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ABSTRACT Audible content has become an effective tool for shaping one’s personality and character
due to the ease of accessibility to a huge audible content that could be an independent audio files or an
audio of online videos, movies, and television programs. There is a huge necessity to filter inappropriate
audible content of the easily accessible videos and films that are likely to contain an inappropriate speech
content. With this in view, all the broadcasting and online video/audio platform companies hire a lot of
manpower to detect the foul voices prior to censorship. The process has a large cost in terms of manpower,
time and financial resources. In addition to inaccurate detection of foul voices due to fatigue of manpower
and weakness of human visual and hearing system in long time and monotonous tasks. As such, this paper
proposes an intelligent deep learning-based system for film censorship through a fast and accurate detection
and localization approach using advanced deep Convolutional Neural Networks (CNNs). The dataset of foul
language containing isolatedwords samples and continuous speechwere collected, annotated, processed, and
analyzed for the development of automated detection of inappropriate speech content. The results indicated
the feasibility of the suggested systems by reporting a high volume of inappropriate spoken terms detection.
The proposed system outperformed state-of-the-art baseline algorithms on the novel foul language dataset
evaluation metrics in terms of macro average AUC (93.85%), weighted average AUC (94.58%), and all
other metrics such as F1-score. Additionally, proposed acoustic system outperformed ASR-based system
for profanity detection based on the evaluation metrics including AUC, accuracy, precision, and F1-score.
Additionally, proposed systemwas proven to be faster than humanmanual screening and detection of audible
content for films’ censorship.
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I. INTRODUCTION22

With the increased exposure to portable and immediate screen23

time sources such as televisions, computers and smartphones,24

filtering of audio and visual contents is becoming crucial.25

This is because media commonly include offensive and sen-26

sitive contents, e.g., foul languages, nudity, and sexually27

explicit contents, which could attract the attention of users28
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approving it for publication was Kathiravan Srinivasan .

in entertainment videos, games and movies available through 29

broadcasting channels or at online platforms. Tuttle [1] stated 30

that most movies incorporate the usage of profanity that could 31

negatively affect the society [2] and that she believed that 32

this frequency would increase over the years. Broadcasting 33

companies and media-sharing platforms are responsible in 34

ensuring the appropriateness of contents shared to the public 35

through their respective channels. In the case of language, 36

censorship is a complex filtering process that provides lan- 37

guage content appropriate to consumers due to the restrictions 38
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in personnel, time, cost and human attention that may cause39

