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ABSTRACT Image dehazing is a fundamental problem in computer vision and has hitherto engendered
prodigious amounts of studies. Recently, with the well-recognized success of deep learning techniques,
this field has been dominated by deep dehazing models. However, deep learning is not always a panacea,
especially for the practicalities of image dehazing, because high computational complexity, expensive
maintenance costs, and high carbon emission are three noticeable problems. Computational efficiency is,
therefore, a decisive factor in real-world circumstances. To cope with this growing demand, we propose
a linear time algorithm tailored to three primitive parts: unsharp masking (pre-processing), dehazing, and
color gamut expansion (post-processing). The first enhances the sharpness according to the local variance
of image intensities. The second removes haze based on the improved color attenuation prior, and the third
addresses a residual effect of color gamut reduction. Extensive experimental results demonstrated that the
proposed method performed comparatively with popular benchmarks, notably deep dehazing models. With
such a comparative performance, the proposed method is still fast and efficient, favoring real-world computer
vision systems.

INDEX TERMS Image dehazing, unsharp masking, color gamut expansion, linear time complexity.

I. INTRODUCTION

Atmospheric scattering occurs when the sunlight enters
the atmosphere and is diffused in all directions due to
particle-particle collision. Scattering, coupled with absorp-

Proposed Method

tion, decreases the quality of digital images, resulting in i - 1 :r_l L g
various types of degradation, such as fam_t color, low contrast, FIGURE 1. A real-world hazy image and its corresponding dehazing

and detail loss. Although the degradation degree depends results by Ren et al. [3] and the proposed method. MS-CNN stands for the
on the size of atmospheric particles, which varies accord- multi-scale convolutional neural networlc

ing to weather conditions [1], this phenomenon is widely
referred to as haze. On the one hand, haze obscures distant
objects and affects the visibility perceived by human visual
systems. On the other hand, it also affects high-level com-
puter vision applications that assume clean input image/video
data, as pointed out in [2]. Hence, image dehazing is a
research branch focusing on alleviating the adverse effects
of haze. Fig. 1 demonstrates the dehazing results of a real- A. DEGRADATION MODEL

world hazy image using a deep learning model [3] and the Reference [4] formalizes the haze-induced degradation by
a model comprising the direct attenuation and the airlight

proposed method. Our result is more favorable to human
visual systems because haze has been removed efficiently
while fine details have been satisfactorily recovered (in the
blue-cropped region).

The associate editor coordinating the review of this manuscript and scattering, denoted as blue and red in Fig. 2, respectively.
approving it for publication was Joewono Widjaja . The former occurs when the reflected light at a particular
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FIGURE 2. Illustration of the atmospheric scattering phenomenon.

wavelength A (in m) propagates through suspended particles,
where each of them causes an angular scattering that attenu-
ates the light energy. For a unit volume of differential width
drq, the attenuated energy is formulated by:

dEa(rlv )") _
Eq(ri, %)

where E,(r1, A) (in Wm_z) denotes the irradiance at the unit
volume dry, and B, (in m_l) denotes the scattering coeffi-
cient. The captured irradiance, E,(d, A) at r; = d, is then
obtained by integrating both sides of (1) as follows:

Ed.}) 4E
/ dFa(r1, 2) / —Buedry. @)
Eq(0,0) Ea(r1, )

At r; = 0, the irradiance E,(0,)) = ,S0F) along
the optical path is calculated from the mean radiance of the
sky So (in Wm_zsr_l), the solid angle €2, (in sr), and the
dimensionless reflectance coefficient F;. Hence,

Eu(d, 1) = S,.S0F). exp(—PByscd). 3

The other part, the airlight, indicates a portion of light
reflected from the terrain surface or scattered directly to
the camera. The irradiance E(rp, A), in this case, can be
calculated by considering a unit volume dr, whose radi-
ance is SoBscdr>. Similarly, the irradiance captured by the
camera is attenuated, and its value at a distance r, from the
camera is:

dES(r27 )") =

—Bsedry, (D

2,.50Bs¢ eXP(—ﬁscl’2)d"2- @

The irradiance Eg(d, A) at r; = d is then obtained by inte-
grating (4) over the whole optical path, as follows:

d
Ey(d, \) = QASO,BXC/ exp(—Bscr2)dra
0

= 280[1 — exp(—Bscd)]. &)

The total irradiance E;(d, A) is the sum of E,(d, A) and
Ei(d, M) as:
E/(d, M) = Q.S0F) exp(—Bscd) + 20,501 — exp(—Bscd)].

(6)

For ease of representation, it is convenient to substi-

tute E;(d, ») with I(x), where the boldface indicates the
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wavelength-dependent characteristics. Considering general
cameras with sensors sensitive to red, green, and blue wave-
lengths, I(x) = {I®(x), I%(x), I®(x)} denotes the x-th hazy
intensities. Similarly, J(x), A, and #(x) can substitute for
QuSoF5., 2150, and exp[— Bscd (x)], respectively. These three
are referred to as the haze-free intensities, the atmospheric
light, and the transmittance. The following is, therefore, the
simplified form of (6), and it commonly serves as the degra-
dation model in image dehazing:

1) = J(0)r(x) + A1 — 1(x)]. )

B. ILL-POSEDNESS

The concept of ill-posedness dates back to [5], and a mathe-
matical problem is called ill-posed (or incorrectly posed) if at
least one of the following conditions for its solution fails:

« The existence
o The uniqueness
o The stability

In (7), the hazy intensities I captured by the camera are
the only data available, whereas the remainder is unknown.
Accordingly, for a given set of A and ¢ estimated, (7) yields a
different solution of J and violates the uniqueness condition.
This issue renders image dehazing ill-posed and brings about
prodigious amounts of relevant studies. Recently, researchers
have adopted deep learning techniques to address the ill-
posedness, as witnessed by [6], [7], [8], [9], [10], and [11].
Despite such excellent performances as those deep dehazing
models have delivered, they have been linked with several
problems in real-world execution, such as high power con-
sumption, high carbon emission, and expensive maintenance
costs [12].

