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ABSTRACT This paper introduces a function for blockchain performance evaluation as a black-box. The
function runs the Solana blockchain test network with the only differences between the main network in a
configuration file and the physical network to operate in. The black-box takes setup parameters as input,
launches blockchain in a cloud, emulates artificial users’ activity, and gives two outputs–transactions per
second (tps) and drop rate. By default, the setup has six most important integer parameters and a network
with three computers in the cloud, while one can vary eighty-nine parameters, the number of computers in
the network and use local computers via black-box configuration files. The applied problem is to maximize
the tps under a zero drop rate constraint. The black-box, like real blockchains, uses network communication,
so reproducibility is an essential part of the design. We also provide an optimization baseline, showing the
non-trivial results’ reachability.

11 INDEX TERMS Blockchain, black-box, metaheuristic, surrogate optimization.

I. INTRODUCTION12

Blockchains [1], [2] are peer-to-peer networks. In contrast13

to centralized networks, where an associated data storage14

updates by the will of a single peer, one can not update just15

one’s local storage but should agree on the changes with16

other peers. The consensus is an agreement problem among17

many peers [3], [4]. Some peers may be faulty because of18

technical issues, own business or economic interests or hacker19

attacks. Consensus protocols in the presence of faulty peers20

exist since before blockchains [5] and play a key role in21

them. Blockchains group atomic changes of the associated22

data storage–transactions–into ordered batches–blocks–and23

achieve consensus about new blocks. Besides classic correct-24

ness requirements, blockchains need specific ones [6], [7],25

such as high performance regarding transactions per second26

(tps), fast transaction confirmation, and chain quality.27

The fast transaction conformation is a measure of latency28

between a user broadcasting a transaction on the Internet and29

the transaction inclusion in an agreed block. If users gener-30

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehdi Sookhak .

ate transactions independent of the block generation events 31

moments, the latency can not be less than half of the average 32

block generation time. Furthermore, if the mempool–the set 33

of the new correct transactions to be added to the blockchain– 34

is small, the ongoing block will include the new transaction, 35

and the resulting latency will be close to half of the block 36

generation time. Blockchain needs to have a more significant 37

throughput than the flow of new transactions to avoid the 38

infinite growth of the mempool. The throughput regarding 39

tps is a standard measure of blockchain performance. 40

The throughput and latency compete. On the one hand, 41

one can have blocks without user transactions or one trans- 42

action each, then one can generate blocks according to the 43

pre-agreed deterministic rule, and the average time between 44

blocks can be negligible. Nevertheless, the throughput will be 45

zero for empty blocks and small for one-transaction blocks. 46

On the other hand, one can allow unlimited blocks and 47

include all the transactions over a long period into a single 48

block but generate blocks once per one hundred years. In this 49

case, the overhead for consensus will be small, and one can 50

achieve the maximum throughput. However, one will wait 51

fifty years for transaction processing, which is infeasible for 52
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practical applications. So the blockchain has a Pareto front [8]53

