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ABSTRACT Due to the increasing injection of intermittent power sources (solar+wind) into a common
grid, dispatchable sources such as hydro power should be able to help reduce the variability in load and the
variability in generation caused by the intermittent sources. A hydro generator should be able to operate
short-term beyond its thermal capability limit. This requires the monitoring of internal temperatures in
the hydro generator. In this paper, a thermal model of an air-cooled synchronous generator is presented,
emphasizing the various aspects of parameter estimation and identifiability using Bayesian inference.
Inferences are drawn from the posterior distributions of the parameters and initial conditions, dispersion
(spreading) of particles and sampling efficiency, practical parameter identifiability, and model mismatch
with experiments. Results show extremely narrow parameter distributions. It is early to generalize about the
posterior distribution of air-related and metal-related parameters of the air-cooled synchronous generator
based on the single experimental data presented here.

INDEX TERMS Bayesian inference, model fitting, parameter estimation, parameter identifiability, syn-
chronous generator, thermal model.

I. INTRODUCTION
Electricity generation from intermittent sources such as solar
power, wind power, tidal power, etc., is rapidly increasing in
modern electric power system networks. The intermittency
in these sources causes the power system networks to operate
in different operating conditions. Dispatchable sources such
as hydro power can be used for removing the variability in
the system’s power production caused by the intermittent
sources [1], [2], [3], [4]. Thus, in a modern power system,
the hydro generators play a significant role in the flexible
operation of the intermittent grid. A concept of flexible hydro
power is coined in [5] for modern intermittent power sys-
tem networks. This adheres to a new research requirement
in the case of a synchronous hydro generator operating in
tandem with the intermittent sources. The performance of the
synchronous generator depends on its capability diagram [6].
The capability diagram provides information about the oper-
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ating regimes of the synchronous generator in case of the
various operational limits, viz., armature current limit, field
current limit, and under-excitation [7]. In [6], an instance
of exploiting more active power from the hydro generator
is studied by controlling the internal temperature of the
machine. The control of the armature current limit and the
field current limit will result in a decrease in resistance of
the armature and the field winding due to temperature mon-
itoring of the rotor copper, stator copper, and stator iron.
Furthermore, because of an increase in the active current
through the synchronous generator, more active power can be
exploited. The temperature is controlled by cooled air circu-
lation through the generator’s internal surfaces. The cooled
air is supplied through a heat exchanger, in a closed loop.
Previous work includes a brief review of thermal analysis of
electrical machines [8]. Lumped-parameter thermal network
(LPTN) models of the thermal machines are provided in [9],
[10], and [11]. Finite element analysis (FEM), and compu-
tational fluid dynamics (CFD) models were studied in [12]
and [13]. A totally enclosed water-cooled thermal model
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of synchronous machines for an electric vehicle has been
proposed in [14]. More recently, a totally enclosed thermal
model of an air-cooled hydro generator has been developed
in [15] using a closed-loop heat exchanger model for cooling
heated air from the outlet of the generator. The thermal model
of the air-cooled generator is further extended in [16] with
the inclusion of temperature-dependent electrical resistances,
temperature-dependent specific heat capacities of the metals,
and fluids (air+water) inside the air-cooled hydro generator.
The model of the air-cooled hydro generator is represented
by a computationally cheap online solution of the non-linear
model of the heat exchanger in [17], where a hybrid model
(mechanistic+data-driven) is proposed using linear and non-
linear regression.

In Section II, materials and methods are outlined.
Section III provides the mathematical governing equations
for the air-cooled hydro generator. In Section IV, results
from parameter estimation and parameter identifiability using
Bayesian inference are discussed. Conclusions are drawn in
Section V with future work suggested in Section VI.

II. MATERIALS AND METHODS
A. SYSTEM DESCRIPTION
Figure 1 shows the working principle of a thermal model of
an air-cooled synchronous hydro generator. The cold air out
of the heat exchanger is blown by a fan into the rotor/stator
air gap. The air is heated by heat flow from the rotor, air
gap windage, and bearing friction. Furthermore, the air is
forced into the iron cores and then gets heated by the heat
flow from the iron cores. The heated air is now collected
at the stator’s outlet and passed through a counter current
heat exchanger. The heated air is cooled using continuous
cold water circulation in the heat exchanger and then fed
again into the air gap as a closed loop process. The heat
exchanger is provided with cold water, with mass flow rate
ṁw, at temperature T c