Furthermore, for a low-level vision task such as image
dehazing, deep neural networks (DNNs) are often overkill,
as discussed in [13] about deep learning and traditional com-
puter vision techniques. In fact, they fit well with high-level
cognitive tasks, such as object classification, recognition, and
localization. The data-driven performance of DNNs is also
more of a hindrance than a help because abstract features
learned by DNNs are specific to the training dataset, whose
construction is highly cumbersome for statistical reliability.
Thus, the learned features may be inappropriate for images
different from those in the training set, lowering the perfor-
mance in general.

Il. RELATED WORKS

This section briefly reviews influential works in the literature
based on the categorization in [14], where algorithms have
been divided into three categories according to their data
exploitation. The first two, image processing and machine
learning, were typified by low-level hand-engineered image
features discovered through statistical analysis of real-world
images. The last category, deep learning, exploited the pow-
erful representation capability of DNNs to learn high-level
data-driven image features. This categorization could give
useful insights into (i) the complexity of dehazing algorithms

102463



IEEE Access

D. Ngo et al.: Singe Image Dehazing With Unsharp Masking and Color Gamut Expansion

and (ii) subjective/objective preferences for dehazed images.
Generally, image processing and machine learning-based
methods possess low complexity and favor human percep-
tion. Deep learning-based methods, on the contrary, are
computationally costly and favor image quality assessment
metrics.

A. IMAGE PROCESSING

The dark channel prior [15], one of the most influential
works in image dehazing, is a prime example of the first
category. He et al. [15] observed natural haze-free images
and discovered that the dark channel—calculated as the local
minimum of the minimum channel-tended to approach zero
at non-sky image patches. This finding, coupled with the
degradation model, offered an efficient means to estimate
the transmittance, which required soft-matting [16] for edge-
aware smoothing. He et al. [15] also proposed locating the
atmospheric light as the brightest pixel (in the red-green-blue
(RGB) color space) among the top 5% pixels with the highest
intensities in the dark channel. Given the estimated transmit-
tance and atmospheric light, they reversed (7) to obtain the
haze-free image.

Another influential work is the linear time algorithm by
Tarel and Hautiere [17]. They first white-balanced the input
image to support the assumption that the atmospheric light
was pure white. After that, they inferred the airlight, the term
A[l—t(x)]in (7), from image whiteness as a percentage of its
local deviation from its local average. This airlight inference
required two median filters, hence the widely known name the
median of medians along lines. Finally, they post-processed
the restored image using a simple tone mapping operator to
expand the dynamic range. The most computationally heavy
part of this algorithm is the median filter, whose implemen-
tation is, fortunately, O(N) [18], therein lying the linear time
complexity.

B. MACHINE LEARNING

As image dehazing based on in situ information is
highly challenging, the distilled knowledge from relevant
image datasets may improve the dehazing performance.
Zhu et al. [19] developed the color attenuation prior based
on extensive observations of natural outdoor images. This
prior stated that the scene depth correlated with the difference
between image saturation and brightness. Zhu et al. [19]
then utilized a linear function to model that correlation and
estimated the function’s parameters by applying supervised
learning on a synthetic dataset. Thus, the distilled knowledge
was parameters used to estimate the scene depth from image
saturation and brightness.

From a more general perspective, Tang et al. [20] investi-
gated four haze-relevant features, including the dark channel,
hue disparity, locally maximum contrast, and locally maxi-
mum saturation, at multiple scales and found the following.
Although the dark channel was the most informative feature
(as discovered by He et al. [15]), other features also con-
tributed in a complementary manner. Hence, Tang et al. [20]
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devised a framework for inferring the transmittance from
different haze-relevant features. In [20], they employed a
random forest regressor for ease of analysis and demonstra-
tion, albeit with slow inference time. They also discussed
the importance of post-processing and presented two post-
processing options: adaptive atmospheric light estimation and
adaptive exposure scaling.

C. DEEP LEARNING

The aforementioned approaches require significant efforts in
seeking (i) a good feature (or a set of features) and (ii) an
efficient inference scheme. However, there is no guarantee
that they will always perform as intended in all circumstances.
As aresult, deep learning has been applied to image dehazing
to improve flexibility. Given a reliable training dataset, DNNs
can estimate the transmittance and atmospheric light with
high accuracy because they allow learning and augmenting
image features from low to high levels of abstraction. For
example, Cai et al. [21] designed a convolutional neural
network (CNN) to perform the following: low-level feature
extraction, multi-scale mapping, augmentation (for spatial
invariance), and non-linear transmittance inference.

The powerful learning ability of DNNs or deep CNNs also
allows them to infer the dehazed image directly from the hazy
input. In this direction, the encoder-decoder network has been
proved highly efficient for end-to-end learning [22], [23].
In addition, some well-known image processing schemes
can be applied to deep learning to improve performance,
as witnessed by multi-scale image fusion [22] and domain
adaptation [23]. Also, inspired by the human brain that
knowledge learned from doing a particular activity may
benefit another activity, joint learning is a promising direc-
tion, typified by [24], where image dehazing benefits object
detection.

Some state-of-the-art deep dehazing networks developed
recently include GridDehazeNet (GDN) [25], multi-scale
boosted dehazing network (MSBD) [26], you only look your-
self (YOLY) [27], and self-augmented unpaired image dehaz-
ing (D*) [28]. GDN is a supervised network and comprises
three modules. The pre-processing module applies different
data-driven enhancement processes to the input image. The
backbone module then fuses the results based on the grid net-
work, where a channel-wise attention mechanism is adopted
to facilitate the cross-scale circulation of information. Finally,
the post-processing module remedies residual artifacts to
improve the dehazing quality.

