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ABSTRACT This paper presents a novel Flow-based reinforcement learning strategy to model agent systems
that can adapt to complex and dynamic problem environments by incrementally mastering their skills. It is
inspired by the psychological notion of Flow that describes the optimal mental state experienced by an
individual when they are fully immersed in a task and find it intrinsically rewarding to engage with. The
proposed model presents an algorithm to describe the Flow experience such that agents can be trained through
finer distinctions to the challenges across training time to maintain them in the Flow zone. In contrast to
the traditional and incremental learning approaches that suffer from limitations associated with overfitting,
the Flow-based model drives agent behaviours not simply through external goals but also through intrinsic
curiosity to improve their skills and thus the performance levels. Experimental evaluations are conducted
across two simulation environments on a maze navigation task and a reward collection task with comparisons
against a generic reinforcement learning model and an incremental reinforcement learning model. The results
reveal that these two models are prone to overfit under different design decisions and loose the ability to
perform in dynamic variations of the tasks in varying degrees. Conversely, the proposed Flow-based model
is capable of achieving near optimal solutions with random environmental factors, appropriately utilising the
previously learned knowledge to identify robust solutions to complex problems.

INDEX TERMS Flow, reinforcement learning, incremental learning, machine learning, artificial intelli-
gence.

I. INTRODUCTION when they are fully immersed in a task and find it intrinsically

Reinforcement learning (RL) is a prominent artificial intel-
ligence (AI) technique that has been used in modeling agent
behaviour in complex environments. RL models have been
exploited in diverse agent-based systems that tackle problems
such as coordinated exploration [1], [2], path planning [3],
[4], collision avoidance [5], locomotion control [6], and other
complex decision making tasks [7], [8], [9], [10] with both
virtual and physical applications. However, a known limita-
tion of the existing RL-based agent models is the difficulty
in adapting to dynamic and uncertain conditions. This is
primarily caused by the increased complexity of operation
associated with changes in the environment [11], [12], [13].
This paper investigates a novel Flow-based RL strategy
which allows agent systems to adapt to complex environ-
ments by incrementally mastering their skills. In psychology,
Flow refers to the mental state experienced by an individual
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rewarding to engage with. While there has always been an
awareness among people of the feeling of immersion, loss of
self-consciousness, and happiness experienced while being
fully engaged in a task they like, the concept was first coined
by the psychologist Mihaly Csikszentmihalyi [14]. The key
dimensions of any experience of a task are the challenges the
task brings, and skills required to achieve them. One deviates
from a Flow state of mind when they feel: anxious, due to
a challenge being beyond their reach; or bored, due to a
challenge being easily achievable compared to their current
skill level. If the challenges and the skill levels increase pro-
portionally within the Flow zone, it can facilitate a sense of
discovery driving one with an intrinsic motivation for higher
performance levels.

We adapt this concept of Flow in training artificial agents
within a reinforcement learning model by making finer dis-
tinctions to the challenges across training time to maintain
agents in a Flow zone. It can overcome intrinsic challenges
such as overfitting and catastrophic forgetting associated with
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adaptation to dynamic environments [15] by driving agents
through both external goals as well as internal curiosity to
explore novel solutions. We demonstrate that an agent trained
with a Flow-based strategy is more robust than one trained
with a traditional or incremental reinforcement strategy and
can better perform in any random variation of the task envi-
ronment they may encounter in future. This has major impli-
cations for future in developing resilient intelligent agents and
simulation technologies for modelling decision making and
control strategies in diverse application environments. The
contributions of this paper in this regard are as follows:

o A novel Flow-based RL algorithm is proposed to
enhance the learning ability of artificial agents in com-
plex and dynamic environments.

o A measure of identifying the Flow zone is introduced
using novelty of the solution identified.

« Simulations are conducted in two environments focused
on maze navigation, and reward collection.

o Evaluations are presented with comparisons against a
traditional and an incremental RL model with dynamic
tasks to investigate the proposed model.

The rest of the paper is organised as follows. Section II
summarises the relevant existing literature. Flow as described
by Csikszentmihalyi and the proposed adaptations of the
notion in the Al domain with the framework for Flow-based
RL model are presented in Section III. The experimental
setups and evaluations are illustrated in Section I'V. Finally,
Section V concludes the paper with a discussion of the results
and possible future directions.

Il. RELATED WORK

Designing artificial agents that can adapt to dynamic and
complex problem environments has often been discussed
as a critical challenge to be addressed in the Al domain
for decades [16], [17], [18], [19], [20]. It has implica-
tions in formalising a vast array of real-life applications
from domestic ground robots to SAR (search and rescue)
drones and self-driving vehicles. Researchers have explored
several approaches to overcome the challenge of develop-
ing robust agent models by approaching complex prob-
lems through solving simpler versions. Incremental learn-
ing [21] has emerged as a potential solution where controller
behaviours are learned by progressively increasing the scope
or the complexity of the task. It has been used to refine the
actions of an agent incrementally over episodes such that a
suitable policy can be synthesised for achieving the ultimate
complex goal [22]. Using a gradient descent to incrementally
increasing the number of agents involved and complexity
of the task [23]; generating RL detector agents to detect
environmental changes and update the value functions and
thus the previous policy to suit the new environment [24];
and lifelong incremental learning through a library of an
infinite mixture of parameterised environment models [25]
are some approaches where incremental learning with RL
has been used for agent modelling. In a similar vein, transfer
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learning [26] is an approach that uses knowledge gained in
a previous task to subsequently address a related but dif-
ferent task. It has been adapted with evolutionary transfer
RL frameworks [27]; policy intersection to allow an external
policy influence the RL agent [28]; and with fine-tuning
where tasks are parameterised by their reward functions [29]
among other applications. Self-learning adaptive dynamic
programming [30] is also experimented in this regard as a
means of eliminating the explicit external reward scheme
by encouraging agents to learn internal rewards dynamically
based on the problem presented. The use of abstractions or
modular RL is another approach to solve complex problems
through tasks being subdivided into multiple simpler modules
to be learned independently and combined [31], [32], [33],
[34].

