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ABSTRACT Marginal fisher analysis (MFA) is a dimensionality reduction method based on a graph
embedding framework. In contrast to traditional linear discriminant analysis (LDA), which requires the
data to follow a Gaussian distribution, MFA is suitable for non-Gaussian data, and it has better pattern
classification ability. However, MFA has the small-sample-size (SSS) problem. This paper aims to solve
the small-sample-size problem while increasing the classification performance of MFA. Based on a matrix
function dimensionality reduction framework, the criterion of the MFA method is reconstructed by using
the polynomials matrix function transformation, and then a new MFA method is proposed, named PMFA
(polynomial marginal fisher analysis). The major contributions of the proposed PMFA method are that it
solves the small-sample-size problem of MFA, and it can enlarge the distance between marginal sample
points of inter-class, so that it can get better pattern classification performance. Experiments on the public
face datasets show that PMFA can get a better classification ability than MFA and its improved methods.

INDEX TERMS Dimensionality reduction, manifold learning, marginal fisher analysis, matrix function, the

small-sample-size (SSS) problem.

I. INTRODUCTION
In some fields, such as data visualization and face recog-
nition, features are usually represented as high-dimensional
data. The original high-dimensional data contains redun-
dant and noisy information, which can easily cause errors
in practical applications, and the direct processing of high-
dimensional data may cause considerable computational con-
sumption. To better analyze and process data, it is necessary
to find low-dimensional features that effectively represent
high-dimensional data.

Many dimensionality reduction methods have been pro-
posed. Principal component analysis (PCA) [1] and LDA [2]
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are widely used linear subspace algorithms. As an unsuper-
vised learning algorithm, the principle of PCA is to maximize
the covariance of reduced dimension samples. As a super-
vised learning algorithm, the principle of LDA is to make
different classes as far as possible and the same classes as
close as possible after dimensionality reduction.

There are many dimensionality reduction methods based
on manifold, such as ISOMAP [3], LLE [4], LE [5], MVU [6],
t-SNE [7], LPP [8], and NPE [9]. What they have in common
is to find a neighborhood in each sample point, and retain
the local structure information of the sample points while
mapping the high-dimensional data into low-dimensional
data. With the emergence of these classical manifold learning
algorithms one after another, some researchers have hoped
to unify manifold learning algorithms using a framework.

102451


https://orcid.org/0000-0002-0785-2703
https://orcid.org/0000-0003-1955-6626
https://orcid.org/0000-0002-3895-1448

IEEE Access

R. Ran et al.: Marginal Fisher Analysis With Polynomial Matrix Function

Bengio et al. unified ISOMAP, LLE, and LE into kernel
functions [10]. Yan et al. proposed a unified graph embedding
framework [11]. This framework can explain the existing
dimensionality reduction algorithms with a linear, kernel,
tensor extension of a certain intrinsic graph, or direct graph
embedding.

In the graph embedding framework, the marginal fisher
analysis method (MFA) is proposed. The main idea behind
MFA is that it describes intra-class compactness by con-
structing an intrinsic graph and inter-class separability by
constructing a penalty graph. Based on the design of the two
graphs, it is also suitable for data of non-Gaussian distribu-
tion; therefore, there is no need for a priori knowledge of data
distribution. However, the classical LDA method requires the
data to follow a Gaussian distribution. Compared with LDA,
MFA can find a more discriminative direction. However, the
dimensions of the samples are usually much larger than the
number of samples, resulting in the intra-class compactness
matrix of the MFA being singular, and the generalized eigen-
value problem of MFA is difficult to solve. This may be called
the small-sample-size (SSS) problem of MFA.

In recent years, much research has been conducted
on MFA. Based on the separability criterion of MFA,
Yu et al. proposed the orthogonal MFA (OMFA) and uncor-
related MFA (UMFA) method, in which orthogonal and irrel-
evant constraints are added to the base vector [12]. Siena
proposed a coupled MFA (CMFA) method, which considers
the nearest neighbor of each data sample and uses differ-
ent rules to construct the penalty graph of the MFA [13].
Huang et al. proposed the multiple MFA (MMFA) method
that uses edge data points and manifold structures and consid-
ers multiple marginal data pairs when constructing a penalty
graph [14]. For the SSS problem of MFA, MFA uses PCA
to reduce the dimensionality of the samples and then avoids
the singularity of the intra-class compactness matrix, but this
will lose some useful information about the original sam-
ples [11]. In addition, some methods have been proposed to
solve the SSS problem of MFA. For example, Wang et al.
proposed a general matrix exponential framework, the SSS
problem of MFA [15] can be solved by an exponential MFA
(EMFA) method which is based on this framework. Huang
proposed a regularized MFA (RMFA) [16], which multi-
plies a unit matrix by a small number to construct a regular
term into the inner-class compactness matrix of the MFA so
that the resulting matrix is invertible. The graph embedding
framework is reformulated in [17], as a special case of the
GEU framework formula, the MFA technique is extended as
GEU-MFA. Recently, there are many algorithms based on
manifold learning, such as GDE [18], CR-DLPP [19] and
LMGE-DDR [20].

