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ABSTRACT Image dehazing is a fundamental problem in computer vision and has hitherto engendered
prodigious amounts of studies. Recently, with the well-recognized success of deep learning techniques,
this field has been dominated by deep dehazing models. However, deep learning is not always a panacea,
especially for the practicalities of image dehazing, because high computational complexity, expensive
maintenance costs, and high carbon emission are three noticeable problems. Computational efficiency is,
therefore, a decisive factor in real-world circumstances. To cope with this growing demand, we propose
a linear time algorithm tailored to three primitive parts: unsharp masking (pre-processing), dehazing, and
color gamut expansion (post-processing). The first enhances the sharpness according to the local variance
of image intensities. The second removes haze based on the improved color attenuation prior, and the third
addresses a residual effect of color gamut reduction. Extensive experimental results demonstrated that the
proposed method performed comparatively with popular benchmarks, notably deep dehazing models. With
such a comparative performance, the proposedmethod is still fast and efficient, favoring real-world computer
vision systems.

14 INDEX TERMS Image dehazing, unsharp masking, color gamut expansion, linear time complexity.

I. INTRODUCTION15

Atmospheric scattering occurs when the sunlight enters16

the atmosphere and is diffused in all directions due to17

particle-particle collision. Scattering, coupled with absorp-18

tion, decreases the quality of digital images, resulting in19

various types of degradation, such as faint color, low contrast,20

and detail loss. Although the degradation degree depends21

on the size of atmospheric particles, which varies accord-22

ing to weather conditions [1], this phenomenon is widely23

referred to as haze. On the one hand, haze obscures distant24

objects and affects the visibility perceived by human visual25

systems. On the other hand, it also affects high-level com-26

puter vision applications that assume clean input image/video27

data, as pointed out in [2]. Hence, image dehazing is a28

research branch focusing on alleviating the adverse effects29

of haze. Fig. 1 demonstrates the dehazing results of a real-30

world hazy image using a deep learning model [3] and the31

The associate editor coordinating the review of this manuscript and

approving it for publication was Joewono Widjaja .

FIGURE 1. A real-world hazy image and its corresponding dehazing
results by Ren et al. [3] and the proposed method. MS-CNN stands for the
multi-scale convolutional neural network.

proposed method. Our result is more favorable to human 32

visual systems because haze has been removed efficiently 33

while fine details have been satisfactorily recovered (in the 34

blue-cropped region). 35

A. DEGRADATION MODEL 36

Reference [4] formalizes the haze-induced degradation by 37

a model comprising the direct attenuation and the airlight 38

scattering, denoted as blue and red in Fig. 2, respectively. 39

The former occurs when the reflected light at a particular 40
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FIGURE 2. Illustration of the atmospheric scattering phenomenon.

wavelength λ (in m) propagates through suspended particles,41

where each of them causes an angular scattering that attenu-42

ates the light energy. For a unit volume of differential width43

dr1, the attenuated energy is formulated by:44

dEa(r1, λ)
Ea(r1, λ)

= −βscdr1, (1)45

where Ea(r1, λ) (in Wm−2) denotes the irradiance at the unit46

volume dr1, and βsc (in m−1) denotes the scattering coeffi-47

cient. The captured irradiance, Ea(d, λ) at r1 = d , is then48

obtained by integrating both sides of (1) as follows:49 ∫ Ea(d,λ)

Ea(0,λ)

dEa(r1, λ)
Ea(r1, λ)

