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ABSTRACT Perovskite solar cells (PSCs) are third-generation photovoltaic technology that has gained a
lot of attention due to its technological and economic advantages. The PSCs are characterized with low cost,
high absorption, long carrier diffusion length, and low fabrication temperature. To model the performance of
PSCs, a new dynamic model is proposed to track the cells hysteresis by adding a variable voltage capacitor
to the single, double, and triple diode models. The aim with adding the variable capacitor is to emulate the
effect of charge accumulation at the interfaces of the device. Three modified models are presented based on
one or more variable capacitors at single, double, and triple diode models. Where, the triple diode model
with third order variable voltage capacitor model is the best among all models by 74.9% enhancement in
comparison with single diode model. Also, the Equilibrium optimization algorithm (EOA) is proposed to
determine the parameters of the proposed dynamic model based on the triple diode model. In comparison
with the experimental data, for both forward and reverse scans, the findings showed that the suggested
model accurately reflects cell performance. Added to that, the EOA finds well the optimal model parameters
considering the root mean square as primary objective function. Based on the simulation results, it was
proved that the proposed model gives very close results to reality.

INDEX TERMS Perovskite solar cells (PSCs), PSC hysteresis, PSCs dynamic model, equilibrium optimiza-
tion algorithm.

I. INTRODUCTION
The modern life with its facilities imposes an increasing
energy demand. There are two points of view to face this
demand the first one is to manage the power system, the
second one is to add new sources like thermopower gen-
eration [1] using new nanomaterials [2], [3] for electronic
which also minimize the losses and the renewable energy
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sources like wind energy and solar energy and hybrid power
systems [4]. The solar energy is the most widely used which
attract research in many ways like improvement of the gen-
eration process via new technologies [5] to increase the gen-
eration efficiency. Another way is to improve its estimated
parameters [6] to involve it in circuit design and to improve
the distribution system performance under uncertainty of
renewable power resources [7]

Since 2009, a considerable interest in perovskite materi-
als has been aroused. These materials are direct band-gap
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semi-conductors with high absorbance, long carrier diffusion
length, and high open circuit voltage, allowing them to be
used in photo voltaic generation [8], [9]. Perovskite solar
cells (PSCs) offer a promising path to high performance [10],
[11], [12], [13], and as a result, this type of solar cell is
receiving a lot of attention. Since 2009, the power conversion
efficiency (PCE) of PSCs has increased from 3.8 % [14] to
over 25 % [15], [12]. The J-V curve is examined by adjusting
the applied voltage and recording the current density that
arises from this operating voltage to better understand the
electrical processes in any solar cell. So, maximum power
conversion efficiencies (PCEs) of the devices can be achieved
and electrical model parameters can be obtained. Hysteresis
in the J-V characteristics is one of the main shor0. tcomings
of PSCs, and because of this, determining the maximum
power point [16] and electrical model parameters accurately
are challenging. The Perovskite has also different promising
applications in other fields as light emitting diodes [17],
encoding [18] and near infrared emission [19], [20]. The elec-
trical model parameters estimation for PSCs has been started
from the silicon solar cells modeling examined in previous
research namely single-diode model (SDM) which reflects
the diffusion and recombination in the emitter quasi-neutral
regions and majority zones, the double-diode model (DDM)
in addition to SDM function, it reflects the recombination
process in the space charge region. The three-diode model
(TDM) has been recently designed and introduced to account
for losses and recombination in defect zones and grain bound-
aries [21]. Also, there have been more sophisticated models
have been introduced for multi crystalline silicon solar cells
as modified DDM and modified TDM.

Many modelling issues may be solved using one of
two methodologies: mathematics (analytical and numeri-
cal approaches) or computer vision techniques. In recent
decades, metaheuristic algorithms have grown commonplace
in a variety of fields due to higher performance and lower
computational power and time requirements than determinis-
tic algorithms [22].

Metaheuristic algorithms are often inspired by real-world
phenomenon, such as mimicking physical laws or bio-
logical phenomena to find better heuristic solutions to
optimization issues. The two main types of metaheuris-
tic algorithms are swam-based approaches and evolutionary
procedures.