In [21], a general framework for dimensionality reduction
based on the manifold was proposed. The main idea of the
framework is to use two scalar functions to map the scatter
matrices into the corresponding matrix functions, and then to
make dimensionality reduction and feature extraction. How-
ever, in real life, it is difficult to choose such two functions.
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In mathematics, any function can be approximated by a poly-
nomial, so we can use the polynomial to uniformly represent
the above optional and various forms of functions. Then, this
framework is easier to use.

This paper aims to solve the SSS problem and improve the
classification ability of MFA. So, based on the above idea,
i.e., combining the polynomial function and the framework
in [21], we proposed a new MFA method, named PMFA
(polynomial marginal fisher analysis). Specially, we use two
appropriate polynomials to map the scattering matrices of
MEFA to the new space, which can avoid the SSS problem and
get better pattern classification performance. We also discuss
the design of the two polynomial functions, and provide a
theoretical analysis of the proposed method. Experiments are
conducted on synthetic data set and some public face datasets,
which show that the proposed PMFA is an effective method.
As an effective feature extraction method, like MFA and
its variants, PMFA can be applied in many fields, such as
face recognition [13], [16], facial expression recognition [22],
autism trait classification [23], image representation [24], etc.

The remainder of this paper is organized as follows. The
Section II summarizes MFA and the matrix function dimen-
sionality reduction framework. Section III presents polyno-
mial marginal fisher analysis (PMFA). Section IV verifies
PMFA with experiments. Finally, Section V summarizes the
study and future directions.

TABLE 1. Notations and descriptions.

Symbol Explanation

X ={x,x,L x}

the m-dimensional datain R" space

X, the original sample

the dimensionality of training samples

n the number of training samples
the category label of the ith category
€ andc, € {1,2,L ,m,}
m, the number of categories of the samples
2 the projected sample
L, I? the Laplace matrix
rank ( g) the rank of the matrix

Il. RELATED WORK

A. MARGINAL FISHER ANALISIS

MFA first constructs an intrinsic graph G¢ = {X, W} and
penalty graph G? = {X , WP } which are used to describe
inter-class separability and intra-class compactness, respec-
tively. Then, MFA tries to find an optimal projection matrix U
and makes a projectiony; = U Tx;, so that the dimension of y;
is smaller than that of x;. To clarify the method, Table 1 sum-
marizes the frequently used notations.
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The intra-class compactness of the projected sample is
defined as:

5=y ¥

i ieNk, ()orjeN, (i)

lyi = y]1* = 20r {UT xLX U}

ey

where L = D — W; D is a diagonal matrix composed of the

sum of the rows of W,ie,D; =) W; W = (WU) Wi is
J

defined as:

Wz:/:{l’ if i € N1 (j) orj € Nit (i) ®

0, else.

where N, (i) represents an index set of the kj nearest neigh-
bors of the sample x; in the intrinsic graph G €.
The projected inter-class data separation is defined as:

S =2 >
i (i)eNk, (c)or (i,j)eNk, (¢)

= 2r { UTXLI’XTU} 3)

2
v =il

where I = DP — WP; DP is a diagonal matrix composed
of the row sum of the matrix W?, i.e., DZ => W{; WP =
J

(WZ-), W‘Z is defined as:
WP — 1, ifi€ Ny, (¢j) orj € N, (¢)) @
Y 0, else.

where Ny, (¢;) represents an index set of thek, nearest pairs
for the class c¢; in the penalty graph G”.
The marginal fisher criterion is defined as:

tr (UTXIPXTU)

—_—— . 5
tr (UTXLX"U) ©)

J (U) = max
U

Let the matrix Z, = XLPXT, matrix Z = XLX, and upper
Eq. (5) can be solved using the generalized eigenvectors
problem:

Zyu = \Zu. 6)

The basic MFA algorithm is given in Algorithm 1.
For the above Eq. (6), the rank of matrix Z has an
inequality:

rank (Z) = rank (XLX T) < rank (X) < min (m, n).

