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ABSTRACT Marginal fisher analysis (MFA) is a dimensionality reduction method based on a graph
embedding framework. In contrast to traditional linear discriminant analysis (LDA), which requires the
data to follow a Gaussian distribution, MFA is suitable for non-Gaussian data, and it has better pattern
classification ability. However, MFA has the small-sample-size (SSS) problem. This paper aims to solve
the small-sample-size problem while increasing the classification performance of MFA. Based on a matrix
function dimensionality reduction framework, the criterion of the MFA method is reconstructed by using
the polynomials matrix function transformation, and then a new MFA method is proposed, named PMFA
(polynomial marginal fisher analysis). The major contributions of the proposed PMFA method are that it
solves the small-sample-size problem of MFA, and it can enlarge the distance between marginal sample
points of inter-class, so that it can get better pattern classification performance. Experiments on the public
face datasets show that PMFA can get a better classification ability than MFA and its improved methods.
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INDEX TERMS Dimensionality reduction, manifold learning, marginal fisher analysis, matrix function, the
small-sample-size (SSS) problem.

I. INTRODUCTION14

In some fields, such as data visualization and face recog-15

nition, features are usually represented as high-dimensional16

data. The original high-dimensional data contains redun-17

dant and noisy information, which can easily cause errors18

in practical applications, and the direct processing of high-19

dimensional data may cause considerable computational con-20

sumption. To better analyze and process data, it is necessary21

to find low-dimensional features that effectively represent22

high-dimensional data.23

Many dimensionality reduction methods have been pro-24

posed. Principal component analysis (PCA) [1] and LDA [2]25
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are widely used linear subspace algorithms. As an unsuper- 26

vised learning algorithm, the principle of PCA is to maximize 27

the covariance of reduced dimension samples. As a super- 28

vised learning algorithm, the principle of LDA is to make 29

different classes as far as possible and the same classes as 30

close as possible after dimensionality reduction. 31

There are many dimensionality reduction methods based 32

onmanifold, such as ISOMAP [3], LLE [4], LE [5],MVU [6], 33

t-SNE [7], LPP [8], and NPE [9]. What they have in common 34

is to find a neighborhood in each sample point, and retain 35

the local structure information of the sample points while 36

mapping the high-dimensional data into low-dimensional 37

data. With the emergence of these classical manifold learning 38

algorithms one after another, some researchers have hoped 39

to unify manifold learning algorithms using a framework. 40
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Bengio et al. unified ISOMAP, LLE, and LE into kernel41

