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ABSTRACT This paper presents a novel Flow-based reinforcement learning strategy to model agent systems
that can adapt to complex and dynamic problem environments by incrementally mastering their skills. It is
inspired by the psychological notion of Flow that describes the optimal mental state experienced by an
individual when they are fully immersed in a task and find it intrinsically rewarding to engage with. The
proposedmodel presents an algorithm to describe the Flow experience such that agents can be trained through
finer distinctions to the challenges across training time to maintain them in the Flow zone. In contrast to
the traditional and incremental learning approaches that suffer from limitations associated with overfitting,
the Flow-based model drives agent behaviours not simply through external goals but also through intrinsic
curiosity to improve their skills and thus the performance levels. Experimental evaluations are conducted
across two simulation environments on a maze navigation task and a reward collection task with comparisons
against a generic reinforcement learningmodel and an incremental reinforcement learningmodel. The results
reveal that these two models are prone to overfit under different design decisions and loose the ability to
perform in dynamic variations of the tasks in varying degrees. Conversely, the proposed Flow-based model
is capable of achieving near optimal solutions with random environmental factors, appropriately utilising the
previously learned knowledge to identify robust solutions to complex problems.
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INDEX TERMS Flow, reinforcement learning, incremental learning, machine learning, artificial intelli-
gence.

I. INTRODUCTION18

Reinforcement learning (RL) is a prominent artificial intel-19

ligence (AI) technique that has been used in modeling agent20

behaviour in complex environments. RL models have been21

exploited in diverse agent-based systems that tackle problems22

such as coordinated exploration [1], [2], path planning [3],23

[4], collision avoidance [5], locomotion control [6], and other24

complex decision making tasks [7], [8], [9], [10] with both25

virtual and physical applications. However, a known limita-26

tion of the existing RL-based agent models is the difficulty27

in adapting to dynamic and uncertain conditions. This is28

primarily caused by the increased complexity of operation29

associated with changes in the environment [11], [12], [13].30

This paper investigates a novel Flow-based RL strategy31

which allows agent systems to adapt to complex environ-32

ments by incrementally mastering their skills. In psychology,33

Flow refers to the mental state experienced by an individual34

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiachen Yang .

when they are fully immersed in a task and find it intrinsically 35

rewarding to engage with. While there has always been an 36

awareness among people of the feeling of immersion, loss of 37

self-consciousness, and happiness experienced while being 38

fully engaged in a task they like, the concept was first coined 39

by the psychologist Mihaly Csikszentmihalyi [14]. The key 40

dimensions of any experience of a task are the challenges the 41

task brings, and skills required to achieve them. One deviates 42

from a Flow state of mind when they feel: anxious, due to 43

a challenge being beyond their reach; or bored, due to a 44

challenge being easily achievable compared to their current 45

skill level. If the challenges and the skill levels increase pro- 46

portionally within the Flow zone, it can facilitate a sense of 47

discovery driving one with an intrinsic motivation for higher 48

performance levels. 49

We adapt this concept of Flow in training artificial agents 50

within a reinforcement learning model by making finer dis- 51

tinctions to the challenges across training time to maintain 52

agents in a Flow zone. It can overcome intrinsic challenges 53

such as overfitting and catastrophic forgetting associated with 54
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adaptation to dynamic environments [15] by driving agents55