of optimal operation regimes and needs to pick the proper54

regime through a trade-off between the current system needs.55

In practice, blockchains upper-bounds latency and maxi-56

mizes tps. So do Bitcoin and Ethereum–the most prominent57

blockchains and cryptocurrencies by capitalization [9]. For58

example, on average, Bitcoin adjusts the difficulty parameter59

once per 2016 to have one block per 10 minutes. Ethereum60

picked an interval between blocks of 12 seconds based on61

Bitcoin statistical data to have enough time to synchronize a62

block over most peers [10].63

Blockchain scalability is a hot topic, and the throughput64

increase is one of its dimensions [11], [12]. Low throughput65

results in higher market-driven transaction fees and higher66

latency at user activity peak [13], [14], finally, a bad user67

experience. Various approaches to speeding up the through-68

put exist. One idea is to change the consensus algorithm.69

Thus, EOS [15] shows around 4000 tps for latency less70

than 1 second with its implementation delegated proof of71

stake consensus protocol (DPoS) [16] compared to Bitcoin’s72

7 tps and Ehtereum’s 14 tps. Alternative solutions show73

comparable results, with a theoretical limit of 700 000 tps74

with a bottleneck in Ethernet [17], [18], [19].75

Another idea is to run N blockchains in parallel or make a76

hierarchical structure of blockchains to increase the through-77

put up toN times. Suchmulti-blockchain structures are called78

sidechain or parachain, and several solutions are proposed79

and implemented [20], [21]. A similar solution to the scal-80

ability problem pursued by Ethereum research is sharding81

protocols in which the whole blockchain network splits into82

different sections that can perform all necessary actions. This83

solution must be implemented in the base blockchain pro-84

tocol itself and therefore requires reconstructing the whole85

network. These are called layer-1 solutions in blockchain and86

suffer from a trade-off between scalability and security; when87

we increase system performance by distributing transactions88

to shards, we decrease the computational resources for each89

of them [22], [23].90

An alternative solution can be implemented at the user91

level and can significantly increase the performance of their92

applications. These solutions are called layer-2 solutions. One93

of them is organizing state channels by which users can94

interact with each other and place in a parent blockchain only95

the aggregated set of transactions. An example of such an96

approach includes lightning networks for Bitcoin, Counter-97

factual and Raiden for Ethereum [24], showing tps over98

100 000. Another example of solutions of such kind is99

sharding protocols in which individual users check only part100

of incoming transactions. An example of such an approach101

includes Plasma for Ethereum [25], [26]. The main difference102

between the two layer-2 approaches is that in the state chan-103

nels, transactions are validated utilizing a consentient con-104

sensus among participants. In contrast, in shading protocols,105

transactions are validated by a Merkle proof submitted to the106

main chain by sharding users, which leads to a delay in the107

transaction approval process.108

We currently have networks without access to change 109

parameters for research for a fixed blockchain architecture. 110

Nevertheless, the source code of the blockchain is publicly 111

available. So we can launch a test system in our environ- 112

ment and vary parameters as we wish. Both network and 113

protocol parameters define the blockchain operation regime. 114

Some of the network parameters are observable, for example, 115

the current pool of unconfirmed transactions; some of the 116

network parameters are not observable (latent), for example, 117

blockchain network graph, connection latency, and band- 118

width [27], [28]. Unobservable parameters play an essential 119

role in the performance; for example, average propagation 120

delay affects transaction latency, and it is helpful to estimate 121

themwith a particular accuracy [29]. Latent parameters result 122

in the impossibility of emulating the network with the test 123

network but only simulating. 124

This paper is a continuation of the research [30], where we 125

presented a machine learning view on blockchain parameters 126

adjustment, designed a Solana blockchain-based testbed, and 127

performed a sensitivity analysis of the available parameters. 128

This paper presents a function for blockchain performance 129

evaluation in the form of an interactive black-box. The func- 130

tion runs the Solana blockchain test network with the only 131

differences between the network in a configuration file and 132

the physical network to operate in. The main objective is to 133

maximize the throughput, while more problems, including 134

the results propagation to the network, are of interest too. The 135

rest of the paper is organized as follows. Section 2 views the 136

Solana blockchain as a black-box for parameter adjustment. 137

Section 3 introduces the developed black-box and details its 138

reproducibility. The optimization with a limited black-box 139

computation budget shows the reachability of non-trivial 140

results in Section 4. Finally, Section 5 concludes the paper. 141

II. SOLANA BLOCKCHAIN AS BLACK-BOX 142

Solana is a high-performance permissionless blockchain [18], 143

[31]. Its network consists of clusters–sets of validators work- 144

ing together to serve client transactions and maintain the 145

ledger’s integrity. Clusters may coexist. When two clusters 146

share a common genesis block, they attempt to converge. For 147

example, one set of clusters with a common genesis block is 148

a Solana network, whose token is in the top ten cryptocurren- 149

cies by market capitalization as of July 2022 [9]. Otherwise, 150

each cluster ignores the existence of the others with different 151

genesis blocks. One sets a genesis configuration to create 152

a cluster and runs a validator. Additional validators then 153

register with any registered member of the cluster. 154

Clients send transactions to any validator’s Transaction 155

Processing Unit (TPU) port. A validator forwards the transac- 156

tion to the designated leader. If the validator is in the lead role, 157

the node bundles incoming transactions, timestamps them, 158

creating an entry, and pushes them onto the cluster’s data 159

plane. Once on the data plane, the transactions are validated 160

by validator nodes, effectively appending them to the ledger. 161

Solana defines confirmation as the duration of time from the 162

leader timestamps a new transaction to the recognition of a 163
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TABLE 1. The most important Solana’s parameters for tps.