Usually, the dimension of training samples is much larger
than the number of training samples, that is m < n,
so rank (Z) < n. And Z = XLX7T is an n-order matrix, i.e.,
Z is a singular matrix, so Eq. (6) is difficult to solve directly,
which is the SSS problem of MFA.
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Algorithm 1 MFA

1) Input a dataset X

2) PCA projection: project the data set into the PCA sub-
space, let X pca denote the transformation matrix of PCA

3) Constructing the intra-class compactness and inter-
class separability matrixes:

Adjacency matrix: W; = Wj; = 1 if x; is among the k;
nearest neighbors of x; in the same class

Similarity matrix: WZ. = W;’i = 1 if the pair (i, j) is among
the kp nearest pairs

4) Marginal fisher criterion

r (UTX(D" — WPXTU)
r (UTX(D - wW)X"U)

J (U) = max
U

5) Compute the eigenvalues and eigenvectors as:
XDP —WPHXTu =2XD — W)XTu
6) Outputthe final linear projection direction as:

Y =U"Xpca

B. MATRIX FUNCTION AND ITS EIGEN-SYSTEM
The definition of the matrix function and the corresponding
properties are presented, which is used in the paper.
Definition 1 [25]: Let A be a square matrix and f(x) be a
scalar function. If one replaces the variable x in f(x) with the
square matrix A, the resulting matrix f'(A) is called the matrix
function of the matrix A.
Theorem 1 [26]: Let A be a real symmetric square matrix
of n-order, f(x) be a scalar function, A; be the eigenvalue
of the matrix A and v; be the eigenvector belonging to the

eigenvalue A;, i.e., Av; = Av;(i=1,2,---,n). For the
matrix function f(A), one has:
AW =fGivi(i=12,---,n), (7

where f (A;) are the eigenvalues of f(A), and v; are the eigen-
vectors corresponding to f(A).

Theorem 2 (Weierstrass Approximation Theorem [27]):
Continuous functions on closed intervals can be approxi-
mated uniformly using a polynomial series.

C. MATRIX FUNCTION DIMENSIONALITY
REDUCTION FRAMEWORK
In [21], a general matrix function dimensionality reduc-
tion framework is proposed for the dimensionality reduction
method in manifold learning.

The criterion function of the manifold-based dimensional-
ity reduction method is expressed as:

|UTSU|
|UTS,U|’
where the matrices S1 and S, have different forms for the

different methods and Uis the desired optimal projection
matrix.

J (U) = arg max 3
U
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The main concept of the matrix function framework in [21]
is to map the matrices S; and S in Eq. (8) into the matrix
functions f(S1) and g(S2)with the scalar functions f(x) and
g(x), so that the criterion Eq. (8) becomes:

UTf (S U|
JU) = —_—
S TTOY

Eq. (9) can be reduced the generalized eigenvectors problem:

fSDu = rg(S2)u. (10)

Notice that the matrices S| and S, are composed of the
original sample, and the above mapping f(-) and g(-) trans-
form the matrices §1 and S, from the original sample space
to a new sample space.

The functions f(x) and g(x) in Eq. (9) are configurable.
If selects different functions, the matrix function dimension-
ality reduction framework can construct a series of methods
for dimensionality reduction. How to select the two functions
is discussed in [21]. In conclusion, the two functions should
satisfy the two conditions: (1) for any x, the function g(x)
should be g(x) # 0 and then the matrix function g(S;) is non-
singular so that the SSS problem can be avoided by the new
dimensionality reduction method; (2) for better classification
after mapping, the function f(x) should be a monotonically
increasing function and f(x) > x, at the same time, g(x) ~ x
(org(x) < x).