The key limitation with these existing approaches is that
they are primarily goal oriented. The agent behaviour is
directed towards achieving a dynamic goal through refine-
ment of action, and little thought is given to the learning
process in terms of balancing skills and challenges. As a
result, they are not capable of building a general awareness
of the environment that can later be utilised under changed
conditions; rather they tend to overfit to or forget the accu-
mulated knowledge [15], [35] which leads to deterioration of
performance as the model is presented with more complex
challenges. Such a model is incapable of developing a broad
awareness of the environment that they are performing in,
which can make it prone to failure when the environment
changes despite being good at achieving dynamic goals.

Flow is a notion that is not focused on external goals.
An agent in Flow enjoys an optimal experience where they
are intrinsically motivated towards exploring the environment
and building an awareness of the task, which extends beyond
a simple goal oriented mind. The concept has often been
adopted in human development and education as a way to
understand the conditions that make the process of learning
more enjoyable and efficient from a psychological point of
view [36]. It has been identified that Flow can facilitate
creativity and self-actualisation in the domain of learning
and problem solving for humans [37]. In the technological
domains, Flow has primarily been investigated with games
and gamification. The interactions between a player and the
game and the operative description of game-play has been
characterised in the literature through the aspects of Flow on
learning and enjoyment [38], [39]. However, Flow has not
received attention in the domains of agent systems and Al
models. It has characteristics to be explored as a potential
alternative to overcome the learning issues in dynamic envi-
ronments. Being in the Flow zone indicates that an agent will
not completely be goal oriented but will enjoy the experience
until it can no longer attain an optimal experience through
novel solutions [14]. Therefore, it can lead to artificial agents
that can identify more robust and generalisable solutions to
problems than too narrow and specific solutions. Therefore,
the work proposed here explores how the psychological the-
ory can be adapted in the field of artificial agents to enhance
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FIGURE 1. Complexity of consciousness increasing as a result of the Flow
experience [14]. An experience falls out of the Flow zone if the skill levels
improve without the challenge getting complex (®,); or if the challenge
gets increasingly complex without an opportunity to improve skills (®3).
In red is shown how we utilise the notion in agent systems to improve
skills of agents across increasing challenges. The agent is given the
opportunity to improve skills with a certain challenge level until it
reaches a level of boredom (#9) when the challenge is then made
complex (®?) bringing the agent back into the Flow zone.

their horizon of performance. The tasks designed for evalu-
ations in this work closely follow the requirements for Flow
and investigations are conducted to derive insights into the
applicability of the theory in practice.

Ill. FLOW-BASED REINFORCEMENT LEARNING

This section introduces the concept of Flow as discussed from
apsychological perspective, and how the notion is adapted for
the AI domain. The architecture for the proposed Flow-based
RL model is discussed in detail along with the algorithms
proposed.

A. FLOW

Flow or optimal experience is characterised by Mihaly Csik-
szentmihalyi as a sense that one’s skills and the challenges
at hand are felt to be in balance in an action system that is
goal-oriented and rule-bound, where clear clues are provided
for how well one is performing [14]. Flow activities provide
a sense of growth and discovery leading to higher levels of
performance and states of consciousness.

Figure 1 illustrates how the Flow experience improves the
performance and pushes an individual towards more complex
skill levels. The two axes in the diagram are the primary
dimensions of any experience: the skill levels, and challenge
levels. Considering an experience A; when the experience is
first started at @1, the individual will find it interesting and be
in the Flow zone but both the challenge and the skill level are
insignificant. If the challenge doesn’t improve, the individual
will eventually improve their skills over time and start getting
bored (®;) and fall out of the Flow zone. If they are to
regain a positive experience from this task, the challenge has
to be improved ($4). On the other hand, if the challenge
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FIGURE 2. Proposed Flow-based RL model. The task ® commences with
an initial challenge level ¢ and a skill level #. The agent keeps improving
its skill level by an increment of ¢; (step 1) until the boredom value 8 at
the challenge level ¢ exceeds the boredom threshold ¢ (step 2). If the
boredom threshold has been exceeded and the experience level @ is the
expected ultimate level of the system @ (step 3), then the system
completes the learning process. If not, the system increases the
complexity of the challenge by an increment of ¢ (step 4) and moves
back to the learning step.

increases without enough time for an improvement in the
skill level (®3), it is possible for an individual to feel anxious
of their poor performance, thus degrading the quality of the
experience. The skills should improve for the individual to
enjoy the activity again (®4).

While both @ and ®4 are in the Flow zone, they are
different from each other in terms of complexity. ®4 is more
complex as the demand is for greater skills to address more
difficult challenges. In order for an individual to remain in the
Flow zone, both skills and challenges should be in constant
evolution towards higher complexity.

B. PROPOSED FLOW-BASED RL MODEL

With the understanding of the concept of Flow in psycho-
logical experiences, the notion was adapted in our work to
improve the learning ability of artificial agents in complex
simulated environments. The goal is to maintain the agent(s)
in the Flow zone continuously, such that both the challenges
and their skills improve simultaneously over time until the
expected level of performance for the expected level of chal-
lenge is reached. The experiences highlighted in red in Fig-
ure 1 illustrate this process. When the agent starts improving
their skills for a given challenge (¢) and passes the threshold
for boredom at ®“, the challenge level is incremented such
that their experience will be at ®”. The agent then starts
improving the skills again for the challenge to attain a higher
performance until it cannot further improve and gets bored
after some time (), and the challenge is incremented again
to bring the agent back into the Flow zone (7). This process
is repeated until the ultimate challenge level is reached.