indetection of content that should be removed. The objec-40

tive of this research was to design and implement a censor-41

ing system to accurately detect spoken profane language in42

audio signals of audio and video files. Specifically, neural43

networks that reported intriguing properties of such tech-44

niques was utilized in facilitating the audio censorship of45

videos.46

In recent years, the application of deep learning tech-47

niques in speech recognition has gained popularity. Vari-48

ous utterance types, such as spontaneous and continuous49

speeches, and connected and isolated words, were targeted50

to be detected by different speech identifying systems [3].51

One of the popular techniques was Spoken Term search-52

ing technique, which could be further divided into Spoken53

Term Detection (STD) and Keyword Spotting (KWS). Spo-54

ken Term Detection (STD), or spoken term discovery, is the55

identification of recurrent speech fragments from raw speech56

without prior knowledge of the language, i.e., automatic57

retrieval of speech from a database through specific audio58

keywords or queries [4], [5], [6].59

The speech searching could be performed either by typing60

the keyword directly or speaking it to an Automatic Speech61

Recognizer (ASR) to convert the speech into text form. Each62

of the retrieved files from the search process would have a63

label or caption with the keyword included [7]. The obvious64

disadvantage of this method is the requirement for all audio65

contents to be labeled, which is a difficult task. Furthermore,66

it is difficult to detect occurrences of the target keyword by67

searching for similar speech signals produced by the same68

person. Speech signals for the same keyword spoken at dif-69

ferent times are not identical [8]. This is due to the (sub-70

consciously) differing pitch, energy content, speech length,71

emphasis and pauses which could be related to other factors72

such as age, voice condition and mood. Therefore, it is only73

reasonable for the detection task to be even more challenging74

when more than one individual contributed to the utterances75

of words in the speech database due to the differences in76

human vocal attributes, accent, dialect, gender, age and so on.77

This poses challenges in STD and speech recognition task as78

a whole [6], [7], [8].79

Spoken keyword spotting (KWS) is a fast-growing technol-80

ogy due to the increased usage often coupled with deep learn-81

ing techniques that involves the identification of keywords82

in audio streams [9]. As a consequence of the rapid growth83

of human-machine interaction via voice, the social usage of84

this technology is expected to achieve sustainable growth.85

For instance, usage of voice assistants requires activation86

through specific spoken keyword, i.e., wake-up word, which87

reduces the computational requirement and cost of the sys-88

tem significantly [10]. Although the far more computational89

expensive ASR is not required, KWS technique utilized in90

voice assistants could be interpreted as a sub-problem of91

ASR [11]. Besides the voice assistant activation, applications92

of KWS are common in audio indexing, speech data mining,93

phone call routing, etc. [12].94

One of the earlier methods of application of KWS involved 95

the usage of large-vocabulary continuous speech recognition 96

(LVCSR) systems [13], [14]. Such systems were deployed to 97

decode speech signal to allow keyword to be identified in the 98

generated lattices (i.e., in the phonetic units’ representations 99

of different sequences, given the speech signal, were likely 100

sufficient). This approach is superior in the sense that it allows 101

flexibility to handle changing or non-predefined keywords 102

[15], [16], [17] (although often with performance drop when 103

keywords are out of vocabulary [18]). 104

The main weakness of LVCSR-based KWS systems lies in 105

the computational complexity dimension. Specifically, these 106

systems require high computational resources in order to 107

generate complex lattices [16], [19], which introduces latency 108

[20]. Therefore, this approach is not suitable for the applica- 109

tion of real time speech recognition and monitoring. For the 110

application of voice assistants and machine wake-up words, 111

the high computational resource and memory requirements 112

also place constraints on the usage of LVCSR systems [19], 113

[21], [22]. 114

As deep learning techniques mature over the years, usages 115

of deep spoken KWS systems [23], [24], [25], [26] have 116

increased due to progressively improving performance in 117

terms of efficiency and accuracy, in voice assistants for 118

instance. The sequence of word posterior probabilities gen- 119

erated by deep neural networks is processed to identify the 120

possible existence of keywords directly without intervention 121

of any Hidden Markov Model (HMM) or Gaussian Mixture 122

Model (GMM). This deep KWS method has been attracting 123

attention due to flexible complexity of DNN generating the 124

posteriors, or acoustic model, which is dependent on compu- 125

tational resource availability [27], [28], [29]. 126

Deep spoken keyword spotting system [30], [31], [32] 127

typically contains three main blocks [9]: 1) the speech feature 128

extractor that converts the input signal to a compact speech 129

representation, 2) the deep learning-based acoustic model 130

that generates posteriors over the keyword and filler (non- 131

keyword) classes based on the speech features, and 3) the 132

posterior handler that processes the temporal sequence of 133

posteriors to determine the possible existence of keywords 134

in the input signal. 135

Mel-scale-related features, low-precision features, learn- 136

able filter-bank features, and other features are the most rele- 137

vant speech features used in deep KWS systems [9]. Speech 138

features based on the perceptually-motivatedMel-scale filter- 139

bank, e.g., log-Mel spectral coefficients and Mel-frequency 140

cepstral coefficients (MFCCs), have been commonly utilized 141

in the areas of ASR and KWS. Despite the many attempts 142

to learn optimal, alternative representations from speech sig- 143

nals, Mel-scale-related features is still a safe, solid, and com- 144

petitive choice to date [33]. 145

In most deep KWS systems, both types of speech features 146

are normalized to have zero mean and unit standard deviation 147

prior to being input to the acoustic model in order to stabilize 148

and accelerate training and improve model generalization 149

[34]. The most employed speech feature type in deep KWS 150
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thus far is Mel-scale-related features, as seen in the usage of151

