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ABSTRACT We propose a globally asymptotically convergent hybrid observer for the rigid body rotation
and translation system evolving on the special Euclidean group SE(3) in the presence of intermittent
measurements of the pose and continuous measurements of the velocities. We embed the system into an
ambient Euclidean space and design an observer on the Euclidean space for global convergence. We perform
numerical simulation of the proposed observer to show convergence. We also perform simulation using data
collected from an Intel Realsense T265 camera.

INDEX TERMS Observers for nonlinear systems, hybrid systems, sensor fusion.

I. INTRODUCTION
This paper deals with designing observers for the system
modelling translation and rotation of a rigid body in three
dimensional space. The problem of nonlinear observer design
for rotational kinematics has been extensively studied in the
literature [1], [2], [3], [4]. The authors in those papers assume
a continuous-time system with continuous measurements of
the pose. However, due to the digital nature of sensors used in
robotics, measurements are usually of a discrete nature while
the system is modelled by an ordinary differential equation,
hence being continuous. This requires designing a nonlinear
observer for a continuous-time system which can handle
measurements available at intermittent instants of time. Some
recent results considering such a system with intermittent
measurements can be seen in [5], [6], [7], [8], [9], and [10].

For the system under consideration, measurements are
usually available from various sensors at varying frequency.
Often, sensors such as IMUs and accelerometers have a con-
siderably higher frequency of measurement as compared to
sensors such as camera or lidars. As an example, the EuRoC

The associate editor coordinating the review of this manuscript and

approving it for publication was Haibin Sun .

dataset [11] which contains information about the flight of a
quadcopter, contains IMUs which measure angular velocity
at 200Hz while cameras, which are used to construct the
pose measurement of the robot, operate at a frequency of
20Hz. Due to such a high ratio of frequencies, we assume
that the measurements of the angular and linear velocity to
be continuous in time while the measurements of the pose to
be available intermittently for our system.

For the rigid body rotation and translation system with
intermittent measurements, an almost global asymptotic
observer has been designed in [8] on the special orthogonal
group, SO(3), while a local exponential observer is designed
on the special Euclidean group, SE(3) in [10]. As can be seen
from these works, prior research in the field of design of esti-
mators for continuous-time rigid body kinematics on SE(3)
is restricted to designing observers on the special Euclidean
group. This approach results in an inability to design glob-
ally asymptotic observers on SE(3) due to the topology of
SO(3) [12]. To design globally convergent observers for sys-
tems evolving on SE(3), we design a globally convergent
observer in R3×3

× R3 which is an ambient Euclidean space
of SE(3). This observer system tracks the pose of the system
evolving on SE(3) and does not suffer from the topological

103462 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-5541-2016
https://orcid.org/0000-0002-6496-4189
https://orcid.org/0000-0002-4447-1758


S. Shanbhag, D. E. Chang: Globally Convergent Observer for the Rigid Body System

obstruction. The technique of designing observers in ambient
Euclidean space is well accepted as in [13], allowing the
design of globally convergent observers while avoiding any
topological obstruction of the original state space.

Since the authors in [8] and [10] consider a similar system
and, to the best of our knowledge, their observers are the best
performing observers in the literature, we compare our results
with their observers. Since the presence of a repeller set in
the observers proposed in [8] and [10] degrades their perfor-
mance in a neighborhood of the repeller set, we compare the
performance in this neighborhood to our observer. Since our
observer exhibits global asymptotic convergence to the sys-
tem when it starts from SE(3), the performance improvement
over the previously proposed observers is significant.

This paper is structured as follows. Section II contains pre-
liminary information about the problem. The notation used
and the system and measurements considered are presented
in this section. Section III presents the theorems pertain-
ing to local asymptotic stability of the system. This section
also contains results regarding global convergence on SE(3).
Sections IV and V contain simulations(numerical and exper-
imental) of the system and the comparison with observers
present in the literature.