The proposed Flow-based RL model designed based on
the said approach is illustrated in Figure 2. The task is
commenced with an initial challenge level ¢ and a skill
level . As the first step, the agent improves its skill level
by an increment of €y through the reinforcement learner.
At the next step, the algorithm calculates a boredom value
B at the challenge level ¢ and checks if it has exceeded
the boredom threshold ¢. If it has not, it suggests that the
agent can still improve its performance and therefore moves
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back to the learning step (step 1). If the boredom threshold
is reached, the agent has reached its maximum performance
level for the particular challenge and has moved out of the
Flow zone and is not enjoying an optimal learning experience
anymore. As the next step (step 3), the algorithm checks if
the experience ® being enjoyed by the agent at this level was
the expected ultimate experience level of the system (®¢).
If it is, then the system has completed the learning process
and the agent is now capable of performing at the highest
expected challenge level with the best possible level of skills

Algorithm 1 Flow-Based Reinforcement Learning

Require: ¢ : Ultimate challenge

S : Current challenge level

€ : Challenge increment

10 : Boredom threshold

pc(S',A")  : The state action pairs in the
solutions derived for challenge ¢

o : Learning rate

y : Discount factor

€ : Decay constant

(S, A) : Q table for all state action pairs

R : Reward for each state

s : Current state

/ : New state

s
Ensure: pB. :Boredom at challenge level ¢

1: procedure FLOW-BASED RL

2 INITIALISE Q(S, A)

3 do

4: pe <— hull

5: for EACH EPISODE T do

6 INITIALISE STATE s

7 do

8 T < RND(0,1)

9: if < ¢ then

10: o < RANDOM ACTION FROM A
11: else

12: o < MAX Q(s)

13: 0(s,a) < QO(s,a) + «[R + y max Q(s’,

A) - Q(s, a)]

14: ADD (s,a) TO pc

15: s <5

16: while s is not terminal

17: & < UPDATE(¢)

18: b, <0

19: for all (s,a) pairs in o do
20: b; <« b, + BREDOM CALCULATION

(s, (s, a))

21: Bc < b, / total pairs in p
22: if B > ¢ then
23: ¢ < ¢ +ec
24: & < UPDATE(¢e)
25: break

26: while ¢ < ¢
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Algorithm 2 Boredom Calculation

Require: X : Decay constant 1
A2 : Decay constant 2
t : Current episode
0.((S",A’), ¢) : The number of visits (c) to
each state action pair in the
solutions derived for challenge ¢
: Total number of visits to state
(s) up to episode t
: Total number of visits to the
state action pair (s,a) up to
episode t
: Boredom at episode t for state action
pair (s,a)
1: procedure BOREDOM CALCULATION(g, (s, a))
2 if (s, a) is in o then
3 UPDATE COUNT(o, (s, a), (¢ + 1))
4 else
5: ADD (s, a) to o
6
7
8
9

N((s)

N (s, a)

Ensure: b, (s, a)

UPDATE COUNT (o, (s, @), 1)
1n:(s) <= EXTRACT VISITS (o, 5)
1n:(s, a) <= EXTRACT VISITS (o, (s, a))
L b a) < G 00D 2
10: return b (s, a)

(®G{cqg, 9G}). However, if it has not reached the ultimate
challenge level, then the model increases the complexity of
the challenge by an increment of €. (step 4) and moves back
to the learning step.

As discussed above, the model requires a method to quan-
tify boredom and incorporate that with the reinforcement
learner. Algorithm 1 details the proposed algorithm with the
boredom calculation method illustrated in Algorithm 2.

The modified Flow-based RL algorithm 1 starts by initial-
ising the Q-table (line 2) and the state, action pairs of the
solution for the current challenge level ¢ as null (line 4).
A decaying epsilon-greedy Q-learning approach [40] is used
to balance the exploration versus exploitation tradeoff with
action selection. For the initial rounds of learning, a relatively
higher probability is assigned for selecting a random action,
and as the learning improves, this exploration probability
is reduced giving more chance for exploitation of the most
suitable actions (lines 8-12). Every state,action pair ((s, @))
of the solution for each challenge level is recorded (line 14).
At the end of identifying a solution during every episode of
the challenge level, a boredom value is calculated based on
all state, action pairs visited by the solution (lines 19-21). The
value is then compared against a set threshold to determine if
the agent has moved out of the Flow zone, and if it has, then
the task environment is updated with a higher challenge level
and the learning process is started from the beginning. If not,
the agent still has the capacity to improve its performance,
and the learning process is moved to the next episode in the
same challenge level (lines 22-25). The process terminates if
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Difficulty level: 0 Episode: 113 Path: 160 Time: 84260 Turns: 34

Difficulty level: 50 Episode: 36 Path: 124 Time: 4627 Turns: 48

(a) Challenge Level 0

(b) Challenge Level 50

FIGURE 3. Maze navigation task. The agent is expected to navigate through the grid environment and find the shortest path from the start position (red)
to the end position (green) while avoiding obstacles (black). Each challenge level introduces a new obstacle obstructing the previously identified solution,

thus increasing the complexity of the challenge upto a total of 50 obstacles.

the boredom threshold has reached and the challenge level
has also reached the ultimate level (line 26).

The boredom calculation is done as described in Algo-
rithm 2. The novelty calculation function in equation 1 [41]
is adopted to calculated the degree of boredom experienced.

bi(s,a) = 'S 42009 2 1 (1)

This formula determines the frequency of visiting the state,
action pair ((s, a)) over multiple episodes of runs. At the end
of every episode, the algorithm updates the number of visits
to each state, action pair in the solution (lines 2-6) and then
calculates the boredom for each pair (line 9). The more a
certain pair is visited over multiple episodes, the less novel the
solution becomes and therefore increasing the boredom value
for that pair. 0 < A1, A < I are decay constants that determine
the descent rate of novelty. The average boredom of all pairs
is used in the Algorithm 1 to compare with the boredom
threshold. The boredom values range between [-1,0], O being
a solution completely novel and -1 being a solution that is not
novel at all. The boredom threshold is set to -1. Therefore, the
solutions start with a value of 0 at the first episode of each
challenge and once they reach a value of -1 with no novelty
in the state,action pairs selected, the challenge is incremented
to the next level.