MFCCs with temporal context are used in [34], [35], [36],152

[37], and [38]. Particularly, application of discrete cosine153

transform on the log-Mel spectrogram produces the corre-154

sponding MFCCs. This transform generates approximately155

decorrelated features suitable for acoustic models. Since deep156

learning networks are capable of exploiting spectro-temporal157

correlations, log-Mel spectrogram is used to yield MFCCs158

equivalent or better ASR and KWS performance [39]. Con-159

sequently, log-Mel or Mel filter-bank speech features with160

temporal context is widely utilized in deep KWS systems161

[40], [41], [42], [43].162

The acoustic model is the core of deep spoken KWS163

systems, in which the objective of its design is to achieve164

increasing accurate models with minimal computational165

complexity. This system block could be filled using differ-166

ent deep learning models, e.g., fully-connected feed-forward167

networks [44], [45], convolutional networks [29], and recur-168

rent and time-delay neural networks [46], [47], which could169

be used as standalone models, or as a combination of two170

models such as Convolutional Recurrent Neural Network171

CRNN [48]. Studies have shown that Convolutional Neural172

Networks (CNNs), with less parameters, could outperform173

fully-connected networks in the role of acoustic model in174

deep KWS [29], [49], [50], [51]. An attractive property of175

CNNs is that the number of multiplications of the model176

can be easily restrained to meet the computational limitations177

by adjusting several hyperparameters such as filter striding,178

and kernel and pooling sizes, without necessarily sacrificing179

much performance [25].180

The decision of whether a specific keyword exists in an181

audio stream is made after processing the sequence of pos-182

teriors produced by the acoustic model. The main posterior183

handling modes are non-streaming (static) mode and stream-184

ing (dynamic) mode. Non-streaming mode is a standard185

multi-class categorization of independent input segments186

(either segmented automatically or manually) formed from a187

single or part of word each, i.e., isolated word classification.188

The input segments would need to be long enough in order189

to cover the duration of an entire word, e.g., speech com-190

mand dataset [52]. In this mode, the input segment x is often191

assigned to the class with highest posterior probability. The192

non-streaming deep KWS systems generated sharply peaked193

posterior distributions in [53] and [54]. One possible expla-194

nation for this phenomenon is that the non-streaming systems195

handle isolated, well-defined class realizations, and not the196

inter-class transition information, as opposed to the streaming197

system case. Despite that, non-streaming performance and198

streaming performance are apparently highly correlated [53],199

[54], thus causing the non-streaming KWS approaches to be200

more effective and relevant for KWS posterior handling.201

On the other hand, streaming mode relates to continuous202

processing, like in real-life, of an input audio stream in which203

keywords are not segmented or isolated. It is possible for204

a given segment to not contain (parts of) the target key-205

word. For this mode, the inherently noisy sequence of raw206

posteriors, typically smoothed over time, e.g., via moving 207

average, on a class basis [55], [56] prior to processing. Next, 208

smoothed word posteriors are commonly utilized to make 209

the decision of whether a keyword is present, either through 210

comparison with a sensitivity threshold [57] or by selecting 211

the class with highest posterior within a time sliding win- 212

dow [58]. One disadvantage of streaming mode processing 213

is that false detection may occur when the same keyword 214

realization is detected more than once in the smoothed pos- 215

terior sequence as consecutive input segments may cover 216

parts of the same keyword realization. Post processing tech- 217

nique would need to be employed in order to avoid this 218

problem [26]. 219

The current trend involves usage of KWS for voice activa- 220

tion voice assistants [59] and Voice Control of Hearing Assis- 221

tive Devices [54]. Hence, the literature on automated speech 222

recognition models using deep learning techniques mostly 223

revolved around inoffensive language identification only. 224

For instance, conversational and read speech dataset clear 225

of profane language utterances such as LibriSpeech [60], 226

Google’s voice search traffic dataset [61], Google commands 227

dataset [52], spoken digits dataset [62], and speech emotions 228

dataset of conversational speech dialogues [63], [64] have 229

been explored in recent years. 230

In 2020, [65] researched on the efficiency of foul lan- 231

guage detection using pre-trained CNNs (e.g., Alexnet and 232

Resnet50). The proposed solutions had inaccurate detection 233

and high computational cost due to large number of net- 234

work parameters, causing the system to fail to meet the 235

requirements for real time usages, i.e., real time monitoring 236

for profanity filtering in videos. Another work studied the 237

categorization of isolated foul words versus isolated nor- 238

mal speech using a novel foul language dataset. Despite 239

the acceptable performance on the tested dataset, the detec- 240

tion and localization performances within audio samples of 241

the proposed methods (CNN and RNN) on other dataset 242

consisting of conversational speech of continuous audios 243

were not explored [66], [67]. In brief, the feasibility of 244

spoken profanity detection and localization within audio 245

files has not been proven for real time audio filtering 246

applications. 247

This experiment was carried out on English profanities 248

and its derivatives. The model utilizes the acoustic features 249

of profanities for the purpose of detecting profane words 250

and localize it within a continuous audio sample, unlike 251

Automatic speech recognition (ASR) models that transcript 252

any spoken words based on the language model that are 253

used as a part of the whole ASR system. However, the use 254

of ASR systems requires huge computational cost for the 255

use of a large dataset. Furthermore, ASR systems consist 256

of several sequenced stages including acoustic models and 257

language models. In the scenario of detecting and localizing 258

inappropriate speech content within a continuous audio input, 259

requires an additional text detection model. Consequently, 260

ASR-based systems for the detection of profanities suffers 261

of latency. Additionally, the use of sequenced models could 262
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probably lead to a decrees of system performance, as a263