=

∫ d

0
−βscdr1. (2)50

At r1 = 0, the irradiance Ea(0, λ) = �λS0Fλ along51

the optical path is calculated from the mean radiance of the52

sky S0 (in Wm−2sr−1), the solid angle �λ (in sr), and the53

dimensionless reflectance coefficient Fλ. Hence,54

Ea(d, λ) = �λS0Fλ exp(−βscd). (3)55

The other part, the airlight, indicates a portion of light56

reflected from the terrain surface or scattered directly to57

the camera. The irradiance Es(r2, λ), in this case, can be58

calculated by considering a unit volume dr2 whose radi-59

ance is S0βscdr2. Similarly, the irradiance captured by the60

camera is attenuated, and its value at a distance r2 from the61

camera is:62

dEs(r2, λ) = �λS0βsc exp(−βscr2)dr2. (4)63

The irradiance Es(d, λ) at r2 = d is then obtained by inte-64

grating (4) over the whole optical path, as follows:65

Es(d, λ) = �λS0βsc

∫ d

0
exp(−βscr2)dr266

= �λS0[1− exp(−βscd)]. (5)67

The total irradiance Et (d, λ) is the sum of Ea(d, λ) and68

Es(d, λ) as:69

Et (d, λ) = �λS0Fλ exp(−βscd)+�λS0[1− exp(−βscd)].70

(6)71

For ease of representation, it is convenient to substi-72

tute Et (d, λ) with I(x), where the boldface indicates the73

wavelength-dependent characteristics. Considering general 74

cameras with sensors sensitive to red, green, and blue wave- 75

lengths, I(x) = {IR(x), IG(x), IB(x)} denotes the x-th hazy 76

intensities. Similarly, J(x), A, and t(x) can substitute for 77

�λS0Fλ,�λS0, and exp[−βscd(x)], respectively. These three 78

are referred to as the haze-free intensities, the atmospheric 79

light, and the transmittance. The following is, therefore, the 80

simplified form of (6), and it commonly serves as the degra- 81

dation model in image dehazing: 82

I(x) = J(x)t(x)+ A[1− t(x)]. (7) 83

B. ILL-POSEDNESS 84

The concept of ill-posedness dates back to [5], and a mathe- 85

matical problem is called ill-posed (or incorrectly posed) if at 86

least one of the following conditions for its solution fails: 87

• The existence 88

• The uniqueness 89

• The stability 90

In (7), the hazy intensities I captured by the camera are 91

the only data available, whereas the remainder is unknown. 92

Accordingly, for a given set of A and t estimated, (7) yields a 93

different solution of J and violates the uniqueness condition. 94

This issue renders image dehazing ill-posed and brings about 95

prodigious amounts of relevant studies. Recently, researchers 96

have adopted deep learning techniques to address the ill- 97

posedness, as witnessed by [6], [7], [8], [9], [10], and [11]. 98

Despite such excellent performances as those deep dehazing 99

models have delivered, they have been linked with several 100

problems in real-world execution, such as high power con- 101

sumption, high carbon emission, and expensive maintenance 102

costs [12]. 103

Furthermore, for a low-level vision task such as image 104

dehazing, deep neural networks (DNNs) are often overkill, 105

as discussed in [13] about deep learning and traditional com- 106

puter vision techniques. In fact, they fit well with high-level 107

cognitive tasks, such as object classification, recognition, and 108

localization. The data-driven performance of DNNs is also 109

more of a hindrance than a help because abstract features 110

learned by DNNs are specific to the training dataset, whose 111

construction is highly cumbersome for statistical reliability. 112

Thus, the learned features may be inappropriate for images 113

different from those in the training set, lowering the perfor- 114

mance in general. 115

II. RELATED WORKS 116

This section briefly reviews influential works in the literature 117

based on the categorization in [14], where algorithms have 118

been divided into three categories according to their data 119

exploitation. The first two, image processing and machine 120

learning, were typified by low-level hand-engineered image 121

features discovered through statistical analysis of real-world 122

images. The last category, deep learning, exploited the pow- 123

erful representation capability of DNNs to learn high-level 124

data-driven image features. This categorization could give 125

useful insights into (i) the complexity of dehazing algorithms 126
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and (ii) subjective/objective preferences for dehazed images.127