supermajority of ledger votes. The blockchain rotates leaders164

at fixed intervals, called slots. Each leader produces entries165

during its allotted slot only.166

The proof-of-Stake consensus protocol allows for achiev-167

ing consensus in Solana. The Proof-of-History (PoH) tech-168

nique guarantees reliable transaction ordering, which allows169

synchronization with block parts rather than whole blocks.170

PoH is not a consensusmechanism but an application-specific171

verifiable-delay function (VDF). The verification in PoH has172

the same asymptotic as the proposal creation but with a173

better constant, while the verification in VDF has faster rates.174

Another difference between PoH and VDFs is that a VDF175

tracks duration only. PoH includes hashes of any data the176

application observed as well.177

Due to the Solana design, the ratio of sent transactions178

and successfully written in block, i.e. finalized, maybe not179

equal 1. The per cent of dropped transactions through a time180

interval is called drop rate. The drop rate and transaction181

per second (tps) are the main pair to characterize Solana182

performance like latency and tps for Bitcoin and Ethereum.183

Note that tps counts only successful transactions.184

The high-load stationary [32] operating regimes are of185

interest. We achieve them by launching a cluster on our186

infrastructure–a test network (testnet)–and running a bench-187

mark with a big batch of user transactions. The benchmark188

outputs are tps and drop rate. As a result, we consider the189

whole workflow as a function y = F(x, θ, ξ ), where190

• x is the vector of observable uncontrollable blockchain191

parameters. For example, the number of nodes is a com-192

ponent of x.193

• θ is the vector of (observable) controllable blockchain194

parameters. For example, block size is a component195

of θ . In general it may depends from uncontrollable196

parameters θ (x).197

• ξ is the latent (uncontrollable) blockchain parame-198

ters. For example, nodes’ computational power is a199

component of ξ .200

• y is the vector of the blockchain operation regime with201

given parameters (x, θ, ξ ). In the benchmark, tps and202

drop rate are the only components of y. As the tps is203

non-negative, we formally set tps = 0 for the non-zero204

drop rate cases. After this modification, y becomes a205

one-dimensional vector, i.e., scalar.206

The uncontrollable parameters x = x0 are constant for a 207

given testnet. We treat latent parameters ξ as independent 208

random variables for different runs. The testnet takes around 209

ten minutes to evaluate a random function y = f (θ ) = 210

F(x0, θ, ξ ). Under computational time constraint and lack of 211

an analytic model for the function f , a black-box optimization 212

problem arises: maximize the mean value of f (θ ) over θ with 213

a maximum Nmax calls of f . 214

III. BLACK-BOX DESCRIPTION 215

A. STRUCTURE 216

Our Solana blockchain black-box is openly available on 217

Github [33] under Apache 2.0 licence. The core of the 218

black-box is a fork of Solana version 1.5.0. By default, 219

Solana does not allow to change parameters. So we modified 220

it to support 89 controllable user-input parameters θ . One 221

can change all these parameters for the black-box, although 222

we use 6the most important parameters [30] by default. 223

Table 1 lists the parameters, their meaning, and default 224

values. All the parameters are unsigned integers in Solana 225

because of the implementation. In theory, some parameters 226

are real numbers, for example, HASHES_PER_SECOND. 227

At the same time, others are fundamentally integers, for 228

example, NUM_THREADS. To start evaluation, one must 229

fill the credential file and run the black-box as a Python 230

function (see the Examples folder in the repository). 231

The function takes 6 integer inputs as θ from a ±15% 232

box around corresponding Solana’s default values θ0 = 233

(4, 1000, 1000, 63, 2000000, 160). Other words, θ ∈ 2 ⊂ 234

Z6, where 235

2 =
(
[3, 5]× [850, 1150]× [850, 1150]× [53, 73] 236

× [1700000, 2300000]× [136, 184]
)
∩ Z6 (1) 237

and Z6 denotes the set of all six-dimensional integers. 238

The output is two-dimensional: tps and drop rate. The 239

applied problem is to maximize tps under the zero drop rate 240

constraint. 241

The black-box is a computational job as follows 242

(see Figure 1) 243

1) Allocate computers within a single data centre. 244

By default, we use four t2.2xlarge virtual 245
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FIGURE 1. Black-box structure.