MSBD is also a supervised network designed with boosting
and error feedback mechanisms. The former successively
refines the intermediate dehazing result to reduce the por-
tion of haze (PoH defined by Dong et al. [26]), and the
latter successively recovers spatial details obscured by haze.
YOLY, on the contrary, is an unsupervised and untrained
network. Based on the layer disentanglement in [29], YOLY
is designed with three sub-networks that decompose the
hazy image into three latent layers corresponding to scene
radiance, transmittance, and atmospheric light. Thus, YOLY
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FIGURE 3. lllustration of the proposed method. NBP stands for
no-black-pixel, and CDF stands for the cumulative distribution function.

supervises itself to jointly optimize three sub-networks and
reconstruct the hazy image from a single input.

Yang et al. [28] argued that YOLY lacked knowledge from
the clean image domain and developed D* as an alternative
solution. Unlike other unpaired networks, D* takes account of
the scattering coefficient and scene depth when carrying out
dehazing and rehazing cycles. Consequently, D* can benefit
from physical-model-based haze removal and generation to
improve the performance of unpaired learning.

D. MOTIVATIONS

Image dehazing has undergone approximately five decades
of development since the pioneering work in 1972 [30]. It is
currently in the mature stage, and the focus is deemed to attain
computational efficiency for integrating into low-cost edge
devices, which are prevalent in the Industry 4.0 era.

As discussed thus far, although DNNs offer some definite
advantages, such as accuracy and flexibility, they are not
a preferable option. In contrast, traditional computer vision
techniques are more suitable for image dehazing because
a hand-engineered method can deliver comparative perfor-
mance at a cheaper computational cost. This paper, therefore,
proposes an O(N ) algorithm that pre-processes, dehazes, and
post-processes hazy images to satisfactorily restore clean
visibility.

lll. PROPOSED METHOD

Fig. 3 illustrates three major steps constituting the pro-
posed method. The first is unsharp masking for enhanc-
ing the sharpness, wherein the enhancement is locally
adapted to the variance of image intensities lest the out-of-
range problem occurs. The second performs image dehaz-
ing based on the improved color attenuation prior [31],
which estimates the transmittance from saturation and bright-
ness (as by Zhu et al. [19]) and applies two no-black-
pixel (NBP) constraints. The third performs color gamut
expansion by enhancing the luminance and then expand-
ing the color gamut proportionally to avoid color distor-
tion. The following describes these three steps in more
detail.
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FIGURE 4. Block diagram of the pre-processing step.

A. PRE-PROCESSING

In the beginning, it is worth recalling that the input RGB
image of size H x W is denoted as I € R*W>3 or inter-
changeably, I = {IR, 19, IB}, where I¢ € REXW and
c €{R, G, B}.

As haze is depth-dependent, it is generally smooth except
at discontinuities. Hence, it can be viewed as a low-frequency
component that obscures fine details in the captured image.
This pre-processing step then enhances these obscured details
by adding the scaled Laplacian image to the original, as Fig. 4
shows. Because the sharpness enhancement only applies to
the luminance channel, it is necessary to convert between
RGB and YCbCr color spaces using (8) and (9) from [32].
In (8), Y, Cb, and Cr are the luminance, blue-difference
chroma, and red-difference chroma components of the input
image I, and Y, denotes the output luminance with sharpness
enhanced. In (9), I, € RAXWX3 or 1, = {If, IeG IeB}, is the
output RGB image corresponding to {Y,, Cb, Cr}.

Y 0.183  0.614  0.062 ][R
Cb|=|-0.101 —0.338 0439 ||I¢
Cr 0.439  —0.399 —0.040 || /P

16

+ 128, ®)

128
IR 1.164 0 1.793 Y, — 16
IS =|1.164 —0213 —0534|[Cb—128|. (9)
1B 1.164  2.115 0 Cr— 128

Next, the Laplacian image is obtained by convolving the
input luminance Y with the Laplacian operator V2, whose
definition is in (10). Meanwhile, the local variance v of
luminance intensities is calculated as the expected value of
the squared deviation from the mean, as (11) illustrates. The
symbol ® denotes the convolution operator, and Uy is an all-
ones square matrix of size k x k, where k = 2n+1|n € Z*}
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is an odd integer.

1 0
vViEll -4 1], (10)
0 1 0

2
o () e ()] o

As demonstrated at the bottom-left of Fig. 4, the scaling
factor « is a piece-wise linear function of the local variance
v. The function definition is in (12), where {«1, a3, v, v2}
are user-defined parameters for fine-tuning. Hence, the output
luminance Y, is obtained by (13), which scales the Laplacian
image and adds it back to the input luminance. The YCbCr-to-
RGB conversion in (9) then yields the output RGB image 1.

o] V<V
o) — o o1vy — oV
o = (2 1>v—i— 172 271 vi<v<wvy (12
V) — V1 V2 — Vi
a V> vy,
Yo=Y+a - (VZ&Y). (13)

Unsharp masking can be loosely viewed as a “mildly
dehazing” step because it partially relieves the impact of haze
on image sharpness. The following, conversely, is a haze-
removal-dedicated step developed from the improved color
attenuation prior [31].