performance drop in one stage leads to performance drop in264

the following stage.265

This paper makes several contributions as follows:266

• A real-time censorship system for inappropriate speech267

content including profanities that aims to detect the268

audible profane content in a stream of audio whether as269

standalone audio file or incorporated within videos and270

films.271

• The real-time detection, localization, and censor-272

ship speeds up the monitoring, scanning, and fil-273

tering processes of audible content moderation and274

reduces the physical effort of manual screening and275

censorship.276

• The system uses a lightweight CNN with small filters277

and tiny architecture model that can be used using CPU278

and can still reduce the censorship process time. Fur-279

thermore, the proposed model can be used for future280

researches on the field of KWS and STDwith the advan-281

tage of short inference time.282

• A novel spoken profanities dataset that will be avail-283

able on request by other researchers for future works284

in the field of inappropriate speech content. Addition-285

ally, the dataset and developed system with CNN model286

can also be utilized for future speech-based film rating287

researches.288

• System evaluation is carried on with real-time videos289

and films dataset containing continuous audio samples290

that will be available with ready annotations for future291

works.292

• A comparative analysis of proposed acoustic-based293

detection systems and ASR-based detection system is294

performed to highlights the advantages and disadvan-295

tages of both systems in terms of model’s performance296

metrics and speed for speech term detection and local-297

ization within a continuous audio input.298

In this work, KWS approaches using a novel, lightweight299

and distinct end-to-end neural networks (E2E CNN) was300

proposed for foul language identification and localization.301

Acoustic Log-Mel spectrograms were applied on a deep302

learning architecture, named CNN, to recognize and localize303

spoken profane language samples within continuous audio304

samples extracted from real videos. The reciprocal detection305

and localization task included foul words class and normal306

conversational speech class from a continuous audio input.307

Hence, this work is not an ASR system, where speech content308

if transcribed into the corresponding words. Additionally, the309

proposed work is not a simple audio recognition where a310

single spoken term from the same pool of dataset is fed into a311

model and classified into the corresponding label. The orga-312

nization of this paper is as follows: Section II describes the313

study materials and methods, Section III presents the experi-314

mental settings, and evaluation metrics, Section IV details the315

experimental results, and Section V concludes the study and316

its possible implications.317

II. MATERIALS AND METHODS 318

The datasets utilized in this study of English profanities are 319

described in this section. Next, the methodology is explained 320

in detail. Firstly, feature extraction process in Log-Mel spec- 321

trogram methods applied on raw audio samples is performed. 322

Secondly, E2E CNN is used for feature learning. Thirdly, 323

posterior handling methods are done for further processing. 324

A short review of each method and its function are summa- 325

rized in the following subsections. 326

A. DATASETS OVERVIEW 327

Three datasets were used in different experiments for various 328

purposes. Summaries of the datasets, experiments and usages 329

of the datasets are listed below: 330

1. MMUTM dataset including 4541 isolated spoken inap- 331

propriate words and 12100 isolated normal conversa- 332

tional speech samples. The proposed E2E CNN, and 333

baseline models were trained and validated using the 334

augmented data samples this dataset. 335

2. A subset of The Abused Project Audio Dataset 336

(TAPAD) including 4511 isolated spoken inappropriate 337

words. The proposed E2E CNN, and baseline models 338

were trained and validated using the augmented sam- 339

ples of this dataset. 340

3. A new continuous speech foul language dataset that 341

consists of 6 continuous audio samples. The E2E 342

CNN, and baseline models were compared utilizing 343

this dataset for the purpose of testing models on con- 344

tinuous speech samples. 345

1) MMUTM DATASET 346

This study uses a novel dataset (the MMUTM foul language 347

dataset) obtained and analyzed at Multimedia University, 348

Malaysia for a film censorship research project in collabo- 349

ration with Telekom Malaysia (TM) [66]. The dataset is a 350

selection of profane language collected through recordings 351

and natural data samples from random videos to increase the 352

sample variations that contributed to the dataset complexities. 353

The first version of this dataset that is published in [66], 354

contains nine classes of profanity (e.g. F-word) and total of 355

3105 isolated foul language samples. Regardless, the deriva- 356

tion of the aforementioned classes posed study complications 357

regarding offensive language identification. The first version 358

also includes a normal class representing casual speech and 359

distinguishing profane words from normal counterparts dur- 360

ing censorship. The normal class consist of 5100 original 361

and 45900 augmented samples using various augmentation 362

techniques that were detailed in [66]. However, for this work 363

only 12100 samples of normal class were used to mitigate 364

the issue of imbalance dataset and foul language data samples 365

scarcity as data imbalance and rarity is a major issue for KWS 366

systems [9]. Additionally, the effect of data augmentation 367

has led to improving model’s performance and robustness to 368

noise [66]. 369
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For this work, MMUTM dataset have been updated with370

new data samples and different foul words/classes that were371

collected and prepared based on the approaches used in the372

first version that are fully described in [66]. The samples were373

collected through recordings in controlled and uncontrolled374

environments, in addition to samples extraction from existing375

videos. A total of 1436 isolated foul samples have been added376

to this novel and unique dataset. The new samples cover377

10 new/different inappropriate spoken terms that contribute378

to 10 new classes for the dataset. For example, the word379

‘slut’ is a new category that is added by the addition of380

this new samples, as this word did not exist in the original381

dataset. Therefore, the updatedMMUTM dataset now consist382

of 4541 samples covering 19 different classes of foul words.383

MMUTM dataset were used to only train the models using384

two main labels (Foul vs Normal), as this study proposes385

to test the proposed model with continuous audio samples386

instead of only isolated samples. The samples’ audio proper-387

ties were set at 16-bits PCM, whereas the 1-channel samples388

were set at 16-kHz. MMUTM dataset was augmented to389

increase the number of samples eight times from 4541 foul390

and 12100 normal sample to 36328 foul and 96800 normal391

samples to enhance the models’ robustness to noise, avoid392

models’ over-fitting, performance improvement, and improve393

models’ generalization as justified in [66].394

The augmented dataset was then used to train proposed and395

baseline models. The augmentation was performed using two396

different augmentation techniques, which are noise incorpo-397

ration (four real background noise and white noise), and pitch398

manipulation with two different setting to manipulate sam-399

ples’ pitch. Each augmentation method was used only once400

on each training sample. Therefore, each sample will have401

8 different variation including original sample, one white402

noise inappropriate sample, four different background noise403

incorporated samples, and two pitch manipulated samples404

with two different pitch settings that differs from the original405

sample.406

2) TAPAD DATASET407

TAPAD dataset [68] is an open dataset, it is still a growing408

database and open for contribution. The dataset collection and409

preparation procedures are described in [68]. Dataset consists410

of 26365 audio files covering 75 profane words classes. Most411

of these audio classes have 347 MP3 files of∼5.783 minutes412

each. To best of our knowledge, this dataset has not been used413

previously in any speech recognition/detection researches414

before. For this work, only a subset of TAPAD was used to415

train the developed models under the foul class/label. The416

used subset consists of 4511 samples, covering 13 profanities417

that are totally different from the ones used from MMUTM418

dataset. Although, the samples’ audio properties are 32-bits,419

1-channel, and at sampling frequency of 24-kHz, the samples’420

audio properties were set to 16-bits PCM, 1-channel, and421

sampled at 16-kHz to match as an input to the system. This422

dataset was used to only train the models using under ‘foul’423

label/class.424

TABLE 1. Testing dataset summary.

TAPAD dataset was augmented to increase the number of 425

samples eight times from 4511 foul sample to 36088 foul 426

samples to enhance the models’ robustness to noise, avoid 427

models’ over-fitting, and improve models’ generalization and 428

reduce. The augmented dataset was then used to train pro- 429

posed and baseline models. The augmentation was performed 430

using the same approaches used for MMUTM dataset that are 431

described in the previous part. 432

3) TESTING CONTINUOUS AUDIO DATASET 433

This dataset is a novel challenging database that are only used 434

for testing and model’s evaluation purposes. This data con- 435

sists of six real-world audios that were retrieved from videos 436

available on the internet, four of the samples were retrieved 437

from YouTube videos, while the other two are a full films. 438

Full films are used in the evaluation as this research designed 439

to propose a solution for films to provide real time moni- 440

toring and censorship for the inappropriate speech content. 441

As described in Table 1. The total length of the testing videos 442

is about four hours, seven minutes, and nineteen seconds, 443

which is ∼ 247.32 minutes in total. It is obvious that the 444

testing dataset intensively consist of foul languages within the 445

normal conversation speech, as the dataset consist of 1322 446

profanity, where all the profanities are also existed in the 447

training dataset of MMUTM and TAPAD dataset. 448

The rate of foul words perminute is whatmakes this dataset 449

to be challenging, as there is about 5.345 offensive words 450

per minutes in this dataset. Additionally, this dataset is a real 451

dataset that is taken directly to test and evaluate the trained 452

model, which adds to how challenging this dataset. The only 453

per-processing happened to this dataset is the properties of the 454

audio file that were set at sampling rate of 16-kHz, 1-channel, 455

and 19-bits PCM. This dataset was purposely created for 456

this research. Therefore, we have labeled all this dataset by 457

manually finding the foul words within the audio file and the 458

corresponding timestamps, in which the profane word occurs. 459

Therefore, the annotations of this dataset consist of the foul 460

words and its timestamps, as this work is to predict the foul 461

word and localize it within a long audio file. Hence, the 462

parts of the audio samples that were not labeled as foul, 463

are considered as normal conversational speech by default, 464
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TABLE 2. Summary of datasets used for models training and testing
purposes.

