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ABSTRACT This paper introduces a function for blockchain performance evaluation as a black-box. The
function runs the Solana blockchain test network with the only differences between the main network in a
configuration file and the physical network to operate in. The black-box takes setup parameters as input,
launches blockchain in a cloud, emulates artificial users’ activity, and gives two outputs—transactions per
second (tps) and drop rate. By default, the setup has six most important integer parameters and a network
with three computers in the cloud, while one can vary eighty-nine parameters, the number of computers in
the network and use local computers via black-box configuration files. The applied problem is to maximize
the tps under a zero drop rate constraint. The black-box, like real blockchains, uses network communication,
so reproducibility is an essential part of the design. We also provide an optimization baseline, showing the

non-trivial results’ reachability.

INDEX TERMS Blockchain, black-box, metaheuristic, surrogate optimization.

I. INTRODUCTION
Blockchains [1], [2] are peer-to-peer networks. In contrast
to centralized networks, where an associated data storage
updates by the will of a single peer, one can not update just
one’s local storage but should agree on the changes with
other peers. The consensus is an agreement problem among
many peers [3], [4]. Some peers may be faulty because of
technical issues, own business or economic interests or hacker
attacks. Consensus protocols in the presence of faulty peers
exist since before blockchains [5] and play a key role in
them. Blockchains group atomic changes of the associated
data storage—transactions—into ordered batches—blocks—and
achieve consensus about new blocks. Besides classic correct-
ness requirements, blockchains need specific ones [6], [7],
such as high performance regarding transactions per second
(tps), fast transaction confirmation, and chain quality.

The fast transaction conformation is a measure of latency
between a user broadcasting a transaction on the Internet and
the transaction inclusion in an agreed block. If users gener-
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ate transactions independent of the block generation events
moments, the latency can not be less than half of the average
block generation time. Furthermore, if the mempool-the set
of the new correct transactions to be added to the blockchain—
is small, the ongoing block will include the new transaction,
and the resulting latency will be close to half of the block
generation time. Blockchain needs to have a more significant
throughput than the flow of new transactions to avoid the
infinite growth of the mempool. The throughput regarding
tps is a standard measure of blockchain performance.

The throughput and latency compete. On the one hand,
one can have blocks without user transactions or one trans-
action each, then one can generate blocks according to the
pre-agreed deterministic rule, and the average time between
blocks can be negligible. Nevertheless, the throughput will be
zero for empty blocks and small for one-transaction blocks.
On the other hand, one can allow unlimited blocks and
include all the transactions over a long period into a single
block but generate blocks once per one hundred years. In this
case, the overhead for consensus will be small, and one can
achieve the maximum throughput. However, one will wait
fifty years for transaction processing, which is infeasible for
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practical applications. So the blockchain has a Pareto front [8]
of optimal operation regimes and needs to pick the proper
regime through a trade-off between the current system needs.
In practice, blockchains upper-bounds latency and maxi-
mizes tps. So do Bitcoin and Ethereum—the most prominent
blockchains and cryptocurrencies by capitalization [9]. For
example, on average, Bitcoin adjusts the difficulty parameter
once per 2016 to have one block per 10 minutes. Ethereum
picked an interval between blocks of 12 seconds based on
Bitcoin statistical data to have enough time to synchronize a
block over most peers [10].

Blockchain scalability is a hot topic, and the throughput
increase is one of its dimensions [11], [12]. Low throughput
results in higher market-driven transaction fees and higher
latency at user activity peak [13], [14], finally, a bad user
experience. Various approaches to speeding up the through-
put exist. One idea is to change the consensus algorithm.
Thus, EOS [15] shows around 4000 tps for latency less
than 1 second with its implementation delegated proof of
stake consensus protocol (DPoS) [16] compared to Bitcoin’s
7 tps and Ehtereum’s 14 tps. Alternative solutions show
comparable results, with a theoretical limit of 700 000 tps
with a bottleneck in Ethernet [17], [18], [19].

Another idea is to run N blockchains in parallel or make a
hierarchical structure of blockchains to increase the through-
putup to N times. Such multi-blockchain structures are called
sidechain or parachain, and several solutions are proposed
and implemented [20], [21]. A similar solution to the scal-
ability problem pursued by Ethereum research is sharding
protocols in which the whole blockchain network splits into
different sections that can perform all necessary actions. This
solution must be implemented in the base blockchain pro-
tocol itself and therefore requires reconstructing the whole
network. These are called layer-1 solutions in blockchain and
suffer from a trade-off between scalability and security; when
we increase system performance by distributing transactions
to shards, we decrease the computational resources for each
of them [22], [23].