w. The air mass flow rate is ṁa with
temperature T h

a at stator outlet and heat exchanger entry. The
rotor copper heat source, Q̇σr , is due to eddy currents caused
by If. Similarly, the stator copper heat source, Q̇σs , is due
to stator terminal current It . Q̇σFe is stator iron heat source,
and Q̇σf is heat generated due to friction in the stator/rotor
air gap. The thermal operation of the air-cooled synchronous
generator is mainly influenced by ṁw, ṁa, T c

w, Q̇
σ
Fe, Q̇

σ
f , It,

and If. It is of interest to consider evolution of temperature
in the rotor, stator, and iron core indicated by Tr, Ts and
TFe, respectively.Monitoring of these temperatures allows for
optimal exploitation of active power production by enhancing
the capability diagram to a new regime of operation [6].

Figure 2 shows the Bayesian framework for inference
about parameters of a dynamical system. In the figure,
x, u, z, θ, and y are the states, inputs, algebraic variables,
parameters, and outputs, respectively. In the figure, p (θ) is
the prior probability distribution of θ , p (y | θ) is the likeli-
hood function, and p (θ | y) is the estimated posterior distri-
bution of θ . Section IV provides detailed explanation about

FIGURE 1. Thermal model of the synchronous generator taken from [16].

FIGURE 2. Bayesian inference for the parameter estimation.

priors and likelihood. In Fig. 2, we also see that the posterior
distribution of parameters allows for various inferences about
the parameters of a dynamical system. The inferences include
(i) finding statistical moments from the posterior distribution
of the parameters, (ii) finding the relative dispersion of the
parameter space and the relative sampling efficiency between
the parameters, (iii) modelmismatchwith experiment and (iv)
inferences related to the posterior distribution of the initial
conditions while working with the model and the experimen-
tal data offline.

B. EXPERIMENTAL DATA
A heat-run test, of the synchronous machine, was performed
for 600 min [15] with sampling rate = [1] min. Only data
from t = 16 min to t = 600 min, i.e., 584 data points,
will be used for model fit. For each minute, for a supplied
field current, starting from a cold-start, measurements for
different quantities are recorded. The cold-run last up to
53 min, where the terminal voltage is built-up due to residual
flux in rotor windings. The measurements are available for
both electrical quantities and temperatures related to the air-
cooled synchronous generator. After the cold-run, the field
current is increased which increases the temperature of the
stator copper and the stator iron. The measured quantities are
summarized in Table 1, and the experimental data are plotted
in Fig. 3. The expression for terminal current It as shown
in Table 1, indicates that it is not measured using a sensor,
however calculated from a mathematical expression relating
power and voltage.

III. MATHEMATICAL MODEL
The mathematical equations governing generator metal tem-
peratures taken from [16] and [18] are

mrĉp,Cu
dTr
dt
= 1.1RrI2f − UAr2δ(Tr − T δa ) (1)

msĉp,Cu
dTs
dt
= 3RsI2t − UAs2Fe(Ts − TFe) (2)
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TABLE 1. Measured quantities from a 600 min heat-run test.

FIGURE 3. Experimental data for generator model from a 600 min
heat-run test taken from [15].

mFeĉp,Fe
dTFe
dt
= UAs2Fe(Ts − TFe)

−UAFe2a(TFe − T h
a )+ Q̇

σ
Fe. (3)

Similarly, the dynamical equations for air inside the gener-
ator are

0 = ṁaĉp,a(T c
a − T

δ
a )+ UAr2δ(Tr − T δa )+ Q̇σf (4)

0 = ṁaĉp,a(T δa − T
h
a )+ UAFe2a(TFe − T h

a ), (5)

and the heat exchanger is model as

(Nw
St − N

a
Ste
−N1St )T c

a = N1St T
h
a + N

a
St(1− e

−N1St )T c
w. (6)

In Eq. 6 N i
St for i ∈ {w, a,1} are dimensionless Stan-

ton numbers relating heat transfer coefficient, density, heat
capacity, and velocity.

Equations 1-6 can be written in Differential Algebraic
Equations (DAEs) form as

dx
dt
= f (x, z, u; θ)

0 = g (x, z, u; θ)

y = h (x, z, u; θ) (7)

where x = (Tr,Ts,TFe), z =
(
T c
a ,T

δ
a ,T

h
a
)
, u =

(
If, It,T c

w
)
,

θ = (mr,ms,mFe,Rr,Rs, ĉp,Cu, ĉp,Fe, ĉp,a, ṁa,UAr2δ,
UAs2Fe,UAFe2a, Q̇σFe, Q̇

σ
f ,N

a
St,N

w
St,N

1
St ).

The parameters and operating conditions are given in
Table 2.
Out of the three states, Ts and TFe are measured, while

it is of interest to estimate the temperature of rotating rotor
copper Tr. Similarly, out of three algebraic variables, T c

a and
T h
a are measured, and it is also of interest to estimate air gap

temperature T δa . The measured inputs, states and algebraic
variables are shown in Fig. 3.