B. DEHAZING

Two important parts of this step are (i) scene depth estimation
and (ii) NBP constraint derivation. The former is based on
the color attenuation prior [19] with several improvements
in the learning scheme and the dataset preparation. Mean-
while, the latter is inspired by [33] to constrain the transmit-
tance lest black pixels occur. Fig. 5 shows the overall block
diagram, where the input image I, is from the previous step,
and the dehazed image is denoted as J € RF*Wx3,

1) SCENE DEPTH ESTIMATION

The scene depth d is inferred from saturation S and brightness
V using a linear function below:

d=0p+601S+06,V +e¢, (14)

where {6, 61, 62} are the function’s parameters, and ¢ denotes
the error associated with the inference. Zhu et al. [19]
assumed that ¢ followed the normal distribution N0, o°2)
with zero mean and o2 variance. Hence, it was derived
from (14) that d also followed a normal distribution N (8y +
618 + 6, V, 02). Given an annotated dataset of hazy images
and their corresponding scene depths, maximum likelihood
estimates can be applied to learn the parameters. However,
as itis virtually impossible to obtain such a dataset in practice,
a synthetic dataset with depth information drawn from a
probability distribution is a viable alternative.

Zhu et al. [19] utilized the standard uniform distribution
(SUD) to generate a synthetic training dataset. After that,
they adopted the stochastic gradient ascent (SGA) to find
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FIGURE 5. Block diagram of the dehazing step.

the parameters that maximized the log-likelihood function.
In the proposed method, the enhanced equidistribution [31]
supersedes SUD to improve the statistical reliability of the
synthetic dataset. Additionally, the mini-batch gradient ascent
with an adaptive learning rate [34] replaces SGA to reduce the
convergence time.

The scene depth d is now available, but there is no guar-
antee that it will be mostly smooth except at discontinuities.
Consequently, the refinement block applies a modified hybrid
median filter [35] to the scene depth to impose edge-aware
smoothness. Given the refined scene depth d;, the transmit-
tance is obtained through t = exp[—pfs.d;], with Bs, = 1.
Generally, most image dehazing algorithms in the literature
adopted two fixed limits to constrain ¢, expressed as fy <
t < 1, with #y being a small positive number. The following,
on the contrary, describes two NBP constraints for posing an
adaptive lower limit on ¢.

2) NBP CONSTRAINTS
From (7), the dehazed image (or, equivalently, scene radi-
ance) J can be obtained as:

L-A
J="—=tA (15)

The first NBP constraint, J > 0, is relatively evi-
dent because it can reduce the number of black pixels that
occur after dehazing due to underflows. Hence, it is derived
from (15) that:

IC
t>1— min (—") (16)
ce{R,G,B} \ A¢

where mingc(g G,p)(-) denotes a channel-wise minimum
operation.

The second NBP constraint is inspired by [33] that the local
mean intensity of J must be greater than or equal to its local
standard deviation, as expressed by:

Y, >q- std [Y, , 17
a0 = 4 3G O] an
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where Y), represents the luminance channel of J, g is a pos-
itive number to adjust the strictness, and meanyyeq(x)(-) and
stdvyeq(x)(-) denote the mean and standard deviation filters,
respectively, with Q(x) being a square patch centered at x.
It is worth noting that Y, is related to Y, through (15), and
this relation can be exploited to approximate the two terms
of (17) as follows:

1 u\ -1 -
Yv,yWl~ - Y@ (— )| —A|+A4, 1
Vr)pe%l(r;)[ P~ - [ ® <k2> } + (18)

1, (U U\ 1
Vyztsgl(x)[Yp(y)] 2 ;\/Ye ® (k_2>_|:Ye ® (k—zﬂ . (19)

where A = (AR 4+ A9 4+ AB)/3 is the average intensity of
atmospheric light A. Hence, (18) and (19) are substituted
back into (17) to obtain the second NBP constraint, as below:

r>1- (A)_1 {Ye® <%>

e () e ()

Let tnBp, and fNBp, denote expressions on the right-hand
side of (16) and (20). The NBP constraint fngp is then
expressed as:

iNBP = max (INBP, , INBP, ) » (21)

where max(a, b) returns the greater number between a and
b. Thus, the transmittance ¢ is constrained between fygp and
unity; that is,

INnpp <t <1, (22)

and the scene radiance J is recovered using (15).

As underflows and overflows are inevitable in digital com-
putations, the recovered image suffers from color gamut
reduction, rendering a post-processing step highly relevant.
The following describes an efficient method for luminance
enhancement and color gamut expansion [36]. This method
also produces a positive ramification that eases the atmo-
spheric light estimation. More precisely, it can be observed
from (15) that A is proportional to the dehazing power, and
A = {255, 255, 255} corresponds to the maximum. Dehazing
at this extreme level may worsen the color gamut reduc-
tion. It is, however, feasible to use A = {255, 255, 255} in
the proposed method because the post-processing step will
compensate for the looming problem. Therefore, we adopted
A = {255, 255, 255} as the atmospheric light.

C. POST-PROCESSING

Fig. 6 shows the overall block diagram, where the input image
is the recovered scene radiance J € RF*W>3 and the final
output image is denoted as Jy € RI>*W>3,

1) LUMINANCE ENHANCEMENT

Existing enhancement methods generally operate on the
entire luminance range, which may result in over-
enhancement. Accordingly, the method in [36] adopted an
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FIGURE 6. Block diagram of the post-processing step.

adaptive limit point (ALP) to constrain the range scene-
wisely. Given the luminance channel Y, of J, ALP is cal-
culated from the mean Y, and the cumulative distribution
function CDF of Y), as follows:

0.02 _
0.04 + — (LCDFO;) — LCDFOJ) Y, > 128

ALP = 255

0.04 —

a5 (Lopryg = Levry,) ¥ <128,

(23)
where Lcpr, denotes the luminance value at which
CDF(Lcpr,) =k, withk e Rand 0 <k < 1.

It is worth noting that over-enhancement is avoidable by

assigning higher gains to smaller luminance values, and ALP
can be exploited for that purpose, as (24) shows:

2
@ = Yo 255 (1 - e ALP 1255,
81850 = 7o 255 255 ’

(24)

o 1.5 (LCDFOA - LCDFOJ)

Yp - LCDFO.I

—0.55, (25)

where g is the non-linear luminance gain, 2721 is a normal-
ization factor, and the exponent 6 is empirically determined to
maximize the tone-mapped image quality index (TMQI) [37].
A linear weight g» in (26) is also adopted, where SL and IN
are user-defined parameters to adjust the slope and intercept,
respectively. The enhanced luminance Yy is then obtained
using (27).