Lcodebase available in https://doi.org/10.24433/C0.4345952.v1
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IV. EXPERIMENTAL EVALUATIONS

This section elaborates the designs of simulation environ-
ments and experimental evaluations conducted to test the
proposed Flow-based RL model.

A. SIMULATION ENVIRONMENTS
The experiments utilise two tasks designed to investigate two
different objectives:

« A maze navigation task: where the agent is forced to use
the new knowledge presented to the system.

« A reward collection task: where the agent is given the
option the use the new knowledge presented to the sys-
tem but is not forced to do so.

Each task consists of 51 challenge levels each present-
ing new knowledge to the system to evaluate agent perfor-
mance in traditional RL, incremental RL, and Flow-based
RL environments. The first task is associated with a maze
navigation environment as depicted in Figure 3. The agent
is expected to navigate through the available cells by finding
a path avoiding the obstacles (in black) from the start position
(red) to the end position (green). The goal is to find the
shortest path while avoiding the obstacles. The first chal-
lenge involves no obstacles, and the agent has the freedom
to explore all cells and find a suitable path to reach the end
position (Figure 3a). At each challenge level increment, new
obstacles are added by blocking free cells to make the task
more complex (Figure 3b). The agent can only travel to its
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Difficulty level: 0 Episode: 5 Reward: 1178

Difficulty level: 50 Episode: 10 Reward: 1347_
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26 36 | 41 46 | 51 56 [ 61 66 | 71 76 81 86 | 91
33 38 43 48 53 58 [ 63 [ 68 | 73 | 78 | 83 88 [ 88 [ 83

(a) Challenge Level 0

(b) Challenge Level 50

FIGURE 4. Cell reward collection task. The agent is expected to collect rewards by moving onto 100 cells (figure indicates only 20 cells for clarity of
representation) across multiple channels. Switching between channels incur a cost associated with the distance between the two channels. The goal of
the agent is to collect the maximum total rewards possible (rewards from cells - costs of channel switching) by the end of 100 time steps. The first task
starts with only 2 channels, and each challenge level introduces a new channel with each channel having at least one cell with a higher reward than all
previous channels at the same cell position upto 52 channels. The cell with the highest reward for each column is highlighted in yellow. However, this
may not be the optimal path since channel switching also incurs a cost associated with the distance.

Von Neumann neighbourhood (the four adjacent cells from
the current position), and therefore, to ensure a consistent
increase in complexity level, a cell that was included in
the previous solution’s path (chosen randomly) and it’s Von
Neumann neighbourhood is blocked as an obstacle at every
subsequent challenge level. As such, the incremental and
Flow-based RL agents are forced to utilise the new knowledge
presented to the environment, as the previous solution they
learned would be void due to being blocked by a new obstacle.
The traditional RL agent is not impacted by this decision
since it does not carry prior-knowledge to the next challenge
levels.

The next task that is used for evaluations is illustrated in
Figure 4. The ultimate task consists of 52 channels (rows)
with the first challenge level starting with only 2 channels.
A new channel is added to the task environment at every
challenge increment. Each channel consists of 100 cells, and
each cell is associated with a reward value. At a given time
tick, the agent can move to the next cell of any channel
available. There is a cost associated with changing channels
which is calculated based on the distance between the current
channel and the channel being moved to (/]currentchannel —
new channel|). The goal of the agent is to collect the max-
imum total reward (rewards from cells - costs of changing
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channels) at the end of 100 steps by identifying the best path
through all available channels.

A few design strategies were used to ensure a consistent
increase in complexity with the challenge increments. Each
channel being added will have at least one cell which has a
higher reward than the rewards of all the previous channels at
the same cell position. This condition ensures that a difficulty
increase is guaranteed with every new channel being added
as there is an advantage in moving to the newly introduced
channel for a higher reward. The total reward of all cells
in a single channel should be within a given range [1000-
1500] and the rewards are incremented along the channel in
a sinusoidal stepwise format. Figure 5 depicts the nature of
reward assignment in the cells within each channel.

This task is different from the maze navigation task where
the incremental and Flow-based agents would be forced by
the design itself to utilise the new knowledge presented at
each difficulty level. In this case, the agent is provided with
the choice to either explore the new knowledge or to remain
with the solution identified at the previous difficulty level.
The new channel added would be useful to explore since it
has at least one cell with a higher reward than all cells of the
previous channels in that particular column, but the agent is
free to decide whether to visit that channel or not.

VOLUME 10, 2022
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FIGURE 5. Assignment of rewards to cells in the cell reward collection task. The rewards are assigned to each cell in each channel to ensure a consistent
increase in the complexity across the introduction of new channels. The rewards across the columns are incremented along the channel in a sinusoidal
stepwise format while ensuring the total rewards in a single channel is always within the range [1000-1500]. The figure depicts the rewards assigned to

cells averaged across 50 simulation environments.

TABLE 1. Attributes of the setup for flow-based reinforcement learning.

Attribute Value
Challenge Levels 0-50
Boredom Threshold () -1
Decay Constant (¢) Initial: for epsilon-greedy q-learning 0.4
Decay Constant (¢) Update ex0.9
Decay Constant (A1) 0.9
Decay Constant (\2) 0.5

The attributes of the setup for the RL models are as given in
Table 1. All 3 models are setup with the same decay constant
¢ for greedy learning for a fair evaluation.