Evolutionary approaches and smart swarm techniques are
the two main types of methodologies influenced by nature.
The evolutionary algorithm (EA) was inspired by nature’s
biological evolution phase. In comparison to the traditional
optimization technique, it is a more robust and widely appli-
cable global optimization technique.

Some of the popular algorithms in the EA class used
to solve engineering problems are Genetic Programming
(GP) [23], Genetic Algorithm [24], Evolutionary Program-
ming EP) [25], Evolution Strategy (ES) [26] and Differen-
tial Evolution [27]. Furthermore, the usage of ES and EP
in scientific research and practical problems is growing in

popularity. Swarm Intelligence [28] is a social intelligence
or collective that models the decentralization of biological
groups in nature or the collective behavior of self-organizing
systems artificially. Biological groupings in nature that have
collective behaviors and knowledge to accomplish a goal
are typically the source of inspiration for this class of algo-
rithms. Because SI algorithms are accessible to the appli-
ance, they are often more advantageous than evolutionary
algorithms; nonetheless, evolutionary algorithms have fewer
operators to supervise. Furthermore, the SI algorithm is better
than EA in recording and utilizing past data. Established
and recent algorithms in this class to solve engineering
problems are: Particle Swarm Optimization (PSO) [6], Bat-
inspired Algorithm [29], Coyote optimization algorithm [30],
Bald Eagle Search Optimizer [31], Wasp Swarm Optimiza-
tion [32], Grey Wolf Optimization [33], Moth Flame Opti-
mization [34], slime mould algorithm [35], Artificial Bee
Colony [36], Harris Hawk Optimizer [37], and Ant Colony
Optimization [38].

There are also some metaheuristic algorithms simulate
mostly physical phenomena by employing mathematical
rules or approaches to solve engineering problems such as:
Charged System Search [39], Gravitational Search Algo-
rithm [40], Sine Cosine Algorithm [41], Simulated Anneal-
ing [42], Tabu Search [43], and Teaching-Learning-Based
Optimization [44].

A novel optimization technique Equilibrium Optimizer
(EO) [45] is inspired by control volume mass balance models
that is utilized to anticipate both dynamic and equilibrium
states in this work. In EO, each particle (solution) acts as a
search agent, and its concentration determines how effective
it is (position). The search agents’ concentration is updated
at random with relation to the best-so-far solutions, namely
equilibrium candidates, to arrive at the equilibrium state.
The best of our knowledge is that the TDM has the closest
characteristic to the experimental one [46], [47], however it
has not been able to simulate hysteresis in PSCs yet. The
hysteresis and stability issues are the main reasons that PSCs
still not commercialized till now but a lot of studies based
in new techniques like interface engineering succeeded to fix
these problems [48], [49], [50], [51].

It is worth to mention that PSCs production costs are very
low in the case of perovskite-based devices compared to
silicon-based devices since 1-watt costs almost 10 to 20 cents;
in contrast, 1 watt in silicon-based cells costs almost 75 cents,
while 1 watt produced by thermoelectric generator costs
70 cents as presented in [52] and [53]. Previous studies proved
that the hysteresis phenomena in PSCs are one of the main
problems of these devices [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20] and there is necessity to model it
in order to solve this problem. This work proposes a novel
variable voltage capacitor (VVC) based TDM (VVCTDM)
which has succeeded to simulate and emulate the PSCs hys-
teresis that fits well with the experimental characteristics.
This variable voltage capacitor is suggested to reflect the
effect of charge accumulation at the device interfaces at its
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different operation dynamics. The main contribution of this
paper can be summarized as:
• Proposed three variable capacitor-based PSCsmodels by
using variable voltage capacitor (VCC) which accounts
the cumulative charge effect.

• Considering the forward and reverse scan rates of the J-V
measurements in the model to emulate the PSCs device
hysteresis.

• Solving the SDM, DDM and TDMwith proposed linear,
second order and third order VVC.

• Proposing a modified VCC-based triple diode model for
PSCs simulation.

• Developing the equilibrium optimization algorithm to
solve the proposed model.

This work is organized as follows: Section II presents the
experimental work; PSCsmodeling is presented in section III;
section IV presents the Equilibrium optimization algorithm.
The simulation and experimental results are presented in
section V and, respectively. The conclusions are presented
in section VI.