functions [10]. Yan et al. proposed a unified graph embedding42

framework [11]. This framework can explain the existing43

dimensionality reduction algorithms with a linear, kernel,44

tensor extension of a certain intrinsic graph, or direct graph45

embedding.46

In the graph embedding framework, the marginal fisher47

analysis method (MFA) is proposed. The main idea behind48

MFA is that it describes intra-class compactness by con-49

structing an intrinsic graph and inter-class separability by50

constructing a penalty graph. Based on the design of the two51

graphs, it is also suitable for data of non-Gaussian distribu-52

tion; therefore, there is no need for a priori knowledge of data53

distribution. However, the classical LDAmethod requires the54

data to follow a Gaussian distribution. Compared with LDA,55

MFA can find a more discriminative direction. However, the56

dimensions of the samples are usually much larger than the57

number of samples, resulting in the intra-class compactness58

matrix of the MFA being singular, and the generalized eigen-59

value problem ofMFA is difficult to solve. This may be called60

the small-sample-size (SSS) problem of MFA.61

In recent years, much research has been conducted62

on MFA. Based on the separability criterion of MFA,63

Yu et al. proposed the orthogonal MFA (OMFA) and uncor-64

related MFA (UMFA) method, in which orthogonal and irrel-65

evant constraints are added to the base vector [12]. Siena66

proposed a coupled MFA (CMFA) method, which considers67

the nearest neighbor of each data sample and uses differ-68

ent rules to construct the penalty graph of the MFA [13].69

Huang et al. proposed the multiple MFA (MMFA) method70

that uses edge data points andmanifold structures and consid-71

ers multiple marginal data pairs when constructing a penalty72

graph [14]. For the SSS problem of MFA, MFA uses PCA73

to reduce the dimensionality of the samples and then avoids74

the singularity of the intra-class compactness matrix, but this75

will lose some useful information about the original sam-76

ples [11]. In addition, some methods have been proposed to77

solve the SSS problem of MFA. For example, Wang et al.78

proposed a general matrix exponential framework, the SSS79

problem of MFA [15] can be solved by an exponential MFA80

(EMFA) method which is based on this framework. Huang81

proposed a regularized MFA (RMFA) [16], which multi-82

plies a unit matrix by a small number to construct a regular83

term into the inner-class compactness matrix of the MFA so84

that the resulting matrix is invertible. The graph embedding85

framework is reformulated in [17], as a special case of the86

GEU framework formula, the MFA technique is extended as87

GEU-MFA. Recently, there are many algorithms based on88

manifold learning, such as GDE [18], CR-DLPP [19] and89

LMGE-DDR [20].90

In [21], a general framework for dimensionality reduction91

based on the manifold was proposed. The main idea of the92

framework is to use two scalar functions to map the scatter93

matrices into the corresponding matrix functions, and then to94

make dimensionality reduction and feature extraction. How-95

ever, in real life, it is difficult to choose such two functions.96

In mathematics, any function can be approximated by a poly- 97

nomial, so we can use the polynomial to uniformly represent 98

the above optional and various forms of functions. Then, this 99

framework is easier to use. 100

This paper aims to solve the SSS problem and improve the 101

classification ability of MFA. So, based on the above idea, 102

i.e., combining the polynomial function and the framework 103

in [21], we proposed a new MFA method, named PMFA 104

(polynomial marginal fisher analysis). Specially, we use two 105

appropriate polynomials to map the scattering matrices of 106

MFA to the new space, which can avoid the SSS problem and 107

get better pattern classification performance. We also discuss 108

the design of the two polynomial functions, and provide a 109

theoretical analysis of the proposed method. Experiments are 110

conducted on synthetic data set and some public face datasets, 111

which show that the proposed PMFA is an effective method. 112

As an effective feature extraction method, like MFA and 113

its variants, PMFA can be applied in many fields, such as 114

face recognition [13], [16], facial expression recognition [22], 115

autism trait classification [23], image representation [24], etc. 116

The remainder of this paper is organized as follows. The 117

Section II summarizes MFA and the matrix function dimen- 118

sionality reduction framework. Section III presents polyno- 119

mial marginal fisher analysis (PMFA). Section IV verifies 120

PMFA with experiments. Finally, Section V summarizes the 121

study and future directions. 122

TABLE 1. Notations and descriptions.

II. RELATED WORK 123

A. MARGINAL FISHER ANALISIS 124

MFA first constructs an intrinsic graph G c
= {X,W } and 125

penalty graph G p
=
{
X,Wp}, which are used to describe 126

inter-class separability and intra-class compactness, respec- 127

tively. Then, MFA tries to find an optimal projection matrixU 128

and makes a projection yi = UT xi, so that the dimension of yi 129

is smaller than that of xi. To clarify the method, Table 1 sum- 130

marizes the frequently used notations. 131
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The intra-class compactness of the projected sample is132

defined as:133

Sc =
∑
i

∑
i∈Nk1 (j)orj∈Nk1 (j)

∥∥yi − yj∥∥2 = 2tr
{
UTXLXTU

}
134

(1)135

where L = D −W ; D is a diagonal matrix composed of the136

sum of the rows ofW , i.e., Dii =
∑
j
W ij.W =

(
W ij

)
,W ij is137

defined as:138

W ij =

{
1, if i ∈ Nk1 (j) or j ∈ Nk1 (i)
0, else.