II. PRELIMINARIES
Let {I} denote the inertial frame and {B} the body fixed
frame. We denote the estimate of the state A by Ā. The state
of the system after a discrete jump is denoted by A+. The
matrix representation of the cross product with a vector v is
denoted by v× : R3

→ skew(3) such that for all w ∈ R3,
v × w = v×w, where skew(3) is the set of 3 × 3 skew
symmetric matrices. Denote by SO(3) the special orthogonal
group on R3. Denote by SE(3) = SO(3) o R3 the special
Euclidean group on R3 where the product is regarded as a
Cartesian product of the sets and a Semidirect product of the
groups. The Euclidean inner product of two matrices inRm×n

is denoted by 〈·, ·〉 : Rm×n
× Rm×n

→ R such that for all
A,B ∈ Rm×n, 〈A,B〉 = trace(ATB). The Euclidean norm of a
matrix A ∈ Rm×n is denoted as ‖A‖ =

√
〈A,A〉.

Consider the rigid body rotation and translation system

Ṙ = R�×, (1a)

ṗ = Rv, (1b)

where R ∈ SO(3) ⊂ R3×3 denotes the rotation of frame {B}
with respect to frame {I} and p ∈ R3 is the position of the
body in frame {I}. The vector � ∈ R3 denotes the angular
velocity of the body in frame {B} and v ∈ R3 denotes the
linear velocity of the body in frame {B}.

We assume that continuous measurements of � and v
are available, denoted by �m and vm, respectively. We also
assume that discrete measurements of R and p are available
with the following assumption:
Assumption 1: The measurements of R and p are available

at intermittent instants of time tj, j ∈ N such that tj is an
increasing sequence for j ∈ N and there exists TM > 0 such

that tj+1 − tj ≤ TM for all j ∈ N with the first measurement
available at time t1 ≤ TM .
We have assumed availability of measurements of R and p.

Alternatively, the locations of predetermined markers in the
environment may be available. In this case, let pi ∈ R3, i =
1, . . . , n denote the location of n such markers in {I}. Let yi ∈
R3 denote the measurement of marker at pi in {B}. Define
ri = (pi, 1) and bi = (yi, 1) the corresponding homogeneous
coordinates. We assume n > 2. If n = 2, a third marker can
be generated as p1×p2, with the corresponding measurement
as y1×y2. Then the measurements are related by the equation

bi = X−1ri, where X =
[
R p
0 1

]
.

Define r =
[
r1 r2 . . . rn

]
and b =

[
b1 b2 . . . bn

]
. Then, the

measured value of X can be given by Xm = rb+, where b+ is
the Moore Penrose pseudoinverse of b.
The presence of both continuous and discrete measure-

ments requires us to consider a hybrid system for the observer.
The measurements of the state at the discrete instants of time
are used to correct any errors between the estimated state
arrived at using a continuous update law and the true value
of the state.

The following lemma will be used later in the proof of
theorems.
Lemma 1: If ‖A−R‖ < 1, where R ∈ SO(3),A ∈ R3×3,

then A is invertible and the norm of its inverse satisfies

‖A−1‖ ≤

√
3

1− ‖A−R‖
.

Proof: Define T := RTA such that ‖I−T‖ = ‖A−R‖ < 1.
From Corollary 5.6.16 in [14], we see that T is invertible and
the inverse can be written as T−1 =

∑
∞

k=0(I − T )
k . Taking

norm on both sides of the equality, repeatedly applying the
triangle inequality and using the submultiplicativity of the
Euclidean norm,

‖T−1‖ ≤ ‖I‖ +
∞∑
k=1

‖I−T‖k ≤

√
3

1− ‖I−T‖
,

where we have substituted ‖I‖ =
√
3 for the Euclidean norm.

Substituting T = RTA and using the property ‖RB‖ = ‖B‖
for all B ∈ R3×3 and R ∈ SO(3), we prove the lemma. �

III. HYBRID OBSERVER
Wepropose the following hybrid observer system for the rigid
body rotation and translation system (1):

˙̄R = R̄�m× , (2a)
˙̄p = R̄−T vm, (2b)

R̄+ = (1− kp)R̄+ kpRm, (2c)

p̄+ = ((1− kp)R̄T + kpRTm)
−1((1− ke)R̄T p̄+ keRTmpm),

(2d)

where the observer states R̄ ∈ R3×3 and p̄ ∈ R3 are estimates
to R and p, respectively. The discrete jumps in equations (2c)
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and (2d) occur at times t = tj, j ∈ N when the measurements
of R and p are available.

