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ABSTRACT IoT devices handle a large amount of information including sensitive information pertaining to
the deployed application. Such a scenario, makes IoT devices susceptible to various attacks. In addition to
securing 10T devices, it is equally important to secure communication among devices and with the outside
world. RS232 is a common communication protocol used in IoT and embedded devices. Hence ensuring,
Trojan detection in RS232 plays a major role in providing secured communication among edge assisted
IoT devices. The inclusion of malicious circuits known as hardware Trojans can occur at any stage of the
IC design and manufacturing. Existing pre-silicon detection schemes with static features is limited by the
number of features that are learned by the detection scheme. In contrast, machine learning allows enhanced
Trojan space exploration. Existing machine learning-based Trojan detection consists primarily of supervised
algorithms that rely on high-quality labeled datasets for efficient Trojan detection. Unsupervised methods,
on the other hand, underperform due to limited training data and severe imbalance within the available
data. To handle such a situation, a semi-supervised hardware Trojan detection has been proposed. In this
work, permutation importance guided principal component analysis, correlation aware data augmentation,
and hyper-parameter optimization using genetic algorithm aid in optimal dataset and model generation.
Pseudo label generation using semi-supervised schemes is utilized to handle partially labeled datasets. For
the Trust-HUB benchmarks, the proposed methodology achieves an average of 88.48% true positive rate
and 95.77% true negative rate which, clearly indicates the effectiveness and feasibility of semi-supervised
hardware Trojan detection.

INDEX TERMS Semi-supervised algorithm, hardware Trojan detection, correlation-aware data augmenta-
tion, hyper-parameter optimization, genetic algorithm, permutation importance, XGBoost.

I. INTRODUCTION

The rapid advancement in microelectronic technologies has
led to the exploration of cloud computing, big data, arti-
ficial intelligence, embedded systems, 5G communication
and internet of things (IoT). IoT extends from smart city
to smart healthcare including many mission critical sys-
tems. IoT framework consists of sensors, actuators and
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embedded electronic devices that receive, store and transmit
data. As per forecast, the number of connected smart devices
will reach 75 billion by 2025 [1]. When the number of con-
nected devices grow, there exists a multi-fold increase in the
data to be handled. In such a scenario, quality of service
(QoS) gets affected due to high network traffic and delay
in time-sensitive applications. Edge computing (EC)-assisted
IoT devices address the problem of degraded QoS by sharing
data processing and enabling self-storage, which reduces the
load on the cloud servers [2]. As shown in Fig.1, EC-assisted
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FIGURE 1. Applications of Edge Computing-assisted loT a) Banking.
b) Autonomous driving. ¢)5G networks. d) Health monitoring.

IoT systems manage a large amount of data pertaining to
essential and sensitive applications. The situation makes the
IoT devices susceptible to a wide variety of attacks at the
software and hardware levels. Due to the necessity of ensur-
ing information security, extensive research has focused on
software security issues, neglecting the security hazards in
the underlying hardware [3], [4]. Unfortunately, the hardware
is still untrustworthy, like the software. The chip’s hazards,
which lead to cyberspace security threats, should not be over-
looked. Among various hardware attacks, hardware Trojans
(HT) have emerged as a critical threat [5]. Due to the stealthy
nature of HT, it evades the functional testing/verification
process intelligently.

High-profit drive, increased competition, and constrained
time to market force the IC supply chain to be spread
globally [6]. An adversary can insert a HT at any stage
of Integrated Circuit (IC) supply chain. Involvement of
untrusted parties such as third-party intellectual properties
(3PIP) designer [7], computer aided design (CAD) tools [8],
fabrication [9], testing [10] and distribution [11] facilitate
malicious attacks in all stages. HT attacks span a vari-
ety of application platforms such as ML-accelerators [12],
IoT devices [13], FPGAs [14], ASICs [15], cryptography
cores [16] and CPUs [17]. Successful inclusion and activa-
tion of an HT can aid the adversary in accessing confidential
information, thereby causing serious concerns.

Existing hardware Trojan detection (HTD) methods can
be categorized into static [18] and dynamic detection [19]
schemes. Static detection schemes use functional or structural
parameters to perform detection, whereas dynamic detec-
tion methods apply stimuli for detection. Traditional HTD
methods use a limited set of features, can handle a small
group of Trojans, and lacks scalability and reusability [20].
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An intelligent attacker can redesign the hardware Trojans to
surpass traditional detection methods upon gaining knowl-
edge of the utilized features. Machine learning (ML) algo-
rithms can handle a wide variety of Trojans, thereby tackling
the aforementioned issue.

Machine learning algorithms extract useful information or
patterns from the input data for Trojan identification facili-
tating the development of reusable and scalable models for
HTD. Among the existing machine learning based detec-
tion schemes, most methods apply supervised learning, but
it is not always possible to have golden reference circuits,
considering the real-time scenario. On the other hand, unsu-
pervised strategies use functional features, targeting Trojans
with low controllability and transition probability pertain-
ing to their stealthy nature. Such methods can be evaded
by redesigning Trojans to satisfy the conditions of a nor-
mal circuit [21]. Moreover, the methods that depend on
structural features underperform in true positive rate (TPR)
due to the limited Trojan space exploration in the training
phase.