(2)139

where Nk1 (i) represents an index set of the k1 nearest neigh-140

bors of the sample xi in the intrinsic graph G c.141

The projected inter-class data separation is defined as:142

Sp =
∑
i

∑
(i,j)∈Nk2 (ci)or(i,j)∈Nk2(cj)

∥∥yi − yj∥∥2143

= 2tr
{
UTXLpXTU

}
(3)144

where Lp = Dp − Wp; Dp is a diagonal matrix composed145

of the row sum of the matrix Wp, i.e., Dpii =
∑
j
Wp

ij. W
p
=146 (

Wp
ij

)
,Wp

ij is defined as:147

Wp
ij =

{
1, if i ∈ Nk2

(
cj
)
or j ∈ Nk2 (ci)

0, else.
(4)148

where Nk2 (ci) represents an index set of thek2 nearest pairs149

for the class ci in the penalty graph G p.150

The marginal fisher criterion is defined as:151

J (U) = max
U

tr
(
UTXLpXTU

)
tr
(
UTXLXTU

) . (5)152

Let the matrix Zp = XLpXT , matrix Z = XLXT , and upper153

Eq. (5) can be solved using the generalized eigenvectors154

problem:155

Zpu = λZu. (6)156

The basic MFA algorithm is given in Algorithm 1.157

For the above Eq. (6), the rank of matrix Z has an158

inequality:159

rank (Z) = rank
(
XLXT

)
≤ rank (X) ≤ min (m, n).160

Usually, the dimension of training samples is much larger161

than the number of training samples, that is m � n,162

so rank (Z) < n. And Z = XLXT is an n-order matrix, i.e.,163

Z is a singular matrix, so Eq. (6) is difficult to solve directly,164

which is the SSS problem of MFA.165

Algorithm 1MFA
1) Input a dataset X
2) PCA projection: project the data set into the PCA sub-
space, let XPCA denote the transformation matrix of PCA
3) Constructing the intra-class compactness and inter-
class separability matrixes:
Adjacency matrix: W ij = W ji = 1 if xj is among the k1
nearest neighbors of xi in the same class
Similarity matrix: Wp

ij = Wp
ji = 1 if the pair (i, j) is among

the k2 nearest pairs
4) Marginal fisher criterion

J (U) = max
U

tr
(
UTX(Dp −Wp)XTU

)
tr
(
UTX(D−W )XTU

)
5) Compute the eigenvalues and eigenvectors as:

X(Dp −Wp)XTu = λX(D−W )XTu

6) Outputthe final linear projection direction as:

Y = UTXPCA

B. MATRIX FUNCTION AND ITS EIGEN-SYSTEM 166

The definition of the matrix function and the corresponding 167

properties are presented, which is used in the paper. 168

Definition 1 [25]: Let A be a square matrix and f (x) be a 169

scalar function. If one replaces the variable x in f (x) with the 170

square matrix A, the resulting matrix f (A) is called the matrix 171

function of the matrix A. 172

Theorem 1 [26]: Let A be a real symmetric square matrix 173

of n-order, f (x) be a scalar function, λi be the eigenvalue 174

of the matrix A and υ i be the eigenvector belonging to the 175

eigenvalue λi, i.e., Aυ i = λiυ i (i = 1, 2, · · · , n). For the 176

matrix function f (A), one has: 177

f (A)υ i = f (λi)υ i (i = 1, 2, · · · , n), (7) 178

where f (λi) are the eigenvalues of f (A), and υ i are the eigen- 179

vectors corresponding to f (A). 180

Theorem 2 (Weierstrass Approximation Theorem [27]): 181

Continuous functions on closed intervals can be approxi- 182

mated uniformly using a polynomial series. 183

C. MATRIX FUNCTION DIMENSIONALITY 184

REDUCTION FRAMEWORK 185

In [21], a general matrix function dimensionality reduc- 186

tion framework is proposed for the dimensionality reduction 187

method in manifold learning. 188

The criterion function of the manifold-based dimensional- 189

ity reduction method is expressed as: 190

J (U) = argmax
U

∣∣UTS1U
∣∣∣∣UTS2U
∣∣ , (8) 191

where the matrices S1 and S2 have different forms for the 192

different methods and U is the desired optimal projection 193

matrix. 194
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The main concept of the matrix function framework in [21]195