through both external goals as well as internal curiosity to56

explore novel solutions. We demonstrate that an agent trained57

with a Flow-based strategy is more robust than one trained58

with a traditional or incremental reinforcement strategy and59

can better perform in any random variation of the task envi-60

ronment they may encounter in future. This has major impli-61

cations for future in developing resilient intelligent agents and62

simulation technologies for modelling decision making and63

control strategies in diverse application environments. The64

contributions of this paper in this regard are as follows:65

• A novel Flow-based RL algorithm is proposed to66

enhance the learning ability of artificial agents in com-67

plex and dynamic environments.68

• A measure of identifying the Flow zone is introduced69

using novelty of the solution identified.70

• Simulations are conducted in two environments focused71

on maze navigation, and reward collection.72

• Evaluations are presented with comparisons against a73

traditional and an incremental RL model with dynamic74

tasks to investigate the proposed model.75

The rest of the paper is organised as follows. Section II76

summarises the relevant existing literature. Flow as described77

by Csikszentmihalyi and the proposed adaptations of the78

notion in the AI domain with the framework for Flow-based79

RL model are presented in Section III. The experimental80

setups and evaluations are illustrated in Section IV. Finally,81

Section V concludes the paper with a discussion of the results82

and possible future directions.83

II. RELATED WORK84

Designing artificial agents that can adapt to dynamic and85

complex problem environments has often been discussed86

as a critical challenge to be addressed in the AI domain87

for decades [16], [17], [18], [19], [20]. It has implica-88

tions in formalising a vast array of real-life applications89

from domestic ground robots to SAR (search and rescue)90

drones and self-driving vehicles. Researchers have explored91

several approaches to overcome the challenge of develop-92

ing robust agent models by approaching complex prob-93

lems through solving simpler versions. Incremental learn-94

ing [21] has emerged as a potential solution where controller95

behaviours are learned by progressively increasing the scope96

or the complexity of the task. It has been used to refine the97

actions of an agent incrementally over episodes such that a98

suitable policy can be synthesised for achieving the ultimate99

complex goal [22]. Using a gradient descent to incrementally100

increasing the number of agents involved and complexity101

of the task [23]; generating RL detector agents to detect102

environmental changes and update the value functions and103

thus the previous policy to suit the new environment [24];104

and lifelong incremental learning through a library of an105

infinite mixture of parameterised environment models [25]106

are some approaches where incremental learning with RL107

has been used for agent modelling. In a similar vein, transfer108

learning [26] is an approach that uses knowledge gained in 109

a previous task to subsequently address a related but dif- 110

ferent task. It has been adapted with evolutionary transfer 111

RL frameworks [27]; policy intersection to allow an external 112

policy influence the RL agent [28]; and with fine-tuning 113

where tasks are parameterised by their reward functions [29] 114

among other applications. Self-learning adaptive dynamic 115

programming [30] is also experimented in this regard as a 116

means of eliminating the explicit external reward scheme 117

by encouraging agents to learn internal rewards dynamically 118

based on the problem presented. The use of abstractions or 119

modular RL is another approach to solve complex problems 120

through tasks being subdivided intomultiple simpler modules 121

to be learned independently and combined [31], [32], [33], 122

[34]. 123

The key limitation with these existing approaches is that 124

they are primarily goal oriented. The agent behaviour is 125

directed towards achieving a dynamic goal through refine- 126

ment of action, and little thought is given to the learning 127

process in terms of balancing skills and challenges. As a 128

result, they are not capable of building a general awareness 129

of the environment that can later be utilised under changed 130

conditions; rather they tend to overfit to or forget the accu- 131

mulated knowledge [15], [35] which leads to deterioration of 132

performance as the model is presented with more complex 133

challenges. Such a model is incapable of developing a broad 134

awareness of the environment that they are performing in, 135

which can make it prone to failure when the environment 136

changes despite being good at achieving dynamic goals. 137

Flow is a notion that is not focused on external goals. 138

An agent in Flow enjoys an optimal experience where they 139

are intrinsically motivated towards exploring the environment 140

and building an awareness of the task, which extends beyond 141

a simple goal oriented mind. The concept has often been 142

adopted in human development and education as a way to 143

understand the conditions that make the process of learning 144

more enjoyable and efficient from a psychological point of 145

view [36]. It has been identified that Flow can facilitate 146

creativity and self-actualisation in the domain of learning 147

and problem solving for humans [37]. In the technological 148

domains, Flow has primarily been investigated with games 149

and gamification. The interactions between a player and the 150

game and the operative description of game-play has been 151

characterised in the literature through the aspects of Flow on 152

learning and enjoyment [38], [39]. However, Flow has not 153

received attention in the domains of agent systems and AI 154

models. It has characteristics to be explored as a potential 155

alternative to overcome the learning issues in dynamic envi- 156

ronments. Being in the Flow zone indicates that an agent will 157

not completely be goal oriented but will enjoy the experience 158

until it can no longer attain an optimal experience through 159

novel solutions [14]. Therefore, it can lead to artificial agents 160

that can identify more robust and generalisable solutions to 161

problems than too narrow and specific solutions. Therefore, 162

the work proposed here explores how the psychological the- 163

ory can be adapted in the field of artificial agents to enhance 164
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FIGURE 1. Complexity of consciousness increasing as a result of the Flow
experience [14]. An experience falls out of the Flow zone if the skill levels
improve without the challenge getting complex (82); or if the challenge
gets increasingly complex without an opportunity to improve skills (83).
In red is shown how we utilise the notion in agent systems to improve
skills of agents across increasing challenges. The agent is given the
opportunity to improve skills with a certain challenge level until it
reaches a level of boredom (8a) when the challenge is then made
complex (8b) bringing the agent back into the Flow zone.

their horizon of performance. The tasks designed for evalu-165

ations in this work closely follow the requirements for Flow166

and investigations are conducted to derive insights into the167

applicability of the theory in practice.168

III. FLOW-BASED REINFORCEMENT LEARNING169

This section introduces the concept of Flow as discussed from170

a psychological perspective, and how the notion is adapted for171

the AI domain. The architecture for the proposed Flow-based172

RL model is discussed in detail along with the algorithms173

proposed.174

A. FLOW175

Flow or optimal experience is characterised by Mihaly Csik-176

szentmihalyi as a sense that one’s skills and the challenges177

at hand are felt to be in balance in an action system that is178

goal-oriented and rule-bound, where clear clues are provided179

for how well one is performing [14]. Flow activities provide180

a sense of growth and discovery leading to higher levels of181

performance and states of consciousness.182

Figure 1 illustrates how the Flow experience improves the183

performance and pushes an individual towards more complex184

skill levels. The two axes in the diagram are the primary185

dimensions of any experience: the skill levels, and challenge186

levels. Considering an experience A; when the experience is187

first started at81, the individual will find it interesting and be188

in the Flow zone but both the challenge and the skill level are189

insignificant. If the challenge doesn’t improve, the individual190

will eventually improve their skills over time and start getting191

bored (82) and fall out of the Flow zone. If they are to192

regain a positive experience from this task, the challenge has193

to be improved (84). On the other hand, if the challenge194

FIGURE 2. Proposed Flow-based RL model. The task 8 commences with
an initial challenge level ς and a skill level ϑ . The agent keeps improving
its skill level by an increment of εϑ (step 1) until the boredom value β at
the challenge level ς exceeds the boredom threshold ϕ (step 2). If the
boredom threshold has been exceeded and the experience level 8 is the
expected ultimate level of the system 8G (step 3), then the system
completes the learning process. If not, the system increases the
complexity of the challenge by an increment of ες (step 4) and moves
back to the learning step.

increases without enough time for an improvement in the 195

skill level (83), it is possible for an individual to feel anxious 196

of their poor performance, thus degrading the quality of the 197

experience. The skills should improve for the individual to 198

enjoy the activity again (84). 199

While both 81 and 84 are in the Flow zone, they are 200

different from each other in terms of complexity. 84 is more 201

complex as the demand is for greater skills to address more 202

difficult challenges. In order for an individual to remain in the 203

Flow zone, both skills and challenges should be in constant 204

evolution towards higher complexity. 205

B. PROPOSED FLOW-BASED RL MODEL 206

With the understanding of the concept of Flow in psycho- 207

logical experiences, the notion was adapted in our work to 208

improve the learning ability of artificial agents in complex 209

simulated environments. The goal is to maintain the agent(s) 210

in the Flow zone continuously, such that both the challenges 211

and their skills improve simultaneously over time until the 212

expected level of performance for the expected level of chal- 213

lenge is reached. The experiences highlighted in red in Fig- 214

ure 1 illustrate this process. When the agent starts improving 215

their skills for a given challenge (ς) and passes the threshold 216

for boredom at 8a, the challenge level is incremented such 217

that their experience will be at 8b. The agent then starts 218

improving the skills again for the challenge to attain a higher 219

performance until it cannot further improve and gets bored 220

after some time (8c), and the challenge is incremented again 221

to bring the agent back into the Flow zone (8d ). This process 222

is repeated until the ultimate challenge level is reached. 223

The proposed Flow-based RL model designed based on 224

the said approach is illustrated in Figure 2. The task is 225

commenced with an initial challenge level ς and a skill 226

level ϑ . As the first step, the agent improves its skill level 227

by an increment of εϑ through the reinforcement learner. 228

At the next step, the algorithm calculates a boredom value 229

β at the challenge level ς and checks if it has exceeded 230

the boredom threshold ϕ. If it has not, it suggests that the 231

agent can still improve its performance and therefore moves 232
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back to the learning step (step 1). If the boredom threshold233