B. RESULTS

This section evaluates the experimental results obtained by
exploring the two task environments described above. The
proposed Flow-based model is compared against a traditional
RL model and an incremental learning model which were
designed with the same common parameters used for the
Flow model for a fair comparison. The traditional RL model
is run for each challenge level independently to determine
the solutions. The incremental learning model can use the
accumulated knowledge from previous challenge levels in
developing a solution for the new challenge levels. The cri-
teria to update to the next challenge level is defined based
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on the stabilisation of error (to determine the convergence
of the solution) for the incremental learner. All experiments
with the 3 models were repeated for 50 different seeds each
and the aggregated result was considered during evaluations.
Two-sample t-test and one-way ANOVA are adopted as the
statistical evaluators for comparisons of two and three groups
respectively, and the statistical significance level is set at p =
0.05.

Figure 6 demonstrates the analysis results of the maze
navigation environment averaged across 50 runs each. The
total time taken (the number of state, action pairs visited
across all episodes) for each challenge level is shown in
Figure 6(a). The agent learning a particular challenge with
the Flow-based model or the incremental model builds on the
knowledge acquired from previous challenge levels. There-
fore, a fair comparison should use the cumulative time of
the Flow/incremental model where the aggregated total time
taken to learn all challenges up-to each specific challenge is
considered. The time curves plotted for both Flow and incre-
mental models in the figure demonstrate this cumulative time.
The time curve for the traditional model depicts the time taken
to run only through each specific challenge. Accordingly,
it can be seen that the Flow-based model takes significantly
less time than the traditional model (p = 3.0924e-24 < 0.05)
and the incremental learning model (p = 8.2731e-04 < 0.05).
Even though the cumulative time is considered for the Flow
model, the time taken to learn with the traditional model
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FIGURE 6. Analysis of the maze navigation task environment for each

challenge level. The experimental results are averaged across 50 runs
each and the shaded areas depict the standard deviation.

starts increasing significantly than the Flow model after the
20" challenge level. Therefore, as the complexity of the task
increases, the traditional model finds the task to be increas-
ingly difficult compared to the Flow-based model. Similarly,
the Flow-based model is also consistently more efficient than

the incremental model.

In close examination of the time curves, it can also be
seen that even the traditional RL model performs signifi-
cantly faster than the incremental RL model up to the 30"
challenge level (p = 1.3021e-16 < 0.05), only after which
the incremental model starts performing more efficiently than
the traditional model. This can be explained by the design of
the task. For traditional RL model, the increasing number of
obstacles makes the task difficult with the learner having to
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learn to avoid all obstacles at every challenge level as it does
not carry forward any prior knowledge of the environment.
Therefore, the time required consistently increases across
challenge levels. However, the incremental learner possesses
prior knowledge of the environment from the previous chal-
lenge levels and according to the results it can be deduced
that it overfits and finds it difficult to adapt to a new path
taking more time to converge to a solution until around the
30t level. However, as the complexity of the challenge level
further increases, the number of obstacles increases, thus
gradually reducing the number of path options to reach the
exit (solutions). Therefore, even if the incremental learner
is prone to overfit, it becomes relatively easier to identify a
new solution as the complexity increases for two reasons: the
learner is forced to look for a new path through the design
itself (as the new obstacle always intercepts the previously
identified solution); and the available options for a solution
gradually decreases with the increasing number of obstacles.
In contrast, this phenomenon is not observed with the Flow-
based learner. The tendency of the incremental learner to
overfit is further investigated with the reward collection task.

The length of the shortest path identified for each challenge
level with increasing number of obstacles is shown in Fig-
ure 6(b). The lengths of the paths increase with all 3 models
as the challenge level increases due to the increasing number
of obstacles that should be avoided to reach the end position.
At a glance, the Flow-based model and incremental learn-
ing model seem to identify shorter paths for all challenges
compared to the traditional model; however, there is not
enough statistical evidence to suggest a significant difference
between the solutions derived by the models (p = 0.0615 >
0.05).

The complexity of the paths were determined based on
the Manhattan distance which is the the sum of the abso-
lute differences between the start and the end positions. The
difference between the actual path distance and the Manhat-
tan distance was considered as the complexity of the path.
According to Figure 6(c), the complexities of the paths identi-
fied by all 3 models are increasing with the increasing number
of obstacles and the longer paths that should be followed as a
result. This observation further supports the design decision
of the challenge levels as the increasing complexity of the
paths correspond to an increasing complexity of the chal-
lenges. However, similar to the path length results, there is no
statistically significant difference between the complexities
of the paths identified by the models (p = 0.1817 > 0.05).

Therefore, the results suggest that the Flow-based model is
significantly efficient at identifying solutions for increasingly
complex challenges; however, there is not enough evidence
to suggest an improved quality of the results compared to
the traditional and incremental model with the current obser-
vations. In order to further explore the applicability of the
Flow-based RL model, the evaluations were then extended to
more dynamic scenarios. The next set of experiments were
conducted to analyse whether the Flow-based model can
effectively utilise the skills learned through performing in the
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FIGURE 7. Analysis of the maze navigation task environment for dynamic
scenarios. The skill level is fixed after the 50t" challenge and the agent is
then made to navigate in: an environment where the added obstacles are
removed in reverse order for each challenge level; and in an environment
where a decreasing number of obstacles are placed in random places for
each challenge level for 50 more challenges. Evaluations are shown for all
100 challenge levels. The experimental results are averaged across

50 runs each and the shaded areas depict the standard deviation.

Flow zone when the task environment changes. Two sets of
evaluations were conducted in this regard. As the first experi-
ment, the skill level (Q-table values) was fixed after the agent
has completed learning the 50" challenge with 50 different
obstacles. The evaluations were then conducted by removing
each obstacle in the reverse order that was added. Each eval-
uation after the 50 challenge would then commence with
the skills learned upto the 507 level. The same experiment
was repeated with the traditional and incremental RL models
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where the skill level at the 50" challenge was then fed into the
agent as the commencing skill level for each decrementing
challenge level. For the second experiment, the obstacles
were not removed in order; rather, a decreasing number of
obstacles were placed at random positions in the environment.
Le., after the agent has completed 50 challenges, the next
challenge is to overcome 49 obstacles placed in a different
random order to what the agent has experienced so far. The
subsequent challenges include decreasing number of obsta-
cles upto no obstacles placed at random positions. The skill
level achieved by the end of 50 challenges is fed to the agent
for each challenge after the S0 level as before.