instances in Amazon Elastic Compute Cloud (EC2).246

Three instances are for the Solana cluster, and one is247

to manage the performance test. We use this data cen-248

tre computer configuration because of its widespread249

availability. However, one can edit the configuration250

file to change a computer’s type, the data centre or a251

cloud platform.252

2) Start Solana test cluster on instances with given param-253

eters plus one instance to manage the experiment. All254

the instances are from the same Docker container but255

with different Terraform configurations.256

3) Wait until the nodes start communication. The cluster257

needs to allocate resources and synchronize commu-258

nication upon start. Solana calls it a network conver-259

gence. Benchmark results may be unstable before the260

synchronization. We numerically estimate the conver-261

gence time in Section III-B.262

4) Run Solana’s bench-tps benchmark. The manager263

instance generates a million user accounts, fills them264

with coins and sends transactions to simulate user activ-265

ity. Test cluster processes the transactions; each node266

generates log files. Manager instance collects logs,267

computes experimental results, and returns the black-268

box output. The black-box job is done.269

B. NETWORK CONVERGENCE270

Upon the black-box launch, a testnet and a manager271

instance start. Each computer in the testnet needs to allo-272

cate resources and synchronize the consensus-driven com-273

munication. The manager instance creates user accounts to274

send a transaction from them. These processes take time,275

and the Solana team recommends waiting until the network276

converges [31].277

To estimate the system convergence time numerically,278

we performed the following experiment. For the Solana’s279

default point θ0 = (4, 63, 1000, 1000, 2000000, 160) and per280

each waiting time between network start up and benchmark281

run from 0 to 90 seconds with step 10 seconds, the black-box282

has been computed 10 times. The mean tps and its standard283

deviation (std) as functions of the waiting time are in Figure 2.284

The reason for a performance peak of around 30 seconds is 285

unknown. Such effect is not present on a local testnet but 286

only in the cloud. So the cloud resource allocationmechanism 287

may be the clue. Delays ≥ 70 seconds show stable stationary 288

results. We set the delay of 80 seconds as a default timeout 289

in a black-box for network convergence, but one can set his 290

value as an optional black-box parameter. 291

C. SIGNAL-TO-NOISE RATIO 292

The function f (θ ) = F(x0, θ, ξ ) is random. Signal-to-noise 293

ratio (SNR) as a measure that compares the level of a desired 294

signal to the level of background noise [34] 295

SNR =
varθEξF(x0, θ, ξ )
EθvarξF(x0, θ, ξ )

, (2) 296

where E is the mathematical expectation and var is the 297

variance. To estimate SNR, we generated a random sample 298

{θn}
N
n=1 of N = 10 independent uniformly distributed within 299

the allowed domain points 2 (1). The function F(x0, θ, ξ ) 300

was evaluated M = 10 times in each point from {θn}Nn=1, 301

resulting in a dataset
{
F(x0, θn, ξn,m)

}N ,M
n,m=1. Two indexes of 302

ξ show that ξn,m are independent for different pairs of (n,m). 303

The delta method [35] estimation of SNR (2) equals 304

ˆSNR =

(
F(x0, θn, ξn,m)m − F(x0, θn, ξn,m)n,m

)2
n((

F(x0, θn, ξn,m)m − F(x0, θn, ξn,m)
)2
m

)
n

, (3) 305

where A(i)i =
1
I

∑I
i=1 A(i) is an average of A(i) over index i 306

from 1 to I . For example, 307

F(x0, θn, ξn,m)m =
1
M

M∑
m=1

F(x0, θn, ξn,m) 308

and 309

F(x0, θn, ξn,m)n,m =
1
N

N∑
n=1

(
1
M

M∑
m=1

F(x0, θn, ξn,m)

)
. 310

The resulting value of ˆSNR = 15.6 or, expressed using the 311

logarithmic decibel scale, 312

ˆSNRdb = 10 · log10 ˆSNR = 11.9, 313
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FIGURE 2. tps as a function of delay.