II. EXPERIMENTAL WORK
The Perovskite solar cell is fabricated in this work as follows;
Fluorine-doped tin oxide (FTO) conductive glasses sonicated
via sonication bath each 15 minutes in the order of Hell-
manex, 2-propanol, and acetone for cleaning. Electron Trans-
porting Layer (ETL) which is also called titania layer was
spin coated over the cleaned FTO glasses after 15minutes UV
ozone treatment. The detailed steps to fabricate the device are
shown in Fig. 1.

FIGURE 1. Schematic diagram for perovskite solar cell fabrication
procedures.

It was made up of four layers over fluorine tine oxide
(FTO) conductive glasses as presented in Fig. 2 and was
constructed as follows:

Electron Transport Layer (layer 1): This layer was made
by depositing a TiO2 compact layer on FTO conductive
glasses (Sigma Aldrich, 7 Ohm·cm−2). FTO conductive glass
was etched in solution of a 6mHCl/H2Owith Zn powder, then
cleaned in a sonication path with Hellmanex, 2-propanol, and
acetone. Each stage took 15 minutes. At last, a 15-minute
UV ozone treatment is used to remove any leftover dust.

A TiO2 compact layer has been deposited over the cleaned
FTO conductive glasses using a spin coating process at
2000 r.p.m. for 1 minute using an ethanolic solution of tita-
nium (IV) isopropoxide containing a tiny amount of HCl,
after FTO cleaning. For 10 minutes, the films were dried at
150 ◦C over a hot plate after the spin coating procedure, then
for 45 minutes it exposed to 500 ◦C (5◦C·min-1 temperature
ramp rate).

Absorber layer (Perovskite layer) (layer 2): The per-
ovskite active absorber layer MAPbI3 was deposited on the
titania compact layer in the glovebox using a perovskite solu-
tion of Lead acetate trihydrate in a 3:1 molar ratio and 40 wt
percent Methylammonium iodide mixed in anhydrous DMF
and spun for 45 seconds at 2000 r.p.m. Finally, hypophos-
phorous acid (50 percent w/w, aquatic solution) has been
added to the solution, resulting in an HPA: PbAc2 molar ratio
of 1:4. After drying for 10 minutes at ambient temperature,
the films were annealed at 100 ◦C for 5 minutes. Fig. 3.a
depicts the reverse and forward scans of the device J-V
curves, whereas Fig.3.b depicts the absorbance of the per-
ovskite layer deposited on a TiO2 compact layer substrate.
Hole transporting layer (Spiro-MeOTAD) (layer 3): The

Spiro-MeOTAD was employed as a hole transporting layer
and was made from chlorobenzene (7wt%) with additives of
bis (trifluoromethanesulfonyl) imide lithium salt (dissolved
in acetonitrile) and 4-tert-butylpyridine (deposited by spin
coating at 4000 r.p.m for 10s). Silver Electrodes (layer 3):
At last, using a thermal evaporator (10−6Torr and ∼1Å·s−1

rate), six silver electrodes with a thickness of 100 nm were
deposited outside the glovebox. The experimental records are
added as supplementary information to this manuscript.

III. PROPOSED PSCS MODELS
PSCs are made up of three primary layers: an electron
transport layer (TiO2), the perovskite absorber (active layer),
and the hole transporter layer (Spiro-OMeTAD), as depicted
in Fig. 2.b. Photons are absorbed at the perovskite layer
and forms electron and hole pairs, which pass through the
electron transport layer and the hole transport layer, respec-
tively. Charges accumulate in the perovskite/Electron trans-
port layer, perovskite/hole transport layer interfaces, and the
perovskite layer itself if it is nonhomogeneous because the

FIGURE 2. The perovskite solar cell architecture a) Laboratory fabricated
device b) Device schematic diagram.
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FIGURE 3. Perovskite solar cell characteristics a) Device J-V curves (reverse and forward scans) b) Absorbance of perovskite (MAPbI3) upon TiO2
substrate c) Device impedance.