IV. PARAMETER ESTIMATION
A. PROBLEM FORMULATION
It is of interest to estimate the thermal parameters and initial
conditions of the air-cooled hydro generator using Bayesian
inference.

The expected value of parameter θ̂ is calculated as

θ̂ = argmax
θ

p (θ | y) ,

where p (θ | y) is the ‘‘posterior probability distribution of
parameter θ for the given data y’’. p (θ | y) is expressed in
terms of likelihood p (y | θ) and prior p (θ),

p (θ | y) =
p (y | θ) p (θ)

p (y)
(8)

where p (y) is independent of θ , and is used as a normalization
constant for p (θ | y). p (y) is also known as the evidence or
the marginal likelihood. The prior p (θ) is our prior beliefs
about the probability density function for the parameter θ
without seeing the data. Similarly, the likelihood p (y | θ) is a
model representing the distribution of the data given a fixed
parameter θ and calculated as

p (y | θ) =
N∏
i=1

p (yi | θ) .

The evidence p (y) used for normalization is calculated as the
joint probability distribution of p (θ | y) and p (y)

p (y) =
∫
p (θ | y) p (y) dθ. (9)

The analytical solution to Eq. (9) is only available for simple
cases, and in real-life Bayesian inference, numerical solu-
tions are used. The Bayesian parameter estimation method
is applied to the system given by Eqs. (1-6).

B. FORMULATION USING TURING.JL
Turing.jl is a Julia package for probabilistic program-
ming [19]. Turing.jl is also composable with DifferentialE-
quations.jl [20], a Julia package for differential equations,
facilitating Bayesian inference in the parameter of the system
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TABLE 2. Parameters and initial operating conditions.

FIGURE 4. Bayesian inference implemented in Turing.jl in the Julia
language.

represented by differential equations. The problem is formu-
lated as shown in Fig. 4.

For the differential equations represented by Eqs. (1-6) we
want to estimate posterior distributions of:

• initial states Tr (t = 0), Ts (t = 0), and TFe (t = 0)
• heat transfer coefficients UAr2δ,UAs2Fe, UAFe2a, and
UAx

• heat sources Q̇σFe and Q̇
σ
f .

Table 3 shows the priors and the data for the estimation of
the selected parameters. In the table, V , usually chosen as a
inverse gamma function mostly for measurement sequence
in Bayesian inference [21], is the prior to the variance of
the measurement noise where we assume V ∼ 0−1 (2, 3).
We have assumed that all measurements have the same noise
variance since all temperatures are of similar size. The mea-
surement vector is y =

(
Ts TFe T c

a T h
a
)
. A loss function

is formulated using Turing.jl. The priors for the initial rotor
copper temperature are truncated normal distributions. For
parameters θ such as initial descriptor (differential and alge-
braic variables) as well as model constants, it is common to

assume a normal distribution, e.g., θ ∼ N (µ, σ ). Because
we normally want to limit the distribution to lie within a range
θ ∈ [θmin, θmax], e.g., to avoid negative values, it is quite
common to use a truncated normal distribution for the prior
of θ ,

θ ∼ T (N (µ, σ ) , θmin, θmax)

where T represents truncated normal distribution for θ .
The prior to the initial rotor copper temperature is cho-
sen as Tr (t = 0) ∼ T (N (30, 3) , 25, 35) where the mean
µTr(t=0) = 30◦C and is taken from Table 2 and the standard
deviation σTr(t=0) = 3 is the initial deviation that is assumed.
Similarly, the prior for Tr (t = 0) is truncated between 25◦C
and 35◦C. The priors of Ts (t = 0) and TFe (t = 0) are also
set accordingly with variance = 3 and the mean value taken
from Table 2 within some relevant values of θmin and θmax
for the parameters. Priors of other parameters to be found
are also set accordingly from Table 2. It is important to note
that the posterior distributions are approximated based on
the numerical solution of Eq. (9) using different sampling
methods. It is out of the scope of this paper to detail sampling
methods. Some of the available sampling methods are listed
in Table 3 and usage of these sampling algorithms can be
found in [19]. We have chosen the NUTS sampler with the
number of particles in the sampling as Ns = 1000 to estimate
the parameters.