is reached, the agent has reached its maximum performance234

level for the particular challenge and has moved out of the235

Flow zone and is not enjoying an optimal learning experience236

anymore. As the next step (step 3), the algorithm checks if237

the experience8 being enjoyed by the agent at this level was238

the expected ultimate experience level of the system (8G).239

If it is, then the system has completed the learning process240

and the agent is now capable of performing at the highest241

expected challenge level with the best possible level of skills242

Algorithm 1 Flow-Based Reinforcement Learning

Require: ςG : Ultimate challenge
ς : Current challenge level
ες : Challenge increment
ϕ : Boredom threshold
ρς (S ′,A′) : The state action pairs in the

solutions derived for challenge ς
α : Learning rate
γ : Discount factor
ε : Decay constant
Q(S,A) : Q table for all state action pairs
R : Reward for each state
s : Current state
s′ : New state

Ensure: βς : Boredom at challenge level ς
1: procedure FLOW-BASED RL
2: INITIALISE Q(S, A)
3: do
4: ρς ← null
5: for EACH EPISODE T do
6: INITIALISE STATE s
7: do
8: τ ← RND(0,1)
9: if τ < ε then

10: α← RANDOM ACTION FROM A
11: else
12: α← MAX Q(s)
13: Q(s, a) ← Q(s, a) + α[R + γ max Q(s’,

A) - Q(s, a)]
14: ADD (s, a) TO ρς
15: s← s′

16: while s is not terminal
17: ε← UPDATE(ε)
18: bt ← 0
19: for all (s,a) pairs in ρς do
20: bt ← bt + BREDOM CALCULATION

(ς, (s, a))
21: βς ← bt / total pairs in ρς
22: if βς > ϕ then
23: ς ← ς + ες
24: ε← UPDATE(ε)
25: break
26: while ς < ςG

Algorithm 2 Boredom Calculation

Require: λ1 : Decay constant 1
λ2 : Decay constant 2
t : Current episode
σς ((S ′,A′), c) : The number of visits (c) to

each state action pair in the
solutions derived for challenge ς

η(t)(s) : Total number of visits to state
(s) up to episode t

η(t)(s, a) : Total number of visits to the
state action pair (s,a) up to
episode t

Ensure: bt (s, a) : Boredom at episode t for state action
pair (s,a)

1: procedure BOREDOM CALCULATION(ς, (s, a))
2: if (s, a) is in σς then
3: UPDATE COUNT(σς , (s, a), (c+ 1))
4: else
5: ADD (s, a) to σς
6: UPDATE COUNT(σς , (s, a), 1)

7: ηt (s)← EXTRACT VISITS (σς , s)
8: ηt (s, a)← EXTRACT VISITS (σς , (s, a))
9: bt (s, a)← (ληt (s)1 + λ

ηt (s,a)
2 )/2− 1

10: return bt (s, a)

(8G{ςG, ϑG}). However, if it has not reached the ultimate 243

challenge level, then the model increases the complexity of 244

the challenge by an increment of ες (step 4) and moves back 245

to the learning step. 246

As discussed above, the model requires a method to quan- 247

tify boredom and incorporate that with the reinforcement 248

learner. Algorithm 1 details the proposed algorithm with the 249

boredom calculation method illustrated in Algorithm 2. 250

The modified Flow-based RL algorithm 1 starts by initial- 251

ising the Q-table (line 2) and the state, action pairs of the 252

solution for the current challenge level ς as null (line 4). 253

A decaying epsilon-greedy Q-learning approach [40] is used 254

to balance the exploration versus exploitation tradeoff with 255

action selection. For the initial rounds of learning, a relatively 256

higher probability is assigned for selecting a random action, 257

and as the learning improves, this exploration probability 258

is reduced giving more chance for exploitation of the most 259

suitable actions (lines 8-12). Every state,action pair ((s, a)) 260

of the solution for each challenge level is recorded (line 14). 261

At the end of identifying a solution during every episode of 262

the challenge level, a boredom value is calculated based on 263

all state, action pairs visited by the solution (lines 19-21). The 264

value is then compared against a set threshold to determine if 265

the agent has moved out of the Flow zone, and if it has, then 266

the task environment is updated with a higher challenge level 267

and the learning process is started from the beginning. If not, 268

the agent still has the capacity to improve its performance, 269

and the learning process is moved to the next episode in the 270

same challenge level (lines 22-25). The process terminates if 271
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FIGURE 3. Maze navigation task. The agent is expected to navigate through the grid environment and find the shortest path from the start position (red)
to the end position (green) while avoiding obstacles (black). Each challenge level introduces a new obstacle obstructing the previously identified solution,
thus increasing the complexity of the challenge upto a total of 50 obstacles.