To be precise, existing machine learning-based Trojan
detection approaches suffer from the following limitations.
Requirement of a labeled dataset for supervised algorithms,
limited learning of the Trojan space in the unsupervised
case, and the model’s inability to deal with design-specific
bias, data imbalance, and/or requirement of light-weight
machine learning models. To overcome these limitations,
the proposed work uses semi-supervised algorithms for
hardware Trojan detection to deal with a partially labeled
dataset. Moreover, a dynamic method that can adapt to the
new Trojan designs is the need of the hour. The proposed
semi-supervised approach use transductive learning, lever-
aging structural information from graph-based algorithms to
perform label predictions effectively on the unseen Trojan
data. Furthermore, the method incorporates correlation-aware
data augmentation schemes to address the problem of data
imbalance. In addition, the method employs a permutation
importance-based principal component analysis (PI-PCA)
algorithm for feature selection. In addition, the XGBoost
model’s hyper-parameters are optimized using a genetic algo-
rithm for improved Trojan detection. The following are the
technical contributions:

« Execution of semi-supervised algorithms to apply label
propagation and label spreading to handle the partially
labelled dataset. Pseudo-label generation using trans-
ductive learning is adopted to handle unlabeled data

o Incorporation of circuit-based features along with
net-based features to reduce the search space and aid
the machine learning model to make better predictions.
Combined feature set aids in handling design-specific
bias.

o Adoption of correlation-aware data augmentation
scheme to ensure that the data created is coherent with
the original data distribution. The synthetic data samples
enhance the label predictions, which in turn improves the
detection accuracy
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o Permutation importance-based principal component
analysis to obtain optimal set of uncorrelated contribu-
tive features that enhances the prediction capability of
the XGBoost algorithm

o Hyper-parameter optimization of XGBoost algorithm
using genetic algorithm to tutor the model for better
understanding of the underlying data

The rest of the paper is organized as follows, section II
summarizes the existing hardware Trojan detection schemes,
section IIT explains the governing aspects of problem formu-
lation, section IV elaborates the proposed methodology and
section V provides experimental results, analysis and infer-
ences. Section VI concludes the work after elaborating the
merits, limitations, and suggestions for further exploration.

Il. RELATED WORK

Existing hardware Trojan detection (HTD) methods, primar-
ily focusing on the detection at the gate level netlist (GLN)
are elaborated in this section. HTD schemes can be classified
as pre-silicon and post-silicon detection [19] depending on
the scheme applied prior to or after fabrication. Gate-level
netlist detection [20], register transfer level (RTL) feature
detection [22] and layout level detection [23] constitute HTD
at pre-silicon stage. On the other hand, post-silicon detection
consists of logical testing [24], [25] and side-channel analy-
sis [26]. Among the wide variety of schemes available in the
literature, the exploitation of machine learning algorithms has
drawn much attention due to its inherent potential in handling
a wide variety of Trojans.

C. H. Kok et al. utilized testability measures to train super-
vised machine learning-based classifiers such as weighted
k-nearest neighbour(k-nn), fine gaussian support vector
machine, and bagged trees [27]. It is a computation-
ally intensive method that produces more false positives.
Testability based HTD approaches was further extended
to incorporate structural features [28] or fault modelling
techniques [29] to handle the aforementioned limitations.
Another reference-free HT detection scheme utilizing testa-
bility measures was developed in [30]. Further, informa-
tion theory-based HT detection approach investigating the
relation between transition probability and the information
available on a net for unsupervised Trojan detection using
density-based clustering algorithm was attempted in [31].
Transition probability and testability measures were further
explored in [32] and [33].Limited representative training data
resulted in low TPR. Liu et al. [34], [35] adopted structural
features and testability measure-based features for enhanced
Trojan detection. The method is computationally intensive,
and its time complexity grows with circuit size. A class
weighting scheme and feature selection scheme for XGBoost
to tackle the problem of data imbalance and correlation
among features was proposed [36]. Hasegawa et al. [37], pro-
posed five structural features for HT net identification and
employed support vector machine for classification. It used
class weighting to handle the data imbalance problem that
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produced large false positives and false negatives. In the next
scheme [38], 51 feature-based HTD had been attempted using
a random forest algorithm, which reduced false positives in
comparison with [37]. The method adopted f-measure for
feature selection to find 11 optimal features from 51 structural
features. Mere duplication of minority data using SMOTE
caused the generation of false positives. The work was fur-
ther extended with multi-layer neural network in [39]. Class
weighting-based cross-entropy loss function was adopted to
handle data imbalance issue. The method produced an aver-
age of 83% TPR but underperformed on normal net detection.
Dong et al. [40] proposed additional structural features over
the standard 51 features proposed in [37]. It used feature
importance function to choose 49 optimal features, but class
imbalance problem had not been dealt with. An effort to
combine structural features based HTD with circuit partition-
ing schemes for Trojan localization, was attempted in [41]
and [42]. An unsupervised HTD approach termed PL-HTD,
where principal component analysis generates an optimal
feature set for unsupervised classification using a local out-
lier factor algorithm had been attempted [43]. The method
produced large false positives due to the poor generaliza-
tion capability of the model. The triggering properties of
Trojan circuits are outlined in [44] and [45] along with
feature analysis technique based on a flip-flop level infor-
mation flow graph. Few-shot learning-based hardware Trojan
detection was attempted in [46]. It aims to generate a sim-
ilarity function based HTD, but the results were not com-
parable with reported results. An effort to combine static
and dynamic features had been attempted in [47] and [48].
Though it had produced 95% average TPR in Trojan detec-
tion, the method had not been generalized on varying Trojan
circuits.