rate of generation of electron and hole pairs is faster than
the rate of transfer through the electron and hole transporting
layers. Additional R-C circuits indicate charge accumulation
at interfaces, as shown in Fig. 4.a. Hysteresis in PSCs is
mainly caused by charge accumulation at the corresponding
interfaces also depends on the scan rate during measuring
the J-V curves. As a result, charge accumulation (Ceq) and
scan rate (last term in Eq. 1) considers the hysteresis effect.in
PSC modelling. Because the shunt resistances Rp1, Rp2, and
Rp3 are all quite large, we can ignore their effect as shown in
Fig. 5. The charge accumulation at perovskite/Electron trans-
port layer interface is represented by C3 while, the charge
accumulation at perovskite layer itself if it is nonhomoge-
neous is represented by C2 and the charge accumulation at the
perovskite /Hole transport layer interface is modeled by C1.
From Fig. 4b it is evident that the three capacitances are
connected in series. Figure 5 represents the VVCTDM,which
is the modification to general formulation of the TDM to
account the charge accumulations effect which represented
by Eq 1 as:

Is = Iph − k1.Is1

[
exp

(
q (Vt + Rs.Is)
(m1) · k · T

)
− 1

]
−k2.Is2

[
exp

(
q (Vt + Rs.Is)
(m2) · k · T

)
− 1

]
−k3.Is3

[
exp

(
q (Vt + Rs.Is)
(m3) · k · T

)
− 1

]
−
Vt + Rs.Is

Rsh
− Ceq

d(V + Rs.Is)
dt

(1)

where jph is the photo-generated current (A), Is1 is the reverse
saturation current of diode 1 (A), Is2 is the reverse saturation
current of diode 2 (A), Is3 is the reverse saturation current
of diode 3 (A), m1 is the ideality factor for diode 1, m2 is the
ideality factor for diode 2, m3 is the ideality factor for diode 3,
Rs is the series resistance (�), Rsh is the shunt resistance (�),
V is the output voltage of the cell (V), K is the Boltzmann’s
constant (1.38065e−23 J/K) and T is the cell temperature (K).
k1, k2 and k3 are three binary parameters to model various PV
models and these values are arranged as: for SDM: k1= 1,
k2 = k3= 0, for DDM: k1 = k2= 1 and k3= 0 and for TDM:
k1 = k2 = k3= 1

FIGURE 4. a) Perovskite solar cells equivalent circuit with capacitors that
representing the charge accumulation at device interfaces, b) General
triple diode model including charge accumulations effect for PSCs.

FIGURE 5. Simplified triple diode model including charge accumulations
effect for PSCs.

The resulting capacitors are highly affected by the different
layer bias; it is suggested that the resultant capacitances
are variable dependent and might be expressed in terms of
applied potential and current density by linear, second order
and third order equations, as shown below in Eq. (2).

Ceq = a+ b(V + RS .Is) (2.a)

Ceq = a+ b(V + RS .Is)+ c(V + RS .Is)2 (2.b)

Ceq = a+ b(V + RS .Is)+ c(V + RS .Is)2

+d(V + RS .Is)3 (2.c)
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where a, b, c and d are positive parameters depending on
the chosen model. Eq. 3 gives the fitness function of the
suggested model as:

f (Vt , jt , y) = Is = Iph − k1.Is1

[
exp

(
q (Vt + Rs.Is)
(m1) · k · T

)
− 1

]
−k2.Is2

[
exp

(
q (Vt + Rs.Is)
(m2) · k · T

)
− 1

]
−k3.Is3

[
exp

(
q (Vt + Rs.Is)
(m3) · k · T

)
− 1

]
−
Vt + Rs.Is

Rsh
− Ceq

d(V + Rs.Is)
dt

− Imeas (3)

where f is the error function, Imeas represents the measured
current of the tested solar cell.

IV. EQUILIBRIUM OPTIMIZATION ALGORITHM
This study introduces a novel optimization technique called
EO, inspired by control volume mass balance models used
to predict both dynamic and equilibrium states. Each particle
(solution) functions as a search agent in EO, with its con-
centration (position). To arrive at the equilibrium state, the
search agents update their concentration at random regarding
the best-so-far solutions, namely the optimal result of equi-
librium candidates. The main steps performed are as follow:

Xi = LI + Rand(UI − LI ) (4)

where Xi represents the individual particles’ ith generation,
Ul and Ll represent the search space upper and lower limits
and Rand represents a uniform distributed random vector
between 0 and 1.