The following theorem proposes local convergence of the
observer system defined in (2) to the system (1):
Theorem 1: Suppose that Assumption 1 holds, and for all

µ > 0, ‖p(t)‖ exp(−µt)→ 0 as t →∞, and let

ER = R− R̄, Ep = p− p̄, (3)

where the rigid body system is given in equation (1), and
the observer system is given in equation (2). Then, with
0 < ke < 2 and 0 < kp < 2, the error term
‖ER(t)‖ converges exponentially to 0 and ‖Ep(t)‖ converges
asymptotically to 0 as t → ∞ for all (R̄(0), p̄(0)) ∈{
(A, b) ∈ R3×3

× R3
| ‖R(0)−A‖ < 0.99

}
.

Proof:We define the error term

ep = RT p− R̄T p̄. (4)

Using the defined error terms ER and ep, the observer jump
equations (2c) and (2d) can be simplified as

R̄+ = R̄+ kpER, p̄+ = (R̄+)−T (R̄T p̄+ keep), (5)

where we have substituted the measurement models. Using
the above equations and the error terms ER and ep, the fol-
lowing error equations are arrived at by differentiating the
error terms with respect to time and substituting equations (1)
and (2):

ĖR = ER�×, (6a)

ėp = −�×ep, (6b)

E+R = (1− kp)ER, (6c)

e+p = (1− ke)ep, (6d)

where E+R and e+p are the error between the state and the
estimate after the jump at t = tj, j ∈ N.

Define the function V1 as

V1(ER) = 〈ER,ER〉. (7)

Differentiating equation (7) with respect to time along the
trajectory of system (6), we see that

V̇1(ER) = 2〈ER, ĖR〉 = 2〈ER,ER�×〉 = 0,

where we have used the fact that 〈ETR ER, �×〉 = 0 since
ETR ER is a symmetric matrix and �× is a skew symmetric
matrix. Hence, V1(ER(t)) is constant over the interval (tj, tj+1)
for every j ∈ N. Moreover, since V1(ER(t)) = ‖ER(t)‖2,
this leads to ‖ER(t)‖ being constant over the same intervals.
Substituting the error jump map (6c) into (7) for the value of
V1 after the jump, we see that

V1(E
+

R ) = 〈E
+

R ,E
+

R 〉 = (1− kp)2V1(ER), (8)

which decreases at the discrete jumps since 0 < kp < 2.
Similarly, considering a function V2 for the error term ep

defined as

V2(ep) = 〈ep, ep〉, (9)

and using equation (6b), we see that the derivative of V2 with
respect to time along the trajectory of the system (6) is 0 for
all t ∈ (tj, tj+1), j ∈ N. Hence, V2(ep(t)) is constant over
the interval t ∈ (tj, tj+1) for every j ∈ N. Since V2(ep(t)) =
‖ep(t)‖2, this leads to ‖ep(t)‖ being constant over the same
intervals. The value of the function after the jump, arrived at
using (6d),

V2(e+p ) = 〈e
+
p , e
+
p 〉 = (1− ke)2V2(ep), (10)

decreases from that before the jump since 0 < ke < 2.
The hybrid observer system equations (2b) and (2d)

contain the terms R̄−1 and ((1 − kp)R̄T + kpRT )−1, respec-
tively. Note that the second term here is (R̄+)−1. For the
observer system to be defined for all t ≥ 0, we now prove
that R̄(t) and R̄+(t) are invertible given that ‖ER(0)‖ < 0.99.
Consider first the case where t ≤ t1. Since ‖ER(0)‖ <

0.99 according to the choice of the initial condition and the
fact that ‖ER(t)‖ is constant for all t ≤ t1, R̄(t) is invertible
for all t ≤ t1 from Lemma 1. For the discrete time kinematics,
note that ‖R(t) − R̄+(t)‖ = ‖E+R (t)‖ = |1 − kp|‖ER(0)‖ <
0.99, since 0 < kp < 2 as specified in the theorem. Hence
R̄+(t1) is invertible from Lemma 1. Since R̄+(t1) is the initial
condition of the ordinary differential equation governing the
update of the state in time t ∈ (t1, t2), and ‖E

