rapid movement, 393

the displacement trend was already evident even before 394

the filtering operation. However, the filtered displacement 395

is smoother, as the KF is able to filter out non-physical 396

fluctuations. 397

B. FORMIGAL CASE STUDY 398

To further test the performance of the proposed method, 399

we analyzed a second series of GBSAR measurements, 400

acquired in Spain, near Formigal, with a C-band system. 401

The system return time was of about one hour. Aim of the 402

experimental campaign was to monitor a slope landslide, just 403

above a road. In this case, the slope was subject to a slow 404

movement, with a velocity of about 1 mm per day. Moreover, 405

the slope was partially covered by grass and low vegetation. 406

These two aspectsmake this scenario the perfect candidate for 407

our study, as it comprises both high- and low-quality pixels, 408

subject to slow movements, hence, more difficult to measure. 409

Fig. 8 shows the cumulative displacement map, obtained 410

using interferometric techniques, after atmospheric phase 411

compensation, for a time series lasting 8 days. Only pixels 412

with DA < 0.4 are shown in the image. 413

As done for the Macugnaga case study, KF was applied 414

first to high quality pixels, in order to optimize the algo- 415

rithm parameters for this scenario. Here, we report the results 416

obtained for target A (see Fig. 8), which has DA = 0.15. 417

Fig. 9 shows the result of the filtering operation once the 418

parameter Q has been optimized for this scenario. In this 419

case, the covariance noise model σw has been set equal to 420

0.04 mm/min2. Fig. 10 shows the residual between the mea- 421

sured and filtered displacements. 422
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FIGURE 8. Map of cumulative displacements calculated using
interferometric techniques, in the Formigal campaign. Black dots indicate
the targets used for the analysis.

FIGURE 9. Displacement trend over time obtained for target A, of the
slope landslide scenario. Red dots represent the displacement
measurement outcomes from interferometric analysis, while the blue line
is the result of the Kalman Filter with σw = 0.04 mm/min2.

Once optimized the algorithm parameters, the KF was423

applied to noisier targets, characterized by a higher DA.424

As done for the Macugnaga case study analysis, the R param-425

eter was tuned according to the DA value of the pixels.426

In Fig. 11 and Fig.12 we show the results obtained for target B427

(DA = 0.39), and target C (DA = 0.33), respectively. In both428

cases, it can be seen that the measured displacements (red429

dots) are much noisier. For these targets, without any filtering430

operation, it is not easy to identify which is the displacement431

trend over time. On the other hand, the filtered variables432

clearly outline a decreasing trend in the target position over433

time. It is worth noting that target B and C present different434

displacement velocity. These results suggest that the algo-435

rithm can successfully be applied to pixels subject to different436

deformation rate.437

FIGURE 10. Blue dots represent the residual between displacement
measured value and the corresponding filtered quantity, obtained for
target A and σw = 0.04 mm/min2. The green line highlights the perfect
agreement.

FIGURE 11. Displacement trend over time obtained for target B, of the
slope landslide scenario. Red dots represent the displacement
measurement outcomes from interferometric analysis, while the blue line
is the result of the Kalman Filter with σw = 0.04 mm/min2.

It must be noticed that for short time intervals (for instance 438

time below 20 hours in Fig. 11), the filtered displace- 439

ment trend shows a probably non-physical peak. However, 440

for times beyond 20 hours, such peaks are less and less 441

pronounced. This is because the KF algorithm relies on the 442

pixel’s displacement history and, in case of noisier mea- 443

surements, it takes longer to converge. Therefore, in case 444

of low coherence pixels care must be taken when starting 445

to trust the filtering result. For instance, in case of target B 446

(Fig. 11), measurements acquired in the first 20 hours should 447

be discarded for the analysis. However, this is not a problem 448
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FIGURE 12. Displacement trend over time obtained for target C, of the
slope landslide scenario. Red dots represent the displacement
measurement outcomes from interferometric analysis, while the blue line
is the result of the Kalman Filter with σw = 0.04 mm/min2.

for modern instrumentations, which have acquisition rates449

of the order of minutes. Indeed, modern sensors can acquire450

enoughmeasurements for the algorithm to gather information451

about the movement history and, thus, converge within few452

hours.453

These results show that by using the KF it is possible454

to extract displacement information also from noisy pixels,455

which would have been discarded for standard interferomet-456

ric analysis.457

V. CONCLUSION458

This work explores the possibility of using the Kalman459

filter as a tool to extract displacement information from460

low-coherent pixels of a GBSAR image.461

The mathematical formulation of the Kalman filter is462

examined and the application to cumulative interferometric463

radar data is discussed. Particular attention is paid to the cor-464

rect way to initialize the algorithm parameters. Specifically,465

we implement a procedure to optimize KF parameters to treat466

low coherence areas, based on information from few high-467

quality pixels.468

The method is tested on data resulting from GBSAR469

measurement campaigns representative of two different sce-470

narios: a sliding fast moving glacier, and a slow-moving slope471

covered by grass.472

The results obtained show that in both situations the KF473

successfully filters out noise and outlines a clear trend for474

the targets position over time. The algorithm proved to be475

robust for the application on noisy targets and targets subject476

to displacements of different intensity. This method can be477

used to extract useful information from areas characterized478

by low coherence, improving the performance of GBSAR479

measurements in slope monitoring.480
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