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ABSTRACT IoT devices handle a large amount of information including sensitive information pertaining to
the deployed application. Such a scenario, makes IoT devices susceptible to various attacks. In addition to
securing IoT devices, it is equally important to secure communication among devices and with the outside
world. RS232 is a common communication protocol used in IoT and embedded devices. Hence ensuring,
Trojan detection in RS232 plays a major role in providing secured communication among edge assisted
IoT devices. The inclusion of malicious circuits known as hardware Trojans can occur at any stage of the
IC design and manufacturing. Existing pre-silicon detection schemes with static features is limited by the
number of features that are learned by the detection scheme. In contrast, machine learning allows enhanced
Trojan space exploration. Existing machine learning-based Trojan detection consists primarily of supervised
algorithms that rely on high-quality labeled datasets for efficient Trojan detection. Unsupervised methods,
on the other hand, underperform due to limited training data and severe imbalance within the available
data. To handle such a situation, a semi-supervised hardware Trojan detection has been proposed. In this
work, permutation importance guided principal component analysis, correlation aware data augmentation,
and hyper-parameter optimization using genetic algorithm aid in optimal dataset and model generation.
Pseudo label generation using semi-supervised schemes is utilized to handle partially labeled datasets. For
the Trust-HUB benchmarks, the proposed methodology achieves an average of 88.48% true positive rate
and 95.77% true negative rate which, clearly indicates the effectiveness and feasibility of semi-supervised
hardware Trojan detection.
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INDEX TERMS Semi-supervised algorithm, hardware Trojan detection, correlation-aware data augmenta-
tion, hyper-parameter optimization, genetic algorithm, permutation importance, XGBoost.

I. INTRODUCTION21

The rapid advancement in microelectronic technologies has22

led to the exploration of cloud computing, big data, arti-23

ficial intelligence, embedded systems, 5G communication24

and internet of things (IoT). IoT extends from smart city25

to smart healthcare including many mission critical sys-26

tems. IoT framework consists of sensors, actuators and27

The associate editor coordinating the review of this manuscript and

approving it for publication was Byung-Seo Kim .

embedded electronic devices that receive, store and transmit 28

data. As per forecast, the number of connected smart devices 29

will reach 75 billion by 2025 [1]. When the number of con- 30

nected devices grow, there exists a multi-fold increase in the 31

data to be handled. In such a scenario, quality of service 32

(QoS) gets affected due to high network traffic and delay 33

in time-sensitive applications. Edge computing (EC)-assisted 34

IoT devices address the problem of degraded QoS by sharing 35

data processing and enabling self-storage, which reduces the 36

load on the cloud servers [2]. As shown in Fig.1, EC-assisted 37
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FIGURE 1. Applications of Edge Computing-assisted IoT a) Banking.
b) Autonomous driving. c)5G networks. d) Health monitoring.

