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ABSTRACT In recent years, Bitcoin and other cryptocurrencies have been increasingly considered
investment options for emerging markets. However, Bitcoin’s erratic behavior has discouraged some
potential investors. To get insights into its behavior and price fluctuation, past studies have discovered the
correlation between Twitter sentiments and Bitcoin behavior. Most of them have exclusively focused on
their relationships, instead of the Twitter sentiment analysis itself. Finding the most suitable classification
algorithms for sentiment analysis for this kind of data is challenging. For the enormous data in Twitter,
the supervised sentiment analysis approach of unlabeled data can be time-consuming and expensive, which
has been studied to be superior to unsupervised ones. As such, we propose the HyVADRF (hybrid valence
aware dictionary and sentiment reasoner (VADER)–random forest) and gray wolf optimizer (GWO) model.
A semantic and rule-based VADER was used to calculate polarity scores and classify sentiments, which
overcame the weakness of manual labeling, while a random forest was utilized as its supervised classifier.
Furthermore, considering Twitter’s massive size, we collected over 3.6 million tweets and analyzed various
dataset sizes as these are related to the model’s learning process. Lastly, GWO parameter tuning was
conducted to optimize the classifier’s performance. The results show that 1) the HyVADRF model had an
accuracy of 75.29%, precision of 70.22%, recall of 87.70%, and F1-score of 78%. 2) The most ideal dataset
size percentage is 90% of the total collected tweets (n= 1,249,060). 3) The standard deviations are 0.0008 for
accuracy and F1-score and 0.0011 for precision and recall. Hence, the HyVADRFmodel consistently delivers
stable results.
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I. INTRODUCTION21

As one of the interesting topics in the present world, cryp-22

tocurrency has changed the way people think about money.23

It is a digital currency governed by a cryptographic protocol24

that uses Blockchain technology [1]. Its continuous adoption25

and widespread usage have added value in its real-world26

applications by a substantial amount. The first cryptocurrency27

is Bitcoin, which was developed in 2009 [2]. It is a type of28

electronic cash without central governing and can be used as29

The associate editor coordinating the review of this manuscript and

approving it for publication was Rosalia Maglietta .

a medium for online transactions between any two parties. 30

Bitcoin is a very volatile currency, and its price is influenced 31

by socially constructed opinions. Past studies discovered that 32

some of the extreme price increases and decreases in Bitcoin 33

coincided with dramatic events in China [3]. The rise of 34

the Internet technology has played an unprecedented role 35

in increasing the number of users’ opinions and emotions 36

shared on social media and e-commerce platforms either by 37

text or multimedia data [4], [5], [6], [7]. This phenomenon 38

has resulted in the production and generation of a large 39

variety of data, which can be analyzed to assess sentiments. 40

The analysis of sentiments is beneficial for individuals and 41
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organizations, especially given the immense production of42