C. ESTIMATED PARAMETERS
The posterior distributions of the estimated heat transfer
parameters are shown in Fig. 5. Figure 5 (a) shows the
distribution of the variance V of the measurement noises.
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TABLE 3. Priors, data and sampling methods.

FIGURE 5. Posterior distribution of heat transfer parameters for the
thermal model of the air-cooled synchronous generator.

Figures 5 (b-g) show the posterior distributions of heat trans-
fer parameters with mean and variance as shown in Table 4.
The expected value of these distributions are used as the
estimated parameters. Similarly, Fig. 6 shows the estimated
initial conditions for the metal temperatures of the air-cooled
generators.

D. ANALYSIS OF ESTIMATED PARAMETERS
The estimated parameters are analyzed based on mean and
standard deviation as well as naive standard error (Naive
SE) [22], and effective sample size (ESS) [23] as shown in
Table 4.

1) NAIVE STANDARD ERROR (NAIVE SE)
Naive SE is a term defined for inferential statistics similarly
to the mean and the standard deviation defined for descriptive
statistics. Naive SE is computed as in [22]. Naive SE provides
a measure of the potential error in the estimate while param-
eter inference is done through Bayes’ theorem. Naive SE

FIGURE 6. Posterior distribution of initial values for the thermal model of
the air-cooled synchronous generator.

TABLE 4. Analysis of the Bayesian inference using NUTS sampler for the
estimation of initial values, heat transfers and heat sources parameters
for air-cooled generator.

calculates the width of sample means around the population
mean. The lower the value of naive SE, the lower is the
dispersion. Naive SE can also be used to find the upper and
lower limit for the 95% confidence interval of the parameter
given by θ̄ ± σ̂θ where θ̄ is the mean value of the parameter
and σ̂θ is the naive SE.
From Table 4 we see that Naive SE measuring the disper-

sion of sample means around the population mean, in the case
of initial conditions lies between 4.74 · 10−14 to 6.48 · 10−14.
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The ratios of Naive SE for initial values is σ̂Tr : σ̂Ts : σ̂TFe =
4.74 : 6.48 : 6.12. Since Tr (t = 0) has lower Naive SE,
the posterior distributions of Ts (t = 0) and TFe (t = 0) are
wider than the posterior distribution of Tr (t = 0). This shows
that the posterior distribution of the temperature of the initial
states related to the rotating copper inside the hydro generator
is less wider than that of stationary copper and iron.

From Table 4 we see that the naive SE in the case of heat
transfer from rotor copper to the air-gap UAr2δ is smaller as
compared to the heat transfer from the stator copper to stator
iron UAs2Fe and the heat transfer from iron to air UAFe2a.
Thus, the posterior distribution of the heat transfer parameter
related to the air is more narrower than the heat transfer
parameter related to the metal inside the hydro generator.
From the values of the naive SE from Table 4 in the case of
heat sources parameters of the hydro generator, the dispersion
in the posterior distribution of the iron heat source parameter
Q̇σFe is higher than that of the friction heat source parameter
Q̇σf indicating that the heat source parameter related to air is
less wider than the metals.

2) EFFECTIVE SAMPLE SIZE (ESS)
ESS describes the correlation between observations in the
sample [23]. The calculation of ESS in Turing.jl is performed
as in [24]. The higher the value of ESS, the higher is the
correlation between the observations in the sample. ESS also
helps to determine the relative sampling efficiency of the
estimates based on the correlation between the observations
in the sample. The relative sampling efficiency of the param-
eters from the estimated ESS can be calculated as

η̂θ = 1−
ESSθj∑
ESSθj

(10)

The smaller the value of ESS, the higher is the sampling
efficiency. From Table 4, the relative sampling efficiency
η̂ among the initial conditions Tr (t = 0), Ts (t = 0), and
TFe (t = 0), the relative sampling efficiency of stator iron
temperature TFe (t = 0) is higher as compared to the relative
sampling efficiency of Tr (t = 0) and Ts (t = 0). In addition
comparing all the temperatures, the rotor copper temperature
Tr (t = 0) has the lowest sampling efficiency. This shows
that the temperature related to the rotating part of the hydro
generator has lower sampling efficiency than the stationary
part of the hydro generators. The sampling efficiency of the
temperatures can be calculated using Eq. (10). The sampling
efficiency for rotor copper temperature is given as η̂Tr =
1 − 4.92

4.92+2.61+2.36 ≈ 0.5. The ratios of sampling efficiency
for temperatures is η̂Tr : η̂Ts : η̂TFe ≈ 0.5 : 0.73 : 0.76.
Similarly from Table 4 using the estimated ESS for the heat
transfer parameters, the relative sampling efficiency of heat
transfer from rotating rotor copper to air-gap UAr2δ is lower
as compared to heat transfer between stationary copper to
stationary iron UAs2Fe or heat transfer from stationary iron
to air UAFe2a. Similarly from Table 4, we can see that both
heat source parameters have the same sampling efficiency.