whether it contains speech, noise, silence, or even music.465

Table 1 details the testing dataset.466

In short, the training datasets MMUTM and TAPAD com-467

plement each other, contributing to 9052 profane word sam-468

ples of 32 distinct vulgar words, and 12100 normal speech469

samples. Both datasets were only used for training the trained470

and baseline models while the testing was performed using a471

third dataset consisting of continuous audio samples retrieved472

from real videos. Table 2 summarizes the usages and number473

of samples of the three datasets.474

B. LOG-MEL SPECTRAL FEATURES475

Generally, the spectral content represented through Log-Mel476

spectrograms characterizes the target speech. To ensure frame477

overlapping, vectors were applied by sliding an analysis win-478

dow over a portion of the frame size. Nevertheless, following479

the duration and properties of target speech, unpredictable480

differences occur in the coefficient vectors representing a481

given speech [69]. Visual inputs were analyzed in tempo-482

ral dimension using CNN structures, whereby 2D Log-Mel483

spectrograms were obtained through coefficient vectors for484

CNNs. The complete spectral content features were then485

extracted using convolution process from the time and fre-486

quency domains.487

A vector of features obtained from speech and acoustic488

signals could represent the temporal sequence features. Log-489

Mel spectrograms were used to extract serial vectors. In gen-490

eral, signal representations were formed after several steps491

using feature extraction approach. Firstly, pre-emphasis step492

filters and places emphasis on the higher frequencies to bal-493

ance voiced sounds spectrum with steep roll-off in the high-494

frequency region. Next, windowing step involves the division495

of input signal into smaller frames with overlapping window496

to ensure that all serial sample features are extracted. Discrete497

Fourier Transform (DFT) is then applied on the windowed498

parts, which the log of the magnitude is taken and warped into499

the frequency domain on aMel scale, generating the Log-Mel500

frequency sequence features.501

Feature vectors converted from the corresponding 16-bits502

PCM, 1-channel audio samples obtained at 16-kHz com-503

prised the dataset. The visual representations in the form of504

frequency spectrum of energy levels of speech were defined505

FIGURE 1. Two foul words’ raw signal and the corresponding
spectrograms.

using 101 Log-Mel frequency spectrogram coefficients. Inap- 506

propriate and safe speech spectrogram analysis was per- 507

formed using the following parameters: 0.03 frame duration, 508

1 second segment duration, 0.015 overlap window between 509

frames, and 40 frequency bands. Furthermore, a lightweight 510

model with small-sized filters was proposed in order to 511

minimize the computational resource requirement and allow 512

the target application of real time film audio filtering to 513

be achieved. Therefore, the generated Log-Mel spectrogram 514

image dimensions had small size, 40-by-101 in size specifi- 515

cally, where 40 is the normalized frequency of times 400-kHz 516

(40 times 400 kHz = 16-kHz) and 101 is the number of 517

spectrogram samples used. An example of raw signals of 518

two profane words and their corresponding spectrograms are 519

shown in Figure 1. 520

C. E2E CNN 521

In the case of supervised CNN model, E2E learning mode 522

is done to fine-tune parameters of the whole CNN. Since 523

spectrogram images and labels were available during training 524

process, supervised learning was applied. The CNN is com- 525

posed of convolutional, fully connected, pooling and batch 526

normalization layers. For detection of distinct signals, filters 527

in horizontal and vertical lines present in CNNs were passed 528

over input images. Mapping of image feature portions of the 529

signals were then performed, and the classifiers were trained 530

on the target task. Extraction of features of input images 531

and pixel relationships were sustained by obtaining image 532

features via small squares of input data using the convolution 533

layers. A mathematical operation that involves two inputs, 534

i.e., image matrix and a filter/kernel, was applied for the 535

extraction. 536

Reduction of parameters of a specific image was allowed 537

by the pooling layers. A common instance would be spatial 538

pooling, i.e., downsampling or sub-sampling, which retained 539

vital information while reducing dimensionality of each map. 540

This pooling type could be categorized into (i) max pooling, 541
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TABLE 3. Lightweight CNN architecture details.

which selects the largest element from the corrected feature542

map, (ii) average pooling, which takes the average value543

of the feature map elements, and (iii) sum pooling, which544

sums up all feature map elements. A flattened matrix vector545

under the convolution and pooling processes forms the fully-546

connected layer. This layer acted like a neutral network that547

integrated the convolution process features to build a model.548

In order to classify outputs related to the target task, an acti-549

vation method involving SoftMax or sigmoid can be applied.550

Conversion of a vector of N values into a vector of N values551

that sums up to 1 was done by the SoftMax function. This552

function converts any input with positive, zero and negative553

values into values between 0 and 1 to allow the converted554

values to be interpreted as prediction probabilities.555

A lightweight CNN designed and evaluated for vulgar556

speech content detection was experimented in this work. This557

CNN model was trained using E2E scheme for feature learn-558

ing and classification involved categorization of inputs into559

one of the two classes: normal and foul. Four convolutional560

layers, four ReLU layers and three max pooling layers were561

used to build the proposed CNN model. The top (last) layers,562

i.e., fully-connected and SoftMax layers, allowed Log-Mel563

spectrogram images to be mapped for the classification task.564

Table 3 shows the details of the proposed CNN model archi-565

tecture.566

D. POSTERIOR HANDLER567

In this work, non-streaming (static) KWS mode, which568

involved the standard multi-class categorization of indepen-569

dent input segments comprising a single word each (i.e.,570

isolated word categorization), was employed. However, input571

segments in the training data pool did not contain isolated572

words only, instead, this work proposes to utilize lengthy573

continuous audio samples as test data samples. The audio574

files were passed through an automated windowing process575

to segment them into shorter samples of specific length. The576

FIGURE 2. Proposed system architecture for inappropriate language
detection.