data [8]. Although several sentiment analysis approaches43

for opinion mining have been developed, such as machine44

learning, lexicon-based approach, and hybrid approaches,45

supervised machine learning has been proven to be more46

accurate than unsupervised ones. However, to build and eval-47

uate a classifier model, this approach needs labeled data48

[9], which can be tedious, expensive, and error prone [10].49

This can be problematic for typically scarce labeled and50

enormous data, such as a microblogging system like Twitter.51

Thus, the algorithm used for this study, HyVADRF (hybrid52

valence aware dictionary and sentiment reasoner (VADER)–53

random forest (RF)) and gray wolf optimizer (GWO), aids in54

overcoming the manual labeling problem by performing non-55

manual labeling using the semantic lexicon-based VADER56

algorithm.57

Compared with texts in traditional media, texts in58

microblogging can be noisy, arbitrary, and ambiguous [11],59

[12], making it difficult for supervised machine learning clas-60

sification to infer knowledge from them. Text representation61

models, such as term frequency–inverse document frequency62

(‘‘TF–IDF’’) or ‘‘n-gram,’’ often lead to a high-dimensional63

feature space because of the large-scale size of the dataset64

and vocabulary. Furthermore, short and noisy texts make the65

data representation very sparse. This high-dimension sparse66

representation poses significant challenges in building an67

interpretable model with a high prediction accuracy. Mean-68

while, microblogging’s large-scale size can provide more raw69

data to extract features for model complexity, which makes70

the machine learning model more robust and accurate [13].71

Although the dataset size can control the learning process72

and determine the values of model parameters that a learning73

algorithm ends up learning, only a few studies have explored74

this factor in sentiment analysis. Thus, another important75

factor of sentiment analysis is the ideal choice of dataset76

size to capture all necessary features to create a performance77

classifier model when raw data are large because labeling and78

processing all raw data is extremely time-consuming.79

In sum, the contributions of this paper are threefold: (1)80

We show how semantic lexicon-based VADER can be used to81

label tweets. (2) We add knowledge on the machine learning82

algorithm for the sentiment analysis of tweets. (3) We reveal83

the impact of the dataset size on the machine learning perfor-84

mance.85

The remainder of this paper is presented as follows:86

Section II presents related works. Section III discusses the87

study’s methodology. Section IV gives the Results. Section V88

presents the discussion. Finally, Section VI presents the con-89

clusions of the study.90

II. RELATED WORKS91

A. TWITTER SENTIMENT ANALYSIS92

The rising popularity of cryptocurrency has increased the93

spread of its information through online media and social94

online platforms [14]. By analyzing sentiments on socioe-95

conomic phenomena and public opinions, social media96

can be used to predict future events and changes [15].97

The correlation between Twitter and the price predic- 98

tion of cryptocurrency has been validated in previous 99

studies [16], [17]. 100

In recent years, hybrid sentiment analysis combining a 101

semantic lexicon and supervised machine learning has been 102

increasingly studied [18], [19], [20]. One of the most popular 103

lexical semantic approaches to calculate sentiment polarity 104

scores is VADER. Introduced in 2014, VADER is a lexi- 105

con and rule-based sentiment analysis model that calculates 106

the polarities (positive/negative) and intensity (strength) of 107

emotions to obtain the sentiment score. The advantages of 108

VADER include the following: (i) It is an open-source tool; 109

(ii) it is a human-centric approach; and (iii) it is particularly 110

designed for social media content [21]. Furthermore, super- 111

vised machine learning algorithms, such as support vector 112

machine (SVM) and naive bayes (NB), are the most fre- 113

quently used algorithms for sentiment analysis either in com- 114

bination with VADER or on their own. Supervised learning 115

has been found to provide more accurate sentiment analysis 116

than unsupervised learning, such as sentiment lexicons [22]. 117

Saif et al. [12] showed that Twitter data are sparser than 118

other types of data (e.g., movie review data) due to the large 119

number of infrequent words present within tweets. Such a 120

feature can be due to spelling mistakes and the usage of slang 121

words. Furthermore, Twitter contains a large amount of noisy 122

data, such as URLs, punctuation, and special symbols. Thus, 123

irrelevant words and data, which are merely present due to 124

some coincidence or do not influence the current text, may 125

affect the average polarity or entropy of the text as these 126

are outliers to the text in focus. The automated identification 127

of relevant information from these data is imperative due 128

to the immense volume of raw data, which have prompted 129

many researchers [23], [24], [25], [26] to explore various 130

feature selection methods and classifier models. Due to its 131

simplicity and computation efficiency, a very popular struc- 132

tured text representation method is the bag-of-words model 133

in which documents or sentences are represented as a list 134

of words using a document-term matrix (DTM) [27]. The 135

association of words in the matrix is formed based on the 136

distances between them. This approach has been successfully 137

applied for text classification, text clustering, and information 138

retrieval. Most DTMs tend to be high dimensional and sparse 139

[28] because any given document will contain only a subset 140

of unique terms that appear throughout the corpus. This con- 141

dition will result in any corresponding document row having 142

zeros for terms that were not used in that specific document. 143

Therefore, we need an approach to reduce dimensionality. 144

TF–IDF is a popular method of evaluating the word weight 145

value in a collection of documents [29], [30]. It represents 146

the distribution of each word in a document across the entire 147

document or corpus. Each word is assigned a TF–IDF score 148

by multiplying the word’s TF by its IDF. The steps to get a 149

TF–IDF score is 1) to calculate the TF value with ((1), 2) 150

calculate the IDF value with (2), and 3) calculate the TF–IDF 151

weight value with (3). 152

tf (t, d) =
fd (t)

max
w∈d fd (w)