SL
82¥p) = =¥, + 1IN, (26)
Yy =Y, +g1(Yp) - 82(Y)p). 27)

2) COLOR GAMUT EXPANSION
The first block of color space conversion in Fig. 6 produces
Y, Cby, and Cr,, as the luminance, blue-difference chroma,
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and red-difference chroma components of J. However, pro-
cessing Cb, and Cr, separately is unnecessary because the
human visual system is less sensitive to color differences than
luminance differences [38]. Thus, chrominance subsampling
with a 4:2:2 ratio is adopted to combine these two into Ch,, for
computational efficiency, as (28), (29), and (30) demonstrate,
where Dgec = [1,2, 1]/4 is the decimation filter, and i €
{1,2,...,H}and j € {1,2,..., W} are pixel coordinates.
Also, as Cby, Crp, and Ch,, are two-dimensional data, cby;,
cryj, and ch;; are adopted to denote their component in the i-th
row and j-th column, respectively.

Cby = Cby ® Dgec = {cbij € R} , (28)
Cry = Crp ® Dgec = {crij € R} , (29)
Chp = {Chl:,' eR | Ch,’j = Cb,'j,

Vi,jstj={2n+1|neZf},
otherwise ch; = crjj} . (30)
According to the Helmholtz-Kohlrausch effect [39], the
luminance Y, is related to the chrominance Ch,, and
luminance enhancement narrows the color gamut in the
chromaticity coordinates. Hence, the expansion should be

proportional to the ratio between Yy and Y),, as expressed by
the color gain g3 below:

Yr
83(¥p. Chy) = ~=Chy. 31)
P

Moreover, an additional weight g4 is adopted to maximize
the TMQI, and its expression in (32) is determined through
experiments.

0.7 Y, < TH;

(Y,)=107-026 Yp — THi
A R T T

0.44 Y, > THa,

TH; <Y, <THy, (32)

where TH; and TH; are user-defined parameters to adjust
the expansion range. The expanded chrominance Chy is then
obtained using the following:

Chy = Chy + g3(Y,. Chy) - ga(¥)). (33)

Next, the chrominance interpolation block separates Chy
into two temporary variables, Cb; and Cr;, for the final block
of color space conversion. To describe chrominance interpo-
lation, we reused chj, cbj;, and cr;; to denote a component of
Chy, Cby, and Cr; in the i-th row and j-th column, respectively.
Given Chy = {ch; € R}, Cb; and Cr; are obtained by
interlacing Chy with zeros, as (34) and (35) show.

Cb; = {cb; € R | cb;; = chy,
Vijst.j={2n+1|neZf)}
otherwise cb;; = 0} , (34)
Cr, = {crjj € R|cry = chy,
Vi,js.t.j={2n | neZ)
otherwise cr;j = 0} . (35)
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After that, Cb; and Cr; are convolved with the interpolation
filter Dijpe = [1,2,1]/2 to get Cby and Cry. Finally, the
image information in the YCbCr color space {¥r, Cby, Crr}
is converted back to the RGB color space using (9), yielding
the final image Ir.

IV. RESULTS AND DISCUSSIONS

This section presents a comparative evaluation of the
proposed method against nine state-of-the-art benchmarks
selected from the three image dehazing categories discussed
in Section II. These nine are proposed by He et al. [15],
Tarel and Hautiere [17], Zhu et al. [19], Cai et al. [21],
Ren et al. [3], Liu et al. [25], Dong et al. [26], Li et al. [27],
and Yang et al. [28], respectively.

A. QUALITATIVE EVALUATION ON REAL-WORLD HAZY
IMAGES

Fig. 7 demonstrates a qualitative comparison of ten meth-
ods on a real-world hazy image from the IVC dataset [40].
Results by He er al. [15], Cai et al. [21], Liu et al. [25],
Dong et al. [26], Li et al. [27], and Yang et al. [28] exhibit
a good dehazing performance as the scene radiance has
been recovered without any unpleasant artifacts. The result
by Zhu et al. [19] is slightly over-dehazed, losing dark
and distant details. Results by Tarel and Hautiere [17] and
Ren et al. [3] are less favorable than others because a portion
of haze persists.

Above all, it can be observed that nine benchmark meth-
ods are ineffective in recovering image details, as witnessed
by the traffic light and the man’s face in the red-cropped
and blue-cropped regions. This common drawback can be
explained as follows. Dehazing is fundamentally the sub-
traction of haze from the input image, and the subtraction
degree depends on the transmittance. However, estimating a
transmittance with rich details is challenging because spa-
tial filtering usually attenuates high-frequency information.
Although an outstanding guided filter [41] has been adopted
to refine the transmittance estimate, it is noted that the best
guidance image in single image dehazing methods is the input
image itself. Accordingly, the lack of an informative guidance
image constrains the refinement.

The proposed method, in contrast, effectively removes
haze while enhancing the sharpness and the color gamut,
as witnessed by the man’s face and the facial skin color in
the blue-cropped region. This definite advantage is attributed
to the pre-processing (unsharp masking) and post-processing
(color gamut expansion) steps. The intermediate results in
Fig. 8 show that the former has improved image details
to such an extent that the contours of distant objects have
become noticeable. Meanwhile, the latter, as claimed, has
successfully remedied the post-dehazing problem of color
gamut reduction.

Fig. 9 shows more qualitative comparison results on real-
world hazy images. It can be observed from the first row
that the result by He et al. [15] is satisfactory, albeit with
the post-dehazing false enlargement of the train’s headlight.
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He et al.

Input Image

Cai et al.