An alternative solution can be implemented at the user
level and can significantly increase the performance of their
applications. These solutions are called layer-2 solutions. One
of them is organizing state channels by which users can
interact with each other and place in a parent blockchain only
the aggregated set of transactions. An example of such an
approach includes lightning networks for Bitcoin, Counter-
factual and Raiden for Ethereum [24], showing tps over
100 000. Another example of solutions of such kind is
sharding protocols in which individual users check only part
of incoming transactions. An example of such an approach
includes Plasma for Ethereum [25], [26]. The main difference
between the two layer-2 approaches is that in the state chan-
nels, transactions are validated utilizing a consentient con-
sensus among participants. In contrast, in shading protocols,
transactions are validated by a Merkle proof submitted to the
main chain by sharding users, which leads to a delay in the
transaction approval process.
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We currently have networks without access to change
parameters for research for a fixed blockchain architecture.
Nevertheless, the source code of the blockchain is publicly
available. So we can launch a test system in our environ-
ment and vary parameters as we wish. Both network and
protocol parameters define the blockchain operation regime.
Some of the network parameters are observable, for example,
the current pool of unconfirmed transactions; some of the
network parameters are not observable (latent), for example,
blockchain network graph, connection latency, and band-
width [27], [28]. Unobservable parameters play an essential
role in the performance; for example, average propagation
delay affects transaction latency, and it is helpful to estimate
them with a particular accuracy [29]. Latent parameters result
in the impossibility of emulating the network with the test
network but only simulating.

This paper is a continuation of the research [30], where we
presented a machine learning view on blockchain parameters
adjustment, designed a Solana blockchain-based testbed, and
performed a sensitivity analysis of the available parameters.
This paper presents a function for blockchain performance
evaluation in the form of an interactive black-box. The func-
tion runs the Solana blockchain test network with the only
differences between the network in a configuration file and
the physical network to operate in. The main objective is to
maximize the throughput, while more problems, including
the results propagation to the network, are of interest too. The
rest of the paper is organized as follows. Section 2 views the
Solana blockchain as a black-box for parameter adjustment.
Section 3 introduces the developed black-box and details its
reproducibility. The optimization with a limited black-box
computation budget shows the reachability of non-trivial
results in Section 4. Finally, Section 5 concludes the paper.

Il. SOLANA BLOCKCHAIN AS BLACK-BOX

Solana is a high-performance permissionless blockchain [18],
[31]. Its network consists of clusters—sets of validators work-
ing together to serve client transactions and maintain the
ledger’s integrity. Clusters may coexist. When two clusters
share a common genesis block, they attempt to converge. For
example, one set of clusters with a common genesis block is
a Solana network, whose token is in the top ten cryptocurren-
cies by market capitalization as of July 2022 [9]. Otherwise,
each cluster ignores the existence of the others with different
genesis blocks. One sets a genesis configuration to create
a cluster and runs a validator. Additional validators then
register with any registered member of the cluster.

Clients send transactions to any validator’s Transaction
Processing Unit (TPU) port. A validator forwards the transac-
tion to the designated leader. If the validator is in the lead role,
the node bundles incoming transactions, timestamps them,
creating an entry, and pushes them onto the cluster’s data
plane. Once on the data plane, the transactions are validated
by validator nodes, effectively appending them to the ledger.
Solana defines confirmation as the duration of time from the
leader timestamps a new transaction to the recognition of a
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TABLE 1. The most important Solana’s parameters for tps.

Parameter Default value Description
To improve the throughput to the database, Solana supports connection pooling
NUM_THREADS 4 . . .. .
using multiple threads, each maintaining a connection to the PostgreSQL database.
The period for which each leader ingests transactions and produces a block
TICKS_PER _SLOT 63 is called a slot. Each slot is divided into logical units called ticks.
Transaction signature verification is a repetitive and time-consuming operation.
Solana sends a batch of transactions for the verification to schedule the load.
RECV_BATCH_MAX_CPU 1000 By default, a CPU verifies transactions, and RECV_BATCH_MAX_CPU defines
the maximum batch size.
Batch inserts into a database reduce the round trips to the database and,
ITER_BATCH_SIZE 1000

hence, improve performance under high load.