Generally, image processing and machine learning-based128

methods possess low complexity and favor human percep-129

tion. Deep learning-based methods, on the contrary, are130

computationally costly and favor image quality assessment131

metrics.132

A. IMAGE PROCESSING133

The dark channel prior [15], one of the most influential134

works in image dehazing, is a prime example of the first135

category. He et al. [15] observed natural haze-free images136

and discovered that the dark channel–calculated as the local137

minimum of the minimum channel–tended to approach zero138

at non-sky image patches. This finding, coupled with the139

degradation model, offered an efficient means to estimate140

the transmittance, which required soft-matting [16] for edge-141

aware smoothing. He et al. [15] also proposed locating the142

atmospheric light as the brightest pixel (in the red-green-blue143

(RGB) color space) among the top 5% pixels with the highest144

intensities in the dark channel. Given the estimated transmit-145

tance and atmospheric light, they reversed (7) to obtain the146

haze-free image.147

Another influential work is the linear time algorithm by148

Tarel and Hautiere [17]. They first white-balanced the input149

image to support the assumption that the atmospheric light150

was pure white. After that, they inferred the airlight, the term151

A[1−t(x)] in (7), from image whiteness as a percentage of its152

local deviation from its local average. This airlight inference153

required twomedian filters, hence thewidely known name the154

median of medians along lines. Finally, they post-processed155

the restored image using a simple tone mapping operator to156

expand the dynamic range. The most computationally heavy157

part of this algorithm is the median filter, whose implemen-158

tation is, fortunately,O(N ) [18], therein lying the linear time159

complexity.160

B. MACHINE LEARNING161

As image dehazing based on in situ information is162

highly challenging, the distilled knowledge from relevant163

image datasets may improve the dehazing performance.164

Zhu et al. [19] developed the color attenuation prior based165

on extensive observations of natural outdoor images. This166

prior stated that the scene depth correlated with the difference167

between image saturation and brightness. Zhu et al. [19]168

then utilized a linear function to model that correlation and169

estimated the function’s parameters by applying supervised170

learning on a synthetic dataset. Thus, the distilled knowledge171

was parameters used to estimate the scene depth from image172

saturation and brightness.173

From a more general perspective, Tang et al. [20] investi-174

gated four haze-relevant features, including the dark channel,175

hue disparity, locally maximum contrast, and locally maxi-176

mum saturation, at multiple scales and found the following.177

Although the dark channel was the most informative feature178

(as discovered by He et al. [15]), other features also con-179

tributed in a complementary manner. Hence, Tang et al. [20]180

devised a framework for inferring the transmittance from 181

different haze-relevant features. In [20], they employed a 182

random forest regressor for ease of analysis and demonstra- 183

tion, albeit with slow inference time. They also discussed 184

the importance of post-processing and presented two post- 185

processing options: adaptive atmospheric light estimation and 186

adaptive exposure scaling. 187

C. DEEP LEARNING 188

The aforementioned approaches require significant efforts in 189

seeking (i) a good feature (or a set of features) and (ii) an 190

efficient inference scheme. However, there is no guarantee 191

that theywill always perform as intended in all circumstances. 192

As a result, deep learning has been applied to image dehazing 193

to improve flexibility. Given a reliable training dataset, DNNs 194

can estimate the transmittance and atmospheric light with 195

high accuracy because they allow learning and augmenting 196

image features from low to high levels of abstraction. For 197

example, Cai et al. [21] designed a convolutional neural 198

network (CNN) to perform the following: low-level feature 199

extraction, multi-scale mapping, augmentation (for spatial 200

invariance), and non-linear transmittance inference. 201

The powerful learning ability of DNNs or deep CNNs also 202

allows them to infer the dehazed image directly from the hazy 203

input. In this direction, the encoder-decoder network has been 204

proved highly efficient for end-to-end learning [22], [23]. 205

In addition, some well-known image processing schemes 206

can be applied to deep learning to improve performance, 207

as witnessed by multi-scale image fusion [22] and domain 208

adaptation [23]. Also, inspired by the human brain that 209

knowledge learned from doing a particular activity may 210

benefit another activity, joint learning is a promising direc- 211

tion, typified by [24], where image dehazing benefits object 212

detection. 213

Some state-of-the-art deep dehazing networks developed 214

recently include GridDehazeNet (GDN) [25], multi-scale 215

boosted dehazing network (MSBD) [26], you only look your- 216

self (YOLY) [27], and self-augmented unpaired image dehaz- 217

ing (D4) [28]. GDN is a supervised network and comprises 218

three modules. The pre-processing module applies different 219

data-driven enhancement processes to the input image. The 220

backbone module then fuses the results based on the grid net- 221

work, where a channel-wise attention mechanism is adopted 222

to facilitate the cross-scale circulation of information. Finally, 223

the post-processing module remedies residual artifacts to 224

improve the dehazing quality. 225

MSBD is also a supervised network designedwith boosting 226

and error feedback mechanisms. The former successively 227

refines the intermediate dehazing result to reduce the por- 228

tion of haze (PoH defined by Dong et al. [26]), and the 229

latter successively recovers spatial details obscured by haze. 230

YOLY, on the contrary, is an unsupervised and untrained 231

network. Based on the layer disentanglement in [29], YOLY 232

is designed with three sub-networks that decompose the 233

hazy image into three latent layers corresponding to scene 234

radiance, transmittance, and atmospheric light. Thus, YOLY 235
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FIGURE 3. Illustration of the proposed method. NBP stands for
no-black-pixel, and CDF stands for the cumulative distribution function.

supervises itself to jointly optimize three sub-networks and236

reconstruct the hazy image from a single input.237

Yang et al. [28] argued that YOLY lacked knowledge from238

the clean image domain and developed D4 as an alternative239

solution. Unlike other unpaired networks, D4 takes account of240

the scattering coefficient and scene depth when carrying out241

dehazing and rehazing cycles. Consequently, D4 can benefit242

from physical-model-based haze removal and generation to243

improve the performance of unpaired learning.244

D. MOTIVATIONS245

Image dehazing has undergone approximately five decades246

of development since the pioneering work in 1972 [30]. It is247

currently in themature stage, and the focus is deemed to attain248

computational efficiency for integrating into low-cost edge249

devices, which are prevalent in the Industry 4.0 era.250

As discussed thus far, although DNNs offer some definite251

advantages, such as accuracy and flexibility, they are not252

a preferable option. In contrast, traditional computer vision253

techniques are more suitable for image dehazing because254

a hand-engineered method can deliver comparative perfor-255

mance at a cheaper computational cost. This paper, therefore,256

proposes anO(N ) algorithm that pre-processes, dehazes, and257

post-processes hazy images to satisfactorily restore clean258

visibility.259

III. PROPOSED METHOD260

Fig. 3 illustrates three major steps constituting the pro-261

posed method. The first is unsharp masking for enhanc-262

ing the sharpness, wherein the enhancement is locally263

adapted to the variance of image intensities lest the out-of-264

range problem occurs. The second performs image dehaz-265

ing based on the improved color attenuation prior [31],266

which estimates the transmittance from saturation and bright-267

ness (as by Zhu et al. [19]) and applies two no-black-268

pixel (NBP) constraints. The third performs color gamut269

expansion by enhancing the luminance and then expand-270

ing the color gamut proportionally to avoid color distor-271

tion. The following describes these three steps in more272

detail.273

FIGURE 4. Block diagram of the pre-processing step.

A. PRE-PROCESSING 274

In the beginning, it is worth recalling that the input RGB 275

image of size H × W is denoted as I ∈ RH×W×3, or inter- 276

changeably, I = {IR, IG, IB}, where I c ∈ RH×W and 277

c ∈ {R,G,B}. 278

As haze is depth-dependent, it is generally smooth except 279

at discontinuities. Hence, it can be viewed as a low-frequency 280

component that obscures fine details in the captured image. 281

This pre-processing step then enhances these obscured details 282

by adding the scaled Laplacian image to the original, as Fig. 4 283

shows. Because the sharpness enhancement only applies to 284

the luminance channel, it is necessary to convert between 285

RGB and YCbCr color spaces using (8) and (9) from [32]. 286

In (8), Y , Cb, and Cr are the luminance, blue-difference 287

chroma, and red-difference chroma components of the input 288

image I, and Ye denotes the output luminance with sharpness 289

enhanced. In (9), Ie ∈ RH×W×3, or Ie = {IRe , I
G
e , I

B
e }, is the 290

output RGB image corresponding to {Ye,Cb,Cr}. 291 Y
Cb
Cr

 =
 0.183 0.614 0.062
−0.101 −0.338 0.439
0.439 −0.399 −0.040

IRIG
IB

 292

+

 16
128
128

 , (8) 293

IReIGe
IBe

 =
1.164 0 1.793
1.164 −0.213 −0.534
1.164 2.115 0

 Ye − 16
Cb− 128
Cr− 128

 . (9) 294

Next, the Laplacian image is obtained by convolving the 295

input luminance Y with the Laplacian operator ∇2, whose 296

definition is in (10). Meanwhile, the local variance v of 297

luminance intensities is calculated as the expected value of 298

the squared deviation from the mean, as (11) illustrates. The 299

symbol ~ denotes the convolution operator, and Uk is an all- 300

ones square matrix of size k× k , where k = {2n+1|n ∈ Z+} 301
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is an odd integer.302