FIGURE 7. Dehazing results of ten methods on a real-world hazy image. From left to right: input image and results by He et al. [15],
Tarel and Hautiere [17], Zhu et al. [19], Cai et al. [21], Ren et al. [3], Liu et al. [25], Dong et al. [26], Li et al. [27], Yang et al. [28], and the proposed

method. The input image was duplicated for ease of comparison.

This problem occurs when the atmospheric light is less than
pixel intensities around the headlight, as discussed in [42].
Accordingly, the maximum value of A = {255, 255, 255}
adopted in the proposed method ensures that it is free of
that problem. Next, the method of Tarel and Hautiere [17]
demonstrates an acceptable performance, but halo artifacts
arise at image edges due to the use of large median filters.
The result by Zhu et al. [19] suffers from a loss of dark details
owing to excessive haze removal. The remaining six deep-
learning-based methods perform relatively well, in which
results by Cai et al. [21] and Yang er al. [28] are more
favorable than others. Our result, as expected, exhibits three
desirable outcomes: haze removal, sharpness enhancement,
and color gamut expansion.

Similar observations also emerge from the second to the
fourth rows of Fig. 9. The dark channel assumption of the
method of He er al. [15] does not hold for the sky region,
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causing severe color distortion in the second row. As with
the interpretation of results in the first row, the method of
Tarel and Hautiere [17] suffers from halo artifacts, and the
method of Zhu et al. [19] suffers from a loss of dark details.
Results by deep-learning-based methods, on the contrary,
do not exhibit any unpleasant artifacts, which is attributed
to the powerful representation capability and the flexibil-
ity of CNNs. Compared with these benchmarks, the pro-
posed method exhibits an almost comparative or even better
performance.

B. QUANTITATIVE EVALUATION ON PUBLIC DATASETS

This section presents an objective assessment of the pro-
posed method against nine benchmarks on public image
datasets. It is worth noting that there are numerous met-
rics for image quality assessment, such as the conventional
peak signal-to-noise ratio (PSNR), the structural similarity
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Input Image

Pre-processing

Post-processing

Dehazing

FIGURE 8. Intermediate results of the proposed method on a real-world hazy image. From left to right: input image and results after

pre-processing, dehazing, and post-processing steps.

Input Image He et al. T&H Zhuetal Caietal

Ren etal

Liuetal. Dongetal Lietal Yangetal. PM

FIGURE 9. Qualitative evaluation of ten methods on real-world hazy images. From left to right: input images and results by He et al. [15],
Tarel and Hautiere [17], Zhu et al. [19], Cai et al. [21], Ren et al. [3], Liu et al. [25], Dong et al. [26], Li et al. [27], Yang et al. [28], and the proposed
method. We abbreviated the method of Tarel and Hautiere [17] to T & H and the proposed method to PM.

(SSIM) [43], the feature similarity index extended to color
images (FSIMc) [44], and the TMQI [37]. The first is pixel-
based and thus does not correlate well with subjective ratings.
The second, in contrast, is structure-based and can better
quantify the perceived image quality. However, it has a draw-
back in that it utilizes a uniform weight to pool a single
quality score. Accordingly, the third improves the SSIM by
adopting an adaptive pooling weight and taking account of
chrominance information. The fourth improves the SSIM in
another direction by considering multi-scale structural simi-
larity and naturalness. Therefore, we selected the FSIMc and
the TMQI for our quantitative evaluation due to their high
correlation with subjective assessment. These two metrics
vary from zero to unity, and higher scores are more favorable
in image dehazing. Also, as they are full-reference, their
computation requires datasets comprising pairs of hazy and
haze-free images.

Table 1 summarizes five public datasets utilized in
this evaluation, including FRIDA2 [33], D-HAZY [45],
O-HAZE [46], - HAZE [47], and DENSE-HAZE [48]. The
FRIDAZ2 consists of 66 graphics-generated images depicting
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TABLE 1. Summary of image datasets for quantitative evaluation. The
symbol # represents quantities.

Dataset Number of Images (#) Remark
Hazy Haze-free
FRIDA2 264 66 Synthetic road scenes
D-HAZY 23 23 Synthetic indoors
O-HAZE 45 45 Real-world outdoors
I-HAZE 30 30 Real-world indoors
DENSE-HAZE 55 55 Real-world outdoors/indoors

road scenes, from which four corresponding sets of hazy
images are generated, thus a total of 66 haze-free and
264 hazy images. The D-HAZY is generated from the Mid-
dlebury [49] and NYU Depth [50] datasets according to
the degradation model in (7) with scene depths captured by
a Microsoft Kinect camera. It is composed of 1472 pairs
of synthetic indoor images, but this evaluation only uti-
lizes 23 pairs from Middlebury due to their substantial vari-
ation in image scenes. The other 1449 pairs from NYU
Depth portray relatively similar scenes and thus may bias the
evaluation results. In contrast, the O-HAZE, I-HAZE, and
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TABLE 2. Average evaluation scores in terms of the feature similarity index extended to color images (FSIMc) on five public datasets. Best results are

boldfaced, and second-best results are underlined.

Dataset FRIDA?2 D-HAZY O-HAZE -HAZE DENSE-HAZE Overall

Method
He et al. [15] 0.7746 0.9002 0.8423 0.8208 0.6419 0.7746
Tarel and Hautiere [17] 0.7807 0.8703 0.7733 0.8055 0.5598 07573
Zhu et al. [19] 0.7918 0.8880 0.7738 0.8252 0.5773 07693
Cai et al. [21] 0.7963 0.8874 0.7865 0.8482 0.5573 0.7725
Ren et al. [3] 0.8009 0.8822 0.8553 0.8634 0.6029 0.7896
Liu et al. [25] 0.8003 0.8747 0.8030 0.7416 0.5564 07552
Dong et al. [26] 0.7986 0.9059 0.8077 0.8638 0.5650 0.7882
Li et al. [27] 0.7849 0.7383 0.6997 0.7564 0.5763 07111
Yang et al. [28] 0.7829 0.8587 0.8459 0.8702 0.5919 0.7899
Proposed Method 0.8016 0.8763 08112 0.8586 0.5728 0.7807

TABLE 3. Average evaluation scores in terms of the tone-mapped image quality index (TMQI) on five public datasets. Best results are boldfaced, and

second-best results are underlined.