IoT systems manage a large amount of data pertaining to38

essential and sensitive applications. The situation makes the39

IoT devices susceptible to a wide variety of attacks at the40

software and hardware levels. Due to the necessity of ensur-41

ing information security, extensive research has focused on42

software security issues, neglecting the security hazards in43

the underlying hardware [3], [4]. Unfortunately, the hardware44

is still untrustworthy, like the software. The chip’s hazards,45

which lead to cyberspace security threats, should not be over-46

looked. Among various hardware attacks, hardware Trojans47

(HT) have emerged as a critical threat [5]. Due to the stealthy48

nature of HT, it evades the functional testing/verification49

process intelligently.50

High-profit drive, increased competition, and constrained51

time to market force the IC supply chain to be spread52

globally [6]. An adversary can insert a HT at any stage53

of Integrated Circuit (IC) supply chain. Involvement of54

untrusted parties such as third-party intellectual properties55

(3PIP) designer [7], computer aided design (CAD) tools [8],56

fabrication [9], testing [10] and distribution [11] facilitate57

malicious attacks in all stages. HT attacks span a vari-58

ety of application platforms such as ML-accelerators [12],59

IoT devices [13], FPGAs [14], ASICs [15], cryptography60

cores [16] and CPUs [17]. Successful inclusion and activa-61

tion of an HT can aid the adversary in accessing confidential62

information, thereby causing serious concerns.63

Existing hardware Trojan detection (HTD) methods can64

be categorized into static [18] and dynamic detection [19]65

schemes. Static detection schemes use functional or structural66

parameters to perform detection, whereas dynamic detec-67

tion methods apply stimuli for detection. Traditional HTD68

methods use a limited set of features, can handle a small69

group of Trojans, and lacks scalability and reusability [20].70

An intelligent attacker can redesign the hardware Trojans to 71

surpass traditional detection methods upon gaining knowl- 72

edge of the utilized features. Machine learning (ML) algo- 73

rithms can handle a wide variety of Trojans, thereby tackling 74

the aforementioned issue. 75

Machine learning algorithms extract useful information or 76

patterns from the input data for Trojan identification facili- 77

tating the development of reusable and scalable models for 78

HTD. Among the existing machine learning based detec- 79

tion schemes, most methods apply supervised learning, but 80

it is not always possible to have golden reference circuits, 81

considering the real-time scenario. On the other hand, unsu- 82

pervised strategies use functional features, targeting Trojans 83

with low controllability and transition probability pertain- 84

ing to their stealthy nature. Such methods can be evaded 85

by redesigning Trojans to satisfy the conditions of a nor- 86

mal circuit [21]. Moreover, the methods that depend on 87

structural features underperform in true positive rate (TPR) 88

due to the limited Trojan space exploration in the training 89

phase. 90

To be precise, existing machine learning-based Trojan 91

detection approaches suffer from the following limitations. 92

Requirement of a labeled dataset for supervised algorithms, 93

limited learning of the Trojan space in the unsupervised 94

case, and the model’s inability to deal with design-specific 95

bias, data imbalance, and/or requirement of light-weight 96

machine learning models. To overcome these limitations, 97

the proposed work uses semi-supervised algorithms for 98

hardware Trojan detection to deal with a partially labeled 99

dataset. Moreover, a dynamic method that can adapt to the 100

new Trojan designs is the need of the hour. The proposed 101

semi-supervised approach use transductive learning, lever- 102

aging structural information from graph-based algorithms to 103

perform label predictions effectively on the unseen Trojan 104

data. Furthermore, themethod incorporates correlation-aware 105

data augmentation schemes to address the problem of data 106

imbalance. In addition, the method employs a permutation 107

importance-based principal component analysis (PI-PCA) 108

algorithm for feature selection. In addition, the XGBoost 109

model’s hyper-parameters are optimized using a genetic algo- 110

rithm for improved Trojan detection. The following are the 111

technical contributions: 112

• Execution of semi-supervised algorithms to apply label 113

propagation and label spreading to handle the partially 114

labelled dataset. Pseudo-label generation using trans- 115

ductive learning is adopted to handle unlabeled data 116

• Incorporation of circuit-based features along with 117

net-based features to reduce the search space and aid 118

the machine learning model to make better predictions. 119

Combined feature set aids in handling design-specific 120

bias. 121

• Adoption of correlation-aware data augmentation 122

scheme to ensure that the data created is coherent with 123

the original data distribution. The synthetic data samples 124

enhance the label predictions, which in turn improves the 125

detection accuracy 126
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• Permutation importance-based principal component127