A. EQUILIBRIUM POOL
Following initialization, the four particles with the minimum
error are chosen to create the equilibrium pool, which is
updated after each iteration.

Xeqp = {Xeqp1,Xeqp2,Xeqp3,Xeqp4,Xeqpave} (5)

where Xeqp1, Xeqp2, Xeqp3 and Xeqp4 represent the four best
individual, Xeqp represents the equilibrium pool and Xeqpave
represent the four individual average particles:

Xeqpave = (Xeqp1 + Xeqp2 + Xeqp3 + Xeqp4)/4 (6)

B. EXPONENTIAL TERM
By varying the exponential term E, EO balances the algo-
rithm’s exploitation and exploration. The following is a
description of E’s mathematical formula:

E =a1.sign (R− 0.5) .
(
e−λp − 1

)
(7)

where a1=2, λ and R represent uniform random vectors of
values from 0 to 1, p represents a coefficient that varies
nonlinearly as in Eqs. (8) as:

p =(1−
iter

itermax
)
(a2. iter

itermax
)

(8)

where iter represents the present iteration number, itermax
represents the maximum iterations number and a2 = 1.

C. GENERATION RATE
The generation rate G is a significant component influencing
EO’s performance and shows EO’s ability to use data in the
optimization process. The following is a description of the
mathematical model:

G = GCP.(Xeqp−λXi) (9)

where GCP is a control vector which is calculated from:

GCP =

{
0.5r2, r3 ≥ GP
0, r3< GP

(10)

Xeqp is a particle selected randomly from the equilibrium
pool, Xi represents the present particle, r2 and r3 are uni-
formly distributed random numbers from 0 to 1 and GP
represent a constant equals 0.5.

In summary, the following equation can be used to generate
candidate particles using EO:

X =Xeq +
(
X−Xeq

)
.E+

G
λv
(1− E) (11)

where v can be regarded a unit volume.
By modulating the contribution of the second and third

terms through E, EO balances the algorithm’s exploitation
and exploration, where the second and third terms help explo-
ration and exploitation respectively.

V. RESULTS AND DISCUSSION
The experimental J-V characteristic curves of the PSCs are
shown in Fig. 3.d. The most different feature between the
silicon solar cells and the PSCs other than the efficiency is the
hysteresis between forward and backward scan. Table 1 sum-
marizes the main features of the proposed PSC for forward
and backward scans. The proposed models in this study were
solved by the equilibrium algorithm in order to find the best fit
curves and device parameters with the experimental results.
The main idea is to generate a theoretical curve based on the
proposed models and compare it with the experimental ones
and to find the best one fits under the lowest deviation. As a
result, the optimal; parameters of the device are obtained.
A brief numerical study of the proposed PSCs as has been
performed to find the best equivalent circuit suitable. The
equilibrium algorithm has been operated on three models
namely SDM, DDM and TDM then notice the deviation
from the experimental results, after that check how far the
VVCTDM modification is suitable. The results revealed that
the TDM is the best one to model the PSCs performance with
hysteresis effect.

TABLE 1. Photovoltaic parameters for the tested device.
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TABLE 2. Optimal parameters of the dynamic TDM and three modified models for hysteresis in PCSs.

FIGURE 6. The experimental and estimated current- voltage curves: a) TDM without capacitor, b) MTDM1 including the capacitor according
to Eq.2a, c) MTDM2 including the capacitor according to Eq.2b, d) MTDM3 including the capacitor according to Eq.2c.

TABLE 3. Statistical analysis of the TDM and its modifications parameters using EOA.

Experimental data and the estimated circuit of the tradi-
tional SDM which was not able to simulate the hysteresis
with RMSE of 0.00383 while, Fig. 8b shows the J-V curve
for the experimental data and the estimated circuit of the SDM
after adding a linear VVC (Eq. 2a) which improve the RMSE

to 0.00319 by 16.7% over the SDM, even the hysteresis has
not been simulated well enough. The improvement in the
results is because of the consideration of charge accumula-
tion at the layers interfaces which has been modeled by the
capacitor. After modifying the VVC to second order equa-
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FIGURE 7. The convergence curve for the MTDM3 case.