+

R (t1)‖ < 0.99,
it follows that R̄(t) is invertible for all t ∈ (t1, t2). Also,
R̄+(t2) is invertible and ‖E

+

R (t2)‖ < 0.99. By induction, R̄(t)
is invertible for all t ≥ 0 and R̄+(tj) is invertible for all j ∈ N
assuming ‖ER(0)‖ < 0.99.
We now show exponential stability of the error terms ER

and ep. From the jump map (8), we can see that V1(E
+

R (tj)) =
(1 − kp)2jV1(ER(0)) for all j ∈ N. Defining jt the number of
jumps till time t ≥ 0, and using the property that V1(ER(t))
is constant over the interval t ∈ (tj, tj+1) for every j ∈ N, and
noting that jt + 1 ≥ t/TM for all t ≥ 0 from Assumption 1
and |1− kp| < 1,

V1(ER(t)) = V1(E
+

R (tjt )) = |1− kp|
2jtV1(ER(0))

≤ |1− kp|
2
(

t
TM
−1
)
V1(ER(0))

= V1(ER(0)) exp(2µ1(TM − t)),

where

µ1 = −1/TM loge |1− kp|. (11)

Similarly, using the jump map (10) and the fact that V2(ep(t))
is constant over the interval t ∈ (tj, tj+1) for every j ∈ N,

V2(ep(t)) ≤ V2(ep(0)) exp(2µ2(TM − t)),

where

µ2 = −1/TM loge |1− ke|. (12)

Substituting V1(ER) from equation (7) and V2(ep) from
equation (9) in the above equations, we get that

‖ER(t)‖ ≤ exp(µ1TM )‖ER(0)‖ exp(−µ1t), (13)

‖ep(t)‖ ≤ exp(µ2TM )‖ep(0)‖ exp(−µ2t), (14)
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for all t ≥ 0. Hence, ‖ER(t)‖ → 0 and ‖ep(t)‖ → 0 expo-
nentially fast as t →∞.
We write Ep defined in equation (3) in terms of ER and ep

defined in equations (3) and (4) as

Ep = R̄−T (ep − ETR p). (15)

Taking norm on both sides of the equality, and from
equations (13) and (14), we have for all t ≥ 0,

‖Ep(t)‖ = ‖R̄(t)−T (ep(t)− ETR (t)p(t))‖

≤ 100
√
3(‖ep(t)‖ + ‖ETR (t)‖‖p(t)‖)

≤ 100
√
3 exp(max{µ1, µ2}TM )(exp(−µ2t)‖ep(0)‖

+ exp((µ− µ1)t)‖ETR (0)‖‖p(t)‖ exp(−µt)),

(16)

where ‖R̄(t)−T ‖ < 100
√
3 from Lemma 1 and the fact that

‖R(t) − R̄(t)‖ ≤ ‖R(0) − R̄(0)‖ < 0.99, and µ > 0 is
chosen such that µ − µ1 < 0. Taking limit on both sides
of the inequality as t → ∞, and using the assumption
limt→∞ ‖p(t)‖ exp(−µt) = 0 for all µ > 0, we get that
‖Ep‖ → 0 as t →∞. �
The assumption in the statement of the theorem, i.e.
‖p(t)‖ exp(−µt) → 0 as t → ∞ for all µ > 0 includes
the case where each component of p(t) is a polynomial in t .
Note that here we need existence of finite TM for existence

of µ1 and µ2 such that the exponential bounds on V1 and
V2 can be defined. However, we do not need the information
about the value of TM to design the observer. If the value of
TM is known, the assumption on the position can be further
relaxed as follows:
Corollary 1: Suppose that Assumption 1 holds, and for

some µ, c > 0, ‖p(t)‖ exp(−µt)→ c as t →∞, and let

ER = R− R̄, Ep = p− p̄,

where the rigid body system is given in equation (1), and
the observer system is given in equation (2). Then, with
1−exp(−µTM ) < kp < 1+exp(−µTM ) and 0 < ke < 2, the
error term ‖ER(t)‖ converges exponentially to 0 and ‖Ep(t)‖
converges asymptotically to 0 as t →∞ for all (R̄(0), p̄(0)) ∈{
(A, b) ∈ R3×3

× R3
| ‖R(0)−A‖ < 0.99

}
.