(1) 153
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idf (t,D) = ln (
|D|

| {d ∈ D : t ∈ d} |
) (2)154

tfidf (t, d,D) = tf (t, d) x idf (t,D) (3)155

where tf(t,d) represents the number of times that a word156

appears in a document and idf(t,D) is the number of doc-157

uments that contain that word [29]. TF–IDF (t,d,D) is the158

natural logarithm of the total number of documents divided159

by the word’s DF. In text mining, the TF–IDF approach of160

the DTM is similar to the mean, instead of the median, and161

these outliers will be included in its calculation if they are162

not removed. Therefore, the dispersed terms of the matrix163

should be removed to preserve only the most frequent words,164

aid generalization, and prevent overfitting. This method gen-165

erally reduces the matrix without losing significant relations166

inherent to the matrix. It can be performed using the function167

RemoveSparseTerm() of R. For its advantage, we decided to168

use the TF–IDF approach for this study.169

As previously mentioned, this study also aims to analyze170

the impact of the dataset size on the performance of sentiment171

analysis algorithms as the training dataset size is related172

to the model’s learning process. The best suitable selection173

gives the optimum performance for the developed model.174

In a recent study [31], the importance of obtaining adequately175

sized, unbiased validation and training sets was identified as176

a crucial factor in the assessment and development of robust177

machine learning models. The dataset size can be considered178

the model hyperparameter, in which an ideal configuration is179

an external part of machine learning algorithms and cannot180

be estimated from the observed data.181

B. GWO182

Bio-inspired computing (BIC) are algorithms based on the183

natural behavior of animals, birds, insects, and other natures.184

These algorithms require several algorithm-dependent185

parameters and a certain number of iterations to gain the186

optimized value of the objective function. Hence, it is time187

and resource consuming. Nevertheless, these algorithms can188

uncover unknown patterns and have a lower reliance on189

mathematical modeling or exhaustive training [32].190

According to Tang and Wu [33], BIC can be classified191

into three categories: evolutionary algorithms (EAs), swarm192

intelligence (SI), and bacterial foraging algorithms (BFAs).193

Inspired from the genetic evolution process, the most popular194

EA is the genetic algorithm (GA). GA is based on Charles195

Darwin’s theory of survival of the fittest that uses crossover196

and mutation as two operators [34]. The second category, SI,197

draws inspiration from animal behaviors. The most popular198

algorithms from this category are particle swarm optimization199

(PSO) and ant colony optimization (ACO). The last category,200

BFA, is a novel SI algorithm based on the foraging behavior201

of E. coli [35].202

Past studies have adopted various BIC categories to opti-203

mize the hyperparameters of machine learning algorithms204

in various domains. In their studies on malaria risk pre-205

diction, Tai and Dhaliwal [36] applied a GA to optimize206

the hyperparameter value of three machine learning algo-207

rithms (LightGBM, ridge regression, and support vector208

regression). Hu et al. [37] compared PSO with other 209

SI models, GWO [38], and GA to optimize the SVM 210

rock mass classifier model. The results showed that the 211

GWO-optimized SVMperformed the best. ACOwas adopted 212

byKoyhomayoon et al. [39] to optimize adaptive neuro-fuzzy 213

inference systems to predict the groundwater level. 214

In this study, we used GWO. Introduced in 2014, this 215

algorithm is inspired by the leadership hierarchy and hunting 216

mechanism of gray wolves in nature. There are four types 217

of wolves in the gray wolf hierarchy. The oldest and leader 218

of the pack is the alpha (α), with the main responsibility of 219