Solana documentation states Google Cloud Platform’s nl-standard

HASHES_PER_SECOND 2000000 hardware to be the standard hardware and claims it to have
HASHES_PER_SECOND hash computations per second.
TICKS_PER_SECOND 160 A ledger entry that estimates wallclock duration is called a tick.

supermajority of ledger votes. The blockchain rotates leaders
at fixed intervals, called slots. Each leader produces entries
during its allotted slot only.

The proof-of-Stake consensus protocol allows for achiev-
ing consensus in Solana. The Proof-of-History (PoH) tech-
nique guarantees reliable transaction ordering, which allows
synchronization with block parts rather than whole blocks.
PoH is not a consensus mechanism but an application-specific
verifiable-delay function (VDF). The verification in PoH has
the same asymptotic as the proposal creation but with a
better constant, while the verification in VDF has faster rates.
Another difference between PoH and VDFs is that a VDF
tracks duration only. PoH includes hashes of any data the
application observed as well.

Due to the Solana design, the ratio of sent transactions
and successfully written in block, i.e. finalized, maybe not
equal 1. The per cent of dropped transactions through a time
interval is called drop rate. The drop rate and transaction
per second (¢ps) are the main pair to characterize Solana
performance like latency and tps for Bitcoin and Ethereum.
Note that #ps counts only successful transactions.

The high-load stationary [32] operating regimes are of
interest. We achieve them by launching a cluster on our
infrastructure—a test network (testnet)—and running a bench-
mark with a big batch of user transactions. The benchmark
outputs are fps and drop rate. As a result, we consider the
whole workflow as a function y = F(x, 0, &), where

« x is the vector of observable uncontrollable blockchain
parameters. For example, the number of nodes is a com-
ponent of x.

o 0 is the vector of (observable) controllable blockchain
parameters. For example, block size is a component
of 8. In general it may depends from uncontrollable
parameters 6(x).

o & is the latent (uncontrollable) blockchain parame-
ters. For example, nodes’ computational power is a
component of &.

« y is the vector of the blockchain operation regime with
given parameters (x, 6, £). In the benchmark, #ps and
drop rate are the only components of y. As the #ps is
non-negative, we formally set tps = 0 for the non-zero
drop rate cases. After this modification, y becomes a
one-dimensional vector, i.e., scalar.
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The uncontrollable parameters x = x( are constant for a
given testnet. We treat latent parameters £ as independent
random variables for different runs. The testnet takes around
ten minutes to evaluate a random function y = f(0) =
F(xp, 6, £). Under computational time constraint and lack of
an analytic model for the function f, a black-box optimization
problem arises: maximize the mean value of f(6) over 6 with
a maximum Np,x calls of f.

Ill. BLACK-BOX DESCRIPTION

A. STRUCTURE

Our Solana blockchain black-box is openly available on
Github [33] under Apache 2.0 licence. The core of the
black-box is a fork of Solana version 1.5.0. By default,
Solana does not allow to change parameters. So we modified
it to support 89 controllable user-input parameters 6. One
can change all these parameters for the black-box, although
we use 6the most important parameters [30] by default.
Table 1 lists the parameters, their meaning, and default
values. All the parameters are unsigned integers in Solana
because of the implementation. In theory, some parameters
are real numbers, for example, HASHES_PER_SECOND.
At the same time, others are fundamentally integers, for
example, NUM_THREADS. To start evaluation, one must
fill the credential file and run the black-box as a Python
function (see the Examples folder in the repository).
The function takes 6 integer inputs as 6 from a +15%
box around corresponding Solana’s default values 6y =
(4, 1000, 1000, 63, 2000000, 160). Other words, 6 € © C
7°, where

0= ([3, 5] x [850, 1150] x [850, 1150] x [53, 73]

x [1700000, 2300000] x [136, 184]) nzs (1)

and Z° denotes the set of all six-dimensional integers.
The output is two-dimensional: tps and drop rate. The
applied problem is to maximize t ps under the zero drop rate
constraint.

The black-box is a computational job as follows
(see Figure 1)

1) Allocate computers within a single data centre.
By default, we use four t2.2xlarge virtual
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FIGURE 1. Black-box structure.

instances in Amazon Elastic Compute Cloud (EC2).
Three instances are for the Solana cluster, and one is
to manage the performance test. We use this data cen-
tre computer configuration because of its widespread
availability. However, one can edit the configuration
file to change a computer’s type, the data centre or a
cloud platform.