Method Dataset FRIDA2 D-HAZY O-HAZE -HAZE DENSE-HAZE Overall
He er al. [15] 0.7291 0.8631 0.8403 07319 0.6383 0.7357
Tarel and Hautiere [17] 07314 0.8000 0.8416 0.7740 0.5627 0.7294
Zhu et al. [19] 0.7385 0.8206 0.8118 07512 0.5955 0.7336

Cai et al. [21] 0.7366 0.7966 0.8413 0.7598 0.5723 0.7312
Ren ef al. [3] 0.7232 0.8023 0.8737 0.7819 0.6176 0.7341

Liu et al. [25] 0.6970 0.7938 0.8267 0.6107 0.5196 0.6896
Dong et al. [26] 0.7228 0.7873 0.8342 0.7346 0.5679 0.7294

Li et al. [27] 0.7176 0.6817 0.6566 0.6936 0.5107 0.6520
Yang et al. [28] 0.7158 0.7482 0.8353 0.7322 0.6056 0.7274
Proposed Method 0.7242 0.7841 0.8951 0.8204 0.5921 0.7354

DENSE-HAZE comprise 45, 30, and 55 pairs depicting real-
world indoors, outdoors, and both, respectively.

Tables 2 and 3 demonstrate average evaluation scores in
FSIMc and TMQI on five public datasets. It can be observed
from Table 2 that the proposed method is ranked fourth
overall, below the deep dehazing models of Yang et al. [28],
Ren et al. [3], and Dong et al. [26]. However, it is worth
noting that the difference between its FSIMc score and the
best is subtle. Specifically, it outperforms other bench-
marks on FRIDA2 and is within the top four methods for
dehazing real-world images in O-HAZE and I-HAZE. Nev-
ertheless, its performance is slightly under-par on D-HAZY
and DENSE-HAZE. This observation can be related to the
fact that FSIMc quantifies the degradation rather than the
enhancement. Thus, it is unsurprising that two models of
Ren et al. [3] and Dong et al. [26], trained on fully anno-
tated datasets to minimize the difference between their pre-
dictions and corresponding ground-truth references, have
achieved the top scores. This interpretation can be further
supported by the unimpressive score of the unsupervised
model of Li et al. [27], which does not require ground-truth
references. However, this and the best-performing model of
Yang et al. [28] have shown the great potential of unsuper-
vised and unpaired learning in computer vision.

According to Table 3, the proposed method is ranked sec-
ond overall, and its TMQI score only differs from the best
at the fourth decimal place. More specifically, the proposed
method exhibits a comparative performance on FRIDA2 and
an under-par performance on D-HAZY. In contrast, it out-
performs benchmark methods on real-world datasets, such
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as O-HAZE and I-HAZE, as witnessed by a significant
difference in TMQI scores. Hence, unsharp masking and
color gamut expansion appear to benefit real-world images.
However, such benefits as these two steps offer do not suf-
fice for handling densely hazy images owing to the under-
performance of the dehazing step.

As a result, it can be concluded that the proposed
method demonstrates a comparative performance with state-
of-the-art benchmarks, notably the deep learning models of
Yang et al. [28], Ren et al. [3], and Dong et al. [26].

C. PROCESSING TIME COMPARISON

Notwithstanding a comparative performance, the proposed
method possesses a linear time complexity, O(N) or
O(H x W), where H and W denote the image’s height and
width. According to Section III, the most computationally
intensive operations are the mean filter in the pre-processing
step and the modified hybrid median filter in the dehazing
step. The implementation of these two filters affects the entire
algorithm’s complexity directly. Let us assume that the kernel
size is S, x S,,. Naive implementations result in O(H x W x
Sy x S\,) complexity. Fortunately, O(H x W) implementations
of those two filters are available in [51] and [18]; therein lies
the proposed method’s linear time complexity.

Table 4 summarizes the processing time of ten methods on
different image resolutions, ranging from VGA (640 x480) to
8K UHD (7680 x 4320). As source codes of nine benchmarks
are publicly available, we used them and adopted the param-
eter configuration provided by their authors. This measure-
ment was conducted in MATLAB R2019a and Python 3.9.9
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TABLE 4. Processing time in seconds of ten methods on different image resolutions. Best results are boldfaced, second-best results are underlined, and
NA stands for not available with the underlying cause, REx (RAM Exhaustion), MEx (Memory Exhaustion), or RTE (Run-Time Error), in parentheses.

Resolution VGA SVGA HD FHD DCI 4K 8K UHD
Method 640 x 480 800 x 600 1024 x 768 1920 x 1080 4096 x 2160 7680 x 4320

He et al. [15] 12.64 19.94 32.37 94.25 470.21 NA (REXx)
Tarel and Hautiere [17] 0.28 0.59 0.76 1.51 9.02 36.54
Zhu et al. [19] 0.22 0.34 0.64 1.51 6.39 25.20
Cai et al. [21] 1.53 2.39 3.88 10.68 47.35 178.81
Ren et al. [3] 0.54 0.88 1.53 343 17.90 245.28

Liu et al. [25] 12.05 0.02 0.03 0.07 0.13 NA (MEx)
Dong et al. [26] 18.69 NA (RTE) 0.36 1.23 2.52 20.48

Li et al. [27] 188.03 398.28 728.83 1875.56 NA (MEXx) NA (MEXx)
Yang et al. [28] 16.15 5.14 5.71 7.51 8.67 24.00
Proposed Method 0.10 0.17 0.27 0.68 2.95 11.16

(with PyTorch 1.12.0+cul16), both running on a computer
with an Intel Core 19-9900K (3.6 GHz) CPU, 64 GB RAM,
and an Nvidia TITAN RTX.