Among the existing machine learning-based detection
schemes, the majority of the methods fall in the supervised
category, which is not the case considering the real-time
scenario. In addition, there is no unified method of label-
ing the nets, leading to discrepancies in result interpreta-
tion. Unsupervised strategies, in general, adopt testability
measure-based features targeting Trojans that have low con-
trollability and low observability [30]. Such methods can
be circumvented by redesigning the Trojans to satisfy the
conditions of a normal circuit, as mentioned in [21]. Fur-
thermore, strategies that adopt structural features underper-
form in true positive rate (TPR) due to the limited Trojan
space learned in the training phase, causing poor general-
ization capability. The performance of supervised algorithms
relies on the availability of high-quality labeled data. Manual
labeling of data for the complete circuit becomes tedious
and time-consuming. The problem is further aggravated by
the increase in the complexity of circuits. On the other
hand, unsupervised algorithms require vast amounts of data
to infer patterns revealing Trojan characteristics accurately.
Hence a mechanism that overcomes the limitation of both
methods becomes essential, considering the diversified threat
conditions.
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lll. PROBLEM FORMULATION

The proposed work caters to the problem of hardware Tro-
jan detection in the pre-silicon stage using a gate-level
netlist of the circuit under test (CUT). It adopts an effi-
cient semi-supervised machine learning algorithm that han-
dles the data imbalance problem, feature selection and
optimal model generation. The scheme adopts permutation
importance-based principal component analysis to remove
redundant features that generate large offsets leading to
degraded model performance. Further, correlation-aware data
augmentation scheme filters out uncorrelated synthetic data
produced by adaptive synthetic generation algorithm to gen-
erate data that is coherent with original distribution. Further-
more, hyper-parameter optimization using genetic algorithm
ensures that the underlying XGBoost model is optimally
tuned for effective hardware Trojan detection.

A. PSEUDO LABEL GENERATION FOR HARDWARE
TROJAN DETECTION

The development of HT detection algorithms and counterfeit-
ing with new attacks go hand in hand, whereas the availability
of labeled data is confined to a limited set of Trojans. This
leads to poor generalization on unknown circuits with any
new Trojans for supervised HTD schemes. On the other hand,
due to the small number of Trojan samples available during
the training phase, unsupervised machine learning algorithms
face difficulty creating an effective decision boundary. Thus,
it becomes important to use the valuable information present
in the labeled data to work with unlabeled data.

Such a scenario calls for a semi-supervised algorithm that
can work with information available in the labelled dataset to
handle unlabeled data. Label propagation and label spreading
algorithms that adopt transductive learning for predictions
of the partially labeled dataset are explored in the proposed
work. The obtained pseudo-labels are combined with labeled
data to execute supervised XGBoost algorithm-based Trojan
detection.

1) LABEL PROPAGATION

Dataset is split into labeled and unlabeled data and is con-
verted into a weighted connected graph based on Euclidian
distance [49]. Label information is propagated through nodes
by performing random walks to absorbing states in the graph.
These data points are manually labeled as O or 1, pertaining to
the information available in Trust-HUB [50]. The maximum
frequency of neighboring states determines the label assigned
to the unknown data.

2) LABEL SPREADING

Label spreading [51] algorithm incorporates a method known
as spreading activation networks. Points in the dataset are
connected in a graph-based on their relative distances in the
input space. The algorithm propagates label information upon
considering the contribution of the initial labels. The structure
in the input space is captured to pass the information through
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the graph that aid label assignment. It is performed using a
weight matrix which is normalized symmetrically. The algo-
rithm dynamically assigns labels depending on the regular-
ization term «, which specifies the percentage of contribution
considered from the initial set of labels. This adaptive nature
makes it suitable to handle unknown Trojans.

B. CORRELATION-AWARE DATA AUGMENTATION

The small Trojan footprint causes a high degree of imbal-
ance between normal nets and Trojan nets [19]. Correlation-
aware data augmentation balances the data by generating
synthetic samples coherently with the original data distri-
bution. For synthetic data generation, the proposed scheme
uses the adaptive synthetic sampling (ADASYN) [52] algo-
rithm, which considers the density of the data to generate
the synthetic samples of minority data. It means ADASYN
produces more data samples for harder-to-learn data points.
The proposed method captures linear and nonlinear relation-
ships among data using correlation parameters such as Pear-
son’s correlation coefficient [53] and Spearman correlation
coefficient [54], respectively. Pearson correlation coefficient
(r) effectively captures the linear relationships between two
continuous variables x and y. Its value ranges from -1 to 1.
It is calculated using (1).

- @i —X)i—)
S -0 Y 0 -9

where x; and y; are corresponding x and y axis values of the i
sample point and x and y are the mean values of continuous
variables x and y. Spearman correlation captures the mono-
tonic relationship among the continuous data. It is calculated
on the ranked values of the variables. It is formulated as (2).

. eya?
p= n(n?—1)

where d; is the difference in the ranks of the observation
and n is the number of observations. The coherence of the
generated data with the original data is verified by analyzing
the correlation parameters. Correlation values in the range
of 0.7 to 0.9 facilitates the model to maximize the Trojan
detection.

ey

(@)

C. PERMUTATION IMPORTANCE-BASED PRINCIPAL
COMPONENT ANALYSIS FOR FEATURE SELECTION USING
BARTLETT's TEST OF SPHERICITY

Presence of correlated features can cause offsets that lead
to degradation in model performance and hence has to be
removed. The degree of correlation among features is ana-
lyzed using Bartlett’s test of sphericity as given in (3)

W45
X2=—(n—1— p;—

where 7 is the number of observations, p is the number of vari-
ables, and R is the correlation matrix. The chi square test is

> x In|R| A3)
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then performed on (p? —p)/2 degrees of freedom. Highly cor-
related features are removed using principal component anal-
ysis [55]. All the data samples are projected to eigenvalues
that exhibit maximum variance amongst each other. Such a
process yields features that minimize the offsets and enhances
the model performance. It does not consider the impact a fea-
ture has on the model’s predictive capability. For measuring
the predictive capability of the model, permutation impor-
tance [30] is adopted. It calculates model dependency on the
features separately. The features fsV = {f1,/>,..fn} is the
original feature set from which, random permutation is per-
formed to form the permuted dataset. The feature importance
is calculated as the difference between original and permuted
accuracy value which is stored as Iv = {lvy, I v, ..0 v,}.
Threshold for feature selection is set by m given by (4). The
process of permutation of features and model performance
evaluation are iterated until no further enhancement in accu-
racy is observed.