analysis to obtain optimal set of uncorrelated contribu-128

tive features that enhances the prediction capability of129

the XGBoost algorithm130

• Hyper-parameter optimization of XGBoost algorithm131

using genetic algorithm to tutor the model for better132

understanding of the underlying data133

The rest of the paper is organized as follows, section II134

summarizes the existing hardware Trojan detection schemes,135

section III explains the governing aspects of problem formu-136

lation, section IV elaborates the proposed methodology and137

section V provides experimental results, analysis and infer-138

ences. Section VI concludes the work after elaborating the139

merits, limitations, and suggestions for further exploration.140

II. RELATED WORK141

Existing hardware Trojan detection (HTD) methods, primar-142

ily focusing on the detection at the gate level netlist (GLN)143

are elaborated in this section. HTD schemes can be classified144

as pre-silicon and post-silicon detection [19] depending on145

the scheme applied prior to or after fabrication. Gate-level146

netlist detection [20], register transfer level (RTL) feature147

detection [22] and layout level detection [23] constitute HTD148

at pre-silicon stage. On the other hand, post-silicon detection149

consists of logical testing [24], [25] and side-channel analy-150

sis [26]. Among the wide variety of schemes available in the151

literature, the exploitation of machine learning algorithms has152

drawnmuch attention due to its inherent potential in handling153

a wide variety of Trojans.154

C. H. Kok et al. utilized testability measures to train super-155

vised machine learning-based classifiers such as weighted156

k-nearest neighbour(k-nn), fine gaussian support vector157

machine, and bagged trees [27]. It is a computation-158

ally intensive method that produces more false positives.159

Testability based HTD approaches was further extended160

to incorporate structural features [28] or fault modelling161

techniques [29] to handle the aforementioned limitations.162

Another reference-free HT detection scheme utilizing testa-163

bility measures was developed in [30]. Further, informa-164

tion theory-based HT detection approach investigating the165

relation between transition probability and the information166

available on a net for unsupervised Trojan detection using167

density-based clustering algorithm was attempted in [31].168

Transition probability and testability measures were further169

explored in [32] and [33].Limited representative training data170

resulted in low TPR. Liu et al. [34], [35] adopted structural171

features and testability measure-based features for enhanced172

Trojan detection. The method is computationally intensive,173

and its time complexity grows with circuit size. A class174

weighting scheme and feature selection scheme for XGBoost175

to tackle the problem of data imbalance and correlation176

among features was proposed [36]. Hasegawa et al. [37], pro-177

posed five structural features for HT net identification and178

employed support vector machine for classification. It used179

class weighting to handle the data imbalance problem that180

produced large false positives and false negatives. In the next 181

scheme [38], 51 feature-basedHTD had been attempted using 182

a random forest algorithm, which reduced false positives in 183

comparison with [37]. The method adopted f-measure for 184

feature selection to find 11 optimal features from 51 structural 185

features. Mere duplication of minority data using SMOTE 186

caused the generation of false positives. The work was fur- 187

ther extended with multi-layer neural network in [39]. Class 188

weighting-based cross-entropy loss function was adopted to 189

handle data imbalance issue. The method produced an aver- 190

age of 83%TPR but underperformed on normal net detection. 191

Dong et al. [40] proposed additional structural features over 192

the standard 51 features proposed in [37]. It used feature 193

importance function to choose 49 optimal features, but class 194

imbalance problem had not been dealt with. An effort to 195

combine structural features based HTDwith circuit partition- 196

ing schemes for Trojan localization, was attempted in [41] 197

and [42]. An unsupervised HTD approach termed PL-HTD, 198

where principal component analysis generates an optimal 199

feature set for unsupervised classification using a local out- 200

lier factor algorithm had been attempted [43]. The method 201

produced large false positives due to the poor generaliza- 202

tion capability of the model. The triggering properties of 203

Trojan circuits are outlined in [44] and [45] along with 204

feature analysis technique based on a flip-flop level infor- 205

mation flow graph. Few-shot learning-based hardware Trojan 206

detection was attempted in [46]. It aims to generate a sim- 207

ilarity function based HTD, but the results were not com- 208

parable with reported results. An effort to combine static 209

and dynamic features had been attempted in [47] and [48]. 210

Though it had produced 95% average TPR in Trojan detec- 211

tion, the method had not been generalized on varying Trojan 212

circuits. 213

Among the existing machine learning-based detection 214

schemes, the majority of the methods fall in the supervised 215

category, which is not the case considering the real-time 216

scenario. In addition, there is no unified method of label- 217

ing the nets, leading to discrepancies in result interpreta- 218

tion. Unsupervised strategies, in general, adopt testability 219

measure-based features targeting Trojans that have low con- 220

trollability and low observability [30]. Such methods can 221

be circumvented by redesigning the Trojans to satisfy the 222

conditions of a normal circuit, as mentioned in [21]. Fur- 223

thermore, strategies that adopt structural features underper- 224

form in true positive rate (TPR) due to the limited Trojan 225

space learned in the training phase, causing poor general- 226

ization capability. The performance of supervised algorithms 227

relies on the availability of high-quality labeled data. Manual 228

labeling of data for the complete circuit becomes tedious 229

and time-consuming. The problem is further aggravated by 230

the increase in the complexity of circuits. On the other 231

hand, unsupervised algorithms require vast amounts of data 232

to infer patterns revealing Trojan characteristics accurately. 233

Hence a mechanism that overcomes the limitation of both 234

methods becomes essential, considering the diversified threat 235

conditions. 236
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III. PROBLEM FORMULATION237