which indicates a low relative level of noise, and treated in314

telecommunications as an accepted minimum to establish an315

unreliable connection.316

IV. OPTIMIZATION BASELINE317

We considered three baseline optimization methods, namely318

• Random: generate a random (space filling [36]) dataset319

within a computational budget, evaluate the black-box in320

each point, return the maximum value as an optimum.321

• Metaheuristic: use optimization methods that322

orchestrate an interaction between local improvement323

procedures and higher level strategies and capable to324

deal with discrete input variables [37].325

• Surrogate: generate a small initial design, per-326

form search steps with a pre-trained statistical model–327

surrogate–instead of expensive black-box, iteratively328

extend the design within computational budget and329

update the surrogate model [38], [39].330

The inputs are integers, which limits the methods choice. The331

used three methods are not comprehensive but only to achieve332

non-trivial results.333

A. SPACE FILLING DESIGNS334

The design is a set of input points. Model-free designs aim335

to represent the diversity of an unknown function in a given336

domain without information about the models we intend to337

use with them. Finite nets are good candidates for helping to338

understand the form of the unknown function if the function339

is Lipschitz continuous or smoother. The design of practical340

finite nets is a problematic task, even in a hypercube domain.341

For example, one can take a uniform grid with k levels per342

coordinate and consider all combinations of levels as a finite343

net design–full factorial design. The number of points in the344

full factorial design is kd , where d is dimensionality, which is345

impractical for neither large k nor d . The full factorial design346

supports only a few design sizes for each dimensionality, i.e.,347

one can not generate 100 point design in a 6-dimensional348

space.349

Random designs are easy to generate. However, the350

space-filling parameter ε is difficult to compute in an arbi-351

trary unstructured design, and some points may be close352

because of stochastic effects. To avoid too close points by353

design, we can split each coordinate into bins, and only one354

value per bin is chosen for the design, or with the smallest 355

possible repeats number for integer coordinates with a few 356

values in the design domain. These random designs are called 357

Latin HyperCubes (LHC). Instead of the ε estimation, a pair- 358

wise distance criterion is optimized, for example, maximin 359

pair-wise distance. The design is optimal LHC if it optimizes 360

the chosen criteria. If the symmetrical one about the centre 361

is in the design for each point in the design, too, the LHC 362

is called symmetric (SLHC). SLHC, as a subtype of the 363

orthogonal design, ensures zero correlation among estimation 364

of linear effects. 365

FIGURE 3. Examples of designs in two-dimensional space with
N = 16 points. Left to right, top to bottom: (a) full factorial, (b) random
uniform, (c) bad SLHC, (d) optimal SLHS. One dot represents one point of
the design.

The examples of full factorial, uniform random, bad SLHC 366

and optimal SLHC are in Figure 3. We use Python implemen- 367

tation of optimal SLHC [40] from library PySOT [41] in our 368

experiments as Random. 369

B. METAHEURISTIC OPTIMIZATION 370

Metaheuristics are solution methods that orchestrate an 371

interaction between local improvement procedures and 372

higher-level strategies to perform a robust search of solu- 373

tion space [37]. Metaheuristic algorithms have a very little 374

theoretical justification for being global optimizers, but are 375

widely used in practice because of good results. A wide class 376

of metaheuristic algorithms are inspired by the evolutionary 377

computation. And the reason for their good properties can be 378

the utilization of the solution candidates’ population to get 379

the better one and diversity control for sustainable search. 380

The Python implementation [42] of Multi-Verse 381

Optimizer (MVO) [43]–a cosmology inspired evolutionary 382

algorithm for global optimization–is used in the experiment 383

as Metaheuristic. MVO starts with creating a set of 384

random solution candidate points–universes. The set updates 385

iteratively–the universes evolve over the time. A coordinate- 386

wise substitution and a random homothety with the best 387
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current solution as a fixed point are modifications through388