2) Start Solana test cluster on instances with given param-
eters plus one instance to manage the experiment. All
the instances are from the same Docker container but
with different Terraform configurations.

3) Wait until the nodes start communication. The cluster
needs to allocate resources and synchronize commu-
nication upon start. Solana calls it a network conver-
gence. Benchmark results may be unstable before the
synchronization. We numerically estimate the conver-
gence time in Section III-B.

4) Run Solana’s bench-tps benchmark. The manager
instance generates a million user accounts, fills them
with coins and sends transactions to simulate user activ-
ity. Test cluster processes the transactions; each node
generates log files. Manager instance collects logs,
computes experimental results, and returns the black-
box output. The black-box job is done.

B. NETWORK CONVERGENCE

Upon the black-box launch, a testnet and a manager
instance start. Each computer in the testnet needs to allo-
cate resources and synchronize the consensus-driven com-
munication. The manager instance creates user accounts to
send a transaction from them. These processes take time,
and the Solana team recommends waiting until the network
converges [31].

To estimate the system convergence time numerically,
we performed the following experiment. For the Solana’s
default point 6y = (4, 63, 1000, 1000, 2000000, 160) and per
each waiting time between network start up and benchmark
run from O to 90 seconds with step 10 seconds, the black-box
has been computed 10 times. The mean ps and its standard
deviation (std) as functions of the waiting time are in Figure 2.
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The reason for a performance peak of around 30 seconds is
unknown. Such effect is not present on a local testnet but
only in the cloud. So the cloud resource allocation mechanism
may be the clue. Delays > 70 seconds show stable stationary
results. We set the delay of 80 seconds as a default timeout
in a black-box for network convergence, but one can set his
value as an optional black-box parameter.

C. SIGNAL-TO-NOISE RATIO

The function f(0) = F(xp, 6, £) is random. Signal-to-noise
ratio (SNR) as a measure that compares the level of a desired
signal to the level of background noise [34]

vargE:F(xo, 0, &)

~ Egpvar:F(xo,0,&)’
where E is the mathematical expectation and var is the
variance. To estimate SNR, we generated a random sample
{0,1}2\’=1 of N = 10 independent uniformly distributed within
the allowed domain points ® (1). The function F(xo, 0, &)
was evaluated M = 10 times in each point from {Qn}nN: 1
resulting in a dataset {F (xo, 6, Sn,m)}fZ’mMZI. Two indexes of
& show that &, ,, are independent for different pairs of (n, m).
The delta method [35] estimation of SNR (2) equals

2
s — (F (0 Ons Enm)yy — F (50, Ons Enmd ), s

((F(xo, B Enmd — F (x0. 6, sn,m>)2m)

where mi = % lez 1 A@) is an average of A(i) over index i
from 1 to /. For example,

SNR

(@)

n

M

N 1

F 0, O, Enm)y = 37 D O30, O &)
m=1

and

N M

P — 1 1

F(xg, 04, é:n,m)n,m = ﬁ 2; (M 2:] F(xq, O, %_n,m)> .
n= m=

The resulting value of SNR = 15.6 or, expressed using the
logarithmic decibel scale,

SNRgp = 10 - log,q SNR = 11.9,

VOLUME 10, 2022



V. Amelin et al.: Black-Box for Blockchain Parameters Adjustment

IEEE Access

40
- mean
mean = std
351
w
o
-+ 30 4
251
0 20 40 60 80

delay, seconds

FIGURE 2. tps as a function of delay.

which indicates a low relative level of noise, and treated in
telecommunications as an accepted minimum to establish an
unreliable connection.

IV. OPTIMIZATION BASELINE
We considered three baseline optimization methods, namely

+ Random: generate a random (space filling [36]) dataset
within a computational budget, evaluate the black-box in
each point, return the maximum value as an optimum.

e Metaheuristic: use optimization methods that
orchestrate an interaction between local improvement
procedures and higher level strategies and capable to
deal with discrete input variables [37].

e Surrogate: generate a small initial design, per-
form search steps with a pre-trained statistical model—
surrogate—instead of expensive black-box, iteratively
extend the design within computational budget and
update the surrogate model [38], [39].

The inputs are integers, which limits the methods choice. The
used three methods are not comprehensive but only to achieve
non-trivial results.