∇
2 ,

0 1 0
1 −4 1
0 1 0

 , (10)303

v = Y 2 ~

(
Uk
k2

)
−

[
Y ~

(
Uk
k2

)]2
. (11)304

As demonstrated at the bottom-left of Fig. 4, the scaling305

factor α is a piece-wise linear function of the local variance306

v. The function definition is in (12), where {α1, α2, v1, v2}307

are user-defined parameters for fine-tuning. Hence, the output308

luminance Ye is obtained by (13), which scales the Laplacian309

image and adds it back to the input luminance. TheYCbCr-to-310

RGB conversion in (9) then yields the output RGB image Ie.311

α =


α1 v < v1(
α2 − α1

v2 − v1

)
v+

α1v2 − α2v1
v2 − v1

v1 ≤ v ≤ v2

α2 v > v2,

(12)312

Ye = Y + α · (∇2 ~ Y ). (13)313

Unsharp masking can be loosely viewed as a ‘‘mildly314

dehazing’’ step because it partially relieves the impact of haze315

on image sharpness. The following, conversely, is a haze-316

removal-dedicated step developed from the improved color317

attenuation prior [31].318

B. DEHAZING319

Two important parts of this step are (i) scene depth estimation320

and (ii) NBP constraint derivation. The former is based on321

the color attenuation prior [19] with several improvements322

in the learning scheme and the dataset preparation. Mean-323

while, the latter is inspired by [33] to constrain the transmit-324

tance lest black pixels occur. Fig. 5 shows the overall block325

diagram, where the input image Ie is from the previous step,326

and the dehazed image is denoted as J ∈ RH×W×3.327

1) SCENE DEPTH ESTIMATION328

The scene depth d is inferred from saturation S and brightness329

V using a linear function below:330

d = θ0 + θ1S + θ2V + ε, (14)331

where {θ0, θ1, θ2} are the function’s parameters, and ε denotes332

the error associated with the inference. Zhu et al. [19]333

assumed that ε followed the normal distribution N (0, σ 2)334

with zero mean and σ 2 variance. Hence, it was derived335

from (14) that d also followed a normal distribution N (θ0 +336

θ1S + θ2 V , σ 2). Given an annotated dataset of hazy images337

and their corresponding scene depths, maximum likelihood338

estimates can be applied to learn the parameters. However,339

as it is virtually impossible to obtain such a dataset in practice,340

a synthetic dataset with depth information drawn from a341

probability distribution is a viable alternative.342

Zhu et al. [19] utilized the standard uniform distribution343

(SUD) to generate a synthetic training dataset. After that,344

they adopted the stochastic gradient ascent (SGA) to find345

FIGURE 5. Block diagram of the dehazing step.

the parameters that maximized the log-likelihood function. 346

In the proposed method, the enhanced equidistribution [31] 347

supersedes SUD to improve the statistical reliability of the 348

synthetic dataset. Additionally, themini-batch gradient ascent 349

with an adaptive learning rate [34] replaces SGA to reduce the 350

convergence time. 351

The scene depth d is now available, but there is no guar- 352

antee that it will be mostly smooth except at discontinuities. 353

Consequently, the refinement block applies a modified hybrid 354

median filter [35] to the scene depth to impose edge-aware 355

smoothness. Given the refined scene depth dr , the transmit- 356

tance is obtained through t = exp[−βscdr ], with βsc = 1. 357

Generally, most image dehazing algorithms in the literature 358

adopted two fixed limits to constrain t , expressed as t0 ≤ 359

t ≤ 1, with t0 being a small positive number. The following, 360

on the contrary, describes two NBP constraints for posing an 361

adaptive lower limit on t . 362

2) NBP CONSTRAINTS 363

From (7), the dehazed image (or, equivalently, scene radi- 364

ance) J can be obtained as: 365

J =
Ie − A
t
+ A. (15) 366

The first NBP constraint, J ≥ 0, is relatively evi- 367

dent because it can reduce the number of black pixels that 368

occur after dehazing due to underflows. Hence, it is derived 369

from (15) that: 370

t ≥ 1− min
c∈{R,G,B}

(
I ce
Ac

)
, (16) 371

where minc∈{R,G,B}(·) denotes a channel-wise minimum 372

operation. 373

The secondNBP constraint is inspired by [33] that the local 374

mean intensity of J must be greater than or equal to its local 375

standard deviation, as expressed by: 376

mean
∀y∈�(x)

[Yp(y)] ≥ q · std
∀y∈�(x)

[Yp(y)], (17) 377
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where Yp represents the luminance channel of J, q is a pos-378

itive number to adjust the strictness, and mean∀y∈�(x)(·) and379

std∀y∈�(x)(·) denote the mean and standard deviation filters,380

respectively, with �(x) being a square patch centered at x.381

It is worth noting that Yp is related to Ye through (15), and382

this relation can be exploited to approximate the two terms383

of (17) as follows:384

mean
∀y∈�(x)

[Yp(y)] ≈
1
t

[
Ye ~

(
Uk
k2

)
− Ā

]
+ Ā, (18)385

std
∀y∈�(x)