— Z?:l I Vn (4)

n

D. HYPER-PARAMETER OPTIMIZATION USING GENETIC
ALGORITHM

Appropriate hyper-parameter selection aids in maximising
performance of the underlying ML model thereby, reduc-
ing generated errors. Meta-heuristic algorithms are proven
to be effective in finding global optimal solution from com-
plex search spaces. Various methods such as particle swarm
optimization(PSO), simulated annealing (SA) and ant colony
algorithm (ACA) can be used to find the optimal choice
of hyper-parameters [56]. When compared to these, genetic
algorithm (GA) [57] can find the global optimal solution that
is independent of the initial conditions for complex prob-
lems. Hence GA is chosen to optimize hyper-parameters
and is applied to XGBoost algorithm for Trojan detec-
tion. It produces good classification results with its abil-
ity to handle large-scale data. Seven of the most influen-
tial parameters for the XGBoost algorithm are chosen to be
optimized. The parameters are learning_rate, n_estimators,
max_depth, min_child_weight, gamma, sub_sample, colsam-
ple_bytree. learning_rate is the step size the model takes
for each iteration of residual error correction. A value too
low can lead to slow convergence, and a value too high can
lead to non-attainment of the global optimum. n_estimators
define the number of boosted trees present in the ensemble.
max_depth indicates how deep the tree is with respect to
the root node. A lower value leads to underfitting, and a
higher value leads to overfitting. gamma is the regularisation
parameter. sub_sample and colsample_bytree give the frac-
tion of data and fraction of columns to be randomly sam-
pled for tree generation. A lower value leads to underfitting,
and a higher value causes overfitting. Hence obtaining opti-
mal hyper-parameters can lead to the generation of a model
that effectively tackles problems such as slow convergence,
non-attainment of global optimum, overfitting, and under-
fitting. Each of the seven hyper-parameters is real vector
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encoded and concatenated to form a chromosome. Each chro-
mosome represents a hyper-parameter configuration of the
XGBoost model. The initial population is assigned a ran-
dom float value adhering to the predefined ranges of param-
eter values. F-measure is chosen as the fitness criterion to
address the inherent data imbalance problem. The model tries
to find hyper-parameters that maximize the selected fitness
function.

IV. METHODOLOGY FOR SEMI-SUPERVISED PI-PCA
BASED HTD

The proposed work uses semi-supervised algorithm for
hardware Trojan detection to deal with the partially
labeled dataset. The major steps, include feature extrac-
tion, correlation-aware data augmentation, and PI-PCA based
feature selection. Genetic algorithm-based hyper-parameter
optimization further enhances Trojan detection.

A. THREAT MODEL

The work targets the identification of rarely activated Tro-
jans present in gate level netlist. The chosen HTs can be
classified into degrade of performance (DoP), change of
functionality (CoF) and denial of service (DoS). The work
proposes pre-silicon static detection scheme exploiting semi-
supervised learning. The proposed scheme has been validated
on Trust-HUB circuits with combinational and sequential
Trojans.

B. PROPOSED METHODOLOGY

The proposed methodology is illustrated in Fig.2. As the
first step, the design is converted into netlist using Synopsys
DC [58]. Circuit and net related, 78 features are extracted
from the netlist. Permutation importance-based principal
component analysis algorithm is performed on the extracted
features. It produces an optimal set of uncorrelated and con-
tributive features that maximize the predictive performance
of the underlying model. XGBoost model tackles the problem
of overfitting due to limited data, by applying regularization.
It produces faster convergence by analyzing the feature dis-
tribution. Data imbalance in the produced dataset is handled
using a correlation-aware data augmentation scheme. It pro-
duces synthetic data that is coherent with the original data
by satisfying the correlation constraints on the ADASYN
algorithm. The scheme removes uncorrelated samples and
ensure the coherence of synthetic samples with the original
data.

A pseudo label generation algorithm is adopted to make
label predictions on the partially labeled dataset. The avail-
able labeled data and the generated pseudo labels are com-
bined to form the final training data set. During training,
hyper-parameter optimization is performed. The performance
of the model is evaluated using test data by adopting the leave-
one-out cross-validation method. The adopted testing process
makes each circuit considered for testing is unknown to the
trained XGBoost model.
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FIGURE 2. Major processes involved in the proposed methodology.

C. FEATURE EXTRACTION

For a particular net n, features such as level, connectiv-
ity, primary input, primary output, fan_in_x, in_flipflop_x,
out_flipflop_x, in_multiplexer_x and out_multiplexer _x are
calculated. Number of flipflops, multiplexers, and gates up
to x level away from the targeted nets are extracted. Circuit-
based features are synthesis features extracted from Synop-
sys DC that include the number of cells, ports, nets, com-
binational switching power, total switching power, and total
power, black box, register, clock network leakage, and total
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power cell areas of combinational, etc. are defined in Table.1
The adopted feature set helps to tackle the problem of design-
specific bias. Trojans can exhibit different characteristics
with respect to the inserted design. For example, consider a
combinational Trojan with eight trigger inputs inserted in the
S38417 and RS232 circuits. It can be observed that although
the Trojan is similar in structure, the Trojan in S38417 is
harder to activate when compared to that of RS232. Hence
it is important to consider both net-based and circuit-based
features for effective Trojan identification. The proposed
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TABLE 1. Partial list of features (1 < x < 5).