The proposed work caters to the problem of hardware Tro-238

jan detection in the pre-silicon stage using a gate-level239

netlist of the circuit under test (CUT). It adopts an effi-240

cient semi-supervised machine learning algorithm that han-241

dles the data imbalance problem, feature selection and242

optimal model generation. The scheme adopts permutation243

importance-based principal component analysis to remove244

redundant features that generate large offsets leading to245

degradedmodel performance. Further, correlation-aware data246

augmentation scheme filters out uncorrelated synthetic data247

produced by adaptive synthetic generation algorithm to gen-248

erate data that is coherent with original distribution. Further-249

more, hyper-parameter optimization using genetic algorithm250

ensures that the underlying XGBoost model is optimally251

tuned for effective hardware Trojan detection.252

A. PSEUDO LABEL GENERATION FOR HARDWARE253

TROJAN DETECTION254

The development of HT detection algorithms and counterfeit-255

ing with new attacks go hand in hand, whereas the availability256

of labeled data is confined to a limited set of Trojans. This257

leads to poor generalization on unknown circuits with any258

new Trojans for supervised HTD schemes. On the other hand,259

due to the small number of Trojan samples available during260

the training phase, unsupervised machine learning algorithms261

face difficulty creating an effective decision boundary. Thus,262

it becomes important to use the valuable information present263

in the labeled data to work with unlabeled data.264

Such a scenario calls for a semi-supervised algorithm that265

can work with information available in the labelled dataset to266

handle unlabeled data. Label propagation and label spreading267

algorithms that adopt transductive learning for predictions268

of the partially labeled dataset are explored in the proposed269

work. The obtained pseudo-labels are combined with labeled270

data to execute supervised XGBoost algorithm-based Trojan271

detection.272

1) LABEL PROPAGATION273

Dataset is split into labeled and unlabeled data and is con-274

verted into a weighted connected graph based on Euclidian275

distance [49]. Label information is propagated through nodes276

by performing randomwalks to absorbing states in the graph.277

These data points are manually labeled as 0 or 1, pertaining to278

the information available in Trust-HUB [50]. The maximum279

frequency of neighboring states determines the label assigned280

to the unknown data.281

2) LABEL SPREADING282

Label spreading [51] algorithm incorporates a method known283

as spreading activation networks. Points in the dataset are284

connected in a graph-based on their relative distances in the285

input space. The algorithm propagates label information upon286

considering the contribution of the initial labels. The structure287

in the input space is captured to pass the information through288

the graph that aid label assignment. It is performed using a 289

weight matrix which is normalized symmetrically. The algo- 290

rithm dynamically assigns labels depending on the regular- 291

ization term α, which specifies the percentage of contribution 292

considered from the initial set of labels. This adaptive nature 293

makes it suitable to handle unknown Trojans. 294

B. CORRELATION-AWARE DATA AUGMENTATION 295

The small Trojan footprint causes a high degree of imbal- 296

ance between normal nets and Trojan nets [19]. Correlation- 297

aware data augmentation balances the data by generating 298

synthetic samples coherently with the original data distri- 299

bution. For synthetic data generation, the proposed scheme 300

uses the adaptive synthetic sampling (ADASYN) [52] algo- 301

rithm, which considers the density of the data to generate 302

the synthetic samples of minority data. It means ADASYN 303

produces more data samples for harder-to-learn data points. 304

The proposed method captures linear and nonlinear relation- 305

ships among data using correlation parameters such as Pear- 306

son’s correlation coefficient [53] and Spearman correlation 307

coefficient [54], respectively. Pearson correlation coefficient 308

(r) effectively captures the linear relationships between two 309

continuous variables x and y. Its value ranges from -1 to 1. 310

It is calculated using (1). 311

r =

∑
(xi − x̄) (yi − ȳ)√∑
(xi − x̄)2

∑
(yi − ȳ)2

(1) 312

where xi and yi are corresponding x and y axis values of the ith 313

sample point and x̄ and ȳ are the mean values of continuous 314

variables x and y. Spearman correlation captures the mono- 315

tonic relationship among the continuous data. It is calculated 316

on the ranked values of the variables. It is formulated as (2). 317

ρ = 1−
6
∑
d2i

n
(
n2 − 1

) (2) 318

where di is the difference in the ranks of the observation 319

and n is the number of observations. The coherence of the 320

generated data with the original data is verified by analyzing 321

the correlation parameters. Correlation values in the range 322

of 0.7 to 0.9 facilitates the model to maximize the Trojan 323

detection. 324

C. PERMUTATION IMPORTANCE-BASED PRINCIPAL 325

COMPONENT ANALYSIS FOR FEATURE SELECTION USING 326

BARTLETT’s TEST OF SPHERICITY 327

Presence of correlated features can cause offsets that lead 328

to degradation in model performance and hence has to be 329

removed. The degree of correlation among features is ana- 330

lyzed using Bartlett’s test of sphericity as given in (3) 331

χ2
= −

(
n− 1−

2p+ 5
6

)
× ln |R| (3) 332

where n is the number of observations, p is the number of vari- 333

ables, and R is the correlation matrix. The chi square test is 334
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then performed on (p2−p)/2 degrees of freedom. Highly cor-335