Proof: The part of the proof till local exponential con-
vergence of ‖ER(t)‖ and ‖ep(t)‖ defined in equations (3)
and (4) to 0 as t → ∞ is not affected by the change in the
assumption on the bounds on ‖p(t)‖. Hence, it follows from
the corresponding part of Theorem 1.

WritingEp in terms ofER and ep as defined in equation (15)
and taking norm on both sides of the equality, we have from
equation (16) for all t ≥ 0,

‖Ep(t)‖ ≤ 100
√
3 exp(max{µ1, µ2}TM )(exp(−µ2t)‖ep(0)‖

+ exp((µ− µ1)t)‖ETR (0)‖‖p(t)‖ exp(−µt)).

The choice of kp ensures that µ − µ1 < 0. Taking limit
on both sides as t → ∞, and using the assumption
limt→∞ ‖p(t)‖ exp(−µt) = c for the given µ, we get that
‖Ep‖ → 0 as t →∞. �

The following modification to Theorem 1 enlarges the
region of convergence.
Theorem 2: Suppose that Assumption 1 holds, and for all

µ > 0, ‖p(t)‖ exp(−µt)→ 0 as t →∞, and let

ER = R− R̄, Ep = p− p̄,

where the rigid body system is given in equation (1), and the
observer system is given in equation (2). Given any initial
state (R̄(0), p̄(0)) ∈

{
(A, b) ∈ R3×3

× R3
| det(A) 6= 0

}
, with

0 < ke < 2 and

|1− kp| <
0.99

‖R(0)− R̄(0)‖ + 1
, (17)

the error term ‖ER(t)‖ converges exponentially to 0 and
‖Ep(t)‖ converges asymptotically to 0 as t →∞.

Proof: The bounds on kp in (17) are a subset of the
bounds on kp of Theorem 1. The initial condition and the
bounds on the position also follow from Theorem 1. Hence,
convergence for the initial condition ‖R(0) − R̄(0)‖ <

0.99 has been shown in Theorem 1.
Consider the case where the given R̄(0) is such that α :=
‖R(0)− R̄(0)‖ ≥ 0.99. Since

d
dt
R̄R̄T = (R̄�×)R̄T + R̄(R̄�×)T = R̄(�× −�×)R̄T = 0,

it follows that R̄(t)R̄(t)T = R̄(0)R̄(0)T for all 0 ≤ t < t1. The
invertibility of R̄(0) implies that of R̄(0)R̄(0)T which implies
the invertibility of R̄(t)R̄(t)T for all 0 ≤ t < t1 which implies
the invertibility of R̄(t) for all 0 ≤ t < t1. By (17), we have
that

‖R(t1)− R̄+(t1)‖ = |1− kp|‖ER(t1)‖ <
0.99α
α + 1

< 0.99.

Hence, R̄+(t1) is invertible and p̄+ is well defined. Note that
there is no change in invertibility of R̄(t) for t ≤ t1. After
the first jump, since ‖E+R (t1)‖ < 0.99, Theorem 1 and the
time-invariant nature of the system (1) and system (2) ensures
that the error term ‖ER(t)‖ converges exponentially to 0 and
‖Ep(t)‖ converges asymptotically to 0 as t →∞. �
Under the assumptions on the position and bounds on ke as

specified in Theorem 2, as kp gets closer to 1, the region of
convergence of the observer (2) to the system (1) converges
to the set

{
(A, b) ∈ R3×3

× R3
| det(A) 6= 0

}
, which can be

easily seen by re-writing (17) as

‖R(0)− R̄(0)‖ <
0.99
|1− kp|

− 1

for all kp near 1 but not equal to 1. Since the right-hand side
of the above inequality diverges to infinity as kp → 1, the
claims follows.