Feature Type Feature Feature definition
Net based Connectivity Number of gates connected to the net
Level The distance from primary input
Primary input Level the net is from the primary input
Primary output Level the net is from the primary output
Fan_in_x The distance from primary input
In/out flipflop_x The number of flipflops connected x level from input/output side of net
In/out_multiplexer The number of muxes connected x level from input/output side of net n
Circuit Type Net switching power The power dissipated when net or internal capacitance charges or

discharges upon encountering a change of bit value

Dynamic power

It is the cumulative sum of switching power and short circuit power.

Short circuit power produced due to connection between ground and
supply voltage at the instant gate switches.

Total power

It is the cumulative sum of leakage power and dynamic power

experiment typically considers 78 features comprising 29 net-
based and 49 circuit-related features.

D. PI-PCA ALGORITHM FOR FEATURE SELECTION

In order to remove offsets created by correlated and less con-
tributive features, permutation importance-based principal
component analysis is executed. Firstly, principal component
analysis is performed on the feature set to select features with
maximum variance. In addition, we adopt a scheme using per-
mutation importance for feature selection, which is indicative
of the generalization capability of the developed model. The
impact of each feature on model accuracy is considered after
random permutation. The difference between the model per-
formances using the original feature (Nacc) set and generated
feature set (Nnewacc) is taken as the feature importance of
the selected features. The average of the feature importance
is used as the threshold parameter m for feature selection. The
process of permutation and feature importance calculation is
repeated until no further improvement in model performance
is observed such that Nnewacc < Nacc. The final dataset con-
tains uncorrelated but contributive features to attain enhanced
detection accuracy.

E. CORREALATION-AWARE DATA AUGMENTATION

The small Trojan size leads to a severe imbalance in the
generated dataset. This, in turn causes the model to develop
a bias towards the majority class, which is the normal nets.
Hence, to handle the developed bias, synthetic data gener-
ation is executed using ADASYN. The density distribution
of the data is considered to generate more data points that
are harder to detect. Trojan data remain hidden within the
normal data points and such a data generation scheme makes
the model prone to errors. Hence the data that produces
positive correlation values, satisfying the predefined range
of correlation values are retained. This further enhances the
ability of the model to understand patterns reflecting Trojan
characteristics.

F. HYPER-PARAMETER OPTIMIZATION USING GENETIC
ALGORITHM

The most influential seven parameters are considered for
optimization. All hyper-parameters are real vectors repre-
senting a gene that are concatenated to form a chromosome.
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FIGURE 3. Permutation scores of feature set for R$232-T1500 circuit.

It is assigned a random value after which, parent chromo-
somes are randomly selected for child chromosome gener-
ation. Child chromosomes are produced through crossover
and mutation. In the process of crossover, a random part
of the parent’s chromosomes forms the new chromosome.
In the process of mutation, the values assigned to the gene are
changed to a new random value. F-measure is chosen as the
fitness criterion to address the data imbalance problem. Chro-
mosomes with the highest fitness values are chosen as parent
chromosomes in the succeeding generations, and the process
continues. The procedure returns the chromosome with the
highest f-measure score upon reaching the user-defined con-
vergence criteria. In the proposed work, max number of gen-
erations which is 30 is set as the criterion. The corresponding
chromosome gives the optimal hyper-parameter configura-
tion of the XGBoost algorithm. It effectively addresses the
problem of overfitting due to the limited training data through
regularization. In addition, the XGBoost algorithm considers
feature distribution for faster convergence. The efficacy of
the proposed algorithm is validated on the Trust-HUB bench-
mark circuits.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A standard communication protocol used in embedded
and IoT devices is universal asynchronous transmitter-
receiver (UART) communication. RS232 circuits being the
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TABLE 2. Benchmark circuits from trust-HUB.

Circuit Name Trojan Functionality Effect of payload
RS232-T1000 Changes certain bits of the transmitted message CoF
RS232-T1100 Changes certain bits of the transmitted message CoF
RS232-T1200 Prevents notification for message transmission DoS
RS232-T1300 Prevents module from receiving and transmitting data DoS,DoP
RS232-T1400 Prevents module from receiving and transmitting data DoS
RS232-T1500 Prevent further messages to be received and alters the ~ DoP,CoF
transmitted message
RS232-T1600 Completely stops the module operation DoS
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FIGURE 4. Correlogram for the optimized feature set for R$232-T1500 circuit.

underlying hardware, has to be devoid of Hardware Trojans.
Hence validating, Trojan detection on RS232 circuit ensures
secured communication among edge computing-assisted [oT
devices. The circuit under test (CUT) includes a rarely trig-
gered Trojan that covers three popular and challenging pay-
load effects ranging from denial of service(DoS) to change of
functionality(CoF) and degradation of performance(DoP).
These CUTs are chosen from the standard set of
Trust-HUB benchmark circuits to provide a fair compari-
son and analysis of the obtained results. Details of the test
circuits and inserted Trojans are provided in Table.2. The
selected circuits are synthesized by Synopsys Design Com-
piler(DC) with Semiconductor Manufacturing International
Corporation cell library for 90-nm silicon-on-insulator pro-
cess. The framework of feature extraction, PI-PCA algorithm,
correlation-aware data augmentation, hyper-parameter opti-
mization using genetic algorithm, and pseudo label genera-
tion algorithm are developed in Python. XGBoost algorithm
is utilized for model development using scikit library [59] and
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executed on an Intel system
1.2GHz with 8GB RAM.

with Winl0 server, running at

A. DATA PRE-PROCESSING FOR ENHANCED TROJAN
DETECTION

Data pre-processing stage consists of permutation importance-
based principal component analysis (PI-PCA) for feature
selection and correlation-aware data augmentation. Redun-
dant and less contributive features are removed using the
PI-PCA algorithm. PCA algorithm selects 21 prominent fea-
tures that are uncorrelated and exhibit maximum variance
from the initial set of 78 features. Since, PCA considers only
the global information without looking into local information
that can be discriminative for the model predictions. To tackle
such a scenerio, permutation importance guided PCA algo-
rithm is developed. It ensures the retention of the most influ-
ential seven features from the pruned set of 21 features,
as depicted in Fig.3. The correlation plot of the pruned set
of features is depicted in Fig.4. Thus, the proposed algorithm
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TABLE 3. Correlation coefficients of uncorrelated samples.