&)

Ill. THE PROPOSED NEW METHOD

A. MARGINAL FISHER ANALYSIS WITH POLYNOMIAL
MATRIX FUNCTION

In the criterion of MFA, i.e., Eq. (5), denote the matrix Z, =
XLPXT and the matrix Z = XLXT, then Eq. (5) can be
expressed as:

tr (UTZ,U)

——r 11
tr (UTZU) (b

J (U) = max
U
According to section II.C, we can solve the small-sample-
size problem and improve the classification performance of
MFA by selecting two suitable functions to map the matrices
Z,, and Z to the corresponding matrix functions, that is:

Z,—>f(Z,), Z—g2. (12)
After mapping, we get a new criterion function:
r (U (2,)U
Jp (U) = max W'r(#)0) (13)

v onr(UTg@U)

According to section II.C, if f(x) and g(x) have satisfied
the two conditions, the new method of Eq. (13) can avoid the
small-sample-size problem of MFA and improve the classi-
fication ability of MFA. Although there are several functions
to choose from, there are two problems. One is that although
many functions meet the conditions, it is difficult to give a
specific function form. Another problem is that among all the
functions that meet the conditions, some are good, some are
poor, so is there a standard form of the function? According to
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Theorem 2, the polynomial can approximate any function,
that is, any function can be formulated by a polynomial.
So, inspired by Theorem 2, we use polynomial functions to
implement the above objectives.

We choose an n-order polynomial f (x) = Y j_,axx* to
map the matrix Z,,, thus the gotten matrix functionis f (Z,) =
al +a1Z, + --- + anZZ. Simultaneously, we use a simple
linear function g (x) = b+x (b > 0) to map the matrix Z, the
gotten matrix function is g (Z) = bl + Z. Thus, the Eq. (13)

becomes:
n
tr (UT <kZ akZ;§> U)
Jp(U) = max =0 .

v (UT I +2)U)

It can be reduced the generalized eigenvectors problem:

(Z akz§> u=»xr®l+2)u. (15)

k=0

(14)

Thus, a new MFA method has been presented. Since the
polynomial is used to reconstruct the criterion of MFA, this
new method is named polynomial marginal fisher analysis
(PMFA). The PMFA algorithm is given below:

Algorithm 2 PMFA

1) Input a dataset X

2) Constructing the intra-class compactness and inter-
class separability matrixes:

Adjacency matrix: W; = Wj; = 1 if x; is among the k;
nearest neighbors of x; in the same class

Similarity matrix: Wi;. = W;’i = 1 if the pair (i, j) is among
the ky shortest pairs

3) New criterion: select two suitable functions f (x) and g(x)
to map the matrices X (D” —WP”)XT and (X (D—W )X to the
corresponding matrix functions, get a new criterion function:

r (UTFX(DP — wPXTHU

J ) = max TS X )0)
v ir(U'gXD—-w)X"U)

4) Compute the eigenvalues and eigenvectors as:

FXMDP — WX yu = 2gXD — W)X u

5) Output the final linear projection direction as:

Y=U"X

B. THEORETICALLY ANALYSIS

In this section, we theoretically discuss why we chose f (x) =
ay+ax+---+apx" (ap >0k =0,1,--- ,n))and g (x) =
b+ x (b > 0) to map matrices Z, and Z.

1) AVOID THE SMALL-SAMPLE-SIZE PROBLEM

After mapping the matrix Z with the linear function g (x) =
b + x (b > 0), the gotten matrix function is g (Z) = bl + Z.
Let A,,; be the eigenvalues of the matrix Z. We know that the
matrix Z is semidefinite according to Section II. A, and so

VOLUME 10, 2022
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(a) The initial samples space

FIGURE 1. Geometric interpretation of PMFA.

Awi = 0. According to Theorem 1, b+ X,,; are the eigenvalues
of the matrix function g (Z) = bl + Z. Since b > 0, we have
b 4+ Ay > 0 then the matrix function g (Z) = bl + Z will
not have zero eigenvalues and will be nonsingular. Thus, Eq.
(15) is solvable. Therefore, the small-sample-size problem of

PMFA is avoided.

2) IMPROVE CLASSIFICATION PERFORMANCE

In the MFA method, WZ. is the correlation coefficient between
the sample pairs x; and x; from the different classes, W ;; is the
correlation coefficient between the samples x; and x; of the
same class. The inter-class distance dj, and the intra-class
distance d,, in the sample space can be expressed as:

1 2
dy =3 D [xi=x " Wi=rr (xrxT)=ir (z,).  (16)
LJ

1
dy= 75 Z i—ax; | Wy =t (XLXT) —r(Z). (7
LJ

Let Ap; and A,,; be the eigenvalues of Z, and Z respectively,
the two distances can be written as:

dp = tr (Zp) = Ap1 + A2 + -+ Ao, (18)
dy = tr (Z) = dyw1 + A2 + - Ayne (19)
For the PMFA method, the matrix Z, is mapped into the
matrix function f (Z,) = Y}_oaZ) by the polynomial

fex) =35 arx*, and the matrix Z is mapped into the
matrix function g(Z) = bI +Zby g(x) = b+ x (b > 0).
According to Theorem 1, f (Ap)) = ZZ:O akklgi are the
eigenvalues of matrix function f (Z,,) = Y i arZF, and
g (Ayi) = b+ X, are the eigenvalues of the matrix function
g (Z) = bl + Z. After mapping, the new inter-class distance
d, and the intra-class distance dj, are:

dy = tr (f(Zp)) = (Z akklgl) + (Z akklg2>
k=0 k=0
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(b) The sample space mapped by the polynomial matrix function
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+ -4 (j{:akkin>, (20)
k=0

dy, = tr (8(Z)) = (b + dw1) + (b + Aw2)
+ o O+ ). @

Usually, the eigenvalues of the matrix Z,, A, take a larger
value, so we have f (Ap)) = D y_g akklgi > Apiand g (M) =
b+ Awi & Ayi. Then, we have d >> dj, and d}, ~ d,,.

In this way, with the mapping of polynomial, the PMFA
method keeps almost the intra-class distance while greatly
enlarging the marginal space between the inter-class samples,
which is beneficial to pattern classification.

To illustrate the main idea of the PMFA method visually,
we present a geometric interpretation of PMFA in Fig. 1. For
convenience, two class examples are used for illustration. The
red circle and the blue circle represent two different classes
respectively, the red square and the blue square represent the
centers of the two different classes. In Fig. 1, orange lines
represent the intra-class distance, and green lines represent
the inter-class margin distance. Fig. 1(a) shows the initial
samples space. In Fig. 1(b), PMFA uses the polynomial func-
tion to map the initial samples to the new space where the
intra-class distance is almost unchanged, and the inter-class
edge distance is enlarged. Fig. 1(c) shows a new space after
the projection of the samples.

3) COMPUTATIONAL COMPLEXITY ANALYSIS

The computational complexity of the MFA and PMFA is
evaluated in this section. For a given dataset X € R™*",
m is the dimensionality of training samples, n is the number
of the training samples. Both methods need to perform the
following two steps:

(1) Construct an intrinsic graph and a penalty graph in
o ((k1 + kz)nz).
(2) Solve the eigenvalue problem in om>) [14].
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For MFA, the covariance matrix needs to be calculated in
O(m?n) and its eigenvalue decomposition is O(m?), thus, the
complexity is O ((k] + ko) 4+ m® + m*n + m3).

For PMFA, it requires the use of the polynomial matrix
function transformation in O(4m?3), thus computation com-
plexity is O ((ky + ko)n* + m?® + 4m?).

Usually, one has n >> m, so there is little difference in
computational complexity between MFA and PMFA.

C. THE DESIGN OF THE POLYNOMIAL
In this Section, we discuss how to select the polynomial f (x)
and g(x) in Section III A. For g(x) = b + x (b > 0), the
constant b takes usually a little value, empirically, let b =
0.01,i.e., g(x) = 0.01 +x. The design of the polynomial f (x)
is discussed as follows.

It is well-known that, for any function p(x), it has Taylor’s
expansion

_ p(xo)

p0x) = N P (x0)

0! 1!
+o[(x — x0)"]

(x —x0) + -

(1)
p (XO)(X —x)"
n!

When xp = 0, it is reduced to McLaughlin’s expansion

/ (n)
px) = PO +2 (O)x +- 4 p—(o)x” +o[x"]. (22
0! 1! n!

In real application, the coefficients in Eq. (22) can be
simplified to a certain constant ¢, so Eq. (22) can be rewritten
as p(x) = ¢ (1 +x 4+ ’;—? S ’1‘1—':) According to the pre-
vious Section, the smaller the denominator of the polyno-
mial, the larger the eigenvalue obtained by the polynomial
p(x) mapping, so the polynomial p(x) can be simplified to
o) =l4x+5 4 42

Let’s review EMFA [15], which uses exponential function
y = €' to map eigenvalues, and then to enlarge the distance
of samples. In this paper, the designed polynomial should be
stronger than the exponential function when the distance is
extended.