windowed sub-sample was then input to the CNN model for 577

class predictions performed based on the posterior probabil- 578

ity, e.g., the class with highest posterior probability or positive 579

detection if decision threshold was exceeded. The predicted 580

class of the sub-sample is then assigned to the corresponding 581

timestamps generated during windowing phase. Localization 582

of recognized keyword within a long input audio sample 583

could be related to the timestamps of which the sample 584

consisted of identified profane word. Although continuous 585

speech or audio sample was used as input, windowing process 586

caused the inference for windowed samples to be consid- 587

ered as static mode. This mode is used due to its simplicity 588

and produce a low number of false positives compared to 589

dynamic mode. Hence, dynamic mode requires additional 590

post-processing approaches to avoid such issue of increased 591

false positive rate [9]. 592

III. EXPERIMENTAL SETUP 593

The experimental setup, performance metrics and testing 594

results of the proposed system are discussed in this section. 595

The experimental settings and procedures utilized for appli- 596

cation of automated detection of profane speech content in 597

film censorship are included in this section. The architecture 598

of the proposed foul language detector system is illustrated 599

in Figure 2. Feature extraction was performed on isolated 600

samples of English language to obtain the Log-Mel spectral 601

features, which were then sent into the CNNs for model 602

training. Similarly, the test features were obtained from audio 603

samples of real long audio files. These test features were used 604

to evaluate the performance of the trained models. 605

The expected outputs of the system were the prediction 606

probabilities of recognized profanity and the corresponding 607

timestamps to allow localization of the foul word detection 608

within test samples for film filtering. Hence, this work is not 609

an Automatic Speech Recognition (ASR), where speech con- 610

tent if transcribed into the correspondingwords. Additionally, 611

the proposed work is not a simple audio recognition where a 612

single spoken term from the same pool of dataset is fed into 613

a model and classified into the corresponding label, as the 614

test samples used is a continuous audio input of real-world 615

samples that are out of the training dataset pool. 616
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The evaluation pipeline begins consisting of serial steps617

with an input of real-time video sample, that is converted618

into an audio sample. Next, the audio sample is automatically619

segmented into smaller samples of fixed window length with620

an overlap time. After that, an automated censorship block621

receives the serial segments to perform an automated features622

computation of spectrograms and model inference. Hence,623

the spectrograms of the audio segments are calculated every624

0.5 seconds (for example) of a continuous audio input stream625

to determine whether it belongs to inappropriate speech con-626

tent or normal speech content. The outcome of the automated627

censorship block of probabilities, predictions, and utterance628

keywords is used to define the segment in which profaneword629

was uttered. Furthermore, the process including windowing,630

spectrogram computation, and inference is carried out serially631

for every segment in continuous and automated manner to632

cover all the segments of an input sample. This process is633

to mimic the real-life scenario of films screening and censor-634

ship, which is presented as the test pipeline of this experimen-635

tal work. Therefore, the system detects and localize a profane636

word in continuous audio input. Experiment implementation637

was carried out using Intel Core i7-8700 CPU @ 3.20 GHz,638

64 GB RAM, and an NVIDIA GeForce GTX 1080 Ti GPU.639

A. TRAINING ALGORITHM SETTINGS640

All samples used for training and testing obtained from the641

datasets had similar properties of 1-channel, bit rate of 16-bits642

PCM, sampled at 16-kHz. CNN models were trained using643

E2E framework on isolated inappropriate words in MMUTM644

and TAPAD datasets, while testing was performed using the645

novel continuous audio profanity dataset composed of real646

videos and films. Momentum technique (Adaptive Moment647

Estimation) was utilized for the model training, with cross-648

entropy loss function applied. Regarding testing phase, seg-649

mentation was performed on the lengthy test data files using650

window lengths of 0.3, 0.4 and 0.5 seconds to determine651

the optimum segment length that could generate optimized652

performance metrics. After segmentation process, the fixed653

length, short samples were input to the trained model seri-654

ally for identification of targeted profane words included in655

training process.656

B. EVALUATION METRICS657

Confusion matrix components were utilized in the calcula-658

tions of evaluation metrics related to accurate detection of659

profane word samples. In this work, the model performance660

for detection of offensive spoken languagewas assessed using661

Accuracy, Precision, F1-score, True Positive Rate (TPR),662

False Positive Rate (FPR), and FNR as follows:663

Accuracy =
((
Ntp + Ntn

) /
Ntotal

)
× 100 (1)664

TPR = R =
(
Ntp

/ (
Ntp + Nfn

))
× 100 (2)665

FPR =
(
Nfp

/ (
Nfp + Ntn

))
× 100 (3)666

FNR =
(
Nfn

/ (
Nfn + Ntn

))
× 100 (4)667

F1− score =
(
2 (P× R)

(P+ R)