Data Sample Pearson correlation coefficient Spearman correlation coefficient
Sample 124 0.099 0.4617

Sample 125 0.099 0.460

Sample 136 0.099 0.460

Sample 149 0.022 0.162

Sample 151 -0.014 0.298
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FIGURE 5. Hyper-parameter optimization using genetic algorithm on RS232-T1500.

aids in exploiting the global information captured using the
PCA algorithm and local information captured using the PI
scheme for attaining optimal feature set.

To select features with maximum contribution, a thresh-
old of 0.01 is set in this experiment. Optimal feature selec-
tion significantly reduces the model complexity and leads to
lightweight machine learning model. In addition, the large
offsets caused by redundant features are also removed.

Upon experimentation, it is observed that the choice
of hyper-parameters impacts the detection capability of
the model, as depicted in Fig.5. Global search space
adopted by genetic algorithm prevents overfitting, under-
fitting, convergence to local optimum. It further aids in
attaining optimal model configuration for enhanced HT
detection. Hyper-parameter optimization is performed prior
to correlation-aware data augmentation so to handle the
imbalanced test data. It is observed that for an imbalanced
dataset upon training, the model produces an f-measure span-
ning a range from 27% to 55%. Despite the influence of
severe data imbalance, the model achieves an f-measure of
55% by adopting the appropriate choice of hyper-parameters,
as depicted in Fig.5. Despite feature selection, the model
attains a recall of 27%, reflecting the impact of bias incurred
due to imbalanced dataset. The effect of generating a
balanced dataset set is analyzed using receiver operating
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FIGURE 6. ROC curve of RS232-T1500 for optimal feature set.

characteristics (ROC) and precision-recall curves (PR). The
capability of the model in performing accurate Trojan detec-
tion is reflected in the increased area under the curve(AUC)
score. Fig.6 depicts the impact of data imbalance on model
performance and is quantified using the AUC score of the
Trojan class. Small Trojan footprint to evade standard veri-
fication schemes, causes a severe data imbalance in the gen-
erated dataset. To tackle this problem, ADASYN is used to
create synthetic data. Analysis of the 210 generated synthetic
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FIGURE 7. ROC curve of RS232-T1500 for correlation aware data
augmented dataset.
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data samples exhibits that 70 of them are highly uncorre-
lated with respect to the original data distribution. Correlation
analysis is performed by adopting pearson and spearman
correlation in order to verify the coherence of the gener-
ated data has with the original data. Correlation coefficients
of a few uncorrelated data samples are shown in Table.3.
To aid accurate detection, the uncorrelated data points are
removed, which led to the improvement of the f-measure from
35.3% to 42.6%. Improved AUC score of 7% as depicted
in Fig.6 and Fig.7 further confirms the scheme’s efficacy in
generating balanced data set. The effectiveness of an HTD
scheme relies on the ability of the model to maximize Tro-
jan detection which is achieved using the generated dataset.
In addition, the accuracy of Trojan detection enhances by
0.09% as observed in Fig.8 and Fig.9. Thus the generated
balanced data set aids in effective Trojan detection with
minimal trade-off incurred for Trojan net and normal net
detection.

B. EVALUATION METRICS FOR RESULT ANALYSIS

The results are analyzed using precision, recall, f-measure,
accuracy, receiver operating characteristic curve, precision-
recall curve, true positive rate, and true negative rate [19]
and are depicted in Table.4. They are derived from the con-
fusion matrix shown in Fig.10. For binary classification of
positive and negative classes, the matrix is generated using
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FIGURE 10. Confusion matrix for R$232-T1500.

parameters such as True negative (TN), true positive(TP),
false negative(FN), and false positive (FP). For the applica-
tion of hardware Trojan detection, Trojan nets are represented
as positive class and normal nets as negative class. Fig.10
exhibits the confusion matrix generated using the aforemen-
tioned notation for the RS232-T1500 test circuit. In the field
of Trojan detection, the efficacy of the model relies on its
ability to improve Trojan recognition and reduce the nor-
mal net miss-classification rate. In effect, this translates to
minimization of the generation of false positives and false
negatives.

C. HARDWARE TROJAN DETECTION USING PARTIALLY
LABELLED DATASET

Label propagation and label spreading algorithm have been
applied to the pre-processed data to generate pseudo labels.
The dynamic nature of the label generation process of label
spreading algorithm makes it suitable for the application
of Trojan detection. It is observed that the value of alpha
which denotes the ratio of information inferred from the
neighboring nodes and from the initial labels, impacts model
performance. TNR value increases with decrease in the con-
tribution of initial label information, and the highest TNR
is reached by adopting an alpha of 0.8 to 0.9 on average.
Labeled data and generated pseudo labels are combined to
form the final dataset, which is then applied to the optimized
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TABLE 4. Performance metrics for evaluation of trojan detection.