A. SPACE FILLING DESIGNS

The design is a set of input points. Model-free designs aim
to represent the diversity of an unknown function in a given
domain without information about the models we intend to
use with them. Finite nets are good candidates for helping to
understand the form of the unknown function if the function
is Lipschitz continuous or smoother. The design of practical
finite nets is a problematic task, even in a hypercube domain.
For example, one can take a uniform grid with k levels per
coordinate and consider all combinations of levels as a finite
net design—full factorial design. The number of points in the
full factorial design is k9, where d is dimensionality, which is
impractical for neither large k nor d. The full factorial design
supports only a few design sizes for each dimensionality, i.e.,
one can not generate 100 point design in a 6-dimensional
space.

Random designs are easy to generate. However, the
space-filling parameter ¢ is difficult to compute in an arbi-
trary unstructured design, and some points may be close
because of stochastic effects. To avoid too close points by
design, we can split each coordinate into bins, and only one
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value per bin is chosen for the design, or with the smallest
possible repeats number for integer coordinates with a few
values in the design domain. These random designs are called
Latin HyperCubes (LHC). Instead of the ¢ estimation, a pair-
wise distance criterion is optimized, for example, maximin
pair-wise distance. The design is optimal LHC if it optimizes
the chosen criteria. If the symmetrical one about the centre
is in the design for each point in the design, too, the LHC
is called symmetric (SLHC). SLHC, as a subtype of the
orthogonal design, ensures zero correlation among estimation
of linear effects.

e e Y _@ |
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FIGURE 3. Examples of designs in two-dimensional space with

N = 16 points. Left to right, top to bottom: (a) full factorial, (b) random
uniform, (c) bad SLHC, (d) optimal SLHS. One dot represents one point of
the design.

The examples of full factorial, uniform random, bad SLHC
and optimal SLHC are in Figure 3. We use Python implemen-
tation of optimal SLHC [40] from library PySOT [41] in our
experiments as Random.

B. METAHEURISTIC OPTIMIZATION
Metaheuristics are solution methods that orchestrate an
interaction between local improvement procedures and
higher-level strategies to perform a robust search of solu-
tion space [37]. Metaheuristic algorithms have a very little
theoretical justification for being global optimizers, but are
widely used in practice because of good results. A wide class
of metaheuristic algorithms are inspired by the evolutionary
computation. And the reason for their good properties can be
the utilization of the solution candidates’ population to get
the better one and diversity control for sustainable search.
The Python implementation [42] of Multi-Verse
Optimizer (MVO) [43]-a cosmology inspired evolutionary
algorithm for global optimization—is used in the experiment
as Metaheuristic. MVO starts with creating a set of
random solution candidate points—universes. The set updates
iteratively—the universes evolve over the time. A coordinate-
wise substitution and a random homothety with the best
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current solution as a fixed point are modifications through
iterations. Sending a coordinate to a pool for substitution is
a falling into a black hole and receiving a coordinate from
the pool is an outgoing from a white hole. Homothety is a
wormbhole to transport its objects through space.

C. SURROGATE OPTIMIZATION

A surrogate is an explicit function that approximates another
function [39]. Compared to the real-world or computational
simulation, the surrogate model is easy to compute and has an
analytic form for derivatives. The surrogate model requires
a dataset to start with. A space filling design, for example,
SLHC, is a common option to compute the initial surrogate
model. An algorithm for the surrogate model construction
is defined by an input space dimensionality ® (1) and the
dataset size, which is upper bounded by the black-box com-
putation budget. Non-parametric kernel methods are standard
for small datasets [44], [45]. One of them-radial basis func-
tions (RBF)—approximate the black-box in our case.

A surrogate optimization uses the cheapness of the sur-
rogate model in an iterative procedure: evaluate surrogate
model many times to find a suitable candidate point for
an optimum, evaluate the black-box in the candidate point,
update the surrogate model based on the new black-box
output and repeat the steps until the black-box evaluation
budget is over. The surrogate model is an approximation of
the black-box. So, the optima of the surrogate model is not
the optima of the black-box because of approximation error.
The suitable candidate point is not directly an optimum of the
surrogate model, but a trade-off between the surrogate model
optima and the surrogate model uncertainty decrease. For
example, the DYnamic COordinate search using Response
Surface (DYCORS) [46] algorithm computes the next evalua-
tion point based on a score, which equals to the weighted sum
of the candidate’s optimality and distance from the dataset.
The dynamic coordinate search with perturbations defines the
set of candidates. The perturbation probability decreases as
the black-box evaluations increase.