It emerges that the method of He et al. [15] is the least
efficient in terms of time and memory. This finding is consis-
tent with its widely known drawback rooted in soft-matting.
Notably, RAM was exhausted when invoking this algorithm
on an 8K UHD image, and the processing time, in this case,
was denoted as not available. Similarly, the unsupervised
model of Li et al. [27] could not process DCI 4K and 8K UHD
images owing to memory exhaustion. This model progres-
sively refines the dehazing result, and its default configura-
tion is to run through 800 iterations. Therefore, its processing
time is significantly larger than those of other methods.

Next on the list are two models of Cai et al. [21] and
Ren er al. [3]. As discussed earlier, they are deemed to be
overkill due to the high computational cost inherent in them.
Measurements in Table 4 then verified that claim. However,
recent models of Liu er al. [25], Dong et al. [26], and
Yang et al. [28] benefited from batch processing and parallel
computing. Under these mechanisms, PyTorch needs to ini-
tialize the GPU, for example, making replicas of the model
on each GPU worker. Accordingly, the execution time of the
first image was prolonged, whereas those of the remaining
images were substantially shortened. Notably, the model of
Liu et al. [25] utilized four GPU workers and thus consumed
the least processing time for SVGA, HD, FHD, and DCI
4K resolutions. It is also worth noting that batch processing
and parallel computing generally cause a jump in memory
consumption, proportional to the number of GPU workers.
Thus, the model of Liu et al. [25] suffered from memory
exhaustion when handling an 8K UHD image. Conversely,
the model of Dong er al. [26] was free of that problem but
returned a run-time error when processing an SVGA image.

The two methods of Tarel and Hautiere [17] and
Zhu et al. [19] are well-recognized for their computational
efficiency, thus accounting for their fast processing speed
recorded in Table 4. Additionally, it is noteworthy that
Zhu et al. [19] adopted the fast implementation of the guided
filter, which downscaled the input image to ease the compu-
tational burden. If they utilize the standard guided filter, their
method would be slower than that of Tarel and Hautiere [17].
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TABLE 5. Comparisons on five public datasets for different variants of
the proposed method. Best results are boldfaced.

Variant Five public datasets
FSIMc TMQI
Without pre-processing 0.7765 0.7197
Without post-processing 0.7610 0.7131
Without both 0.7597 0.6979
Our full algorithm 0.7807 0.7354
Input Image  w/o pre w/o post w/o both  Full Algorithm

o

FIGURE 10. Comparisons on real-world hazy images for different variants
of the proposed method.

The proposed method is ranked second overall, notably
without batch processing or parallel computing but simply
sequential computing. Although it is slower than the fastest
model of Liu et al. [25], Tables 2 and 3 demonstrate that
it outperforms this model under FSIMc and TMQI. Also,
compared with the fast sequential method of Zhu et al. [19],
it achieved approximately 2.2x speedup for two main rea-
sons. Firstly, the proposed method skips the atmospheric
light estimation. Secondly, it only makes six calls to three
different O(N) spatial filters, including a call to a 3 x 3
Laplacian filter in (13), four calls to the box filter in (11)
and (20), and a call to the modified hybrid median filter in
the scene depth refinement step. On the contrary, the method
of Zhu et al. [19] needs to estimate the atmospheric light
and make eighteen calls to the box filter inside the fast-
guided filter. This difference accounts for a big gap between
the processing time of the two methods. Hence, the defi-
nite advantage of a low computational cost is attributed to
the elegant partition of image dehazing into three essential
steps: pre-processing, dehazing, and post-processing, where
each can be implemented using traditional computer vision
techniques.
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D. ABLATION STUDY

The proposed method consists of three steps that operate in
a complementary manner. To verify the individual contribu-
tion of each step, we conduct ablation studies by consid-
ering three variants of our algorithm. They are created by
dropping the pre-processing step, the post-processing step,
and both, respectively. Table 5 summarizes the evaluation
results on five public datasets under FSIMc and TMQI. It can
be observed that the pre-processing step (unsharp masking)
contributes more to the structural information, while the post-
processing step (color gamut expansion) contributes more
to the naturalness. Hence, each of these two steps plays an
essential role in the proposed method, which justifies its
significance.

Moreover, the contributions of the pre-processing and post-
processing steps can also be verified by qualitative results
in Fig. 10. Excluding the former causes a loss of image
details, and excluding the latter gives rise to color gamut
reduction. Image quality further worsens when neither of
them is included. Accordingly, these observations verify the
whole algorithm with the pre-processing, dehazing, and post-
processing steps.

V. CONCLUSION

This paper presented an efficient method for single image
dehazing in linear time. It began with a literature review argu-
ing that deep learning models were overkill, and dehazing by
traditional computer vision techniques could achieve a com-
parative performance at a much lower computational cost.
After that, a detailed description of the proposed method was
followed. The pre-processing step enhances image sharpness,
and the dehazing step recovers the scene radiance according
to the improved color attenuation prior. Finally, the post-
processing step compensates for the color gamut reduction.
Subjective and objective evaluation against nine benchmarks
demonstrated that the proposed method was substantially fast
while achieving a comparative performance.

Nonetheless, under-performance was observed on densely
hazy images. This drawback is common for methods devel-
oped from hand-engineered features, which are not abstract
enough to reflect how human visual systems recognize dense
haze. In this case, image inpainting and conditional image
generation may be viable alternatives, but it appears challeng-
ing to implement them computationally efficiently. Thus, this
task is left for future research.
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