related features are removed using principal component anal-336

ysis [55]. All the data samples are projected to eigenvalues337

that exhibit maximum variance amongst each other. Such a338

process yields features that minimize the offsets and enhances339

the model performance. It does not consider the impact a fea-340

ture has on the model’s predictive capability. For measuring341

the predictive capability of the model, permutation impor-342

tance [30] is adopted. It calculates model dependency on the343

features separately. The features fsV = {f1, f2, ..fn} is the344

original feature set from which, random permutation is per-345

formed to form the permuted dataset. The feature importance346

is calculated as the difference between original and permuted347

accuracy value which is stored as Iv = {Iv1, I v2, ..I vn}.348

Threshold for feature selection is set by m given by (4). The349

process of permutation of features and model performance350

evaluation are iterated until no further enhancement in accu-351

racy is observed.352

m =

∑n
i=1 Ivn
n

(4)353

D. HYPER-PARAMETER OPTIMIZATION USING GENETIC354

ALGORITHM355

Appropriate hyper-parameter selection aids in maximising356

performance of the underlying ML model thereby, reduc-357

ing generated errors. Meta-heuristic algorithms are proven358

to be effective in finding global optimal solution from com-359

plex search spaces. Various methods such as particle swarm360

optimization(PSO), simulated annealing (SA) and ant colony361

algorithm (ACA) can be used to find the optimal choice362

of hyper-parameters [56]. When compared to these, genetic363

algorithm (GA) [57] can find the global optimal solution that364

is independent of the initial conditions for complex prob-365

lems. Hence GA is chosen to optimize hyper-parameters366

and is applied to XGBoost algorithm for Trojan detec-367

tion. It produces good classification results with its abil-368

ity to handle large-scale data. Seven of the most influen-369

tial parameters for the XGBoost algorithm are chosen to be370

optimized. The parameters are learning_rate, n_estimators,371

max_depth, min_child_weight, gamma, sub_sample, colsam-372

ple_bytree. learning_rate is the step size the model takes373

for each iteration of residual error correction. A value too374

low can lead to slow convergence, and a value too high can375

lead to non-attainment of the global optimum. n_estimators376

define the number of boosted trees present in the ensemble.377

max_depth indicates how deep the tree is with respect to378

the root node. A lower value leads to underfitting, and a379

higher value leads to overfitting. gamma is the regularisation380

parameter. sub_sample and colsample_bytree give the frac-381

tion of data and fraction of columns to be randomly sam-382

pled for tree generation. A lower value leads to underfitting,383

and a higher value causes overfitting. Hence obtaining opti-384

mal hyper-parameters can lead to the generation of a model385

that effectively tackles problems such as slow convergence,386

non-attainment of global optimum, overfitting, and under-387

fitting. Each of the seven hyper-parameters is real vector388

encoded and concatenated to form a chromosome. Each chro- 389

mosome represents a hyper-parameter configuration of the 390

XGBoost model. The initial population is assigned a ran- 391

dom float value adhering to the predefined ranges of param- 392

eter values. F-measure is chosen as the fitness criterion to 393

address the inherent data imbalance problem. The model tries 394

to find hyper-parameters that maximize the selected fitness 395

function. 396

IV. METHODOLOGY FOR SEMI-SUPERVISED PI-PCA 397

BASED HTD 398

The proposed work uses semi-supervised algorithm for 399

hardware Trojan detection to deal with the partially 400

labeled dataset. The major steps, include feature extrac- 401

tion, correlation-aware data augmentation, and PI-PCA based 402

feature selection. Genetic algorithm-based hyper-parameter 403

optimization further enhances Trojan detection. 404

A. THREAT MODEL 405

The work targets the identification of rarely activated Tro- 406

jans present in gate level netlist. The chosen HTs can be 407

classified into degrade of performance (DoP), change of 408

functionality (CoF) and denial of service (DoS). The work 409

proposes pre-silicon static detection scheme exploiting semi- 410

supervised learning. The proposed scheme has been validated 411

on Trust-HUB circuits with combinational and sequential 412

Trojans. 413

B. PROPOSED METHODOLOGY 414

The proposed methodology is illustrated in Fig.2. As the 415

first step, the design is converted into netlist using Synopsys 416

DC [58]. Circuit and net related, 78 features are extracted 417

from the netlist. Permutation importance-based principal 418

component analysis algorithm is performed on the extracted 419

features. It produces an optimal set of uncorrelated and con- 420

tributive features that maximize the predictive performance 421

of the underlyingmodel. XGBoost model tackles the problem 422

of overfitting due to limited data, by applying regularization. 423

It produces faster convergence by analyzing the feature dis- 424

tribution. Data imbalance in the produced dataset is handled 425

using a correlation-aware data augmentation scheme. It pro- 426

duces synthetic data that is coherent with the original data 427

by satisfying the correlation constraints on the ADASYN 428

algorithm. The scheme removes uncorrelated samples and 429

ensure the coherence of synthetic samples with the original 430

data. 431

A pseudo label generation algorithm is adopted to make 432

label predictions on the partially labeled dataset. The avail- 433

able labeled data and the generated pseudo labels are com- 434

bined to form the final training data set. During training, 435

hyper-parameter optimization is performed. The performance 436

of themodel is evaluated using test data by adopting the leave- 437

one-out cross-validation method. The adopted testing process 438

makes each circuit considered for testing is unknown to the 439

trained XGBoost model. 440
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FIGURE 2. Major processes involved in the proposed methodology.

C. FEATURE EXTRACTION441

For a particular net n, features such as level, connectiv-442

ity, primary input, primary output, fan_in_x, in_flipflop_x,443

out_flipflop_x, in_multiplexer_x and out_multiplexer_x are444

calculated. Number of flipflops, multiplexers, and gates up445

to x level away from the targeted nets are extracted. Circuit-446

based features are synthesis features extracted from Synop-447

sys DC that include the number of cells, ports, nets, com-448

binational switching power, total switching power, and total449

power, black box, register, clock network leakage, and total450

power cell areas of combinational, etc. are defined in Table.1 451

The adopted feature set helps to tackle the problem of design- 452

specific bias. Trojans can exhibit different characteristics 453

with respect to the inserted design. For example, consider a 454

combinational Trojan with eight trigger inputs inserted in the 455

S38417 and RS232 circuits. It can be observed that although 456

the Trojan is similar in structure, the Trojan in S38417 is 457

harder to activate when compared to that of RS232. Hence 458

it is important to consider both net-based and circuit-based 459

features for effective Trojan identification. The proposed 460
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TABLE 1. Partial list of features (1 ≤ x ≤ 5).

experiment typically considers 78 features comprising 29 net-461

based and 49 circuit-related features.462

D. PI-PCA ALGORITHM FOR FEATURE SELECTION463

In order to remove offsets created by correlated and less con-464

tributive features, permutation importance-based principal465

component analysis is executed. Firstly, principal component466

analysis is performed on the feature set to select features with467

maximum variance. In addition, we adopt a scheme using per-468

mutation importance for feature selection, which is indicative469

of the generalization capability of the developed model. The470

impact of each feature on model accuracy is considered after471

random permutation. The difference between the model per-472

formances using the original feature (Nacc) set and generated473

feature set (Nnewacc) is taken as the feature importance of474

the selected features. The average of the feature importance475

is used as the threshold parameterm for feature selection. The476

process of permutation and feature importance calculation is477

repeated until no further improvement in model performance478

is observed such thatNnewacc ≤ Nacc. The final dataset con-479

tains uncorrelated but contributive features to attain enhanced480

detection accuracy.481

E. CORREALATION-AWARE DATA AUGMENTATION482

The small Trojan size leads to a severe imbalance in the483

generated dataset. This, in turn causes the model to develop484

a bias towards the majority class, which is the normal nets.485

Hence, to handle the developed bias, synthetic data gener-486

ation is executed using ADASYN. The density distribution487

of the data is considered to generate more data points that488

are harder to detect. Trojan data remain hidden within the489

normal data points and such a data generation scheme makes490

the model prone to errors. Hence the data that produces491

positive correlation values, satisfying the predefined range492

of correlation values are retained. This further enhances the493

ability of the model to understand patterns reflecting Trojan494

characteristics.495

F. HYPER-PARAMETER OPTIMIZATION USING GENETIC496

ALGORITHM497

The most influential seven parameters are considered for498

optimization. All hyper-parameters are real vectors repre-499

senting a gene that are concatenated to form a chromosome.500

FIGURE 3. Permutation scores of feature set for RS232-T1500 circuit.