Based on Theorem 2, we present a globally convergent
observer if the observer system starts from SO(3)oR3:
Theorem 3: Suppose that Assumption 1 holds, and for all

µ > 0, ‖p(t)‖ exp(−µt)→ 0 as t →∞, and let

ER = R− R̄, Ep = p− p̄,
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where the rigid body system is given in equation (1), and the
observer system is given in equation (2). Then, with 0 < ke <
2 and 0.75 < kp < 1.25, the error term ‖ER(t)‖ converges
exponentially to 0 and ‖Ep(t)‖ converges asymptotically

to 0 as t →∞ for all (R̄(0), p̄(0)) ∈ SO(3)oR3.

Proof: Note that det(R̄(0)) 6= 0. Hence it satisfies
conditions of Theorem 2. Since ‖R(0) − R̄(0)‖ ≤ 2

√
2 and

0.75 < kp < 1.25, kp and ke satisfy the bounds as defined in
Theorem 2. From Theorem 2, the errors ‖ER(t)‖ and ‖Ep(t)‖
converge to 0 as t → ∞. Moreover, the rate of convergence
of ‖ER(t)‖ to 0 is exponential. Hence, the observer exhibits
global convergence. �
The initial state of the observer is chosen by the designer.

According to Theorem 3, irrespective of the initial state of
the rigid body system, any choice of the initial state of the
observer in SO(3)oR3 leads to convergence of the observer
to the state of the rigid body. Hence, the result in Theorem 3
is global.

We can modify Theorem 2 and Theorem 3 by relaxing
the condition on the bound of the position as in Corollary 1.
The proof of the corollary and the theorem presented below
follows from that of Theorem 2 and Theorem 3 with a similar
modification as in Corollary 1. We leave the proof to the
reader.
Corollary 2: Suppose that Assumption 1 holds, and for

some µ, c > 0, ‖p(t)‖ exp(−µt)→ c as t →∞, and let

ER = R− R̄, Ep = p− p̄,

where the rigid body system is given in equation (1), and the
observer system is given in equation (2). Given any initial
state (R̄(0), p̄(0)) ∈

{
(A, b) ∈ R3×3

× R3
| det(A) 6= 0

}
, with

0 < ke < 2 and kLp < kp < kUp where the bounds kLp and k
U
p

are defined as

kLp = max
{
‖R(0)− R̄(0)‖ + 0.01

‖R(0)− R̄(0)‖ + 1
, 1− exp(−µTM )

}
,

kUp = min
{
‖R(0)− R̄(0)‖ + 1.99

‖R(0)− R̄(0)‖ + 1
, 1+ exp(−µTM )

}
,

the error term ‖ER(t)‖ converges exponentially to 0 and
‖Ep(t)‖ converges asymptotically to 0 as t →∞.
Proof: Omitted. �
The following theorem is a global result extending

Theorem 3.
Theorem 4: Suppose that Assumption 1 holds, and for

some µ, c > 0, ‖p(t)‖ exp(−µt)→ c as t →∞, and let

ER = R− R̄, Ep = p− p̄,

where the rigid body system is given in equation (1), and the
observer system is given in equation (2). Then, with 0 < ke <
2 and

max{0.75, 1− e−µTM } < kp < min{1.25, 1+ e−µTM },

the error term ‖ER(t)‖ converges exponentially to 0 and
‖Ep(t)‖ converges asymptotically to 0 as t → ∞ for all
(R̄(0), p̄(0)) ∈ SO(3)oR3.

Proof: Omitted. �
Remark 1: To study the effect of varying the gains kp and

ke on the observer dynamics, we note that µ1 and µ2 as
defined in equations (11) and (12) are a function of loge |1−
kp| and loge |1 − ke|, respectively. Consequently, as kp and
ke are chosen closer to 1, the convergence of the observer to
the measurement is faster. From equations (5), we see that the
farther kp and ke are from 1, the higher their noise rejection
effect is on the observer state.
Remark 2: We note that the system gains can be updated

at every ti, i ∈ N due to the structure of the observer.
Hence, the designer may choose a varying gains strategy.
An example of this is gains being chosen close to 1 initially,
such that the bounds of Theorem 3 are satisfied, and then
reducing the gains such that the system starts rejecting noise
in the measurements. For an application of this scheme, see
Sections IV and V.