the boredom threshold has reached and the challenge level272

has also reached the ultimate level (line 26).1273

The boredom calculation is done as described in Algo-274

rithm 2. The novelty calculation function in equation 1 [41]275

is adopted to calculated the degree of boredom experienced.276

bt (s, a) = (λnt (s)1 + λ
nt (s,a)
2 )/2− 1 (1)277

This formula determines the frequency of visiting the state,278

action pair ((s, a)) over multiple episodes of runs. At the end279

of every episode, the algorithm updates the number of visits280

to each state, action pair in the solution (lines 2-6) and then281

calculates the boredom for each pair (line 9). The more a282

certain pair is visited overmultiple episodes, the less novel the283

solution becomes and therefore increasing the boredom value284

for that pair. 0<λ1, λ2< 1 are decay constants that determine285

the descent rate of novelty. The average boredom of all pairs286

is used in the Algorithm 1 to compare with the boredom287

threshold. The boredom values range between [-1,0], 0 being288

a solution completely novel and -1 being a solution that is not289

novel at all. The boredom threshold is set to -1. Therefore, the290

solutions start with a value of 0 at the first episode of each291

challenge and once they reach a value of -1 with no novelty292

in the state,action pairs selected, the challenge is incremented293

to the next level.294

1codebase available in https://doi.org/10.24433/CO.4345952.v1

IV. EXPERIMENTAL EVALUATIONS 295

This section elaborates the designs of simulation environ- 296

ments and experimental evaluations conducted to test the 297

proposed Flow-based RL model. 298

A. SIMULATION ENVIRONMENTS 299

The experiments utilise two tasks designed to investigate two 300

different objectives: 301

• Amaze navigation task: where the agent is forced to use 302

the new knowledge presented to the system. 303

• A reward collection task: where the agent is given the 304

option the use the new knowledge presented to the sys- 305

tem but is not forced to do so. 306

Each task consists of 51 challenge levels each present- 307

ing new knowledge to the system to evaluate agent perfor- 308

mance in traditional RL, incremental RL, and Flow-based 309

RL environments. The first task is associated with a maze 310

navigation environment as depicted in Figure 3. The agent 311

is expected to navigate through the available cells by finding 312

a path avoiding the obstacles (in black) from the start position 313

(red) to the end position (green). The goal is to find the 314

shortest path while avoiding the obstacles. The first chal- 315

lenge involves no obstacles, and the agent has the freedom 316

to explore all cells and find a suitable path to reach the end 317

position (Figure 3a). At each challenge level increment, new 318

obstacles are added by blocking free cells to make the task 319

more complex (Figure 3b). The agent can only travel to its 320
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FIGURE 4. Cell reward collection task. The agent is expected to collect rewards by moving onto 100 cells (figure indicates only 20 cells for clarity of
representation) across multiple channels. Switching between channels incur a cost associated with the distance between the two channels. The goal of
the agent is to collect the maximum total rewards possible (rewards from cells - costs of channel switching) by the end of 100 time steps. The first task
starts with only 2 channels, and each challenge level introduces a new channel with each channel having at least one cell with a higher reward than all
previous channels at the same cell position upto 52 channels. The cell with the highest reward for each column is highlighted in yellow. However, this
may not be the optimal path since channel switching also incurs a cost associated with the distance.

Von Neumann neighbourhood (the four adjacent cells from321

the current position), and therefore, to ensure a consistent322

increase in complexity level, a cell that was included in323

the previous solution’s path (chosen randomly) and it’s Von324

Neumann neighbourhood is blocked as an obstacle at every325

subsequent challenge level. As such, the incremental and326

Flow-basedRL agents are forced to utilise the new knowledge327

presented to the environment, as the previous solution they328

learnedwould be void due to being blocked by a new obstacle.329

The traditional RL agent is not impacted by this decision330

since it does not carry prior-knowledge to the next challenge331

levels.332

The next task that is used for evaluations is illustrated in333

Figure 4. The ultimate task consists of 52 channels (rows)334

with the first challenge level starting with only 2 channels.335

A new channel is added to the task environment at every336

challenge increment. Each channel consists of 100 cells, and337

each cell is associated with a reward value. At a given time338

tick, the agent can move to the next cell of any channel339

available. There is a cost associated with changing channels340

which is calculated based on the distance between the current341

channel and the channel beingmoved to (
√
|currentchannel−342

new channel|). The goal of the agent is to collect the max-343

imum total reward (rewards from cells - costs of changing344

channels) at the end of 100 steps by identifying the best path 345

through all available channels. 346

A few design strategies were used to ensure a consistent 347

increase in complexity with the challenge increments. Each 348

channel being added will have at least one cell which has a 349

higher reward than the rewards of all the previous channels at 350

the same cell position. This condition ensures that a difficulty 351

increase is guaranteed with every new channel being added 352

as there is an advantage in moving to the newly introduced 353

channel for a higher reward. The total reward of all cells 354

in a single channel should be within a given range [1000- 355

1500] and the rewards are incremented along the channel in 356

a sinusoidal stepwise format. Figure 5 depicts the nature of 357

reward assignment in the cells within each channel. 358

This task is different from the maze navigation task where 359

the incremental and Flow-based agents would be forced by 360

the design itself to utilise the new knowledge presented at 361

each difficulty level. In this case, the agent is provided with 362

the choice to either explore the new knowledge or to remain 363

with the solution identified at the previous difficulty level. 364

The new channel added would be useful to explore since it 365

has at least one cell with a higher reward than all cells of the 366

previous channels in that particular column, but the agent is 367

free to decide whether to visit that channel or not. 368
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FIGURE 5. Assignment of rewards to cells in the cell reward collection task. The rewards are assigned to each cell in each channel to ensure a consistent
increase in the complexity across the introduction of new channels. The rewards across the columns are incremented along the channel in a sinusoidal
stepwise format while ensuring the total rewards in a single channel is always within the range [1000-1500]. The figure depicts the rewards assigned to
cells averaged across 50 simulation environments.

TABLE 1. Attributes of the setup for flow-based reinforcement learning.