For the polynomial p(x), the larger the n value, the
larger the eigenvalue after mapping. The smaller the n, the
smaller the influence on the eigenvalues. Thus, we try to let
n =3, 5,7, then the polynomial p(x) becomes

2 3
X X
:1 _— -,
s(x) +x+2+3
2 3 4 5
X X X X
h(x) =1 —+=+=—+=—, and
@ =1+x+—+ >+ + 2, an
2 x3 x4 xS x6 x7

X
fO=l+x+—+ o+ +o+ -+

In order to study the mapping ability of the functions
y = €%, s(x), h(x), and f(x) to eigenvalues, we give their
geometric illustration in Fig. 2. As can be seen that when
n = 7 is, the value f (1) is the largest, so the ability to enlarge
the distance is the strongest. However, the greater the n value,
the greater the computational complexity of computing the
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TABLE 2. The comparisons of distance of MFA and PMFA.

AR ORL FERET PIE
d, 367.59 8.27 159.91 143.68
d, 858.38 20.81 489.50 392.60
d, 70.91 8.15 37.07 83.53
d 71.72 8.29 37.22 83.93

n-order polynomial matrix function. We set n = 7, i.e., the
. 2 3 4

se;venth-orde7r polynomial f(x) = 1 +x + %5 + 5 + 7 +
% + % + % is chosen.

Now, we have f(x) = ZIZ:O "Tk and g (x) = 0.01+x. when

k

mapping eigenvalues, we have f (Ap;) = ZZ:O % > e,
and g (A;) = 0.01 4+ A,; = Ay;. Then, we have

7 A .
fOw) _ Do F - e _ i
g wi)  0.01+ Ay — et T Ay
According to this analysis, the classification ability of

PMFA should be better than that of EMFA, and much better
than that of MFA.

(23)

A

1
0

Y

FIGURE 2. Geometric illustration of the functions.

D. AN EXPERIMENT OF THE DISTANCE DIFFUSION

After selecting the polynomial f(x) and g(x), we provide an
experiment to illustrate the distance diffusion effect of PMFA
in four face datasets: AR [28], ORL [29], FERET [30], and
PIE [31]. In the experiment, for each data set, the original
samples are normalized to avoid the large value, and k; = 3,
ko = 8. The inter-class distance d}, and the intra-class distance
d,, of MFA are calculated by Eq. (18) and (19), and the inter-
class distance d; and the intra-class distance d;, of PMFA are
calculated by Eq. (20) and (21), where the first ten largest
eigenvalues are used. Table 2 shows the comparisons of the
results of the MFA and PMFA methods on four face datasets.
As can be seen, compared with MFA, PMFA increases the
inter-class distance and maintains the intra-class distance.
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b 4 o 4N w s e o N ®

(d) Two-dimensional projection using PMFA

FIGURE 3. The embedding of synthesized data.

IV. EXPERIMENTAL RESULTS

A. EXPERIMENTAL SETUP

In the experiments, to verify the validity of the proposed
PMFA method, the classical LDA [2], the original MFA [11],
and the latest improvement of MFA: MMFA (Multiple
MFA) [14], and two methods that solved the SSS problem
of MFA: EMFA (Exponential MFA) [15] and RMFA (Reg-
ularized MFA) [16] are compared with the proposed PMFA
method.

For the proposed PMFA method, according to section III
C, two polynomial functions are selected to map the matrices
Z,, and Z to the corresponding matrix functions:

20,3 44 5 6 T
f(x)—1~|—x~|—2+3+4+5+6+7and
g(x) = 0.01 +x.

In the further experiment, the PMFA method is also com-
pared with the latest proposed manifold-based learning algo-
rithms, including GDE [18], CR-DLPP [19], LMGE-DDR
[20], GEU-MFA-U, and GEU-MFA-S [17].

B. DATA VISUALIZATION
To illustrate the classification performance of PMFA, we con-
duct data visualization experiments on the synthetic data set
(Gaussian and non-Gaussian distribution) and the real face
data set.

The synthetic data of Gaussian distribution is a
3-dimensional dataset in Fig. 3(a). This three-class set
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(e) Three-dimensional projection using PMFA

(c) MFA Projection

N ¢

N1DA \MFA [PMFA
\LDA | MFA |PMFA
\ |

(f) a non-Gaussian distribution

contains 600 points. Each class is generated using a single
Gaussian.

Fig. 3(b) shows the projection in a 1-D subspace using
LDA, Fig. 3(c), (d) is the 2-D projection of MFA and PMFA,
respectively. Fig. 3(e) shows the projection using PMFA in
a 3-D subspace. As we can see, that both MFA and PMFA
provide prediction data with good distinction capabilities.
We can also see that, compared with MFA, PMFA makes the
intra-class samples more compact, and the marginal distance
of the inter-class samples larger.