IV. NUMERICAL SIMULATION
The simulation for the observer error system (6) is shown
in Figure 1a. We assume that the initial state is (R̄, p̄) =
(exp(πe3×/3), 03×1) ∈ SO(3) o R3. The angular velocity
is assumed to be of the form (cos(t), sin(t), cos(2t)) and
the linear velocity (sin(t) cos(t), sin(2t), cos(t/5)). The mea-
surements are assumed to arrive randomly between 0.5s to
2s. It can be seen that the observer system (2) converges
exponentially fast for the choice of kp = 0.8 and ke = 0.5.

We compare the proposed observer (2) with the system
designed in [8]. The major improvement of our paper over
existing ones in the literature is the global convergence result,
hence we choose the initial position for the estimate near the
boundary of the repeller set in [8]. The simulation results can
be seen in Figure 1b. We see that the proposed observer (2)
does not suffer as the observer proposed by [8].

We also compare the same with the fixed-gain observer
system designed in [10]. Note that the authors in [10] con-
sider a system with the measurement of acceleration and
angular velocity as compared to our proposed system with
measurements of linear and angular velocity. To account
for this, we calculate the acceleration corresponding to the
velocity trajectory [sin(t) cos(t), sin(2t), cos(t/5)]T and use
this acceleration in the simulation of the observer proposed
in [10] while using the velocity in our proposed observer. The
measurements are assumed to arrive randomly between 0.5s
to 2s. The simulation results can be seen in Figure 1c. Since
the choice of gains decides the size of the attractor set in [10],
the proposed observer (2) improves upon the results presented
by [10] due to its global nature.

We also simulate the system in the presence of noisy
measurements. The noise is assumed to be Gaussian with a
mean of 0 and a standard deviation of 0.1. The measurements
are assumed to arrive randomly between 0.5s to 2s. The initial
condition is assumed to be (R̄, p̄) = (exp(πe3×/3), 03×1) ∈
SO(3) o R3. To show the effect of kp and ke values on the
results, we choose two sets of values, kp = 0.65 and ke = 0.3,
and kp = 1 and ke = 1. As the bounds specified in Theorem 3
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FIGURE 1. Simulation of the observer system and comparison with observers in the literature.

FIGURE 2. Simulation of the observer in presence of noise and experimental validation.

correspond to the worst case scenario, we are permitted to use
kp = 0.65 here since ‖ER(0)‖ = 1.41. The simulation of the
system can be seen in Figure 2a.

We implement the varying kp and ke scheme as explained
in Remark 2. We choose the same values of kp and ke as in
the previous simulation, and change the value of kp and ke
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to 0.1 after 10 measurements. The effects of this can be seen
in Figure 2b. This provides the designer of the control law
greater flexibility in designing a robust observer system.

V. EXPERIMENTAL SIMULATION
Weperform a similar simulation as in SectionVwith data col-
lected from a real system. We measure R and p using an Intel
Realsense T265 camera and the ground truth is measured
using a high accuracy motion tracking system OptiTrack.

The time difference between two consecutive measure-
ments of angular velocity and linear velocity vary from 10−5s
to 0.043s and that of the pose are around 1s. Since the initial
estimate error is unknown, we choose kp = 0.8 and ke =
0.2 initially. We update the value of kp to 0.2 while keeping
ke constant after one epoch according to Remark 2.

The simulation results for the observer are shown in
Figure 2c. It can be seen that the proposed observer gives a
better estimate of the true state as compared to the measure-
ment values due to its hybrid nature.

VI. CONCLUSION
In this paper, a hybrid measurement triggered observer to
the rigid body rotation and translation kinematics problem is
designed. It can be seen that the convergence of the rotation
estimate of the state to the rotation of the body is exponential
globally and the convergence of the position estimate to
the position is asymptotic globally when the initial estimate
is chosen from SO(3) o R3. Also, the improvements over
the results of [8] and [10] are substantial since our pro-
posed observer tracks the system and the error converges to
0 globally.
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