[Yp(y)] ≈
1
t

√
Ye2 ~

(
Uk
k2

)
−

[
Ye ~

(
Uk
k2

)]2
, (19)386

where Ā = (AR + AG + AB)/3 is the average intensity of387

atmospheric light A. Hence, (18) and (19) are substituted388

back into (17) to obtain the second NBP constraint, as below:389

t ≥ 1−
(
Ā
)−1 {Ye ~ (

Uk
k2

)
390

−q

√
Ye2 ~

(
Uk
k2

)
−

[
Ye ~

(
Uk
k2

)]2}
. (20)391

Let tNBP1 and tNBP2 denote expressions on the right-hand392

side of (16) and (20). The NBP constraint tNBP is then393

expressed as:394

tNBP = max
(
tNBP1 , tNBP2

)
, (21)395

where max(a, b) returns the greater number between a and396

b. Thus, the transmittance t is constrained between tNBP and397

unity; that is,398

tNBP ≤ t ≤ 1, (22)399

and the scene radiance J is recovered using (15).400

As underflows and overflows are inevitable in digital com-401

putations, the recovered image suffers from color gamut402

reduction, rendering a post-processing step highly relevant.403

The following describes an efficient method for luminance404

enhancement and color gamut expansion [36]. This method405

also produces a positive ramification that eases the atmo-406

spheric light estimation. More precisely, it can be observed407

from (15) that A is proportional to the dehazing power, and408

A = {255, 255, 255} corresponds to the maximum. Dehazing409

at this extreme level may worsen the color gamut reduc-410

tion. It is, however, feasible to use A = {255, 255, 255} in411

the proposed method because the post-processing step will412

compensate for the looming problem. Therefore, we adopted413

A = {255, 255, 255} as the atmospheric light.414

C. POST-PROCESSING415

Fig. 6 shows the overall block diagram, where the input image416

is the recovered scene radiance J ∈ RH×W×3, and the final417

output image is denoted as Jf ∈ RH×W×3.418

1) LUMINANCE ENHANCEMENT419

Existing enhancement methods generally operate on the420

entire luminance range, which may result in over-421

enhancement. Accordingly, the method in [36] adopted an422

FIGURE 6. Block diagram of the post-processing step.

adaptive limit point (ALP) to constrain the range scene- 423

wisely. Given the luminance channel Yp of J, ALP is cal- 424

culated from the mean Ȳp and the cumulative distribution 425

function CDF of Yp as follows: 426

ALP =


0.04+

0.02
255

(
LCDF0.9 − LCDF0.1

)
Ȳp > 128

0.04−
0.02
255

(
LCDF0.9 − LCDF0.1

)
Ȳp ≤ 128,

427

(23) 428

where LCDFk denotes the luminance value at which 429

CDF(LCDFk ) = k , with k ∈ R and 0 ≤ k ≤ 1. 430

It is worth noting that over-enhancement is avoidable by 431

assigning higher gains to smaller luminance values, and ALP 432

can be exploited for that purpose, as (24) shows: 433

g1(Yp) =
Yp
221

[
255

(
1−

Yp − ALP
255

)θ (255− Yp
255

)]2
, 434

(24) 435

θ =
1.5

(
LCDF0.4 − LCDF0.1

)
Ȳp − LCDF0.1

− 0.55, (25) 436

where g1 is the non-linear luminance gain, 2−21 is a normal- 437

ization factor, and the exponent θ is empirically determined to 438

maximize the tone-mapped image quality index (TMQI) [37]. 439

A linear weight g2 in (26) is also adopted, where SL and IN 440

are user-defined parameters to adjust the slope and intercept, 441

respectively. The enhanced luminance Yf is then obtained 442

using (27). 443

g2(Yp) =
SL
255

Yp + IN, (26) 444

Yf = Yp + g1(Yp) · g2(Yp). (27) 445

2) COLOR GAMUT EXPANSION 446

The first block of color space conversion in Fig. 6 produces 447

Yp, Cbp, and Crp as the luminance, blue-difference chroma, 448
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and red-difference chroma components of J. However, pro-449