FIGURE 7. Parameters identifiability based on the joint posterior
probability distribution of the parameters based on [27].

E. PARAMETER IDENTIFIABILITY
Parameter identifiability tells whether a parameter can be
computed uniquely from the givenmodel structure and obser-
vations. For complex systems, the number observed quan-
tities is much smaller than the number of states + alge-
braic variables. It is therefore of interest to estimate the
distribution of parameters that can explain the experimental
data well. In inferential statistics, the joint posterior distribu-
tion of parameters found in Section IV using the Bayesian
method can be used for parameter identifiability analysis.
In frequentist statistics, profile likelihood projections are
used for parameter identifiability [25], [26], [27]. Parameter
non-identifiability occurs due to (i) indistinguishability of
parameters in the model structure, and (ii) insufficiency in the
experimental data. Identifiability analysis considering model
structure is termed structural identifiability and identifiability
analysis considering the amount and quality of experimental
data is termed practical identifiability. Structural identifia-
bility is out of the scope of the paper and our focus is on
practical identifiability analysis. Figure 7 shows three cases
of the joint posterior probability distribution of parameters
θ1 and θ2 where Fig. 7 (a) illustrates that both parameters
are structurally non-identifiable since the parameters do not
converge to a point. The white lines show the posterior high
density interval (HDI) within which an unobserved parameter
value falls with a particular probability. The white dashed
line indicates that the parameters diverge to infinity. The
non-identifiability in parameters can only be resolved after
the model structure is distinguishable with parameters. In
Fig. 7 (b), the parameters are partially identifiable only at the
lower density interval. The partially identifiable parameters
are denoted as practically non-identifiable parameters. Iden-
tifiability of practically non-identifiable parameters can be
improved by increasing the amount and the quality of the
experimental data. Finally, Fig. 7 (c) shows that parameters
converge to a point and are identifiable.

Figure 8 shows the posterior joint probability distribution
or themarginal kernel density estimate of heat transfer param-
eter UAr2δ with other heat transfer and heat source parame-
ters. The central region in the marginal posterior distribution
shows the HDI for the parameter space with a higher con-
fidence region for the estimated parameters. Since the joint
density plot of other heat transfer and heat source parameters
bounded within a region, all the heat transfer and heat source
parameters are identifiable. The joint points in the central
region bounded with distorted ellipses in the figure show the
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FIGURE 8. Marginal kernel density plot of UAr2δ with other heat transfer and heat sources parameters.

modal values of the parameters. The joint posterior probabil-
ity distribution of UAs2Fe with other heat transfer and heat
sources parameters, and so on, are not shown in the figure.
The identifiability of all the parameters and initial conditions
can also be inferred directly from the posterior distribution of
the parameters shown in Figs. 5 and 6, respectively.

F. MODEL FITTING
It is of interest to see how well the mathematical model fits
with the experimental data. The estimated initial conditions
and parameters are used to compare the fitted model with the
experimental data.

Figure 9 shows the simulation versus experiment using the
estimated parameters for the simulation. The model repre-
sents the experimental data well. In the figure, experimental
data are well-matched with the simulation in the case of the

stator copper temperature Ts and cold air temperature T c
a . The

experimental data and the simulation are less well matched
for the lower temperature region before t ≈ 300 s in the case
of stator iron temperature TFe and hot air temperature T h

a .
In the case of TFe, the mismatch between the experiment

and the simulation prior to t ≈ 300 s as shown in Fig. 9 is
caused by the influence of the heat transfer parameter. The
posterior distributions of the heat transfer parameter UAFe2a
and UAs2Fe related to stationary parts are more wider than
the heat transfer parameter UAr2δ related to rotating parts.
UAr2δ is the heat transfer related to the rotating copper,
UAs2Fe is the heat transfer related to stationary copper, and
UAFe2a is the heat transfer related to stationary iron.
From this result, we can infer the dispersion characteristics
of the posterior distribution of the stationary copper, station-
ary iron, and rotating copper in the case of the air-cooled
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FIGURE 9. Model fit of simulation versus experimental measurements.
In the figure, Tr