deciding for the pack. The next rank is the beta (β), which is 220

an advisor of the alpha and discipliner of the pack. The lowest 221

rank in the hierarchy is the omega (�), which is required to 222

yield to other dominant wolves. The delta (δ) wolf dominates 223

the omega and reports to the alpha and beta. According to 224

Kayhomayoon et al. [39], this algorithm uses the following 225

steps: 1) a wolf calculates its distance from α, β, and δ using 226

Equations 4–9 and 2) update its position with Equation 10. 227

Dα = |2r2 · Xα − Xi| , (4) 228

Dβ =
∣∣2r2 · Xβ − Xi∣∣ , (5) 229

Dδ = |2r2 · Xδ − Xi| , (6) 230

X1 = Xα − (2a · r1 − a) · Dα, (7) 231

X2 = Xβ − (2a · r1 − a) · Dβ , (8) 232

X3 = Xδ − (2a · r1 − a) · Dδ, (9) 233

X1 (t + 1) =
X1 + X2 + X3

3
, (10) 234

where Xα , Xβ , and Xδ are the positions of α, β, and δ, 235

respectively. Dα , Dβ , and Dδ represent the distances between 236

i and other wolves (α, β, δ). With the iteration process, a 237

decreases linearly from 2 to 0. r1 and r2 are two random 238

numbers between range parameters for the boundary search 239

space. Fig. 1 depicts the flow chart of GWO. 240

In their study on email detection, Batra et al. [40] found 241

that k-NN classification combined with GWO had 100% 242

recall and the least computational times among the Bayesian 243

information criterion algorithms. 244

III. METHODOLOGY 245

In this section, we propose the HyVADRF and GWO model 246

for bitcoin tweet sentiment analysis research framework due 247

to its benefits. First, this algorithm uses theVADER algorithm 248

to calculate a compound polarity score for labeling raw data, 249

which is less expensive, error prone, and faster compared to 250

manual labeling. Second, as supervisedmachine learning was 251

known to be better than unsupervised ones, we decided to 252

use RF, NB, L2-SVM, and DT as machine learning algo- 253

rithms. Third, the GWO algorithm and tuneRangerwere used 254

to tune the parameters for machine learning optimization. 255

Fig. 2 presents the proposed sentiment analysis of Twitter 256

tweets related to the Bitcoin framework. 257

A. DATA EXTRACTION 258

Data were collected between January 1, 2021 and December 259

31, 2021. Tweets were crawled by employing Twitter API. 260
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FIGURE 1. Flowchart of GWO adapted from [34].

FIGURE 2. HyVADRF: Hybrid VADER–random forest and GWO for Bitcoin
tweet sentiment analysis research framework.

During crawling, all the tweets with the keyword ‘‘Bitcoin’’261

in either the content or hashtags were collected. We restricted262

our collection to English tweets only to avoid a mixed-263

language dataset. The total dataset collected was 3,625,091264

tweets.265

B. DATA PREPROCESSING AND LABELING USING VADER 266

The tweet dataset does not enclose a labeled output. Tags con- 267

sisting of positive or negative are labeled to train a supervised 268

classifier. Thus, VADER, a rule-based lexicon method, was 269

applied to label the dataset. Before VADER was applied to 270

tweets, ‘‘noise’’ removal was performed to raw data. Manual 271

cleaning of raw data and the use of the regular expression 272

(RegEx) in natural language processing (i.e., removal of URL 273

links, hashtags symbols, and irrelevant tweets) were used very 274

carefully to avoid decreased accuracy. 275

Afterward, VADER was used to produce the score values 276

of negative, neutral, positive, and compound polarities for 277

each tweet. Following Pano and Kashef [41], a compound 278

value below or equal to−0.05 is considered to have a negative 279

polarity, whereas that greater or equal to 0.05 has a positive 280

polarity. The values between 0.05 and −0.05 have a neutral 281

polarity. The pseudocode is presented in Algorithm 1. 282

Algorithm 1: VADER Labeling Algorith
Input: Twitter dataset T
Output: Labeled Twitter dataset L
Process:
To generate data labeling:
for t ∈ T

Clean t fromURL links, hashtags symbols, and irrelevant
tweets using RegEx.