It is assigned a random value after which, parent chromo- 501

somes are randomly selected for child chromosome gener- 502

ation. Child chromosomes are produced through crossover 503

and mutation. In the process of crossover, a random part 504

of the parent’s chromosomes forms the new chromosome. 505

In the process ofmutation, the values assigned to the gene are 506

changed to a new random value. F-measure is chosen as the 507

fitness criterion to address the data imbalance problem. Chro- 508

mosomes with the highest fitness values are chosen as parent 509

chromosomes in the succeeding generations, and the process 510

continues. The procedure returns the chromosome with the 511

highest f-measure score upon reaching the user-defined con- 512

vergence criteria. In the proposed work, max number of gen- 513

erations which is 30 is set as the criterion. The corresponding 514

chromosome gives the optimal hyper-parameter configura- 515

tion of the XGBoost algorithm. It effectively addresses the 516

problem of overfitting due to the limited training data through 517

regularization. In addition, the XGBoost algorithm considers 518

feature distribution for faster convergence. The efficacy of 519

the proposed algorithm is validated on the Trust-HUB bench- 520

mark circuits. 521

V. EXPERIMENTAL RESULTS AND ANALYSIS 522

A standard communication protocol used in embedded 523

and IoT devices is universal asynchronous transmitter- 524

receiver (UART) communication. RS232 circuits being the 525
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TABLE 2. Benchmark circuits from trust-HUB.

FIGURE 4. Correlogram for the optimized feature set for RS232-T1500 circuit.

underlying hardware, has to be devoid of Hardware Trojans.526

Hence validating, Trojan detection on RS232 circuit ensures527

secured communication among edge computing-assisted IoT528

devices. The circuit under test (CUT) includes a rarely trig-529

gered Trojan that covers three popular and challenging pay-530

load effects ranging from denial of service(DoS) to change of531

functionality(CoF) and degradation of performance(DoP).532

These CUTs are chosen from the standard set of533

Trust-HUB benchmark circuits to provide a fair compari-534

son and analysis of the obtained results. Details of the test535

circuits and inserted Trojans are provided in Table.2. The536

selected circuits are synthesized by Synopsys Design Com-537

piler(DC) with Semiconductor Manufacturing International538

Corporation cell library for 90-nm silicon-on-insulator pro-539

cess. The framework of feature extraction, PI-PCA algorithm,540

correlation-aware data augmentation, hyper-parameter opti-541

mization using genetic algorithm, and pseudo label genera-542

tion algorithm are developed in Python. XGBoost algorithm543

is utilized for model development using scikit library [59] and544

executed on an Intel system with Win10 server, running at 545

1.2GHz with 8GB RAM. 546

A. DATA PRE-PROCESSING FOR ENHANCED TROJAN 547

DETECTION 548

Data pre-processing stage consists of permutation importance- 549

based principal component analysis (PI-PCA) for feature 550

selection and correlation-aware data augmentation. Redun- 551

dant and less contributive features are removed using the 552

PI-PCA algorithm. PCA algorithm selects 21 prominent fea- 553

tures that are uncorrelated and exhibit maximum variance 554

from the initial set of 78 features. Since, PCA considers only 555

the global information without looking into local information 556

that can be discriminative for the model predictions. To tackle 557

such a scenerio, permutation importance guided PCA algo- 558

rithm is developed. It ensures the retention of the most influ- 559

ential seven features from the pruned set of 21 features, 560

as depicted in Fig.3. The correlation plot of the pruned set 561

of features is depicted in Fig.4. Thus, the proposed algorithm 562
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TABLE 3. Correlation coefficients of uncorrelated samples.

FIGURE 5. Hyper-parameter optimization using genetic algorithm on RS232-T1500.

aids in exploiting the global information captured using the563

PCA algorithm and local information captured using the PI564

scheme for attaining optimal feature set.565

To select features with maximum contribution, a thresh-566

old of 0.01 is set in this experiment. Optimal feature selec-567

tion significantly reduces the model complexity and leads to568

lightweight machine learning model. In addition, the large569

offsets caused by redundant features are also removed.570

Upon experimentation, it is observed that the choice571

of hyper-parameters impacts the detection capability of572

the model, as depicted in Fig.5. Global search space573

adopted by genetic algorithm prevents overfitting, under-574

fitting, convergence to local optimum. It further aids in575

attaining optimal model configuration for enhanced HT576

detection. Hyper-parameter optimization is performed prior577

to correlation-aware data augmentation so to handle the578

imbalanced test data. It is observed that for an imbalanced579

dataset upon training, the model produces an f-measure span-580

ning a range from 27% to 55%. Despite the influence of581

severe data imbalance, the model achieves an f-measure of582

55% by adopting the appropriate choice of hyper-parameters,583

as depicted in Fig.5. Despite feature selection, the model584

attains a recall of 27%, reflecting the impact of bias incurred585

due to imbalanced dataset. The effect of generating a586

balanced dataset set is analyzed using receiver operating587

FIGURE 6. ROC curve of RS232-T1500 for optimal feature set.

characteristics (ROC) and precision-recall curves (PR). The 588

capability of the model in performing accurate Trojan detec- 589

tion is reflected in the increased area under the curve(AUC) 590

score. Fig.6 depicts the impact of data imbalance on model 591

performance and is quantified using the AUC score of the 592

Trojan class. Small Trojan footprint to evade standard veri- 593

fication schemes, causes a severe data imbalance in the gen- 594

erated dataset. To tackle this problem, ADASYN is used to 595

create synthetic data. Analysis of the 210 generated synthetic 596
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FIGURE 7. ROC curve of RS232-T1500 for correlation aware data
augmented dataset.