is to map the matrices S1 and S2 in Eq. (8) into the matrix196

functions f (S1) and g(S2)with the scalar functions f (x) and197

g(x), so that the criterion Eq. (8) becomes:198

J (U) = argmax
U

∣∣UT f (S1)U
∣∣∣∣UT g (S2)U
∣∣ . (9)199

Eq. (9) can be reduced the generalized eigenvectors problem:200

f (S1)u = λg(S2)u. (10)201

Notice that the matrices S1 and S2 are composed of the202

original sample, and the above mapping f (·) and g(·) trans-203

form the matrices S1 and S2 from the original sample space204

to a new sample space.205

The functions f (x) and g(x) in Eq. (9) are configurable.206

If selects different functions, the matrix function dimension-207

ality reduction framework can construct a series of methods208

for dimensionality reduction. How to select the two functions209

is discussed in [21]. In conclusion, the two functions should210

satisfy the two conditions: (1) for any x, the function g(x)211

should be g(x) 6= 0 and then the matrix function g(S2) is non-212

singular so that the SSS problem can be avoided by the new213

dimensionality reduction method; (2) for better classification214

after mapping, the function f (x) should be a monotonically215

increasing function and f (x) > x, at the same time, g(x) ≈ x216

(org(x) < x).217

III. THE PROPOSED NEW METHOD218

A. MARGINAL FISHER ANALYSIS WITH POLYNOMIAL219

MATRIX FUNCTION220

In the criterion of MFA, i.e., Eq. (5), denote the matrix Zp =221

XLpXT and the matrix Z = XLXT , then Eq. (5) can be222

expressed as:223

J (U) = max
U

tr
(
UTZpU

)
tr
(
UTZU

) . (11)224

According to section II.C , we can solve the small-sample-225

size problem and improve the classification performance of226

MFA by selecting two suitable functions to map the matrices227

Zp and Z to the corresponding matrix functions, that is:228

Zp→ f
(
Zp
)
, Z→ g (Z). (12)229

After mapping, we get a new criterion function:230

Jp (U) = max
U

tr
(
UT f

(
Zp
)
U
)

tr
(
UT g (Z)U

) . (13)231

According to section II.C , if f (x) and g(x) have satisfied232

the two conditions, the new method of Eq. (13) can avoid the233

small-sample-size problem of MFA and improve the classi-234

fication ability of MFA. Although there are several functions235

to choose from, there are two problems. One is that although236

many functions meet the conditions, it is difficult to give a237

specific function form. Another problem is that among all the238

functions that meet the conditions, some are good, some are239

poor, so is there a standard form of the function?According to240

Theorem 2, the polynomial can approximate any function, 241

that is, any function can be formulated by a polynomial. 242

So, inspired by Theorem 2, we use polynomial functions to 243

implement the above objectives. 244

We choose an n-order polynomial f (x) =
∑n

k=0 akx
k to 245

map thematrixZp, thus the gottenmatrix function is f
(
Zp
)
= 246

a0I + a1Zp + · · · + anZnp. Simultaneously, we use a simple 247

linear function g (x) = b+x (b > 0) to map the matrix Z, the 248

gotten matrix function is g (Z) = bI + Z. Thus, the Eq. (13) 249

becomes: 250

Jp(U) = max
U

tr
(
UT

(
n∑

k=0
akZkp

)
U
)

tr
(
UT (bI + Z)U

) . (14) 251

It can be reduced the generalized eigenvectors problem: 252(
n∑

k=0

akZkp

)
u = λ (bI + Z)u. (15) 253

Thus, a new MFA method has been presented. Since the 254

polynomial is used to reconstruct the criterion of MFA, this 255

new method is named polynomial marginal fisher analysis 256

(PMFA). The PMFA algorithm is given below: 257

Algorithm 2 PMFA
1) Input a dataset X
2) Constructing the intra-class compactness and inter-
class separability matrixes:
Adjacency matrix: W ij = W ji = 1 if xj is among the k1
nearest neighbors of xi in the same class
Similarity matrix: Wp

ij = Wp
ji = 1 if the pair (i, j) is among

the k2 shortest pairs
3) New criterion: select two suitable functions f (x) and g(x)
to map thematricesX(Dp−Wp)XT and (X(D−W ))XT to the
corresponding matrix functions, get a new criterion function:

J (U) = max
U

tr
(
UT f (X(Dp −Wp)XT )U

)
tr
(
UT g(X(D−W )XT )U

)
4) Compute the eigenvalues and eigenvectors as:

f (X(Dp −Wp)XT )u = λg(X(D−W )XT )u

5) Output the final linear projection direction as:

Y = UTX

B. THEORETICALLY ANALYSIS 258

In this section, we theoretically discuss why we chose f (x) = 259

a0+a1x+· · ·+anxn (ak > 0(k = 0, 1, · · · , n)) and g (x) = 260

b+ x (b > 0) to map matrices Zp and Z. 261

1) AVOID THE SMALL-SAMPLE-SIZE PROBLEM 262

After mapping the matrix Z with the linear function g (x) = 263

b + x (b > 0), the gotten matrix function is g (Z) = bI + Z. 264

Let λwi be the eigenvalues of the matrix Z. We know that the 265

matrix Z is semidefinite according to Section II. A, and so 266
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FIGURE 1. Geometric interpretation of PMFA.

λwi ≥ 0. According to Theorem 1, b+λwi are the eigenvalues267

of the matrix function g (Z) = bI + Z. Since b > 0, we have268

b + λwi > 0 then the matrix function g (Z) = bI + Z will269

not have zero eigenvalues and will be nonsingular. Thus, Eq.270

(15) is solvable. Therefore, the small-sample-size problem of271

PMFA is avoided.272

2) IMPROVE CLASSIFICATION PERFORMANCE273

In theMFAmethod,Wp
ij is the correlation coefficient between274

the sample pairs xi and xj from the different classes,W ij is the275

correlation coefficient between the samples xi and xj of the276

same class. The inter-class distance db and the intra-class277

distance dw in the sample space can be expressed as:278

db =
1
2

∑
i,j

∥∥xi−xj∥∥2Wp
ij= tr

(
XLpXT

)
= tr

(
Zp
)
, (16)279

dw=
1
2

∑
i,j

∥∥xi−xj∥∥2W ij= tr
(
XLXT

)
= tr (Z). (17)280

Let λbi and λwi be the eigenvalues of Zp and Z respectively,281

the two distances can be written as:282

db = tr
(
Zp
)
= λb1 + λb2 + · · · λbn, (18)283

dw = tr (Z) = λw1 + λw2 + · · · λwn. (19)284

For the PMFA method, the matrix Zp is mapped into the285

matrix function f
(
Zp
)
=

∑n
k=0 akZ

k
p by the polynomial286

f (x) =
∑n

k=0 akx
k , and the matrix Z is mapped into the287

matrix function g (Z) = bI + Z by g (x) = b + x (b > 0).288

According to Theorem 1, f (λbi) =
∑n

k=0 akλ
k
bi are the289

eigenvalues of matrix function f
(
Zp
)
=
∑n

k=0 akZ
k
p, and290

g (λwi) = b + λwi are the eigenvalues of the matrix function291

g (Z) = bI + Z. After mapping, the new inter-class distance292

d ′b and the intra-class distance d ′w are:293

d ′b = tr
(
f (Zp)