Calculate the sentiment compound value (cv) using the
VADER library

if cv is greater or equal to 0.05
class = ‘‘positive’’

elseif cv is less than 0.05 and cv is greater than -0.05
class = ‘‘neutral’’

else
class = ‘‘negative’’

end if
end for

C. SENTIMENT CLASSIFICATION 283

Tweets were preprocessed before the machine learning algo- 284

rithms were applied. Neutral-value comments are detached. 285

Only tweets with positive and negative labels were prepro- 286

cessed and used for machine learning algorithms, following 287

a prior study [18]. 288

The preprocessing steps started with creating corpus doc- 289

uments for this dataset. Then, ‘‘noise’’ removal steps, such 290

as eliminating punctuations and numbers, were performed. 291

The next step is removing stop words in English (e.g., ‘‘are,’’ 292

‘‘as,’’ ‘‘is,’’ ‘‘of,’’ and ‘‘the’’), which are unnecessary words 293

in classifying the documents. Afterward, stemming is per- 294

formed, which is a process of transforming different tenses 295

of words to their root form (e.g., fishing, fish, and fisher to 296

fish). This step aids in the removal of unwanted computation 297

of words and therefore reduces the time consumed by the 298

algorithm in training all the tenses of words. The unnec- 299

essary white spaces were also removed. A DTM using the 300

TF–IDF feature extraction method was applied to convert 301

the documents into feature (i.e., term) vectors. These vectors 302

can easily be understood by a machine learning algorithm. 303
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Training each algorithm to classify text data using an entire304

document or a sentence is an important text data classification305

step, but it is very hard. Thus, tokenization is necessary to306

transform a sentence into terms and use them in classifier307

training.308

Algorithm 2: Machine Learning Trainin
Input: Labelled Twitter dataset L,
resulting from Algorithm 1
Output: classifying the machine learning model
Process:
To select the best machine learning model:
• Create a vector corpus (V ) of L
• CleanV by removing punctuations, numbers, stopping
words, and stemming

• Create a document term matrix (M ) using TF–IDF
• Remove sparse terms from the M using term sparsity
threshold

• Split M into 70% for the training set (N ) and 30% for
the test set (D)

for j ∈ (NB, DT, RF, L2-SVM)
train N using the j model
test the trained model using D

end for
Choose a trained model with the best performance (accu-
racy, precision, recall, and F-score).

The dataset was divided data to 7:3, i.e., 70% for training309

and 30% for testing. Using five-fold cross-validation, four310

supervised machine learning algorithms, namely, NB, DT,311

L2-SVM, and RF, were employed to train the models. As the312

dataset was in a large quantity, we used R packages that could313

efficiently process the data: the package ranger for RF [42],314

LiblineaR for L2-SVM [43], fastNaiveBayes for NB [44], and315

caret for DT [45].316

In the five-fold cross-validation, five nearly identical-sized317

divisions were randomly divided from the dataset, where a318

division was used for the testing set and four divisions for the319

training set of classification. This process was repeated five320

times, and the final result is the average of the five evalua-321

tions. The performance of each model was calculated using322

the ‘‘flat’’ performance measure of the confusion matrix,323

such as accuracy, precision, recall, and F-score, as this study324

performed a binary classification [46]. In detail, a confusion325

matrix has a true positive (TP), which is correctly classified326

as negative tweets, whereas a true negative (TN) is correctly327

classified as positive tweets. Meanwhile, a false positive (FP)328

is the positive tweets that are misclassified as negative tweets,329

and a false negative (FN) is the negative tweets that are330

misclassified as positive tweets.331

D. HYPERPARAMETER TUNING332

In the current study, the RF has the highest performance333

among the machine learning algorithms. To obtain the opti-334

mized performance of RF, its hyperparameters were tuned335

using GWO and tuneRanger [47]. As both tuning approaches336

required multiple iterations, we randomly subset 100,000337

TABLE 1. Hyperparameters’ description and their tuning range.