cessing Cbp and Crp separately is unnecessary because the450

human visual system is less sensitive to color differences than451

luminance differences [38]. Thus, chrominance subsampling452

with a 4:2:2 ratio is adopted to combine these two into Chp for453

computational efficiency, as (28), (29), and (30) demonstrate,454

where Ddec = [1, 2, 1]/4 is the decimation filter, and i ∈455

{1, 2, . . . ,H} and j ∈ {1, 2, . . . ,W } are pixel coordinates.456

Also, as Cbp, Crp, and Chp are two-dimensional data, cbij,457

crij, and chij are adopted to denote their component in the i-th458

row and j-th column, respectively.459

Cbd = Cbp ~ Ddec =
{
cbij ∈ R

}
, (28)460

Crd = Crp ~ Ddec =
{
crij ∈ R

}
, (29)461

Chp =
{
chij ∈ R

∣∣ chij = cbij,462

∀i, j s.t. j = {2n+ 1
∣∣ n ∈ Z+0 },463

otherwise chij = crij
}
. (30)464

According to the Helmholtz-Kohlrausch effect [39], the465

luminance Yp is related to the chrominance Chp, and466

luminance enhancement narrows the color gamut in the467

chromaticity coordinates. Hence, the expansion should be468

proportional to the ratio between Yf and Yp, as expressed by469

the color gain g3 below:470

g3(Yp,Chp) =
Yf
Yp

Chp. (31)471

Moreover, an additional weight g4 is adopted to maximize472

the TMQI, and its expression in (32) is determined through473

experiments.474

g4(Yp)=


0.7 Yp < TH1

0.7− 0.26
Yp − TH1

TH2 − TH1
TH1 ≤ Yp ≤ TH2

0.44 Yp > TH2,

(32)475

where TH1 and TH2 are user-defined parameters to adjust476

the expansion range. The expanded chrominance Chf is then477

obtained using the following:478

Chf = Chp + g3(Yp,Chp) · g4(Yp). (33)479

Next, the chrominance interpolation block separates Chf480

into two temporary variables, Cbt and Crt , for the final block481

of color space conversion. To describe chrominance interpo-482

lation, we reused chij, cbij, and crij to denote a component of483

Chf , Cbt , and Crt in the i-th row and j-th column, respectively.484

Given Chf = {chij ∈ R}, Cbt and Crt are obtained by485

interlacing Chf with zeros, as (34) and (35) show.486

Cbt =
{
cbij ∈ R

∣∣ cbij = chij,487

∀i, j s.t. j = {2n+ 1
∣∣ n ∈ Z+0 }488

otherwise cbij = 0
}
, (34)489

Crt =
{
crij ∈ R

∣∣ crij = chij,490

∀i, j s.t. j = {2n
∣∣ n ∈ Z+}491

otherwise crij = 0
}
. (35)492

After that, Cbt and Crt are convolved with the interpolation 493

filter Dint = [1, 2, 1]/2 to get Cbf and Crf . Finally, the 494

image information in the YCbCr color space {Yf ,Cbf ,Crf } 495

is converted back to the RGB color space using (9), yielding 496

the final image If . 497

IV. RESULTS AND DISCUSSIONS 498

This section presents a comparative evaluation of the 499

proposed method against nine state-of-the-art benchmarks 500

selected from the three image dehazing categories discussed 501

in Section II. These nine are proposed by He et al. [15], 502

Tarel and Hautiere [17], Zhu et al. [19], Cai et al. [21], 503

Ren et al. [3], Liu et al. [25], Dong et al. [26], Li et al. [27], 504

and Yang et al. [28], respectively. 505

A. QUALITATIVE EVALUATION ON REAL-WORLD HAZY 506

IMAGES 507

Fig. 7 demonstrates a qualitative comparison of ten meth- 508

ods on a real-world hazy image from the IVC dataset [40]. 509

Results by He et al. [15], Cai et al. [21], Liu et al. [25], 510

Dong et al. [26], Li et al. [27], and Yang et al. [28] exhibit 511

a good dehazing performance as the scene radiance has 512

been recovered without any unpleasant artifacts. The result 513

by Zhu et al. [19] is slightly over-dehazed, losing dark 514

and distant details. Results by Tarel and Hautiere [17] and 515

Ren et al. [3] are less favorable than others because a portion 516

of haze persists. 517

Above all, it can be observed that nine benchmark meth- 518

ods are ineffective in recovering image details, as witnessed 519

by the traffic light and the man’s face in the red-cropped 520

and blue-cropped regions. This common drawback can be 521

explained as follows. Dehazing is fundamentally the sub- 522

traction of haze from the input image, and the subtraction 523

degree depends on the transmittance. However, estimating a 524

transmittance with rich details is challenging because spa- 525

tial filtering usually attenuates high-frequency information. 526

Although an outstanding guided filter [41] has been adopted 527

to refine the transmittance estimate, it is noted that the best 528

guidance image in single image dehazingmethods is the input 529

image itself. Accordingly, the lack of an informative guidance 530

image constrains the refinement. 531

The proposed method, in contrast, effectively removes 532

haze while enhancing the sharpness and the color gamut, 533

as witnessed by the man’s face and the facial skin color in 534

the blue-cropped region. This definite advantage is attributed 535

to the pre-processing (unsharp masking) and post-processing 536

(color gamut expansion) steps. The intermediate results in 537

Fig. 8 show that the former has improved image details 538

to such an extent that the contours of distant objects have 539

become noticeable. Meanwhile, the latter, as claimed, has 540

successfully remedied the post-dehazing problem of color 541

gamut reduction. 542

Fig. 9 shows more qualitative comparison results on real- 543

world hazy images. It can be observed from the first row 544

that the result by He et al. [15] is satisfactory, albeit with 545

the post-dehazing false enlargement of the train’s headlight. 546

102468 VOLUME 10, 2022



D. Ngo et al.: Singe Image Dehazing With Unsharp Masking and Color Gamut Expansion

FIGURE 7. Dehazing results of ten methods on a real-world hazy image. From left to right: input image and results by He et al. [15],
Tarel and Hautiere [17], Zhu et al. [19], Cai et al. [21], Ren et al. [3], Liu et al. [25], Dong et al. [26], Li et al. [27], Yang et al. [28], and the proposed
method. The input image was duplicated for ease of comparison.

This problem occurs when the atmospheric light is less than547

pixel intensities around the headlight, as discussed in [42].548

Accordingly, the maximum value of A = {255, 255, 255}549

adopted in the proposed method ensures that it is free of550

that problem. Next, the method of Tarel and Hautiere [17]551

demonstrates an acceptable performance, but halo artifacts552

arise at image edges due to the use of large median filters.553

The result by Zhu et al. [19] suffers from a loss of dark details554

owing to excessive haze removal. The remaining six deep-555

learning-based methods perform relatively well, in which556

results by Cai et al. [21] and Yang et al. [28] are more557

favorable than others. Our result, as expected, exhibits three558

desirable outcomes: haze removal, sharpness enhancement,559

and color gamut expansion.560

Similar observations also emerge from the second to the561

fourth rows of Fig. 9. The dark channel assumption of the562

method of He et al. [15] does not hold for the sky region,563

causing severe color distortion in the second row. As with 564

the interpretation of results in the first row, the method of 565

Tarel and Hautiere [17] suffers from halo artifacts, and the 566

method of Zhu et al. [19] suffers from a loss of dark details. 567

Results by deep-learning-based methods, on the contrary, 568

do not exhibit any unpleasant artifacts, which is attributed 569

to the powerful representation capability and the flexibil- 570

ity of CNNs. Compared with these benchmarks, the pro- 571

posed method exhibits an almost comparative or even better 572

performance. 573

B. QUANTITATIVE EVALUATION ON PUBLIC DATASETS 574

This section presents an objective assessment of the pro- 575

posed method against nine benchmarks on public image 576

datasets. It is worth noting that there are numerous met- 577

rics for image quality assessment, such as the conventional 578

peak signal-to-noise ratio (PSNR), the structural similarity 579
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FIGURE 8. Intermediate results of the proposed method on a real-world hazy image. From left to right: input image and results after
pre-processing, dehazing, and post-processing steps.

FIGURE 9. Qualitative evaluation of ten methods on real-world hazy images. From left to right: input images and results by He et al. [15],
Tarel and Hautiere [17], Zhu et al. [19], Cai et al. [21], Ren et al. [3], Liu et al. [25], Dong et al. [26], Li et al. [27], Yang et al. [28], and the proposed
method. We abbreviated the method of Tarel and Hautiere [17] to T & H and the proposed method to PM.