FIGURE 8. PR curve of RS232-T1500 for optimal feature set.

data samples exhibits that 70 of them are highly uncorre-597

lated with respect to the original data distribution. Correlation598

analysis is performed by adopting pearson and spearman599

correlation in order to verify the coherence of the gener-600

ated data has with the original data. Correlation coefficients601

of a few uncorrelated data samples are shown in Table.3.602

To aid accurate detection, the uncorrelated data points are603

removed, which led to the improvement of the f-measure from604

35.3% to 42.6%. Improved AUC score of 7% as depicted605

in Fig.6 and Fig.7 further confirms the scheme’s efficacy in606

generating balanced data set. The effectiveness of an HTD607

scheme relies on the ability of the model to maximize Tro-608

jan detection which is achieved using the generated dataset.609

In addition, the accuracy of Trojan detection enhances by610

0.09% as observed in Fig.8 and Fig.9. Thus the generated611

balanced data set aids in effective Trojan detection with612

minimal trade-off incurred for Trojan net and normal net613

detection.614

B. EVALUATION METRICS FOR RESULT ANALYSIS615

The results are analyzed using precision, recall, f-measure,616

accuracy, receiver operating characteristic curve, precision-617

recall curve, true positive rate, and true negative rate [19]618

and are depicted in Table.4. They are derived from the con-619

fusion matrix shown in Fig.10. For binary classification of620

positive and negative classes, the matrix is generated using621

FIGURE 9. PR curve of RS232-T1500 for correlation-aware data
augmented dataset.

FIGURE 10. Confusion matrix for RS232-T1500.

parameters such as True negative (TN), true positive(TP), 622

false negative(FN), and false positive (FP). For the applica- 623

tion of hardware Trojan detection, Trojan nets are represented 624

as positive class and normal nets as negative class. Fig.10 625

exhibits the confusion matrix generated using the aforemen- 626

tioned notation for the RS232-T1500 test circuit. In the field 627

of Trojan detection, the efficacy of the model relies on its 628

ability to improve Trojan recognition and reduce the nor- 629

mal net miss-classification rate. In effect, this translates to 630

minimization of the generation of false positives and false 631

negatives. 632

C. HARDWARE TROJAN DETECTION USING PARTIALLY 633

LABELLED DATASET 634

Label propagation and label spreading algorithm have been 635

applied to the pre-processed data to generate pseudo labels. 636

The dynamic nature of the label generation process of label 637

spreading algorithm makes it suitable for the application 638

of Trojan detection. It is observed that the value of alpha 639

which denotes the ratio of information inferred from the 640

neighboring nodes and from the initial labels, impacts model 641

performance. TNR value increases with decrease in the con- 642

tribution of initial label information, and the highest TNR 643

is reached by adopting an alpha of 0.8 to 0.9 on average. 644

Labeled data and generated pseudo labels are combined to 645

form the final dataset, which is then applied to the optimized 646
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TABLE 4. Performance metrics for evaluation of trojan detection.

FIGURE 11. Impact of each process on Trojan detection for RS232-T1500.

FIGURE 12. Impact of various label generation schemes on Trojan detection for RS232-T1500.

XGBoost algorithm for Trojan detection on the chosen test647

circuits. Fig.11 indicates the impact each stage of opera-648

tion has on model performance. Each stage of operation is649

reflected in the nomenclature of the resultant dataset. Fig.11650

indicates the performance metrics attained by the model651

post feature selection, correlation-aware data augmentation,652

and pseudo-label generation, respectively. It can be observed653

that despite feature selection stage, before data augmentation654

in Experiment.2, the model achieves high precision rate at655

the cost of recall rate, reflecting the impact of data imbal-656

ance. Upon correlation-aware data augmentation indicated657

by Experiment.3, the model attains an improved precision, 658

recall, and f-measure as indicated in Fig.11. The exploitation 659

of structural information and the available prior information 660

by the graph-based transductive approaches in Experiment.4, 661

results in optimal model performance and is indicated by the 662

improved f-measure. Semi-supervised algorithms are real- 663

ized using the scikit library. Upon experimenting with the 664

available kernels such as radial basis function (RBF) kernel 665

and Knn kernel, the former obtained optimal Trojan detection 666

results as illustrated in Fig.12. The dynamic nature of label 667

prediction adopted by the label spreading algorithm makes 668
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TABLE 5. TPR and TNR comparison of PCA based local outlier factor algorithm(unsupervised) and proposed work(PW).

TABLE 6. Performance comparison of PCA based local outlier factor algorithm and proposed work (PW).

TABLE 7. TPR and TNR comparison of multi-layer neural network(supervised) and proposed work(PW) in terms of TPR and TNR.