records from the full cohort to keep the computational 338

time reasonable. For GWO, four important hyperparame- 339

ters were tuned, as suggested in the literature [47], [48]. 340

Table 1 summarizes the tuned hyperparameters, the defi- 341

nition, and their tuning ranges. The population was set to 342

30 with the max iteration of 100 in the GWO, as in the past 343

study [49]. 344

During the hyperparameter tuning, the training perfor- 345

mance from the fivefold CV was used as the fitness function 346

of the GWO. Each hyperparameter was represented by a wolf 347

in the GWO. With each iteration of GWO, wolf positions 348

were updated to maximize the fitness value, and the hyper- 349

parameters were optimized accordingly. The pseudo-code is 350

depicted in Algorithm 3. 351

Another hyperparameter tuning method, tuneRanger, 352

allows simultaneously tuning RF parameters using an auto- 353

matic model-based optimization process [47]. Arguments 354

for this method were set to defaults based on the provided 355

example of the literature [47]. Finally, to explore the effect of 356

hyperparameter tuning, we compared the performance of the 357

standard RF and tuned RF (GWO-tuned RF and tuneRanger- 358

tuned RF) with the dataset size that gave the highest per- 359

formance metrics of the standard RF. The standard RF used 360

the default hyperparameter values specified in the ranger R 361

package. 362

Algorithm 3: GWO Optimization Algorith
Input: classifying the machine learning model ML, train-
ing set (N ), and test set (D) resulting from Algorithm 2
Output: optimized classifying machine learning model
Process:
To perform model optimization using GWO:
• Initialize the random position of the gray wolf popula-
tion Xi (I = 1, 2, . . . , n)

• Calculate the fitness function of each search agent
using theML train model with N and D

• Store the search agent and its fitness function
While t < maxIteration

For each search agent
Update the position of the current search agent
End for
t = t+1

end while
Get the search agent with an optimum fitness function
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E. MACHINE SPECIFICATION363

The machine specifications are as follows: Lenovo IdeaPad364

S1145-14IIL, Processor IntelTM CoreTM i5-1035G1 CPU @365

1.00 GHz 1.19 GHz, installed RAM 20.0 GB (19.8 GB366

usable), and system type 64-bit operating system, and367

x64-based processor. The installed software is RStudio ver-368

sion 1.4.1717. R’s libraries were used in this set: {readr, tm,369

caret, Metrics, caret, fastNaiveBayes, LiblineaR, metaheuris-370

ticOpt, vader, dplyr}.371

IV. RESULTS372

Prior to the current study, we conducted a preliminary exper-373

iment using the current research method and framework for a374

sample dataset of 1,000 positive and 1,000 negative tweets375

spanning 12 days from June 4, 2021 to June 15, 2021.376

The preliminary finding found that the model accuracy was377

86.12% and the F1-score was 86.18%. Based on this promis-378

ing result, we expanded the timeline of the data collection to379

one year as yearly data would be a reliable representation of380

an entire boom and bust cycle of Bitcoin prices.381

The labeled data obtained from the polarity score of382

VADER for the three classes (positive, negative, and neutral)383

are graphically represented in Fig. 3. The final labeled dataset384

contains a total of 3,625,091 tweets with 1,879,669 posi-385

tive tweets; 1,120,892 neutral tweets; and 624,530 negative386

tweets.387

FIGURE 3. Percentage of the sentiment VADER results.