(SSIM) [43], the feature similarity index extended to color580

images (FSIMc) [44], and the TMQI [37]. The first is pixel-581

based and thus does not correlate well with subjective ratings.582

The second, in contrast, is structure-based and can better583

quantify the perceived image quality. However, it has a draw-584

back in that it utilizes a uniform weight to pool a single585

quality score. Accordingly, the third improves the SSIM by586

adopting an adaptive pooling weight and taking account of587

chrominance information. The fourth improves the SSIM in588

another direction by considering multi-scale structural simi-589

larity and naturalness. Therefore, we selected the FSIMc and590

the TMQI for our quantitative evaluation due to their high591

correlation with subjective assessment. These two metrics592

vary from zero to unity, and higher scores are more favorable593

in image dehazing. Also, as they are full-reference, their594

computation requires datasets comprising pairs of hazy and595

haze-free images.596

Table 1 summarizes five public datasets utilized in597

this evaluation, including FRIDA2 [33], D-HAZY [45],598

O-HAZE [46], I-HAZE [47], and DENSE-HAZE [48]. The599

FRIDA2 consists of 66 graphics-generated images depicting600

TABLE 1. Summary of image datasets for quantitative evaluation. The
symbol # represents quantities.

road scenes, from which four corresponding sets of hazy 601

images are generated, thus a total of 66 haze-free and 602

264 hazy images. The D-HAZY is generated from the Mid- 603

dlebury [49] and NYU Depth [50] datasets according to 604

the degradation model in (7) with scene depths captured by 605

a Microsoft Kinect camera. It is composed of 1472 pairs 606

of synthetic indoor images, but this evaluation only uti- 607

lizes 23 pairs from Middlebury due to their substantial vari- 608

ation in image scenes. The other 1449 pairs from NYU 609

Depth portray relatively similar scenes and thus may bias the 610

evaluation results. In contrast, the O-HAZE, I-HAZE, and 611
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TABLE 2. Average evaluation scores in terms of the feature similarity index extended to color images (FSIMc) on five public datasets. Best results are
boldfaced, and second-best results are underlined.

TABLE 3. Average evaluation scores in terms of the tone-mapped image quality index (TMQI) on five public datasets. Best results are boldfaced, and
second-best results are underlined.

DENSE-HAZE comprise 45, 30, and 55 pairs depicting real-612

world indoors, outdoors, and both, respectively.613

Tables 2 and 3 demonstrate average evaluation scores in614

FSIMc and TMQI on five public datasets. It can be observed615

from Table 2 that the proposed method is ranked fourth616

overall, below the deep dehazing models of Yang et al. [28],617

Ren et al. [3], and Dong et al. [26]. However, it is worth618

noting that the difference between its FSIMc score and the619

best is subtle. Specifically, it outperforms other bench-620

marks on FRIDA2 and is within the top four methods for621

dehazing real-world images in O-HAZE and I-HAZE. Nev-622

ertheless, its performance is slightly under-par on D-HAZY623

and DENSE-HAZE. This observation can be related to the624

fact that FSIMc quantifies the degradation rather than the625

enhancement. Thus, it is unsurprising that two models of626

Ren et al. [3] and Dong et al. [26], trained on fully anno-627

tated datasets to minimize the difference between their pre-628

dictions and corresponding ground-truth references, have629

achieved the top scores. This interpretation can be further630

supported by the unimpressive score of the unsupervised631

model of Li et al. [27], which does not require ground-truth632

references. However, this and the best-performing model of633

Yang et al. [28] have shown the great potential of unsuper-634

vised and unpaired learning in computer vision.635

According to Table 3, the proposed method is ranked sec-636

ond overall, and its TMQI score only differs from the best637

at the fourth decimal place. More specifically, the proposed638

method exhibits a comparative performance on FRIDA2 and639

an under-par performance on D-HAZY. In contrast, it out-640

performs benchmark methods on real-world datasets, such641

as O-HAZE and I-HAZE, as witnessed by a significant 642

difference in TMQI scores. Hence, unsharp masking and 643

color gamut expansion appear to benefit real-world images. 644

However, such benefits as these two steps offer do not suf- 645

fice for handling densely hazy images owing to the under- 646

performance of the dehazing step. 647

As a result, it can be concluded that the proposed 648

method demonstrates a comparative performance with state- 649

of-the-art benchmarks, notably the deep learning models of 650

Yang et al. [28], Ren et al. [3], and Dong et al. [26]. 651

C. PROCESSING TIME COMPARISON 652

Notwithstanding a comparative performance, the proposed 653

method possesses a linear time complexity, O(N ) or 654

O(H × W ), where H and W denote the image’s height and 655

width. According to Section III, the most computationally 656

intensive operations are the mean filter in the pre-processing 657

step and the modified hybrid median filter in the dehazing 658

step. The implementation of these two filters affects the entire 659

algorithm’s complexity directly. Let us assume that the kernel 660

size is Sh× Sw. Naive implementations result inO(H ×W × 661

Sh×Sw) complexity. Fortunately,O(H×W ) implementations 662

of those two filters are available in [51] and [18]; therein lies 663

the proposed method’s linear time complexity. 664

Table 4 summarizes the processing time of ten methods on 665

different image resolutions, ranging fromVGA (640×480) to 666

8KUHD (7680×4320). As source codes of nine benchmarks 667

are publicly available, we used them and adopted the param- 668

eter configuration provided by their authors. This measure- 669

ment was conducted in MATLAB R2019a and Python 3.9.9 670
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TABLE 4. Processing time in seconds of ten methods on different image resolutions. Best results are boldfaced, second-best results are underlined, and
NA stands for not available with the underlying cause, REx (RAM Exhaustion), MEx (Memory Exhaustion), or RTE (Run-Time Error), in parentheses.