(
S
)
, and Tr

(
M

)
represent simulated and measured rotor

copper temperature, respectively.

synchronous generator. The posterior distribution of the heat
transfer parameters related to the stationary parts is more
wider than the posterior distribution of the heat transfer
parameters related to the rotating parts. The stationary iron
receives heat from the heated stator copper at temperature Ts
because of terminal current It flowing through the stator cop-
per. Thus, the posterior distribution of heat transfer parameter
related to stationary iron is more wider. This is because of
the result from Section IV-D that the posterior distribution
of the heat transfer parameter related to iron receiving heat
from the stationary copper UAs2Fe and the heat transfer from
heated stationary iron to air UAs2Fe are more wider. Thus, the
simulation results of the stator iron TFe is not matched with
the experimental data for lower temperature region before
t ≈ 300 s for the air-cooled synchronous generator. In the
real operation of the air-cooled hydro generator at Åbjøra,
Norway [15], for a period with the average time constant
of 53 min the machine was in the state of the cold-run as
described in Section II-B. The stationary iron takes time to get
heated from the stationary copper heated from the terminal
current It.
Similarly, in the case of hot air temperature T h

a , the mis-
match between the experiment and the simulation before
t ≈ 300 s as shown in Fig. 9 is because of the influ-
ence of the heat transfer parameter related to the stationary
iron; UAFe2a and UAs2Fe. From Fig. 1 the iron heat source
Q̇Fe2a = UAFe2a(TFe−T h

a ) [16] which indicates that the non-
homogeneous heating of iron during the cold-run of the hydro
generator cause heat transfer parameter related to stationary

iron UAFe2a to attain different modal values as shown in
Fig. 5 (c). In addition, this non-homogeneous heating of
the iron also affect the iron heat source parameter Q̇σFe as
shown in Fig. 5 (e). This means that during the cold-run
of the air-cooled synchronous generator the air inside the
hydro generator at temperature T h

a is heated intermittently
or non-homogeneously as indicated by the experimental data
during the cold-run prior to t ≈ 300 s. Similar, intermittency
can be seen in the case of experimental data for cold air
temperature T c

a and stationary iron temperature TFe. As the
air temperatures T c

a , T
δ
a and T h

a inside the machine are inter-
related through governing Eqs. (3), (4), and (5), it can be
predicted that the experimental data during the cold-run of
the hydro generator for air-gap temperature T δa should also
be intermittent. The governing equations for the metal and air
temperatures formulating a dynamic model for the air-cooled
machines with stationary iron parts need intermittent correc-
tion for its heat transfer parameter related to iron during the
cold-run of the machine.

V. CONCLUSION
For the air-cooled synchronous generator as described in
Section II-A, results from the analysis of the estimated param-
eters as described in Section IV-D show that the posterior
distribution of temperatures of the stationary parts inside
the air-cooled synchronous generator is more wider than the
rotating parts. In the case of the heat transfer parameters, the
posterior distribution of the heat transfer parameters related to
metals is more wider than the posterior distribution of the air-
related parameters. Furthermore results also indicate that the
posterior distribution of the heat sources parameters related to
iron is also more dispersed than other heat sources parameters
like heat source due to friction, etc.

From Section IV-E, results indicate that all the parameters
estimated are practically identifiable. From Section IV-F,
results indicate that the mismatch between the experimental
data and the simulation results for the iron temperature and
hot air temperature during the cold-run of the hydro generator
is due to the higher dispersion characteristics in the poste-
rior distribution of the stationary parts of the generator. The
stationary iron takes time to get heated from the stationary
copper. The stationary copper gets heated from the terminal
current flowing through the stator copper. Thus, the posterior
distribution of parameters for the air-cooled synchronous
generator affects the mismatch between experimental data
and the simulation results. Results also indicate that the heat
transfer parameter related to iron attains an intermittent value
during the cold-run of the air-cooled synchronous generator.

VI. FUTURE WORK
The governing equations for the air-cooled hydro genera-
tor, represented by Eqs. (1-6), are considered with constant
metal resistances and constant specific heat capacities. Future
work includes parameter estimation and identifiability in the
case of temperature dependent resistances and specific heat
capacities. From Figs. 5 and 6, we see extremely narrower
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parameter distribution. It would be interesting to see the
relationship between the measurement data available for the
descriptor and the width of parameter distribution.
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