In Fig. 3(f), a binary classification problem shows the
classification ability of LDA, MFA, and PMFA in the case
of non-Gaussian distribution. Where, the red solid circles and
blue solid circles are two different classes of synthetic data,
which do not follow the Gaussian distribution. The solid lines
represent optimal classification lines and the dotted lines rep-
resent the optimal projection directions learned from LDA,
MFA, and PMFA, respectively. The results show that: (1) in
the case of non-Gaussian distribution, LDA does not work
well, but MFA and PMFA can still find the best projection
directions; (2) the best projection direction learned by PMFA
is better than that of MFA, because PMFA not only considers
the edge points but also enlarges the distance of the inter-class
samples.

Fig. 4 shows the 2-D projection on the Georgia Tech face
database using the MFA, RMFA, EMFA, and PMFA methods.
It can be observed that PMFA is more effective than MFA,
RMFA and EMFA.
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FIGURE 4. The two-dimension projection of Georgia Tech face database. (a) MFA. (b) RMFA (c) EMFA. (d) PMFA.

TABLE 3. Details of the datasets.

Sample number of each class

Dataset Number of classes Image size Data dimension
Number of samples per class
ORL 40 10 32x32 1024
Yale 15 11 24x24 576
Georgia Tech 126 14 32x32 1024
AR 50 15 40x50 2000

C. FACE RECOGNITION

In this part, we conduct experiments on four face databases:
ORL, Yale, AR, and Georgia Tech [32]. Fig. 5 shows some
of the sample pictures from the datasets. It showed the details
of the datasets used in the experiment in Table 3.

In the experiment, the matrix Z, and Z are normalized
to their norm, then mapping Z, with f(x), and adds 0.01 to
the diagonal element of Z. For each class in all the datasets,
we select p samples as the training samples and the rest as the
test samples. For the p training samples, to get stable results,
the experiment is repeated three times and the p samples are
randomly selected for each time. In each experiment, for the
p training sample, the dimension of subspace range between
10 and 100 with the step size being 5. The recognition rate
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TABLE 4. The recognition accuracy, standard deviation and optimal
dimensions of the ORL dataset.

Method 4 trains 5 trains 6 trains
LDA 91.67+1.21(30)  93.33+1.64(35) 95.23+1.98(39)
MFA 92.78+1.97(55)  95.83+2.02(65)  97.92+1.44(60)

RMFA 95.39+1.05(55)  96.83+1.61(55) 97.86+1.30(85)

EMFA 95.97+1.88(55)  97.00+1.73(40)  98.13+0.98(65)

MMFA 94.41£1.61(55)  97.24+1.46(95) 98.09+2.01(60)

PMFA 96.25+0.42(100)  98.00:+0.50(70)  98.54+1.57(60)

corresponding to the optimal subspace dimension is the opti-
mal recognition rate. Therefore, for the three experiments,
there are three optimal recognition rates. Finally, the average
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FIGURE 5. The sample pictures taken from the datasets in the experiment. The first line is from
the ORL face dataset, the second line is from the Yale face dataset, the third line is from the
Georgia Tech face dataset, and the last line is from the AR face dataset.

TABLE 5. The recognition accuracy, standard deviation and optimal
dimensions of the Yale dataset.

Method 4 trains 5 trains 6 trains
LDA 67.30+6.56(100)  75.30+7.81(35) 81.00+7.19(35)
MFA 79.36+2.40(75)  81.48+3.80(50) 86.66+5.81(25)

RMFA 80.90+1.96(35)  81.56+1.44(20) 88.67+3.34(65)

EMFA 79.56+0.55(20)  80.74+1.24(50)  83.11+6.01(25)

MMFA 79.92+0.84(75)  81.76+2.97(65) 87.96+5.36(40)

PMFA 82.54+2.20(75)  82.96+3.71(50)  90.22+6.84(25)

TABLE 6. The recognition accuracy, standard deviation and optimal
dimensions of the Georgia Tech dataset.