)
=

(
n∑

k=0

akλkb1

)
+

(
n∑

k=0

akλkb2

)
294

+ · · · +

(
n∑

k=0

akλkbn

)
, (20) 295

d ′w = tr (g(Z)) = (b+ λw1)+ (b+ λw2) 296

+ · · · + (b+ λwn). (21) 297

Usually, the eigenvalues of the matrix Zp, λbi, take a larger 298

value, so we have f (λbi) =
∑n

k=0 akλ
k
bi � λbi and g (λwi) = 299

b+ λwi ≈ λwi. Then, we have d ′b � db and d ′w ≈ dw. 300

In this way, with the mapping of polynomial, the PMFA 301

method keeps almost the intra-class distance while greatly 302

enlarging the marginal space between the inter-class samples, 303

which is beneficial to pattern classification. 304

To illustrate the main idea of the PMFA method visually, 305

we present a geometric interpretation of PMFA in Fig. 1. For 306

convenience, two class examples are used for illustration. The 307

red circle and the blue circle represent two different classes 308

respectively, the red square and the blue square represent the 309

centers of the two different classes. In Fig. 1, orange lines 310

represent the intra-class distance, and green lines represent 311

the inter-class margin distance. Fig. 1(a) shows the initial 312

samples space. In Fig. 1(b), PMFA uses the polynomial func- 313

tion to map the initial samples to the new space where the 314

intra-class distance is almost unchanged, and the inter-class 315

edge distance is enlarged. Fig. 1(c) shows a new space after 316

the projection of the samples. 317

3) COMPUTATIONAL COMPLEXITY ANALYSIS 318

The computational complexity of the MFA and PMFA is 319

evaluated in this section. For a given dataset X ∈ Rm×n, 320

m is the dimensionality of training samples, n is the number 321

of the training samples. Both methods need to perform the 322

following two steps: 323

(1) Construct an intrinsic graph and a penalty graph in 324

O
(
(k1 + k2)n2

)
. 325

(2) Solve the eigenvalue problem in O(m3) [14]. 326
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For MFA, the covariance matrix needs to be calculated in327

O(m2n) and its eigenvalue decomposition is O(m3), thus, the328

complexity is O
(
(k1 + k2)n2 + m3

+ m2n+ m3
)
.329

For PMFA, it requires the use of the polynomial matrix330

function transformation in O(4m3), thus computation com-331

plexity is O
(
(k1 + k2)n2 + m3

+ 4m3
)
.332

Usually, one has n � m, so there is little difference in333

computational complexity between MFA and PMFA.334

C. THE DESIGN OF THE POLYNOMIAL335

In this Section, we discuss how to select the polynomial f (x)336

and g(x) in Section III A. For g (x) = b + x (b > 0), the337

constant b takes usually a little value, empirically, let b =338

0.01, i.e., g(x) = 0.01+x. The design of the polynomial f (x)339

is discussed as follows.340

It is well-known that, for any function p(x), it has Taylor’s341

expansion342

p(x) =
p(x0)
0!
+
p′(x0)
1!

(x − x0)+ · · ·
p(n)(x0)
n!

(x − x0)n343

+ o
[
(x − x0)n

]
344

When x0 = 0, it is reduced to McLaughlin’s expansion345

p(x) =
p(0)
0!
+
p′(0)
1!

x + · · · +
p(n)(0)
n!

xn + o
[
xn
]
. (22)346

In real application, the coefficients in Eq. (22) can be347

simplified to a certain constant c, so Eq. (22) can be rewritten348

as p(x) = c
(
1+ x + x2

2! · · · +
xn
n!

)
. According to the pre-349

vious Section, the smaller the denominator of the polyno-350

mial, the larger the eigenvalue obtained by the polynomial351

p(x) mapping, so the polynomial p(x) can be simplified to352

p(x) = 1+ x + x2
2 + · · · +

xn
n .353

Let’s review EMFA [15], which uses exponential function354

y = ex to map eigenvalues, and then to enlarge the distance355

of samples. In this paper, the designed polynomial should be356

stronger than the exponential function when the distance is357

extended.358

For the polynomial p(x), the larger the n value, the359

larger the eigenvalue after mapping. The smaller the n, the360

smaller the influence on the eigenvalues. Thus, we try to let361

n = 3, 5, 7, then the polynomial p(x) becomes362

s(x) = 1+ x +
x2

2
+
x3

3
,363

h(x) = 1+ x +
x2

2
+
x3

3
+
x4

4
+
x5

5
, and364

f (x) = 1+ x +
x2

2
+
x3

3
+
x4

4
+
x5

5
+
x6

6
+
x7

7
.365

In order to study the mapping ability of the functions366

y = ex , s(x), h(x), and f (x) to eigenvalues, we give their367

geometric illustration in Fig. 2. As can be seen that when368

n = 7 is, the value f (λ) is the largest, so the ability to enlarge369

the distance is the strongest. However, the greater the n value,370

the greater the computational complexity of computing the371

TABLE 2. The comparisons of distance of MFA and PMFA.

n-order polynomial matrix function. We set n = 7, i.e., the 372

seventh-order polynomial f (x) = 1 + x + x2
2 +

x3
3 +

x4
4 + 373

x5
5 +

x6
6 +

x7
7 is chosen. 374

Now, we have f (x) =
∑7

k=0
xk
k and g (x) = 0.01+x. when 375

mapping eigenvalues, we have f (λbi) =
∑7

k=0
λkbi
k � eλbi , 376

and g (λwi) = 0.01+ λwi ≈ λwi. Then, we have 377

f (λbi)
g (λwi)

=

∑7
k=0

λkbi
k

0.01+ λwi
>

eλbi

eλwi
>
λbi

λwi
. (23) 378

According to this analysis, the classification ability of 379

PMFA should be better than that of EMFA, and much better 380

than that of MFA. 381

FIGURE 2. Geometric illustration of the functions.