)
× 100 (5) 668

F1-score computed under precision (P) and recall (R): 669

P =
(
Ntp

/ (
Ntp + Nfp

))
× 100 (6) 670

In the equations, Ntp, Nfp, Nfn, and Ntotal referred to the 671

number of true positives, false positives, false negatives, 672

and total samples in all the segments respectively. Further- 673

more, the performance was evaluated using area under curve 674

(AUC) and detection error trade-off (DET) curve. AUC was 675

computed after plotting the receiver operating characteristic 676

(ROC) curve which used FPR as the horizontal axis and TPR 677

as the vertical axis. This measurement reflects the robustness 678

of a binary classifier as the sensitivity threshold is varied. 679

On the contrary, DET is a graphical plot of error rates for 680

binary classification systems, i.e., graph of false rejection rate 681

(FNR) against false alarms rate (FPR). 682

IV. EXPERIMENTAL RESULTS AND DISCUSSION 683

The audio-based foul word recognition model proposed in 684

this research was designed to be applied for automated cen- 685

sorship of audio channels of films. The experimental results 686

were obtained by running the novel test dataset, comprising 687

of continuous video files with high inappropriate word rates 688

per minute, through the trained models. Performance of the 689

model was determined using performance metrics such as 690

accuracy, F1 score, TPR, FPR and AUC. The results are dis- 691

cussing the model’s performance based on segment lengths, 692

probability thresholds, and process time figures. 693

A. SEGMENT LENGTH ANALYSIS 694

The experiment includes a windowing and segmentation pro- 695

cess for the lengthy continuous test samples, before it goes to 696

feature extraction, then inference and detection stages. There- 697

fore, the segment length affects the detection and evaluation 698

metrics. Hence, all the test samples were evaluated using 699

three different segment lengths of 0.3, 0.4, and 0.5 seconds 700

to find the optimized segment length, that produce the best 701

and optimal system/model metrics for the detection of foul 702

languages. Although all the test samples were tested based 703

on different segment lengths, this paper will only demonstrate 704

the effect of segment length on foul language detection within 705

continuous audio samples, by highlighting the performance 706

metrics of two samples that are sample 1 and sample 2 at 707

a single probability threshold (th = 0.50) and three differ- 708

ent segment lengths. Table 4 and Table 5 present the foul 709

language detection model performance using two samples 710

(sample 1 and 2), while Figure 3 and Figure 4 highlights 711

the two samples performance based on average accuracy and 712

F1-score, respectively. 713

Following Table 4 and Table 5, proposed model performed 714

positively in the detection of foul language with high average 715

accuracy, TPR, precision and F1-score, with low FNR and 716

FPR. For example, samples 1 achieved 20.75%, 11.32%, and 717

3.83% FNR, for segment length of 0.3, 0.4, and 0.5 segments 718

length respectively. Regardless, the model performance was 719
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FIGURE 3. Average accuracy of samples 1 and 2 for different segment
length.

FIGURE 4. F1-score of samples 1 and 2 for different segment length.

TABLE 4. Performance metrics of sample 1 at 0.5 confidence score and
different segment length.

TABLE 5. Performance metrics of sample 2 at 0.5 confidence score and
different segment length.

improved for the longer segment length. For example, Sam-720

ple 1 FNR was improved with about 16.92% when segment721

length used was 0.5 second, instead of 0.3 seconds. Likewise,722

the FNR of sample 2 were improved by around 24.47% when723

evaluated using 0.5 seconds compared to 0.3 second segment724

length. Based on Table 4 and Table 5, all the performance725

metrics were improved using larger segmentation length.726

For example, TPR/recall and precision were improved and727

TABLE 6. Overlap effect on performance metrics of sample 1 at
0.5 confidence score and 0.5 segment length.

TABLE 7. Overlap effect on performance metrics of sample 2 at 0.5
confidence score and 0.5 segment length.

increased drastically with longer window length, while FNR 728

and FPR were improved and drops hugely at 0.5 second 729

segment length. 730

Figure 3 and Figure 4 highlights model performance using 731

sample 1 and sample 2 based on average accuracy and 732

F1-score, respectively. F1-score measures the performance 733

based on the precision and recall and produce a better view 734

of the performance for an imbalanced dataset as in this work. 735

F1-score and average accuracy charts and figures show that 736

increasing the segment length contributes into increment of 737

model performance metrics, which are increasing accuracy, 738

recall, precision, and F1-score. Consequently, the proposed 739

system achieved the best performance on profane language 740

detection using 0.5 segment length, where model achieved 741

a high F1-score 95.33% and 85.93% for the sample and 742

sample 2 test samples. Similarly, the model produced a high 743

average accuracy of 98.31% and 95.71% for sample 1 and 744

sample 2, successively. Therefore, 0.5 seconds considered as 745

the optimal window length for the developed system. Hence, 746

the proposed model was evaluated using 0.5 second segment 747

length and the following detailed results were obtained based 748

on the optimal window duration. 749

1) OVERLAP TIME ANALYSIS 750

The experiment includes an automated windowing and seg- 751

mentation process for continuous test samples. Therefore, the 752

fixed segment length affects the detection and evaluationmet- 753

rics for words that are longer than window length, in addition 754

to some keywords that might be spitted into two segments 755

due to the automated and fixed windowing process. Hence, 756

an overlap time was introduced to mitigate the error arises 757

from this issue and find the optimal performance of pro- 758

fanities detection in a continuous sample with an automated 759

and fixed windowing process. Although all the test samples 760

were tested with and without overlap time, this paper only 761

demonstrates the effect of overlap length for foul words detec- 762

tion within continuous audio, by detailing the performance 763

metrics of two samples that are sample 1 and sample 2 at 764

a single probability threshold (th = 0.50) and 0.5 segment 765

lengths. 766
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TABLE 8. Performance metrics of sample 1.

TABLE 9. Performance metrics of sample 2.

Table 6 and Table 7 present the performance of profanity767

detection performance using two samples (sample 1 and 2)768

and highlight the effect of introducing overlap time to win-769

dowing process. This overlap time is introduced to mitigate770

the error of keywords misdetection when uttered profane771

word is longer than the segment length or appears in two772

different segments due to the automatic windowing process of773

a continuous stream input. According to Table 6 and Table 7,774

proposed model performance was significantly improved in775

the detection of profanities when overlap time is introduced,776

which mitigates the error of foul words detection in a contin-777

uous audio sample. The overlap time produces higher perfor-778

mance metrics including average accuracy, recall, precision,779

and F1-score, with lower FNR and FPR. For example, the780

error of missing the target keywords for sample 1 achieved781

9.64% and 3.83% FNR, for windowing process with and782

without overlap time, respectively.783

Notably, the model performance was improved when over-784

lap time was introduced. This is explained by FNR increase785

with around 5.81% when the windowing process of con-786

tinuous input audio sample was executed with an over-787

lap time. Likewise, the FNR of sample 2 were improved788

by around 7.4% when evaluated with overlap time. Based789

on Table 6 and Table 7, all the performance metrics were790

improved using windowing overlap time. Hence, the error791

arising from the issue of utterances with length larger than792

window length and utterance split was mitigated. There-793

fore, the overall foul words keywords detection in contin-794

uous audio was improved. For instance, accuracy, recall,795

precision, and F1-score were improved and increased sig-796

nificantly, while FNR and FPR were improved and dropped797

dramatically.798

B. THRESHOLD-BASED MODEL PERFORMANCE799

The performance assessment of the proposed models on the800

detection of foul language for the six test samples is pre-801

sented in Table 8 through Table 13 for sample 1 through802

TABLE 10. Performance metrics of sample 3.