Figure 7 illustrates the results for the total of 100 challenge
levels for Flow-based, incremental, and traditional RL models
as mentioned. According to Figure 7a, all 3 models show that
they take a statistically insignificant time to learn the next
challenge after the 50 challenge with their already improved
skill level with both experiments (obstacles removed in order,
and placed at random places). However, the Flow-based
model is still capable of completing the task faster than the
other two models.

Further, the length of the shortest paths shown in Figure 7b
demonstrates that the Flow-based and incremental learning
models can significantly enhance the agent’s skills towards
achieving significant performance levels. When the obstacles
are removed in order, the lengths of the paths identified
gradually start decreasing implying that the Flow-based and
incremental models can use previously learned knowledge
to fall back on to a simpler challenge. More importantly,
when the obstacles are placed in random places, they behave
significantly better and shows the capacity to find relatively
similar shorter paths during all challenge levels despite the
complexity of the challenge. This observation deduces that
the models did not in fact master the skills for a specific
challenge but achieved higher performance levels which lead
the agent to be able to tackle any dynamic goal in the given
problem space. On the other hand, the traditional RL model
shows that when obstacles are removed in order, the model is
not capable of finding shorter paths any longer even though
the challenge is being simplified. The lengths of the paths
that are found when the agent is presented with simpler
challenges after the 50 challenge is in the same range as
the solution derived for the SO™ challenge. This demonstrates
that the traditional model has overfitted and is incapable of
readjusting to different challenge requirements. When the
obstacles are placed at random places, the sudden significant
drop in the path length can be observed at the 49™ level, but it
starts performing poorly as the challenge level reduces. This
interesting observation is due to the same overfitting issue
observed before. Once 49 obstacles are placed in random
order, it suggests that a majority of the grid is covered with
obstacles which will significantly obstruct the path identi-
fied at the 501 level forcing the agent to learn a new path
disregarding some of the knowledge gathered earlier. This
leads to discovering a shorter path with the higher number
of randomly placed obstacles. However, as the number of
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FIGURE 8. Length difference for the shortest paths derived by the three models for each challenge level from 0 leading upto 50th versus challenges after
50th level upto 0t level (original-new length). The experimental results are averaged across 50 runs each.

obstacles are reduced, the previous path is impacted less
significantly, and as the model does not have generalised
knowledge it simply tries following the same old ineffi-
cient path despite having shorter alternatives which never get
explored.
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The results are similar with the complexity of the paths
observed in 7c as the complexity is correlated with the length
of the path. To further analyse the paths derived by the
models from 0-50™ challenge versus 50-0™ challenge after
commencing the learning process from the skill set of 50"
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FIGURE 10. Analysis of the reward collection task environment for dynamic scenarios. The skill level is fixed after the s5oth challenge and the agent is
then made to collect rewards while minimising costs in: an environment where channels are removed in reverse order for each challenge level; and in an
environment where channels are removed from random locations successively. Evaluations are shown for all 100 challenge levels. The experimental
results are averaged across 50 runs each and the shaded areas depict the standard deviation.

level, Figure 8 illustrates the length differences (original-
new). When the obstacles are removed in order, this shows
that none of the three models are capable of finding a solution
as accurate as the original solution except for a few higher
level challenges, but traditional model demonstrates the worst
performance out of the three. When the obstacles are placed
in random locations, the challenge levels with less obstacles
than around 20 show inaccurate performances, but starts
improving the results for more complex challenges. Similar
to the previous observation, the traditional model shows the
highest negative length difference. This further supports the
evidence to suggest that the traditional RL model is not as
robust and flexible in a way that it can utilise its learned skills
to overcome a new goal successfully.

The next set of results illustrated in Figure 9 analyses
the second problem which is on collecting cell rewards. The
previous environment identified that when the agent is forced
in the learning process to utilise new knowledge through
the task design, both Flow and incremental models can find
similar results; however, Flow is more efficient in comparison
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to incremental learning. The primary goal of investigating
the next environment is to understand the behaviour of these
models when the agent is not forced but is only given the
choice to utilise new knowledge through new difficulty levels
of the task.

In contrast to the observations with the maze navigation
task, the time analysis presented in Figure 9a depicts that the
cumulative time taken by the Flow model increases exponen-
tially with the challenge level and is significantly higher than
the traditional model (p = 0.0 < 0.05). The incremental learn-
ing model is taking even more time compared to the Flow
model (p = 0.0 < 0.05) and is the most inefficient out of the
3 models compared. On a similar note, unlike the maze nav-
igation task where a statistically significant improvement in
performance was not observed, Figure 9b shows that the total
rewards (cell rewards - channel switching costs) collected by
the Flow-based RL model significantly increases than both
the traditional model (p = 0.0 < 0.05) as well as the incre-
mental learning model (p = 0.0 < 0.05). This shows that as
the number of channels increases, the traditional model finds

102257



IEEE Access

D. Samarasinghe et al.: Flow-Based Reinforcement Learning

it increasingly difficult to collect rewards while reducing the
cost associated with channel switching. Incremental learning
model, on the other hand, does collect higher rewards but
cannot reach the performance level of the Flow model. This
provides further evidence to support the previous observation
with the maze navigation task where the incremental learner
is prone to overfit (although less significantly compared to
the traditional model) and not investigate new knowledge as
comprehensively as the Flow-based learner.

To further analyse the performance of the models during
more dynamic and complex environments, Figure 10 illus-
trates the results when the skill set of the 50" challenge was
used as the starting point to learn each challenge where chan-
nels are removed in succession in reverse order of introduc-
tion, and when channels are removed from random locations.
Similar to the observations with the maze navigation task, the
time taken to achieve the challenges after the 50™ level does
not improve significantly for all three models as they have a
boost in learning with the already improved skill level fed to
the agent.