FIGURE 8. a) SDM without capacitor; b) MSDM1 including the capacitor according to Eq.2a; c) MSDM2 including the capacitor according to Eq.2b;
d) MSDM3 including the capacitor according to Eq.2c.

tion (Eq.2b) the calculations show much better results in the
hysteresis representation (Fig. 8c) and the RMSE improved

to 0.00128 with 60% over the linear VVC because of repre-
senting more charge accumulation places and more nonlin-
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FIGURE 9. a) DDM without capacitor; b) MDDM1 including the capacitor according to Eq.2a; c) MDDM2 including the capacitor according to Eq.2b;
d) MDDM3 including the capacitor according to Eq.2c.

TABLE 4. The estimated parameters resulted by EO on PV SDM.

TABLE 5. The statistical analysis of the SDM and its modifications parameters resulted from the optimization process.

earity. The best of the SDM modifications is the third order
VVC according to eq. 2c (Figure 8d) with 0.00107 RMSE
which is 16.4% better than the Second order VVC because of
including all the places of the charge accumulation including
the three capacitors and the higher nonlinearity, the conver-
gence curve of this case is shown in Figure 9 Table 4 repre-

sents the estimated parameters resulted from application of
EO on PV SDM and the proposed modifications to simulate
the hysteresis.While Table 5 represents the statistical analysis
of the SDM and its modifications parameters resulted from
the optimization process and it is clear the best closeness has
been resulted from the third order variable voltage capacitor.
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TABLE 6. The estimated parameters resulted from application of EO on PV DDM and the proposed modifications.

TABLE 7. The statistical analysis of the DDM and its modifications parameters resulted from the optimization.

FIGURE 10. The convergence curve for the MSDM3 case.

Figure 10a shows the J-V curve for the experimental data
and the estimated circuit of the traditional DDM which was
not able to simulate the hysteresis with RMSE of 0.00319.
Figure 10b shows the J-V curve for the experimental data
and the estimated circuit of the DDM after adding a linear
VVC which improved the RMSE to 0.00160 by 50% over
the DDM, also the hysteresis has been simulated well enough.
After modifying the VVC to second order equation the cal-
culations show better results in the hysteresis representation
(Figure 10c) and the RMSE improved to 0.00128 with 20%
over the linear VVC. The best of the DDM modifications
is the third order VVC (Figure 10d) with 0.00101 RMSE
which is 21.1% better than the Second order VVC and
the convergence curve of the third order VVC is presented
in Figure 11. Table 6 represents the estimated parame-
ters resulted from application of EO on PV DDM and the
proposed modifications to simulate the hysteresis. While,
Table 7 represents the statistical analysis of the DDM and
its modifications parameters resulted from the optimization
process and it is clear the best closeness has been resulted
from the third order variable voltage capacitor. The overall

FIGURE 11. The convergence curve for the MDDM3 case.

results show that, for SDM the best is the one with third order
VVC by 72% over the traditional SDM. Also, the third order
VVC is the best of the DDMover the traditional one by 68.3%
and for the TDM the third order VVC is the best over the
traditional one by 69.9%. Finally, the third order VVC of the
TDM is the closest to the experimental which 74.9% closer
than the SDM.

VI. CONCLUSION
New proposed perovskite solar cell dynamic electric models
called single-, double- and triple-diode models have been
studied in this study. For accurate modeling the hysteresis
characteristics, variable linear, second order and third order
voltage capacitors are emulated in the proposed models to
represent charge accumulation at device interfaces on the
device performance. The proposed models were solved using
the Equilibrium Optimization algorithm, in all models the
ones that have third order capacitor are the best where in sin-
gle diode model 72% enhancement over the traditional model
(without capacitor) is achieved, 68.3% in the double diode
model and 69.9% in the triple diode model. The results were
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quite close to the experimental ones in the triple diode model
including third order voltage capacitors case and successfully
simulated the device performance in both steady state and
dynamic modes and very close to the experimental results
by 74.9% more that the single diode model. The findings
confirmed the validity of the suggested model for simulating
the dynamic performance of the perovskite solar cells.

APPENDIX A: SIMULATIONS RESULTS OF SINGLE- AND
DOUBLE- DIODE MODELS
See Figures 8–11 and Tables 4–7.
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