iterations. Sending a coordinate to a pool for substitution is389

a falling into a black hole and receiving a coordinate from390

the pool is an outgoing from a white hole. Homothety is a391

wormhole to transport its objects through space.392

C. SURROGATE OPTIMIZATION393

A surrogate is an explicit function that approximates another394

function [39]. Compared to the real-world or computational395

simulation, the surrogate model is easy to compute and has an396

analytic form for derivatives. The surrogate model requires397

a dataset to start with. A space filling design, for example,398

SLHC, is a common option to compute the initial surrogate399

model. An algorithm for the surrogate model construction400

is defined by an input space dimensionality 2 (1) and the401

dataset size, which is upper bounded by the black-box com-402

putation budget. Non-parametric kernel methods are standard403

for small datasets [44], [45]. One of them–radial basis func-404

tions (RBF)–approximate the black-box in our case.405

A surrogate optimization uses the cheapness of the sur-406

rogate model in an iterative procedure: evaluate surrogate407

model many times to find a suitable candidate point for408

an optimum, evaluate the black-box in the candidate point,409

update the surrogate model based on the new black-box410

output and repeat the steps until the black-box evaluation411

budget is over. The surrogate model is an approximation of412

the black-box. So, the optima of the surrogate model is not413

the optima of the black-box because of approximation error.414

The suitable candidate point is not directly an optimum of the415

surrogate model, but a trade-off between the surrogate model416

optima and the surrogate model uncertainty decrease. For417

example, the DYnamic COordinate search using Response418

Surface (DYCORS) [46] algorithm computes the next evalua-419

tion point based on a score, which equals to the weighted sum420

of the candidate’s optimality and distance from the dataset.421

The dynamic coordinate search with perturbations defines the422

set of candidates. The perturbation probability decreases as423

the black-box evaluations increase.424

We use the Python library PySOT [41] with SLHC for ini-425

tial design, RBF for surrogate model and DYCORS strategy426

in the experiment as Surrogate.427

D. NUMERICAL RESULTS428

We run Random, Metaheuristic and Surrogate opti-429

mization methods with the black-box evaluation budget430

Nmax = 100 to check if they increase the tps for a fixed431

Solana cluster configuration. The experiments Python script432

is available in the repository [33]. The results are in Figure 4.433

All the methods achieved tps in the interval (39, 40) from434

the initial 29, and Surrogate has shown the fastest conver-435

gence: 20 black-box evaluations compared to 60 for Random436

and Metaheuristic.437

As the black-box is noisy, we also evaluated 10 times at438

each Random, Metaheuristic and Surrogate opti-439

mal point, computed mean and standard deviation and com-440

pared them with the values at the Default point. The441

FIGURE 4. Current best tps as a function of the black-box evaluation
iteration.

results are in Table 2. The mean values of the solutions are 442

from 38.1 to 38.9 with the biggest value for Surrogate. 443

The standard deviation varies from 1.3 for Random to 444

0.8 forSurrogate. The results are statistically significantly 445

greater than the values for the Default by the empirical 446

(three-sigma) rule for all three optimization approaches. 447

TABLE 2. Optimization results.

The standard deviation depends on the point, so the random 448

noise is not stationary over the domain2 (1). Optimal points 449

by Random, Metaheuristic and Surrogate are far 450

from each other, which shows either a locality for extrema 451

or a big impact of the noise. 452

V. CONCLUSION AND FUTURE WORK 453

Blockchain architectures keep various parameters constant 454

during their life without a justification for default values. 455

We have the mainnet without access to change parameters 456

for research and publicly available source code for a fixed 457

system. So one can launch a testnet in one’s environment 458

and vary parameters as one wishes. Uncontrollable latent 459

parameters introduce randomness and make it impossible to 460

emulate the mainnet with the testnet but only simulate it. 461

The testnet can reveal the blockchain architecture behaviour, 462

check the operation regime sensitivity to the parameters cho- 463

sen, justify the default parameters, and propagate the results 464

to the mainnet. 465

This paper introduces a Solana blockchain testnet as a 466

black-box function. By default, the black-box takes six 467

the most important parameters as input and returns two 468

blockchain performance parameters, namely, tps and drop 469

rate. The experiments show that the black-box noise is 470

significantly smaller than the output variation over the input 471

domain. The black-box is still not reproducible but has an 472

acceptable signal-to-noise ratio (SNR). The high SNR is 473

achieved by launching the black-box within a single data 474
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centre on unified hardware with an internal timeout between475

the start-up and performance measurements to allow network476

convergence. To increase SNR further, one can logically iso-477

late the computation environment or migrate to a physically478

isolated local network.479

We used three baseline optimization techniques and all of480

them has shown 30% tps increase under drop rate =481

0 constraint. So, the parameter choice has a real impact482

on the performance. Validators are free to join and leave483

permissionless blockchains, so the network configurations484

change over time. As the optimal parameters can be dif-485

ferent for different configurations, we treat an adaptive486

parameter adjustment algorithm as future long-distance487

work. Some parameters are only local (NUM_THREADS and488

HASHES_PER_SECOND for Solana) and can be changed489

at any time, while some parameters affect the blockchain490

protocol (TICKS_PER_SLOT and TICKS_PER_SECOND491

for Solana) and change through consensus only. As a result,492

the adaptive parameter adjustment algorithm has a validator493

(local) and a protocol (global) parts.494

The experiments revealed the noise to be non-stationary.495

From the statistical point of view, the black-box noise model496

needs clarification. We listed machine learning tasks for497

blockchain parameter adjustment in the paper [30], and they498

entirely apply to the proposed black-box from feature impor-499

tance and sensitivity analysis to data fusion and change point500

detection. Finally, the Solana blockchain testnet launched in501

an Amazon cloud is only a model example, while the pro-502

posed approach allows other blockchains and infrastructure.503
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