D. AN EXPERIMENT OF THE DISTANCE DIFFUSION 382

After selecting the polynomial f (x) and g(x), we provide an 383

experiment to illustrate the distance diffusion effect of PMFA 384

in four face datasets: AR [28], ORL [29], FERET [30], and 385

PIE [31]. In the experiment, for each data set, the original 386

samples are normalized to avoid the large value, and k1 = 3, 387

k2 = 8. The inter-class distance db and the intra-class distance 388

dw of MFA are calculated by Eq. (18) and (19), and the inter- 389

class distance d ′b and the intra-class distance d
′
w of PMFA are 390

calculated by Eq. (20) and (21), where the first ten largest 391

eigenvalues are used. Table 2 shows the comparisons of the 392

results of the MFA and PMFA methods on four face datasets. 393

As can be seen, compared with MFA, PMFA increases the 394

inter-class distance and maintains the intra-class distance. 395
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FIGURE 3. The embedding of synthesized data.

IV. EXPERIMENTAL RESULTS396

A. EXPERIMENTAL SETUP397

In the experiments, to verify the validity of the proposed398

PMFAmethod, the classical LDA [2], the original MFA [11],399

and the latest improvement of MFA: MMFA (Multiple400

MFA) [14], and two methods that solved the SSS problem401

of MFA: EMFA (Exponential MFA) [15] and RMFA (Reg-402

ularized MFA) [16] are compared with the proposed PMFA403

method.404

For the proposed PMFA method, according to section III405

C , two polynomial functions are selected to map the matrices406

Zp and Z to the corresponding matrix functions:407

f (x) = 1+ x +
x2

2
+
x3

3
+
x4

4
+
x5

5
+
x6

6
+
x7

7
and408

g(x) = 0.01+ x.409

In the further experiment, the PMFA method is also com-410

pared with the latest proposed manifold-based learning algo-411

rithms, including GDE [18], CR-DLPP [19], LMGE-DDR412

[20], GEU-MFA-U, and GEU-MFA-S [17].413

B. DATA VISUALIZATION414

To illustrate the classification performance of PMFA, we con-415

duct data visualization experiments on the synthetic data set416

(Gaussian and non-Gaussian distribution) and the real face417

data set.418

The synthetic data of Gaussian distribution is a419

3-dimensional dataset in Fig. 3(a). This three-class set420

contains 600 points. Each class is generated using a single 421

Gaussian. 422

Fig. 3(b) shows the projection in a 1-D subspace using 423

LDA, Fig. 3(c), (d) is the 2-D projection of MFA and PMFA, 424

respectively. Fig. 3(e) shows the projection using PMFA in 425

a 3-D subspace. As we can see, that both MFA and PMFA 426

provide prediction data with good distinction capabilities. 427

We can also see that, compared with MFA, PMFA makes the 428

intra-class samples more compact, and the marginal distance 429

of the inter-class samples larger. 430

In Fig. 3(f), a binary classification problem shows the 431

classification ability of LDA, MFA, and PMFA in the case 432

of non-Gaussian distribution. Where, the red solid circles and 433

blue solid circles are two different classes of synthetic data, 434

which do not follow the Gaussian distribution. The solid lines 435

represent optimal classification lines and the dotted lines rep- 436

resent the optimal projection directions learned from LDA, 437

MFA, and PMFA, respectively. The results show that: (1) in 438

the case of non-Gaussian distribution, LDA does not work 439

well, but MFA and PMFA can still find the best projection 440

directions; (2) the best projection direction learned by PMFA 441

is better than that of MFA, because PMFA not only considers 442

the edge points but also enlarges the distance of the inter-class 443

samples. 444

Fig. 4 shows the 2-D projection on the Georgia Tech face 445

database using theMFA,RMFA, EMFA, and PMFAmethods. 446

It can be observed that PMFA is more effective than MFA, 447

RMFA and EMFA. 448
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FIGURE 4. The two-dimension projection of Georgia Tech face database. (a) MFA. (b) RMFA (c) EMFA. (d) PMFA.