Performance metrics

Definition

Formula

Recall (True positive rate)

Precision (P)

F-measure (F)

Accuracy (A)

True negative rate (TNR)

Receiver operating characteristic(ROC)

Precision recall (PR) curve

The rate at which the positive class samples are predicted as positive
class samples.

The rate at which the negative class samples are predicted as negative
class samples

It is derived from the precision and recall rates. It gives the harmonic
mean of recall and precision rates

It is the rate at which the data instances are correctly predicted with
respect to the total predications made by the classifier

It is the rate at which the normal nets are correctly predicted as normal
nets

The efficiency with which the model handles both true positive rates
and false positive rates

It is the tradeoff between detection of both classes

TPR=TP/(FN +TP)

P =TP/(FP +TP)

F =2PR/(P+ R)

A= (TP+TN)/(TP+TN+FP+

FN)
TNR=TN/(TN + FP)
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FIGURE 12. Impact of various label generation schemes on Trojan detection for R$232-T1500.

XGBoost algorithm for Trojan detection on the chosen test
circuits. Fig.11 indicates the impact each stage of opera-
tion has on model performance. Each stage of operation is
reflected in the nomenclature of the resultant dataset. Fig.11
indicates the performance metrics attained by the model
post feature selection, correlation-aware data augmentation,
and pseudo-label generation, respectively. It can be observed
that despite feature selection stage, before data augmentation
in Experiment.2, the model achieves high precision rate at
the cost of recall rate, reflecting the impact of data imbal-
ance. Upon correlation-aware data augmentation indicated
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by Experiment.3, the model attains an improved precision,
recall, and f-measure as indicated in Fig.11. The exploitation
of structural information and the available prior information
by the graph-based transductive approaches in Experiment.4,
results in optimal model performance and is indicated by the
improved f-measure. Semi-supervised algorithms are real-
ized using the scikit library. Upon experimenting with the
available kernels such as radial basis function (RBF) kernel
and Knn kernel, the former obtained optimal Trojan detection
results as illustrated in Fig.12. The dynamic nature of label
prediction adopted by the label spreading algorithm makes
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TABLE 5. TPR and TNR comparison of PCA based local outlier factor algorithm(unsupervised) and proposed work(PW).

Circuit Name TPR(%) [43] TPR(%)(PW) TNR (%) [43] TNR(%) (PW)
RS232-T1000 50 90 96.43 95.8
RS232-T1100 45.45 90 96.43 95.4
RS232-T1200 46.15 100 97.14 95.2
RS232-T1300 57.14 66.7 96.04 94.7
RS232-T1400 41.67 90.9 96.4 96.7
RS232-T1500 45.45 90.9 96.45 96.3
RS232-T1600 44.44 90 96.11 96.3

Average 47.19 88.49 96.43 95.77

TABLE 6. Performance comparison of PCA based local outlier factor algorithm and proposed work (PW).

Circuit Name f-measure(%) f- Precision(%) Precision(%)(PW) Accuracy(%) [43] Accuracy(%)(PW)
[43] measure(%)(PW)| [43]
RS232-T1000 40 64.3 3333 50 94.83 95.6
RS232-T1100 28.21 62.1 33.33 474 94.5 95.2
RS232-T1200 27.3 722 40 56.5 94.56 95.5
RS232-T1300 27.69 66.7 26.67 26.7 95.09 94.7
RS232-T1400 24.44 71.4 33.33 58.8 94.14 96.7
RS232-T1500 25.8 69 33.33 55.6 94.54 96.3
RS232-T1600 27.69 66.7 26.7 529 94.52 96.3
Average 28.73 63.4 32.38 49.7 94.59 95.57
TABLE 7. TPR and TNR comparison of multi-layer neural network(supervised) and proposed work(PW) in terms of TPR and TNR.
Circuit Name TPR(%) [39] TPR(%)(PW) TNR(%) [39] TNR(%)(PW)
RS232-T1000 100 90 24 95.8
RS232-T1100 78 90 25 95.4
RS232-T1200 91 100 55 95.2
RS232-T1300 86 66.7 65 94.7
RS232-T1400 100 90.9 15 96.7
RS232-T1500 82 90.9 47 96.3
RS232-T1600 100 90 28 96.3
Average 91 88.49 37 95.77

it more suitable for hardware Trojan detection. Furthermore,
it can be observed that the model effectively uses the infor-
mation retrieved from the generated dataset and the structural
information obtained from the produced graph to achieve
optimal detection.

D. PERFORMANCE COMPARISON WITH EXISTING WORKS
The efficacy of supervised HTD schemes relies on the
high quality labeled dataset. Whereas, obtaining high-quality
datasets with labels is tedious and time-consuming and there
exist discrepancies in the process of data labeling. On the
other hand, unsupervised algorithms require a large amount
of unlabeled data to identify patterns reflecting Trojan char-
acteristics effectively. Hence a semi-supervised approach that
uses prior label information for the prediction of unlabeled
data becomes the need of the hour, which is attempted in
this work. The efficiency of a model in Trojan detection
is analyzed by TPR and TNR scores. The work aimed at
enhancing TPR with minimum possible degradation of TNR
using partially labeled datasets. In comparison with an unsu-
pervised approach attempted in [43], the model produces
an improvement of 41.3%, 34.67%, 17.32%, and 0.981% in
terms of TPR, f-measure, precision, and accuracy respec-
tively as depicted in Table.5 and Table.6. The valuable prior
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information in the labeled data has been exploited in the
proposed semi-supervised algorithm to enhance the TPR
when compared to [43]. The improved TPR values can be
attributed to the utilization of initial cluster information by
the label spreading algorithm that reveals significant relation-
ships among data samples within the dataset. It is observed
from Table.7, that the adequate learning of Trojan characteris-
tics has led to an appreciable performance in comparison with
supervised learning [39]. Overall, an improvement of 58.87%
is observed for TNR, 36.64% in terms of f-measure, 33.88%
precision, and 52.32% in terms of accuracy, as depicted in
Table.7 and Table.8. Table.9 compares the performance of
the proposed work with existing supervised schemes such
as [37], [38], unsupervised schemes [30], [31] and few-shot
learning based schemes [46] in terms of TPR. The method
outperforms [31], [37] and [30] by 4.03%, 16.62% and 11.9%
in terms of TPR. The method achieves comparable per-
formance in comparison with [38]. Supervised approaches
largely rely on the availability of high qualtity labeled dataset
for effective Trojan detection. This is further possible by the
procurement of golden circuit of the base design and prior
knowledge of the inserted Trojan structure as experimented
in [38]. However, in reality, this is not the case. Moreover,
with rapidly evolving Trojan designs, an approach to handle
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TABLE 8. Performance comparison of multi-layer neural network and proposed work (PW).