The attributes of the setup for the RLmodels are as given in369

Table 1. All 3 models are setup with the same decay constant370

ε for greedy learning for a fair evaluation.371

B. RESULTS372

This section evaluates the experimental results obtained by373

exploring the two task environments described above. The374

proposed Flow-based model is compared against a traditional375

RL model and an incremental learning model which were376

designed with the same common parameters used for the377

Flow model for a fair comparison. The traditional RL model378

is run for each challenge level independently to determine379

the solutions. The incremental learning model can use the380

accumulated knowledge from previous challenge levels in381

developing a solution for the new challenge levels. The cri-382

teria to update to the next challenge level is defined based383

on the stabilisation of error (to determine the convergence 384

of the solution) for the incremental learner. All experiments 385

with the 3 models were repeated for 50 different seeds each 386

and the aggregated result was considered during evaluations. 387

Two-sample t-test and one-way ANOVA are adopted as the 388

statistical evaluators for comparisons of two and three groups 389

respectively, and the statistical significance level is set at p= 390

0.05. 391

Figure 6 demonstrates the analysis results of the maze 392

navigation environment averaged across 50 runs each. The 393

total time taken (the number of state, action pairs visited 394

across all episodes) for each challenge level is shown in 395

Figure 6(a). The agent learning a particular challenge with 396

the Flow-based model or the incremental model builds on the 397

knowledge acquired from previous challenge levels. There- 398

fore, a fair comparison should use the cumulative time of 399

the Flow/incremental model where the aggregated total time 400

taken to learn all challenges up-to each specific challenge is 401

considered. The time curves plotted for both Flow and incre- 402

mental models in the figure demonstrate this cumulative time. 403

The time curve for the traditionalmodel depicts the time taken 404

to run only through each specific challenge. Accordingly, 405

it can be seen that the Flow-based model takes significantly 406

less time than the traditional model (p = 3.0924e-24 < 0.05) 407

and the incremental learning model (p= 8.2731e-04< 0.05). 408

Even though the cumulative time is considered for the Flow 409

model, the time taken to learn with the traditional model 410
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FIGURE 6. Analysis of the maze navigation task environment for each
challenge level. The experimental results are averaged across 50 runs
each and the shaded areas depict the standard deviation.

starts increasing significantly than the Flow model after the411

20th challenge level. Therefore, as the complexity of the task412

increases, the traditional model finds the task to be increas-413

ingly difficult compared to the Flow-based model. Similarly,414

the Flow-based model is also consistently more efficient than415

the incremental model.416

In close examination of the time curves, it can also be417

seen that even the traditional RL model performs signifi-418

cantly faster than the incremental RL model up to the 30th419

challenge level (p = 1.3021e-16 < 0.05), only after which420

the incremental model starts performingmore efficiently than421

the traditional model. This can be explained by the design of422

the task. For traditional RL model, the increasing number of423

obstacles makes the task difficult with the learner having to424

learn to avoid all obstacles at every challenge level as it does 425

not carry forward any prior knowledge of the environment. 426

Therefore, the time required consistently increases across 427

challenge levels. However, the incremental learner possesses 428

prior knowledge of the environment from the previous chal- 429

lenge levels and according to the results it can be deduced 430

that it overfits and finds it difficult to adapt to a new path 431

taking more time to converge to a solution until around the 432

30th level. However, as the complexity of the challenge level 433

further increases, the number of obstacles increases, thus 434

gradually reducing the number of path options to reach the 435

exit (solutions). Therefore, even if the incremental learner 436

is prone to overfit, it becomes relatively easier to identify a 437

new solution as the complexity increases for two reasons: the 438

learner is forced to look for a new path through the design 439

itself (as the new obstacle always intercepts the previously 440

identified solution); and the available options for a solution 441

gradually decreases with the increasing number of obstacles. 442

In contrast, this phenomenon is not observed with the Flow- 443

based learner. The tendency of the incremental learner to 444

overfit is further investigated with the reward collection task. 445

The length of the shortest path identified for each challenge 446

level with increasing number of obstacles is shown in Fig- 447

ure 6(b). The lengths of the paths increase with all 3 models 448

as the challenge level increases due to the increasing number 449

of obstacles that should be avoided to reach the end position. 450

At a glance, the Flow-based model and incremental learn- 451

ing model seem to identify shorter paths for all challenges 452

compared to the traditional model; however, there is not 453

enough statistical evidence to suggest a significant difference 454

between the solutions derived by the models (p = 0.0615 > 455

0.05). 456

The complexity of the paths were determined based on 457

the Manhattan distance which is the the sum of the abso- 458

lute differences between the start and the end positions. The 459

difference between the actual path distance and the Manhat- 460

tan distance was considered as the complexity of the path. 461

According to Figure 6(c), the complexities of the paths identi- 462

fied by all 3models are increasingwith the increasing number 463

of obstacles and the longer paths that should be followed as a 464

result. This observation further supports the design decision 465

of the challenge levels as the increasing complexity of the 466

paths correspond to an increasing complexity of the chal- 467

lenges. However, similar to the path length results, there is no 468

statistically significant difference between the complexities 469

of the paths identified by the models (p = 0.1817 > 0.05). 470

Therefore, the results suggest that the Flow-based model is 471

significantly efficient at identifying solutions for increasingly 472

complex challenges; however, there is not enough evidence 473

to suggest an improved quality of the results compared to 474

the traditional and incremental model with the current obser- 475

vations. In order to further explore the applicability of the 476

Flow-based RL model, the evaluations were then extended to 477

more dynamic scenarios. The next set of experiments were 478

conducted to analyse whether the Flow-based model can 479

effectively utilise the skills learned through performing in the 480
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FIGURE 7. Analysis of the maze navigation task environment for dynamic
scenarios. The skill level is fixed after the 50th challenge and the agent is
then made to navigate in: an environment where the added obstacles are
removed in reverse order for each challenge level; and in an environment
where a decreasing number of obstacles are placed in random places for
each challenge level for 50 more challenges. Evaluations are shown for all
100 challenge levels. The experimental results are averaged across
50 runs each and the shaded areas depict the standard deviation.