it more suitable for hardware Trojan detection. Furthermore,669

it can be observed that the model effectively uses the infor-670

mation retrieved from the generated dataset and the structural671

information obtained from the produced graph to achieve672

optimal detection.673

D. PERFORMANCE COMPARISON WITH EXISTING WORKS674

The efficacy of supervised HTD schemes relies on the675

high quality labeled dataset. Whereas, obtaining high-quality676

datasets with labels is tedious and time-consuming and there677

exist discrepancies in the process of data labeling. On the678

other hand, unsupervised algorithms require a large amount679

of unlabeled data to identify patterns reflecting Trojan char-680

acteristics effectively. Hence a semi-supervised approach that681

uses prior label information for the prediction of unlabeled682

data becomes the need of the hour, which is attempted in683

this work. The efficiency of a model in Trojan detection684

is analyzed by TPR and TNR scores. The work aimed at685

enhancing TPR with minimum possible degradation of TNR686

using partially labeled datasets. In comparison with an unsu-687

pervised approach attempted in [43], the model produces688

an improvement of 41.3%, 34.67%, 17.32%, and 0.981% in689

terms of TPR, f-measure, precision, and accuracy respec-690

tively as depicted in Table.5 and Table.6. The valuable prior691

information in the labeled data has been exploited in the 692

proposed semi-supervised algorithm to enhance the TPR 693

when compared to [43]. The improved TPR values can be 694

attributed to the utilization of initial cluster information by 695

the label spreading algorithm that reveals significant relation- 696

ships among data samples within the dataset. It is observed 697

fromTable.7, that the adequate learning of Trojan characteris- 698

tics has led to an appreciable performance in comparison with 699

supervised learning [39]. Overall, an improvement of 58.87% 700

is observed for TNR, 36.64% in terms of f-measure, 33.88% 701

precision, and 52.32% in terms of accuracy, as depicted in 702

Table.7 and Table.8. Table.9 compares the performance of 703

the proposed work with existing supervised schemes such 704

as [37], [38], unsupervised schemes [30], [31] and few-shot 705

learning based schemes [46] in terms of TPR. The method 706

outperforms [31], [37] and [30] by 4.03%, 16.62% and 11.9% 707

in terms of TPR. The method achieves comparable per- 708

formance in comparison with [38]. Supervised approaches 709

largely rely on the availability of high qualtity labeled dataset 710

for effective Trojan detection. This is further possible by the 711

procurement of golden circuit of the base design and prior 712

knowledge of the inserted Trojan structure as experimented 713

in [38]. However, in reality, this is not the case. Moreover, 714

with rapidly evolving Trojan designs, an approach to handle 715
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TABLE 8. Performance comparison of multi-layer neural network and proposed work (PW).

TABLE 9. TPR comparison of proposed work with existing work.

unknown Trojan data needs to be addressed, which forms716

the basis of our work. The proposed methodology adopts a717

semi-supervised scheme that leverages a transductive learn-718

ing approach and structural information from a graph-based719

algorithm to adeptly handle unknown Trojan data. Quanti-720

tatively, the proposed approach attains, on average 88.48%721

TPR and 95.77% TNR scores, thereby obtaining a better722

trade-off between TPR and TNR values with respect to723

existing approaches.724

Overall, it can be observed that although supervised725

schemes produce better performance, the high-quality labeled726

dataset is hard to achieve considering the real-time sce-727

nario. In contrast, the proposed model surpasses the TPR728

achieved by few-shot learning [46] and unsupervised learning729

by its efficiency in utilizing prior information in the partially730

labeled dataset and the structural information from the gener-731

ated graphs. Thus, the proposed scheme sheds light on the732

exploration of semi-supervised hardware Trojan detection.733

Experiment analysis confirmed that the proposed work that734

combined pseudo-label generation with correlation-aware735

data augmentation has significantly enhanced the model736

performance.737

VI. CONCLUSION AND FUTURE WORK738

Existing Trojan detection methods face limitations such as739

the requirement of labeled datasets for supervised algorithms,740

limited learning of the Trojan space, and the model’s inabil-741

ity to deal with design-specific bias, data imbalance, and/or742

requirement of lightweight ML models. Such limitations are743

tackled in the proposed work using semi-supervised algo-744

rithms for hardware Trojan detection using partially labeled745

datasets. Permutation importance-guided principal compo-746

nent analysis has been adopted to capture both global and747

local information for efficient feature reduction. Correlation- 748

aware data augmentation curates the ADASYN algorithm to 749

generate data coherent with the underlying data distribution 750

for optimal data balancing. In addition, genetic algorithm- 751

based hyper-parameter optimizationmaximizes Trojan detec- 752

tion by attaining hyper-parameter configuration resulting 753

in a global optimum. Furthermore, a graph-based semi- 754

supervised scheme that utilizes transductive learning effec- 755

tively uses prior information in the partially labeled dataset 756

and the structural information from the generated graphs for 757

enhanced detection performance. The efficiency and feasibil- 758

ity of the proposed work have been established upon com- 759

parison with existing supervised, unsupervised, and few-shot 760

learning-based schemes of hardware Trojan detection. The 761

proposedmethodology achieves 88.48% average true positive 762

rate and 95.57% average true negative rate for the Trust-HUB 763

benchmark circuits. Specifically, RS232 benchmark test cir- 764

cuits are chosen to validate the proposal. Ensuring Trojan 765

detection of the RS232 circuit plays a major role in providing 766

secured communication among edge computing-assisted IoT 767

devices. In the era of the connected world, the very volatile 768

nature of edge computing to security threats faced by IoT 769

devices compel this choice. 770

Experimentation and analysis on the test circuits indi- 771

cate the effectiveness and feasibility of a semi-supervised 772

approach for hardware Trojan detection. The computational 773

complexity of graph creation for pseudo-label generation 774

linearly increases with the circuit size and has to be opti- 775

mized. The exploitation of explainable machine learning 776

to avoid manual intervention for result analysis, extend- 777

ing to incorporate more variety of Trojan designs and 778

optimized pseudo-label generation are the suggested future 779

work. 780
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