According to Figure 10b, when the channels are removed
in reverse order, the Flow-based model is capable of effec-
tively utilising its learned skills to collect a higher amount
of total rewards for all challenge levels. The incremental
learning model has the same pattern of reward collection,
but consistently collecting lesser rewards compared to the
Flow-based model (p = 0.0 < 0.05). The traditional model,
on the other hand, shows a similar performance to its original
results where the total rewards is less for challenges with
more channels and gradually increases when the channels
are reduced. The reward differences (new reward - original
reward) shown in Figure 11 show that the Flow-based model
and the incremental model consistently maintain a higher
performance compared to their original performance when
the channels are being removed after the 50" level. But
the traditional model frequently achieves less rewards than
the original for certain challenges. When the channels are
removed randomly, the performance of the Flow model is not
as high as when the channels are removed in order, but still
better than the original for all challenges except for 2 accord-
ing to reward differences in Figure 11. The incremental learn-
ing model shows a higher performance level compared to
its original learning phase, however, as discussed before, the
rewards collected are not as high as the Flow model. The
performance of the traditional model also improves than its
counterpart which illustrates a similar observation to the maze
navigation task. As the model is forced to change its course
due to certain channels being not available from the path
learned at the 50™ level, the performance improves upto a
certain level. However, there exists statistically significant
evidence (p = 0.002 < 0.05) to suggest that both results are
not difference from each other for when channels are removed
in random versus in order for the traditional model.

To better understand the causes for the performance of the
models as observed, Figure 12 looks at the movement across
channels for the agent during all 100 time steps at each chal-
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lenge level for both models. This gives a clear understanding
of the differences observed in the total rewards collected. The
traditional model starts with smaller channel switches during
the less complex challenges (as expected due to unavailability
of a large number of channels). But as more channels appear
in the task, the model jumps to these channels for the higher
rewards disregarding the costs associated with transferring
through channels. When the channels are removed in random,
it can be seen that the model switches back and forth from
distant channels to collect more rewards, however, it is also
associated with higher costs which result in a low value of
total reward. Conversely, the Flow model and the incremental
learning model behave more intelligently taking the cost into
consideration. These models identify that the most efficient
pathway is to move within a smaller set of channels and
collect the best rewards from them rather than switching
to distant channels that can increase the overall cost. This
pattern is more significant in the Flow model with even less
distant switches being observed compared to the incremental
learning model. Despite each higher channel having some
cells with better rewards, the model has the ability to compare
the relative benefits of exploration versus exploitation to
identify the best solution to improve rewards.

This is further analysed with Figures 13, 14, and 15 which
evaluate the individual cost and reward values. According
to the figures, the performance difference observed with the
traditional model is caused due to the cost associated with
switching channels. The traditional model consistently scores
higher costs during each cell movement due to constantly
switching to channels that are further apart. As the challenge
complexity increases, the cost values increase proportionally
due to the availability of more channels. Conversely, the
Flow-based model and the incremental model are capable
of maintaining the costs at a minimum by only switching to
channels that are only adjacent and focusing on enhancing
the reward pool while retaining a minimum cost damage.
Despite the same strategy used by both the Flow model and
the incremental model, the Flow model is still capable of
collecting significantly more rewards than the incremental
model as discussed before. The average rewards collected for
each challenge level depicted in Figure 13b illustrates this
difference in rewards. Therefore, this deduces that the incre-
mental learner is more reluctant to adapt to new knowledge
and tends to stick with the knowledge gathered previously.
As a result, it misses the opportunity to increase the rewards
collected. Conversely, the Flow model is more flexible, and is
open to explore the new channel presented at every difficulty
level while retaining the previously acquired knowledge to
minimise costs and collect more rewards.

The evidence further proves the observations made with the
maze navigation task that suggests the Flow-based learning
model can push the boundaries of traditional and incremental
RL models. It has the potential to utilise the skills learned
in simpler challenges to achieve more complex goals in
future iterations, and the robustness and flexibility to adapt
to dynamic situations. In contrast to the compared models,
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FIGURE 11. Difference in total rewards collected by the three models for each challenge level from 0 leading upto 50t versus challenges after 50th
level upto 0th level (new reward - original reward). The experimental results are averaged across 50 runs each.

Flow-based agents improve their skills in line with the chal-
lenges while not being bored or exhausted. The evaluation
results deduce that such an agent that learns in a Flow zone
can not only learn to achieve a goal but learn to enjoy
the experience while building awareness of the environment
improving robustness and fault tolerance.
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V. CONCLUSION AND FUTURE WORK

This paper investigates a novel Flow-based RL model as a
potential alternative to overcome the challenges associated
with modelling artificial agent systems that can adapt to
complex and dynamic environments. The existing Al tech-
niques such as incremental and transfer learning suffer from

102259



IEEE Access

D. Samarasinghe et al.: Flow-Based Reinforcement Learning

Channels Removed in Random
Traditional RL

0 50
— 10 o)
2 20 40 @
%30 o
o 40 30=
250 @
© 40 202
© 30 5
6 20 106
10 E
0 O O O O O O o o o o 0
~— N < OO O N~ 0 OO O
Cell
Incremental RL
0 50
— 10 o
@20 40 @
%30 o
o 40 30 =
250 X%
@ 40 20 2
< 30 %
6 20 10 S
10 = =
0 O O O O O O O o o o 0
— N < O O M~ 0 OO O
Cell
Flow-based RL
50
40 B
>
o
30 =
o
20 2
C
10 £
S &)
0 0
O O O O O O O o o o
— AN O < 0 O M~ 0 O EE
Cell