Flow zone when the task environment changes. Two sets of481

evaluations were conducted in this regard. As the first experi-482

ment, the skill level (Q-table values) was fixed after the agent483

has completed learning the 50th challenge with 50 different484

obstacles. The evaluations were then conducted by removing485

each obstacle in the reverse order that was added. Each eval-486

uation after the 50th challenge would then commence with487

the skills learned upto the 50th level. The same experiment488

was repeated with the traditional and incremental RL models489

where the skill level at the 50th challenge was then fed into the 490

agent as the commencing skill level for each decrementing 491

challenge level. For the second experiment, the obstacles 492

were not removed in order; rather, a decreasing number of 493

obstacleswere placed at randompositions in the environment. 494

I.e., after the agent has completed 50 challenges, the next 495

challenge is to overcome 49 obstacles placed in a different 496

random order to what the agent has experienced so far. The 497

subsequent challenges include decreasing number of obsta- 498

cles upto no obstacles placed at random positions. The skill 499

level achieved by the end of 50 challenges is fed to the agent 500

for each challenge after the 50th level as before. 501

Figure 7 illustrates the results for the total of 100 challenge 502

levels for Flow-based, incremental, and traditional RLmodels 503

as mentioned. According to Figure 7a, all 3 models show that 504

they take a statistically insignificant time to learn the next 505

challenge after the 50th challenge with their already improved 506

skill level with both experiments (obstacles removed in order, 507

and placed at random places). However, the Flow-based 508

model is still capable of completing the task faster than the 509

other two models. 510

Further, the length of the shortest paths shown in Figure 7b 511

demonstrates that the Flow-based and incremental learning 512

models can significantly enhance the agent’s skills towards 513

achieving significant performance levels. When the obstacles 514

are removed in order, the lengths of the paths identified 515

gradually start decreasing implying that the Flow-based and 516

incremental models can use previously learned knowledge 517

to fall back on to a simpler challenge. More importantly, 518

when the obstacles are placed in random places, they behave 519

significantly better and shows the capacity to find relatively 520

similar shorter paths during all challenge levels despite the 521

complexity of the challenge. This observation deduces that 522

the models did not in fact master the skills for a specific 523

challenge but achieved higher performance levels which lead 524

the agent to be able to tackle any dynamic goal in the given 525

problem space. On the other hand, the traditional RL model 526

shows that when obstacles are removed in order, the model is 527

not capable of finding shorter paths any longer even though 528

the challenge is being simplified. The lengths of the paths 529

that are found when the agent is presented with simpler 530

challenges after the 50th challenge is in the same range as 531

the solution derived for the 50th challenge. This demonstrates 532

that the traditional model has overfitted and is incapable of 533

readjusting to different challenge requirements. When the 534

obstacles are placed at random places, the sudden significant 535

drop in the path length can be observed at the 49th level, but it 536

starts performing poorly as the challenge level reduces. This 537

interesting observation is due to the same overfitting issue 538

observed before. Once 49 obstacles are placed in random 539

order, it suggests that a majority of the grid is covered with 540

obstacles which will significantly obstruct the path identi- 541

fied at the 50th level forcing the agent to learn a new path 542

disregarding some of the knowledge gathered earlier. This 543

leads to discovering a shorter path with the higher number 544

of randomly placed obstacles. However, as the number of 545
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FIGURE 8. Length difference for the shortest paths derived by the three models for each challenge level from 0 leading upto 50th versus challenges after
50th level upto 0th level (original-new length). The experimental results are averaged across 50 runs each.

obstacles are reduced, the previous path is impacted less546

significantly, and as the model does not have generalised547

knowledge it simply tries following the same old ineffi-548

cient path despite having shorter alternatives which never get549

explored.550

The results are similar with the complexity of the paths 551

observed in 7c as the complexity is correlated with the length 552

of the path. To further analyse the paths derived by the 553

models from 0-50th challenge versus 50-0th challenge after 554

commencing the learning process from the skill set of 50th 555
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FIGURE 9. Analysis of the reward collection task environment for each challenge level. The experimental results are averaged across 50 runs each and
the shaded areas depict the standard deviation.

FIGURE 10. Analysis of the reward collection task environment for dynamic scenarios. The skill level is fixed after the 50th challenge and the agent is
then made to collect rewards while minimising costs in: an environment where channels are removed in reverse order for each challenge level; and in an
environment where channels are removed from random locations successively. Evaluations are shown for all 100 challenge levels. The experimental
results are averaged across 50 runs each and the shaded areas depict the standard deviation.

level, Figure 8 illustrates the length differences (original-556

new). When the obstacles are removed in order, this shows557

that none of the three models are capable of finding a solution558

as accurate as the original solution except for a few higher559

level challenges, but traditional model demonstrates the worst560

performance out of the three. When the obstacles are placed561

in random locations, the challenge levels with less obstacles562

than around 20 show inaccurate performances, but starts563

improving the results for more complex challenges. Similar564

to the previous observation, the traditional model shows the565

highest negative length difference. This further supports the566

evidence to suggest that the traditional RL model is not as567

robust and flexible in a way that it can utilise its learned skills568

to overcome a new goal successfully.569

The next set of results illustrated in Figure 9 analyses570

the second problem which is on collecting cell rewards. The571

previous environment identified that when the agent is forced572

in the learning process to utilise new knowledge through573

the task design, both Flow and incremental models can find574

similar results; however, Flow is more efficient in comparison575

to incremental learning. The primary goal of investigating 576

the next environment is to understand the behaviour of these 577

models when the agent is not forced but is only given the 578

choice to utilise new knowledge through new difficulty levels 579

of the task. 580

In contrast to the observations with the maze navigation 581

task, the time analysis presented in Figure 9a depicts that the 582

cumulative time taken by the Flow model increases exponen- 583

tially with the challenge level and is significantly higher than 584

the traditional model (p= 0.0< 0.05). The incremental learn- 585

ing model is taking even more time compared to the Flow 586

model (p = 0.0 < 0.05) and is the most inefficient out of the 587

3 models compared. On a similar note, unlike the maze nav- 588

igation task where a statistically significant improvement in 589

performance was not observed, Figure 9b shows that the total 590

rewards (cell rewards - channel switching costs) collected by 591

the Flow-based RL model significantly increases than both 592

the traditional model (p = 0.0 < 0.05) as well as the incre- 593

mental learning model (p = 0.0 < 0.05). This shows that as 594

the number of channels increases, the traditional model finds 595
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it increasingly difficult to collect rewards while reducing the596