(with PyTorch 1.12.0+cu116), both running on a computer671

with an Intel Core i9-9900K (3.6 GHz) CPU, 64 GB RAM,672

and an Nvidia TITAN RTX.673

It emerges that the method of He et al. [15] is the least674

efficient in terms of time and memory. This finding is consis-675

tent with its widely known drawback rooted in soft-matting.676

Notably, RAM was exhausted when invoking this algorithm677

on an 8K UHD image, and the processing time, in this case,678

was denoted as not available. Similarly, the unsupervised679

model of Li et al. [27] could not process DCI 4K and 8KUHD680

images owing to memory exhaustion. This model progres-681

sively refines the dehazing result, and its default configura-682

tion is to run through 800 iterations. Therefore, its processing683

time is significantly larger than those of other methods.684

Next on the list are two models of Cai et al. [21] and685

Ren et al. [3]. As discussed earlier, they are deemed to be686

overkill due to the high computational cost inherent in them.687

Measurements in Table 4 then verified that claim. However,688

recent models of Liu et al. [25], Dong et al. [26], and689

Yang et al. [28] benefited from batch processing and parallel690

computing. Under these mechanisms, PyTorch needs to ini-691

tialize the GPU, for example, making replicas of the model692

on each GPU worker. Accordingly, the execution time of the693

first image was prolonged, whereas those of the remaining694

images were substantially shortened. Notably, the model of695

Liu et al. [25] utilized four GPU workers and thus consumed696

the least processing time for SVGA, HD, FHD, and DCI697

4K resolutions. It is also worth noting that batch processing698

and parallel computing generally cause a jump in memory699

consumption, proportional to the number of GPU workers.700

Thus, the model of Liu et al. [25] suffered from memory701

exhaustion when handling an 8K UHD image. Conversely,702

the model of Dong et al. [26] was free of that problem but703

returned a run-time error when processing an SVGA image.704

The two methods of Tarel and Hautiere [17] and705

Zhu et al. [19] are well-recognized for their computational706

efficiency, thus accounting for their fast processing speed707

recorded in Table 4. Additionally, it is noteworthy that708

Zhu et al. [19] adopted the fast implementation of the guided709

filter, which downscaled the input image to ease the compu-710

tational burden. If they utilize the standard guided filter, their711

method would be slower than that of Tarel and Hautiere [17].712

TABLE 5. Comparisons on five public datasets for different variants of
the proposed method. Best results are boldfaced.

FIGURE 10. Comparisons on real-world hazy images for different variants
of the proposed method.

The proposed method is ranked second overall, notably 713

without batch processing or parallel computing but simply 714

sequential computing. Although it is slower than the fastest 715

model of Liu et al. [25], Tables 2 and 3 demonstrate that 716

it outperforms this model under FSIMc and TMQI. Also, 717

compared with the fast sequential method of Zhu et al. [19], 718

it achieved approximately 2.2× speedup for two main rea- 719

sons. Firstly, the proposed method skips the atmospheric 720

light estimation. Secondly, it only makes six calls to three 721

different O(N ) spatial filters, including a call to a 3 × 3 722

Laplacian filter in (13), four calls to the box filter in (11) 723

and (20), and a call to the modified hybrid median filter in 724

the scene depth refinement step. On the contrary, the method 725

of Zhu et al. [19] needs to estimate the atmospheric light 726

and make eighteen calls to the box filter inside the fast- 727

guided filter. This difference accounts for a big gap between 728

the processing time of the two methods. Hence, the defi- 729

nite advantage of a low computational cost is attributed to 730

the elegant partition of image dehazing into three essential 731

steps: pre-processing, dehazing, and post-processing, where 732

each can be implemented using traditional computer vision 733

techniques. 734
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D. ABLATION STUDY735

The proposed method consists of three steps that operate in736

a complementary manner. To verify the individual contribu-737

tion of each step, we conduct ablation studies by consid-738

ering three variants of our algorithm. They are created by739

dropping the pre-processing step, the post-processing step,740

and both, respectively. Table 5 summarizes the evaluation741

results on five public datasets under FSIMc and TMQI. It can742

be observed that the pre-processing step (unsharp masking)743

contributes more to the structural information, while the post-744

processing step (color gamut expansion) contributes more745

to the naturalness. Hence, each of these two steps plays an746

essential role in the proposed method, which justifies its747

significance.748

Moreover, the contributions of the pre-processing and post-749

processing steps can also be verified by qualitative results750

in Fig. 10. Excluding the former causes a loss of image751

details, and excluding the latter gives rise to color gamut752

reduction. Image quality further worsens when neither of753

them is included. Accordingly, these observations verify the754

whole algorithm with the pre-processing, dehazing, and post-755

processing steps.756

V. CONCLUSION757

This paper presented an efficient method for single image758

dehazing in linear time. It began with a literature review argu-759

ing that deep learning models were overkill, and dehazing by760

traditional computer vision techniques could achieve a com-761

parative performance at a much lower computational cost.762

After that, a detailed description of the proposed method was763

followed. The pre-processing step enhances image sharpness,764

and the dehazing step recovers the scene radiance according765

to the improved color attenuation prior. Finally, the post-766

processing step compensates for the color gamut reduction.767

Subjective and objective evaluation against nine benchmarks768

demonstrated that the proposed method was substantially fast769

while achieving a comparative performance.770

Nonetheless, under-performance was observed on densely771

hazy images. This drawback is common for methods devel-772

oped from hand-engineered features, which are not abstract773

enough to reflect how human visual systems recognize dense774

haze. In this case, image inpainting and conditional image775

generationmay be viable alternatives, but it appears challeng-776

ing to implement them computationally efficiently. Thus, this777

task is left for future research.778
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