Method 6 trains 7 trains 8 trains
LDA 70.13+0.97(30) 72.50+1.50(49) 73.87+2.04(60)
MFA 77.78+£2.94(90)  79.33+£0.95(100)  82.38+1.19(100)

RMFA 78.67+1.39(60)  79.58+2.13(100)  81.76+1.58(90)

EMFA 78.29+1.12(50)  79.83+0.80(80) 83.34+1.35(65)

MMFA 78.37+1.86(40)  79.90+0.49(60) 83.06+1.71(30)

PMFA 80.15+2.93(40)  82.25+1.73(35) 85.33+2.22(65)

TABLE 7. The recognition accuracy, standard deviation and optimal
dimensions of the AR dataset.

Method 3 trains 4 trains 5 trains
LDA 90.15+2.25(80)  95.03+0.69(100)  96.79+0.49(100)
MFA 95.47+2.32(85)  98.39+0.21(85) 98.70+0.43(85)
RMFA 95.88+0.42(45)  96.75+(0.54)90 97.01+0.52(95)
EMFA 95.99+1.00(85)  97.28+0.76(85) 98.03+0.54(95)

MMFA 96.06+1.55(75)  98.13+1.14(75) 98.56+0.45(95)

PMFA 98.03+0.35(85)  98.69+0.42(85) 99.07+0.34(80)

value is used as the recognition rate when the training sample
is p. Tables 4-7 show the recognition results (recognition
accuracy (%) =+ standard deviation and optimal dimension)
of these methods.

We also evaluate the performance of these methods when
the subspace dimension takes different values. In each exper-
iment, for a training sample p and a subspace dimension,
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FIGURE 6. Comparison of performance and dimension on ORL dataset
(training sample p = 4).
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FIGURE 7. Comparison of performance and dimension of the Yale dataset
(training sample p = 4).

there is a recognition rate. When the subspace dimension is
between 10 and 100, the recognition rate of each method in
each dimension can be got, Figs. 6-9 show how the recogni-
tion rate varies with the dimension.
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TABLE 8. The comparison of recognition rates (%) on PIE, AR, Yale, FERET and Yale B datasets.

PIE AR Yale FERET Yale B
Methods
p=6 p=17 p=8 p'=7 p=7 p=4 p=5 p=6 p=5 p=6 p=10
MFA 93.16 93.71 93.14 95.44 96.39 73.65 77.04 82.22 88.58 88.50 88.77
EMFA 93.71 93.37 93.38 96.54 96.87 73.96 75.19 80.00 83.38 79.33 86.68
GDE [18] 59.80 69.46 82.72 71.90 71.55 - - - - - -
LMGE-DDR [20] 91.35 - 93.31 - - - - - 89.71 90.73 -
CR-DLPP [19] 93.96 - - - - 76.57 80.81 83.38 87.68 88.52 -
GEU-MFA-U [17] - - - - - - - - - - 92.20
GEU-MFA-S [17] - - - - - - - - - - 92.10
PMFA 94.26 94.29 94.02 97.90 96.51 77.46 81.48 84.89 89.92 91.33 92.43

! the training selects the first seven images of each class, and the remaining images are used for testing
2 the training selects the last seven images of each class, and the rest are used for testing
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FIGURE 8. Comparison of performance and dimension of the AR dataset
(training sample p = 5).
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FIGURE 9. Comparison of performance and dimension of the Georgia
Tech dataset (training sample p = 7).

D. THE FURTHER EXPERIMENTS

In this section, we also compare the PMFA method and other
latest proposed manifold-based learning algorithms on PIE,
AR, Yale, FERET and Yale B [33] datasets in Table 8. These
including GDE [18], CR-DLPP [19], LMGE-DDR [20],
GEU-MFA-U, and GEU-MFA-S [17]. Where GEU-MFA-U
and GEU-MFA-S are the latest methods of MFA. We use the
recognition rates reported in the literature for comparison,
because the source code of these methods is not available.
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The results show that the recognition rate of the PMFA
method is better than the latest methods.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, based on the framework of matrix function
dimensionality reduction, when the polynomial matrix func-
tion transformation is used in the MFA method, PMFA (Poly-
nomial Marginal Fisher Analysis) is proposed. The proposed
PMFA method has two advantages: one is that it solves
the small-sample-size problem of MFA, and the other is
that it can enlarge the distance of the inter-class sample,
then have a good ability for pattern classification. However,
the computational complexity and classification ability are
closely related to the selected polynomial function, so enough
research is needed when choosing an appropriate polynomial.
In the future, the design of the polynomial functions can be
improved, and the idea of the polynomial matrix function
transformation can also be used to some other dimensionality
reduction methods.
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