cost associated with channel switching. Incremental learning597

model, on the other hand, does collect higher rewards but598

cannot reach the performance level of the Flow model. This599

provides further evidence to support the previous observation600

with the maze navigation task where the incremental learner601

is prone to overfit (although less significantly compared to602

the traditional model) and not investigate new knowledge as603

comprehensively as the Flow-based learner.604

To further analyse the performance of the models during605

more dynamic and complex environments, Figure 10 illus-606

trates the results when the skill set of the 50th challenge was607

used as the starting point to learn each challenge where chan-608

nels are removed in succession in reverse order of introduc-609

tion, and when channels are removed from random locations.610

Similar to the observations with the maze navigation task, the611

time taken to achieve the challenges after the 50th level does612

not improve significantly for all three models as they have a613

boost in learning with the already improved skill level fed to614

the agent.615

According to Figure 10b, when the channels are removed616

in reverse order, the Flow-based model is capable of effec-617

tively utilising its learned skills to collect a higher amount618

of total rewards for all challenge levels. The incremental619

learning model has the same pattern of reward collection,620

but consistently collecting lesser rewards compared to the621

Flow-based model (p = 0.0 < 0.05). The traditional model,622

on the other hand, shows a similar performance to its original623

results where the total rewards is less for challenges with624

more channels and gradually increases when the channels625

are reduced. The reward differences (new reward - original626

reward) shown in Figure 11 show that the Flow-based model627

and the incremental model consistently maintain a higher628

performance compared to their original performance when629

the channels are being removed after the 50th level. But630

the traditional model frequently achieves less rewards than631

the original for certain challenges. When the channels are632

removed randomly, the performance of the Flow model is not633

as high as when the channels are removed in order, but still634

better than the original for all challenges except for 2 accord-635

ing to reward differences in Figure 11. The incremental learn-636

ing model shows a higher performance level compared to637

its original learning phase, however, as discussed before, the638

rewards collected are not as high as the Flow model. The639

performance of the traditional model also improves than its640

counterpart which illustrates a similar observation to themaze641

navigation task. As the model is forced to change its course642

due to certain channels being not available from the path643

learned at the 50th level, the performance improves upto a644

certain level. However, there exists statistically significant645

evidence (p = 0.002 < 0.05) to suggest that both results are646

not difference from each other for when channels are removed647

in random versus in order for the traditional model.648

To better understand the causes for the performance of the649

models as observed, Figure 12 looks at the movement across650

channels for the agent during all 100 time steps at each chal-651

lenge level for both models. This gives a clear understanding 652

of the differences observed in the total rewards collected. The 653

traditional model starts with smaller channel switches during 654

the less complex challenges (as expected due to unavailability 655

of a large number of channels). But as more channels appear 656

in the task, the model jumps to these channels for the higher 657

rewards disregarding the costs associated with transferring 658

through channels.When the channels are removed in random, 659

it can be seen that the model switches back and forth from 660

distant channels to collect more rewards, however, it is also 661

associated with higher costs which result in a low value of 662

total reward. Conversely, the Flowmodel and the incremental 663

learning model behave more intelligently taking the cost into 664

consideration. These models identify that the most efficient 665

pathway is to move within a smaller set of channels and 666

collect the best rewards from them rather than switching 667

to distant channels that can increase the overall cost. This 668

pattern is more significant in the Flow model with even less 669

distant switches being observed compared to the incremental 670

learning model. Despite each higher channel having some 671

cells with better rewards, the model has the ability to compare 672

the relative benefits of exploration versus exploitation to 673

identify the best solution to improve rewards. 674

This is further analysed with Figures 13, 14, and 15 which 675

evaluate the individual cost and reward values. According 676

to the figures, the performance difference observed with the 677

traditional model is caused due to the cost associated with 678

switching channels. The traditional model consistently scores 679

higher costs during each cell movement due to constantly 680

switching to channels that are further apart. As the challenge 681

complexity increases, the cost values increase proportionally 682

due to the availability of more channels. Conversely, the 683

Flow-based model and the incremental model are capable 684

of maintaining the costs at a minimum by only switching to 685

channels that are only adjacent and focusing on enhancing 686

the reward pool while retaining a minimum cost damage. 687

Despite the same strategy used by both the Flow model and 688

the incremental model, the Flow model is still capable of 689

collecting significantly more rewards than the incremental 690

model as discussed before. The average rewards collected for 691

each challenge level depicted in Figure 13b illustrates this 692

difference in rewards. Therefore, this deduces that the incre- 693

mental learner is more reluctant to adapt to new knowledge 694

and tends to stick with the knowledge gathered previously. 695

As a result, it misses the opportunity to increase the rewards 696

collected. Conversely, the Flowmodel is more flexible, and is 697

open to explore the new channel presented at every difficulty 698

level while retaining the previously acquired knowledge to 699

minimise costs and collect more rewards. 700

The evidence further proves the observationsmadewith the 701

maze navigation task that suggests the Flow-based learning 702

model can push the boundaries of traditional and incremental 703

RL models. It has the potential to utilise the skills learned 704

in simpler challenges to achieve more complex goals in 705

future iterations, and the robustness and flexibility to adapt 706

to dynamic situations. In contrast to the compared models, 707
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FIGURE 11. Difference in total rewards collected by the three models for each challenge level from 0 leading upto 50th versus challenges after 50th

level upto 0th level (new reward - original reward). The experimental results are averaged across 50 runs each.