Channels Removed in Order
Traditional RL

0 50
— 10 go}
S 20 40 O
30 §
o 40 30
S50 =
o 40 20 c
T 30 S
20 10 <
&) &)
10
O O O O O O O O o o o 0
N O < 1O © I~ 00 OO O
Cell
0 Incremental RL 50
— 10 Ne)
220 40 @
230 o
o 40 30 =
250 @
@ 40 20 &
T 30 =
(c) 20 10
10 ©
0 0

o O O O O O O O o
~ N O < 10O O N~ 0 O

100

Cell
Flow-based RL

50
40
30
20
10

0 0

o
—

Channels Moved

o O O O O O o o
N O < 0 © N~ 0 O

100

Cell

FIGURE 12. Channels moved to by traditional, incremental, and Flow-based RL models at every time step for all 100 challenge levels for both approaches:
channels removed in order, and in random. The results are averaged across 50 runs each and the colour-bar depicts the channel number for each cell the
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issues related adapting to dynamic environments due to the
inherent property of these approaches being primarily goal
oriented [15]. As a result, these systems lack the capacity
to build an awareness of the environment making them less
robust in changing environmental conditions. The model pro-
posed here focuses on maintaining agents in a Flow zone,
thus enabling them to enjoy an optimal experience of the
task which is not fueled only by the external goals but also
by the intrinsic curiosity to improve skills in a given task
environment. Therefore, agents learn to achieve goals through
incremental complexity levels while adjusting their skills set

102260

to face any random variation of the task at every complexity
level. A measure of identifying the Flow zone is also intro-
duced based on the novelty of the solutions identified by the
agents.

The Flow-based model is tested in two simulation envi-
ronments: a maze navigation task, and a reward collection
task with comparisons against a traditional RL model and an
incremental RL model to investigate the impact of the pro-
posed modifications to the algorithm. The two environments
were designed such that the maze navigation task deliberately
forces the incremental and Flow-based models to investigate
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new knowledge presented to the environment through the the new knowledge based on the capacity of the learner.
incremental difficulty levels; whereas the reward collection

The results indicate that agents learning in a Flow zone has
task only provides the option for the agent to investigate i

significant advantages over the traditional and incremental
VOLUME 10, 2022
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FIGURE 14. Individual cost values collected at each cell by the traditional, incremental, and Flow-based RL models at every time step for
all 100 challenge levels for both approaches: channels removed in order, and in random. The results are averaged across 50 runs each and
the colour-bars depict the individual cost values collected at every time step.

RL agents. Both simulation results show that the Flow-based
agent is able to dynamically adapt to new task environments
despite the environmental parameters being different from
what they experienced during the learning process. The Flow
experience enjoyed by the agent expands the performance
level of the agent as it does not choose to transfer to the
next challenge level until it can no longer improve its skills
in a particular complexity level. Despite already being able
to achieve the task, the agent remains in the Flow zone
until such time that it is no longer capable of identifying a
novel solution leading it to fall out of curiosity to explore
and thus move to the next task. An agent trained with the
incremental learning model is less efficient compared to the
Flow model even in an environment where they are forced to

102262

utilise new knowledge presented in incrementing difficulty
levels. When the agent is only provided with the choice but
is not forced, it is more prone to overfit to the previously
learned knowledge and not explore novel solutions which
could have lead to better performance. With an agent trained
using a traditional Q-learning RL model, the model is driven
only by the external goal and is satisfied once it achieves the
goal. Therefore, it does not attain enough knowledge to derive
flexible solutions given a dynamic environment.
Csikszentmihalyi identifies the contributing factors of
Flow as: challenges that match skills; merging of actions
and awareness where the attention of the individual is con-
centrated on the stimuli; clear goals and immediate feed-
back; making control possible; facilitating concentration and
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involvement (loss of self-consciousness); and transformation
of time as the agent’s own sequences of events marking
transitions through states without regard to equal intervals of
duration [14]. The proposed Flow-based model follows these
factors and demonstrates these characteristics as expected.
The task designs were given specific consideration to ensure
clear goals and immediate feedback are provided to the agent
for the Q-learning process. The two simulation tasks show
different time consumptions in comparison to the traditional
and incremental models illustrating that the Flow model
makes transitions across challenge levels based on its own
pace of achieving the optimal experience. The ability to
retain performance despite introducing random obstacles and
random channel removals for the two environments illustrate
that the agent has merged its actions and awareness to facil-
itate the sense of involvement and control leading to robust

VOLUME 10, 2022

performance levels that can achieve dynamic and complex
goals.

The evaluations provide promising evidence to explore
Flow as a tool to model artificial agents that can perform
in complex real-world problem domains with dynamic and
constrained environments. This paper investigated Flow in
the field of RL, but there exists opportunities to apply the
concept with other Al techniques such as artificial neural
networks and evolutionary computing. As Flow is a universal
concept that is associated with the characteristics of the opti-
mal experience enjoyed by a person/agent, it can be adapted
in any Al domain to understand the implications of learning
and knowledge transfer during multiple complexity levels of
a task. Both simulation environments that are tested within
this context are discrete environments where incrementing
challenges are relatively intuitive. However, Flow can also
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be applied in continuous environments by defining the chal-
lenge levels based on agent capabilities. For example, the
vision range of an agent can be restricted across multiple
challenge levels to increase the difficulty of the task faced by
the agent. Therefore, more research directions are also avail-
able to investigate the potential of Flow in continuous envi-
ronments. The proposed Flow-based learning model works
with tasks where complexity levels are manually defined.
Future research can be directed to explore the possibility
to automate the process of defining complexity levels and
investigate the performance of the model in environments
where complexity cannot be increased in fine improvements.
Further, the current results are focussed on single agent sys-
tems as the primary concern of this paper is to investigate
the applicability of the concept of Flow in Al domains.
Therefore, there exists potential to expand the evaluations
across multi-agent systems and multi-objective optimisation
problems in order to understand the implications when the
systems become even more complex. The results presented in
this work lend valuable insights into generating agent systems
that are equipped with the skills to address more real-world
applications.
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