We use the Python library PySOT [41] with SLHC for ini-
tial design, RBF for surrogate model and DYCORS strategy
in the experiment as Surrogate.

D. NUMERICAL RESULTS

We run Random, Metaheuristicand Surrogate opti-
mization methods with the black-box evaluation budget
Nmax = 100 to check if they increase the tps for a fixed
Solana cluster configuration. The experiments Python script
is available in the repository [33]. The results are in Figure 4.
All the methods achieved tps in the interval (39, 40) from
the initial 29, and Surrogate has shown the fastest conver-
gence: 20 black-box evaluations compared to 60 for Random
and Metaheuristic.

As the black-box is noisy, we also evaluated 10 times at
each Random, Metaheuristic and Surrogate opti-
mal point, computed mean and standard deviation and com-
pared them with the values at the Default point. The
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results are in Table 2. The mean values of the solutions are
from 38.1 to 38.9 with the biggest value for Surrogate.
The standard deviation varies from 1.3 for Random to
0.8 for Surrogate. The results are statistically significantly
greater than the values for the Default by the empirical
(three-sigma) rule for all three optimization approaches.

TABLE 2. Optimization results.

Method 0 tps
Default (4, 1000, 1000, 63, 2000000, 160)  29.5 + 0.4
Random (3, 1033, 867, 67, 1951151, 142)  38.1 £ 1.3
Metaheuristic (4, 1082, 929, 67, 1754909, 136)  38.6 = 0.9
Surrogate (3, 980, 859, 68, 2007222, 136) 389 + 0.8

The standard deviation depends on the point, so the random
noise is not stationary over the domain ® (1). Optimal points
by Random, Metaheuristic and Surrogate are far
from each other, which shows either a locality for extrema
or a big impact of the noise.

V. CONCLUSION AND FUTURE WORK

Blockchain architectures keep various parameters constant
during their life without a justification for default values.
We have the mainnet without access to change parameters
for research and publicly available source code for a fixed
system. So one can launch a testnet in one’s environment
and vary parameters as one wishes. Uncontrollable latent
parameters introduce randomness and make it impossible to
emulate the mainnet with the testnet but only simulate it.
The testnet can reveal the blockchain architecture behaviour,
check the operation regime sensitivity to the parameters cho-
sen, justify the default parameters, and propagate the results
to the mainnet.

This paper introduces a Solana blockchain testnet as a
black-box function. By default, the black-box takes six
the most important parameters as input and returns two
blockchain performance parameters, namely, t ps and drop
rate. The experiments show that the black-box noise is
significantly smaller than the output variation over the input
domain. The black-box is still not reproducible but has an
acceptable signal-to-noise ratio (SNR). The high SNR is
achieved by launching the black-box within a single data

VOLUME 10, 2022



V. Amelin et al.: Black-Box for Blockchain Parameters Adjustment

IEEE Access

centre on unified hardware with an internal timeout between
the start-up and performance measurements to allow network
convergence. To increase SNR further, one can logically iso-
late the computation environment or migrate to a physically
isolated local network.

We used three baseline optimization techniques and all of
them has shown 30% tps increase under drop rate =
0 constraint. So, the parameter choice has a real impact
on the performance. Validators are free to join and leave
permissionless blockchains, so the network configurations
change over time. As the optimal parameters can be dif-
ferent for different configurations, we treat an adaptive
parameter adjustment algorithm as future long-distance
work. Some parameters are only local (NUM_THREADS and
HASHES_PER_SECOND for Solana) and can be changed
at any time, while some parameters affect the blockchain
protocol (TICKS_PER_SLOT and TICKS_PER_SECOND
for Solana) and change through consensus only. As a result,
the adaptive parameter adjustment algorithm has a validator
(local) and a protocol (global) parts.

The experiments revealed the noise to be non-stationary.
From the statistical point of view, the black-box noise model
needs clarification. We listed machine learning tasks for
blockchain parameter adjustment in the paper [30], and they
entirely apply to the proposed black-box from feature impor-
tance and sensitivity analysis to data fusion and change point
detection. Finally, the Solana blockchain testnet launched in
an Amazon cloud is only a model example, while the pro-
posed approach allows other blockchains and infrastructure.
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