Flow-based agents improve their skills in line with the chal-708

lenges while not being bored or exhausted. The evaluation709

results deduce that such an agent that learns in a Flow zone710

can not only learn to achieve a goal but learn to enjoy711

the experience while building awareness of the environment712

improving robustness and fault tolerance.713

V. CONCLUSION AND FUTURE WORK 714

This paper investigates a novel Flow-based RL model as a 715

potential alternative to overcome the challenges associated 716

with modelling artificial agent systems that can adapt to 717

complex and dynamic environments. The existing AI tech- 718

niques such as incremental and transfer learning suffer from 719
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FIGURE 12. Channels moved to by traditional, incremental, and Flow-based RL models at every time step for all 100 challenge levels for both approaches:
channels removed in order, and in random. The results are averaged across 50 runs each and the colour-bar depicts the channel number for each cell the
agent was in at every time step.

issues related adapting to dynamic environments due to the720

inherent property of these approaches being primarily goal721

oriented [15]. As a result, these systems lack the capacity722

to build an awareness of the environment making them less723

robust in changing environmental conditions. The model pro-724

posed here focuses on maintaining agents in a Flow zone,725

thus enabling them to enjoy an optimal experience of the726

task which is not fueled only by the external goals but also727

by the intrinsic curiosity to improve skills in a given task728

environment. Therefore, agents learn to achieve goals through729

incremental complexity levels while adjusting their skills set730

to face any random variation of the task at every complexity 731

level. A measure of identifying the Flow zone is also intro- 732

duced based on the novelty of the solutions identified by the 733

agents. 734

The Flow-based model is tested in two simulation envi- 735

ronments: a maze navigation task, and a reward collection 736

task with comparisons against a traditional RL model and an 737

incremental RL model to investigate the impact of the pro- 738

posed modifications to the algorithm. The two environments 739

were designed such that the maze navigation task deliberately 740

forces the incremental and Flow-based models to investigate 741
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FIGURE 13. Total cost and rewards collected at each cell and during each challenge level for the traditional, incremental, and Flow-based RL models.
Results are averaged across 50 runs each and the shaded areas depict the standard deviation. For the costs and rewards collected at each cell, the
results are summed across all challenge levels, and for the cost and rewards collected at each challenge level, the results are summed across all cells.

new knowledge presented to the environment through the742

incremental difficulty levels; whereas the reward collection743

task only provides the option for the agent to investigate744

the new knowledge based on the capacity of the learner. 745

The results indicate that agents learning in a Flow zone has 746

significant advantages over the traditional and incremental 747
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FIGURE 14. Individual cost values collected at each cell by the traditional, incremental, and Flow-based RL models at every time step for
all 100 challenge levels for both approaches: channels removed in order, and in random. The results are averaged across 50 runs each and
the colour-bars depict the individual cost values collected at every time step.

RL agents. Both simulation results show that the Flow-based748

agent is able to dynamically adapt to new task environments749

despite the environmental parameters being different from750

what they experienced during the learning process. The Flow751

experience enjoyed by the agent expands the performance752

level of the agent as it does not choose to transfer to the753

next challenge level until it can no longer improve its skills754

in a particular complexity level. Despite already being able755

to achieve the task, the agent remains in the Flow zone756

until such time that it is no longer capable of identifying a757

novel solution leading it to fall out of curiosity to explore758

and thus move to the next task. An agent trained with the759

incremental learning model is less efficient compared to the760

Flow model even in an environment where they are forced to761

utilise new knowledge presented in incrementing difficulty 762

levels. When the agent is only provided with the choice but 763

is not forced, it is more prone to overfit to the previously 764

learned knowledge and not explore novel solutions which 765

could have lead to better performance. With an agent trained 766

using a traditional Q-learning RL model, the model is driven 767

only by the external goal and is satisfied once it achieves the 768

goal. Therefore, it does not attain enough knowledge to derive 769

flexible solutions given a dynamic environment. 770

Csikszentmihalyi identifies the contributing factors of 771

Flow as: challenges that match skills; merging of actions 772

and awareness where the attention of the individual is con- 773

centrated on the stimuli; clear goals and immediate feed- 774

back; making control possible; facilitating concentration and 775
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FIGURE 15. Individual reward values collected at each cell by the traditional, incremental, and Flow-based RL models at every time step
for all 100 challenge levels for both approaches: channels removed in order, and in random. The results are averaged across 50 runs each
and the colour-bars depict the individual reward values collected at every time step.

involvement (loss of self-consciousness); and transformation776

of time as the agent’s own sequences of events marking777

transitions through states without regard to equal intervals of778

duration [14]. The proposed Flow-based model follows these779

factors and demonstrates these characteristics as expected.780

The task designs were given specific consideration to ensure781

clear goals and immediate feedback are provided to the agent782

for the Q-learning process. The two simulation tasks show783

different time consumptions in comparison to the traditional784

and incremental models illustrating that the Flow model785

makes transitions across challenge levels based on its own786

pace of achieving the optimal experience. The ability to787

retain performance despite introducing random obstacles and788

random channel removals for the two environments illustrate789

that the agent has merged its actions and awareness to facil-790

itate the sense of involvement and control leading to robust791

performance levels that can achieve dynamic and complex 792

goals. 793

The evaluations provide promising evidence to explore 794

Flow as a tool to model artificial agents that can perform 795

in complex real-world problem domains with dynamic and 796

constrained environments. This paper investigated Flow in 797

the field of RL, but there exists opportunities to apply the 798

concept with other AI techniques such as artificial neural 799

networks and evolutionary computing. As Flow is a universal 800

concept that is associated with the characteristics of the opti- 801

mal experience enjoyed by a person/agent, it can be adapted 802

in any AI domain to understand the implications of learning 803

and knowledge transfer during multiple complexity levels of 804

a task. Both simulation environments that are tested within 805

this context are discrete environments where incrementing 806

challenges are relatively intuitive. However, Flow can also 807
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be applied in continuous environments by defining the chal-808

lenge levels based on agent capabilities. For example, the809

vision range of an agent can be restricted across multiple810

challenge levels to increase the difficulty of the task faced by811

the agent. Therefore, more research directions are also avail-812

able to investigate the potential of Flow in continuous envi-813

ronments. The proposed Flow-based learning model works814

with tasks where complexity levels are manually defined.815

Future research can be directed to explore the possibility816

to automate the process of defining complexity levels and817

investigate the performance of the model in environments818

where complexity cannot be increased in fine improvements.819

Further, the current results are focussed on single agent sys-820

tems as the primary concern of this paper is to investigate821

the applicability of the concept of Flow in AI domains.822

Therefore, there exists potential to expand the evaluations823

across multi-agent systems and multi-objective optimisation824

problems in order to understand the implications when the825

systems become even more complex. The results presented in826

this work lend valuable insights into generating agent systems827

that are equipped with the skills to address more real-world828

applications.829
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