TABLE 3. Details of the datasets.

C. FACE RECOGNITION449

In this part, we conduct experiments on four face databases:450

ORL, Yale, AR, and Georgia Tech [32]. Fig. 5 shows some451

of the sample pictures from the datasets. It showed the details452

of the datasets used in the experiment in Table 3.453

In the experiment, the matrix Zp and Z are normalized454

to their norm, then mapping Zp with f (x), and adds 0.01 to455

the diagonal element of Z. For each class in all the datasets,456

we select p samples as the training samples and the rest as the457

test samples. For the p training samples, to get stable results,458

the experiment is repeated three times and the p samples are459

randomly selected for each time. In each experiment, for the460

p training sample, the dimension of subspace range between461

10 and 100 with the step size being 5. The recognition rate462

TABLE 4. The recognition accuracy, standard deviation and optimal
dimensions of the ORL dataset.

corresponding to the optimal subspace dimension is the opti- 463

mal recognition rate. Therefore, for the three experiments, 464

there are three optimal recognition rates. Finally, the average 465
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FIGURE 5. The sample pictures taken from the datasets in the experiment. The first line is from
the ORL face dataset, the second line is from the Yale face dataset, the third line is from the
Georgia Tech face dataset, and the last line is from the AR face dataset.

TABLE 5. The recognition accuracy, standard deviation and optimal
dimensions of the Yale dataset.

TABLE 6. The recognition accuracy, standard deviation and optimal
dimensions of the Georgia Tech dataset.

TABLE 7. The recognition accuracy, standard deviation and optimal
dimensions of the AR dataset.

value is used as the recognition rate when the training sample466

is p. Tables 4-7 show the recognition results (recognition467

accuracy (%) ± standard deviation and optimal dimension)468

of these methods.469

We also evaluate the performance of these methods when470

the subspace dimension takes different values. In each exper-471

iment, for a training sample p and a subspace dimension,472

FIGURE 6. Comparison of performance and dimension on ORL dataset
(training sample p = 4).

FIGURE 7. Comparison of performance and dimension of the Yale dataset
(training sample p = 4).

there is a recognition rate. When the subspace dimension is 473

between 10 and 100, the recognition rate of each method in 474

each dimension can be got, Figs. 6-9 show how the recogni- 475

tion rate varies with the dimension. 476
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TABLE 8. The comparison of recognition rates (%) on PIE, AR, Yale, FERET and Yale B datasets.

FIGURE 8. Comparison of performance and dimension of the AR dataset
(training sample p = 5).

FIGURE 9. Comparison of performance and dimension of the Georgia
Tech dataset (training sample p = 7).

D. THE FURTHER EXPERIMENTS477

In this section, we also compare the PMFA method and other478

latest proposed manifold-based learning algorithms on PIE,479

AR, Yale, FERET and Yale B [33] datasets in Table 8. These480

including GDE [18], CR-DLPP [19], LMGE-DDR [20],481

GEU-MFA-U, and GEU-MFA-S [17]. Where GEU-MFA-U482

and GEU-MFA-S are the latest methods of MFA. We use the483

recognition rates reported in the literature for comparison,484

because the source code of these methods is not available.485

The results show that the recognition rate of the PMFA 486

method is better than the latest methods. 487

V. CONCLUSION AND FUTURE DIRECTIONS 488

In this paper, based on the framework of matrix function 489

dimensionality reduction, when the polynomial matrix func- 490

tion transformation is used in theMFAmethod, PMFA (Poly- 491

nomial Marginal Fisher Analysis) is proposed. The proposed 492

PMFA method has two advantages: one is that it solves 493

the small-sample-size problem of MFA, and the other is 494

that it can enlarge the distance of the inter-class sample, 495

then have a good ability for pattern classification. However, 496

the computational complexity and classification ability are 497

closely related to the selected polynomial function, so enough 498

research is needed when choosing an appropriate polynomial. 499

In the future, the design of the polynomial functions can be 500

improved, and the idea of the polynomial matrix function 501

transformation can also be used to some other dimensionality 502

reduction methods. 503
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