Circuit Name f-measure(%) [39] f-measure Precision(%) [39] Precision(%)(PW) Accuracy(%) [33] Accuracy(%)(PW)
(%)(PW)

RS232-T1000 25.08 64.3 14.34 50 32.58 95.6
RS232-T1100 2027 62.1 11.65 47.14 30.96 95.2
RS232-T1200 31.74 72.2 19.22 56.5 59.75 95.5
RS232-T1300 32.31 66.7 19.89 26.7 66.93 94.7
RS232-T1400 27.95 71.4 16.24 58.8 27.13 96.7
RS232-T1500 28.95 69 17.57 55.6 51.24 96.3
RS232-T1600 21.04 66.7 11.8 529 34.23 96.3

Average 26.76 63.4 15.82 49.7 43.25 95.57

TABLE 9. TPR comparison of proposed work with existing work.

Circuit Name Supervised learning Few shot learning Unsupervised learning Semi-supervised learning
TPR(%) TPR(%) TPR(%) [46] TPR(%) TPR(%) TPR(%)(PW)
[37] [38] [31] [30]

RS232-T1000 84.09 100 NA 62 53.33 90.9

RS232-T1100 80.95 50 NA 67 58.33 90

RS232-T1200 78.79 88 NA 89 80 100

RS232-T1300 87.1 100 NA 89 88.89 66.7

RS232-T1400 86.96 98 NA 61 83.33 90.9

RS232-T1500 93.33 95 NA 73 83.33 90.9

RS232-T1600 80 93 NA 62 88.89 90

Average 84.46 89.14 70.3 71.85 76.58 88.48

NA:Not available

unknown Trojan data needs to be addressed, which forms
the basis of our work. The proposed methodology adopts a
semi-supervised scheme that leverages a transductive learn-
ing approach and structural information from a graph-based
algorithm to adeptly handle unknown Trojan data. Quanti-
tatively, the proposed approach attains, on average 88.48%
TPR and 95.77% TNR scores, thereby obtaining a better
trade-off between TPR and TNR values with respect to
existing approaches.

Overall, it can be observed that although supervised
schemes produce better performance, the high-quality labeled
dataset is hard to achieve considering the real-time sce-
nario. In contrast, the proposed model surpasses the TPR
achieved by few-shot learning [46] and unsupervised learning
by its efficiency in utilizing prior information in the partially
labeled dataset and the structural information from the gener-
ated graphs. Thus, the proposed scheme sheds light on the
exploration of semi-supervised hardware Trojan detection.
Experiment analysis confirmed that the proposed work that
combined pseudo-label generation with correlation-aware
data augmentation has significantly enhanced the model
performance.

VI. CONCLUSION AND FUTURE WORK

Existing Trojan detection methods face limitations such as
the requirement of labeled datasets for supervised algorithms,
limited learning of the Trojan space, and the model’s inabil-
ity to deal with design-specific bias, data imbalance, and/or
requirement of lightweight ML models. Such limitations are
tackled in the proposed work using semi-supervised algo-
rithms for hardware Trojan detection using partially labeled
datasets. Permutation importance-guided principal compo-
nent analysis has been adopted to capture both global and
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local information for efficient feature reduction. Correlation-
aware data augmentation curates the ADASYN algorithm to
generate data coherent with the underlying data distribution
for optimal data balancing. In addition, genetic algorithm-
based hyper-parameter optimization maximizes Trojan detec-
tion by attaining hyper-parameter configuration resulting
in a global optimum. Furthermore, a graph-based semi-
supervised scheme that utilizes transductive learning effec-
tively uses prior information in the partially labeled dataset
and the structural information from the generated graphs for
enhanced detection performance. The efficiency and feasibil-
ity of the proposed work have been established upon com-
parison with existing supervised, unsupervised, and few-shot
learning-based schemes of hardware Trojan detection. The
proposed methodology achieves 88.48% average true positive
rate and 95.57% average true negative rate for the Trust-HUB
benchmark circuits. Specifically, RS232 benchmark test cir-
cuits are chosen to validate the proposal. Ensuring Trojan
detection of the RS232 circuit plays a major role in providing
secured communication among edge computing-assisted IoT
devices. In the era of the connected world, the very volatile
nature of edge computing to security threats faced by IoT
devices compel this choice.

Experimentation and analysis on the test circuits indi-
cate the effectiveness and feasibility of a semi-supervised
approach for hardware Trojan detection. The computational
complexity of graph creation for pseudo-label generation
linearly increases with the circuit size and has to be opti-
mized. The exploitation of explainable machine learning
to avoid manual intervention for result analysis, extend-
ing to incorporate more variety of Trojan designs and
optimized pseudo-label generation are the suggested future
work.
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