As we intended to perform binary classifications (positive388

and negative), class imbalance clearly occurred as the positive389

class had a much larger number of observations than the390

negative class. This factor could cause a machine learning391

bias toward the minority class and thus the poor perfor-392

mance of the classifier [50]. To improve our class imbalance,393

we under-sampled positive tweets, and we used the same394

number of observations (624,500 tweets) for each positive395

and negative tweet, which resulted in a total of 1,249,000396

tweets.We adopted undersampling of themajority class as the397

oversampling approach duplicates the sample of the minority398

class, which can cause overfitting [51]. The undersampling399

approach was also more effective for our study because our400

minority class has a sufficient number of samples despite the401

severe imbalance. The results of using various dataset size402

percentages and machine learning algorithms are depicted403

in Fig. 3.404

FIGURE 4. Performance results using various ML algorithms.

The evaluation of the performance of the machine learning 405

algorithms is shown in Fig. 4. We gradually increased the 406

percentage of the dataset size for the training data and test 407

data.We performed a baseline random inference implementa- 408

tion by re-shuffling, re-sampling, and running each algorithm 409

for five times with different seeds and used the average 410

accuracy, precision, recall, and F1-score. For all the dataset 411
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size percentages, RF gave the best results in terms of accura-412

cies in the range of 72%–75%, precisions of 68%–70%, and413

F1-scores of 75%–77%.DT achieved the highest recall scores414

with values above 98%. However, these were compensated415

with low precision scores in the range of 55% and F1-scores416

of 70%, which made DT an unsuitable algorithm for these417

data. Meanwhile, RF did not have the highest recall scores,418

but they were within the range of 83%–86%. Thus, RF is the419

most suitable algorithm for this dataset.420

Using RF, we analyzed the most ideal dataset size percent-421

age. As depicted in Fig. 5, 90% gave the smallest difference422

of accuracy between training set and test set, deeming it as423

the most ideal dataset size percentage.424

FIGURE 5. Learning curve of RF.

Although 90% of the whole 1,249,060 tweets (from n =425

1,124,154) is the most ideal size for these data, we only426

used a random subset of 100,000 tweets for GWO and427

tuneRanger optimizations as they required multiple itera-428

tions, which consumed the computing time and resources.429

Using GWO, the optimum RF hyperparameters were deter-430

mined to be min.node.size = 2, num.trees = 2500, mtry =431

6 and sample.fraction = 1 Meanwhile, tuneRanger returned432

num.threads = 2, mtry = 5, min.node.size = 2, sam-433

ple.fraction= 0.648, and num.trees= 1000. These RF hyper-434

parameters were then used to train 1,124,154 tweets using a435

70% training set and 30% test, which are shown in Fig. 5.436

FIGURE 6. Model classifiers with different evaluation metrics.

Fig. 6 demonstrates a performance comparison of the RF 437

models with default parameters and the optimum parame- 438

ters from GWO and tuneRanger. Accuracy was increased 439

from 75.12% to 75.29% (RF–GWO) and 75.23% (RF– 440

tuneRanger). The F1-score increased from 77.71% to 78% 441

(RF–GWO) and 78.05% (RF–tuneRanger). Similarly, the 442

recall was improved from 86.77% to 87.70% (RF–GWO) and 443

88.02% (RF–tuneRanger). At the same time, the precision 444

decreased from 70.36% to 70.22% (RF–GWO) and 70.11% 445

(RF–tuneRanger). 446

In general, the hybrid RF–GWO and hybrid 447

RF–tuneRanger slightly outperformed the single RF model. 448

This slight improvement is not surprising as the improvement 449

through tuning tends to be less obvious where RF performs 450

satisfactorily [52]. Furthermore, the impact of RF tuning is 451

much smaller compared to that of other machine learning 452

algorithms, such as SVM [53]. 453

To obtain more representative results, we also compared 454

the standard deviation (SD) of each model. In terms of the 455

accuracy, the SD decreased from 0.0015 to 0.0008 (RF– 456

GWO) and 0.0014 (RF–tuneRanger). The SD of precision 457

was reduced from 0.0020 to 0.0011 (RF–GWO) and 0.0016 458

(RF–tuneRanger). Moreover, the SD of recall increased from 459

0.0007 to 0.0011 (RF–GWO) and 0.0019 (RF–tuneRanger). 460

The SD of the F1-score decreased from 0.0011 to 0.0008 for 461

RF–GWO but increased to 0.0015 for RF–tuneRanger. These 462

results confirmed that the RF–GWO is more stable compared 463

to either a single RF or RF–tuneRanger. In addition, they 464

showed the feasibility of GWO to improve the classifier 465

model. 466

Although our hybrid VADERRF–GWOmodel has a lower 467

accuracy (75.29%) compared to those proposed in similar 468

past studies [18], [20], the dataset we used was much larger 469

than their studies. In their studies of evaluating the perfor- 470

mance of Indonesian politicians based onYouTube comments 471

using a hybrid lexicon and SVM, Tanseba et al. [20] achieved 472

an accuracy of 84%, precision of 91%, and recall of 80%. 473

However, their dataset is limited to 1000 comments. Simi- 474

larly, Chaitra [18] used 2,586 comments to analyze opinions 475

toward mobile phone use using hybrid VADER and naïve 476

Bayes, resulting in an accuracy of 79.78% and an F1-score 477

of 83.72%. In our case, we used 1,124,154 tweets with a 70% 478

training set and 30% test set. The hybrid VADER RF–GWO 479

model of these data gave low SDs for accuracy, precision, 480

recall, and F1-score. This result supports the finding of a prior 481

study that large training sets appear to be the most accurate 482

and consistently deliver robust results. 483

V. DISCUSSIONS AND CONCLUSION 484

To some extent, past studies lack studies comparing the 485

behaviors and performances of machine learning algorithms 486

using different dataset sizes and hyperparameter tuningmeth- 487

ods. This condition is regrettable given the importance of 488

the dataset size on the massive quantity of data, such as 489

social media data. From a theoretical perspective, this study 490

contributes to the existing literature by exploring the role of 491

VOLUME 10, 2022 101895



A. Mardjo, C. Choksuchat: HyVADRF: Hybrid VADER–RF and GWO for Bitcoin Tweet Sentiment Analysis

dataset sizes and hyperparameter tuning methods on machine492

learning performances.493

In this experiential study, different machine learnings and494

dataset sizes were compared. The results reveal the non-trivial495

effects of the dataset size on the performances of classifier496

models. Regardless of the algorithm, repeat training using497

different dataset sizes will significantly benefit to gain a better498

understanding of data and select the trained model. Out of499

the existing machine learning algorithms, we suggest using500

RF with a dataset size of 1,124,154 tweets. Moreover, GWO501

can be used to tune the RF model’s parameters, i.e., mtry,502

sample.fraction, min.node.size, and num.trees, which make503

the model more accurate and robust than the standard RF.504

The main outcome of our study is the development of a505

sentiment classifier that can arbiter the sentiment type of506

tweets. To translate it into practical implication in the context507

of our study where cryptocurrency is found to be influenced508

by social opinions, the reliable classifier can identify the509

correct patterns to guide investors’ decision to buy or sell510

cryptocurrency, leading to less risk and uncertainty to the511

fullest extent, along with maximizing returns.512

Although our proposed study has given a valuable novel513

algorithm of sentiment classification, it has some limitations.514

First, this study only used two optimization methods, GWO,515

and tuneRanger, for hyperparameter tuning. Future studies516

could compare other methods, such as grid search. Second,517

this study used only four performance evaluation metrics518

(accuracy, precision, recall, and F1-score). Hence, there is519

a need to further extend the use of other metrics that can520

estimate and compare error rates, such as receiver operating521

characteristic (ROC) and area under the ROC curve, in the522

future. Third, the data were only Twitter tweets related to523

Bitcoin. The past study has found that investors were consid-524

ering alternative cryptocurrencies, such as Ethereum, Ripple,525

Litecoin, Stellar, and Dash [54]. Therefore, this sentiment526

TABLE 2. Acronyms.

classifier algorithm can be applied with Twitter data related 527

to other cryptocurrencies to explore its robustness. 528

APPENDIX 529

See Table 2. 530
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