TABLE 11. Performance metrics of sample 4.

TABLE 12. Performance metrics of sample 5.

TABLE 13. Performance metrics of sample 6.

sample 6. Although model test was done using threshold zero 803

through one, the tables present 0.1, 0.25, and 0.5 through 804

0.9 probability threshold. This is due to the common concern 805

of threshold performance above the common 0.5 confidence 806

score. However, all the thresholds starting from zero were 807

used when evaluating the model using ROC and DET curves 808

that are highlighted in the subsequent section. The results of 809

all samples’ performance are presented due to the concern 810

of highlighting the model performance depending on differ- 811

ent real-world samples, as different real time samples will 812

exhibit different characteristics like audio quality, noise, pitch 813

speed, etc. These characteristics produces different model’s 814

response in terms of target keyword detection. Therefore, 815
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TABLE 14. Macro average performance of profanity censorship system
using all test samples.

a specific metric can be used as a key for optimal model that816

can be used for different kind of application.817

Following the six samples outcome metrics, it can be818

obviously noted that that the model’s performed well for all819

the test samples, based on all metrics for all the thresholds.820

Notably, the performance of the model varies depending on821

the test model. This attest to the variations of proprieties and822

characteristics of the different samples, which yield to differ-823

ent performance metrics. It was reported that model performs824

well in terms of average accuracy for all the thresholds, for825

example, a high average accuracy for all the six test sam-826

ples (exceeding 95% for all samples except sample 2 where827

average accuracy vary between 88% to 95%). Additionally,828

the model achieved F1-socre above 90% for all thresholds829

on all test samples except sample 2 and sample 4, where830

sample 2 F1score varies between 72% and 85%, and sam-831

ple 4 F1-score varies between 88% and 93%. Thus, imply-832

ing positive sensitivity and specificity in offensive language833

detection. Contrarily, reported false rates (FNR) and (FPR)834

is considerably low, which indicates that the percentage of835

producing a false prediction is quite low.836

Looking into the most common threshold used for deep837

learning application, which is 0.5 confidence score, themodel838

produces an average accuracy of sample’s detection of around839

95% to 98%. The system also produced a TPR/recall of about840

91% to 97%, which implies that the rate of rejection (FNR)841

is quite low of merely 4% to 8% FNR. Contrary, the systems842

exhibit a precise detection rate that can be interpreted using843

precision metrics as it swings between 81% and 93%. That844

contributes to the low false alarms (FPR) detected by the sys-845

tem. On the other hand, themodel produced a good sensitivity846

and specificity, that can be elaborated with F1-score figures847

that is between 85% and 95%. Therefore, choosing the suit-848

able threshold is crucial and depends on the application and849

test samples itself and depends on what is the acceptable rate850

of false alarms and false misses that can be more elaborated851

using ROC and DET curves.852

C. AVERAGE MODEL PERFORMANCE AND DETECTION853

CURVES854

The performance assessment of the proposed models on the855

detection of foul language for the six test samples have var-856

ied depending on the differences. Therefore, average model857

TABLE 15. Weighted average performance of profanity censorship system
using all test samples.

performance reported in Table 14 and Table 15. Table 14 and 858

Table 15 presents the average performance of system for all 859

the six test samples, in which macro average and weighted 860

average were computed. Macro average is the average of 861

the sum of all figures divided by the total samples, whereas 862

weighted average was computed where each sample’s figures 863

contribute to the average numbers based on the weight of the 864

foul words within each sample compared to total foul words 865

for the whole dataset. The average metrics were computed 866

for all the thresholds. However, here we just highlight sim- 867

ilar thresholds to the thresholds analysis tables. Therefore, 868

the models varied performance can be highlighted based on 869

different thresholds. For instance, how precision is affected 870

with varying thresholds. Hence, an operation threshold can 871

be chosen depending on the optimal metrics required for the 872

detection of profanities like minimizing FNR or minimizing 873

FPR. 874

Looking at the average metrics, it can be noteworthy that 875

increasing threshold contributes to a slight drop in aver- 876

age accuracy (from 97.47% at 0.1 threshold to 95.34% 877

at 0.9 threshold for weighted average) and TPR/recall 878

(from 95.68% at 0.1 threshold to 92.16% at 0.9 threshold 879

for weighted average). Hence, FNR increases with thresh- 880

old increment (from 4.32% at 0.1 threshold to 7.84% at 881

0.9 threshold for weighted average). In contrast, precision 882

increases dramatically with threshold increment from 85.12% 883

at 0.1 threshold to 93.75% at 0.9 threshold for weighted 884

average). Therefore, a huge drop in false detection (FPR) 885

(from 14.88% at 0.1 threshold to 6.25% at 0.9 threshold for 886

weighted average) occurred with threshold increment. 887

On the other hand, F1-score that is calculated based on 888

precision and recall varies with changing threshold and varies 889

between 89.96% and 93.25%. It is known that choosing 890

the operation points depends on the rates the user wishes 891

to achieve. For example, if F1-score matters more than all 892

the other metrics, then choosing 0.7 confidence score as the 893

best performing point, as it yields to the highest F1-score 894

based on the weighted average of around 93.25% F1-score. 895

ROC curve, AUC, and DET curve is another way of visual- 896

izing the performance of the model at all operating points. 897

Figure 5 presents the ROC curves for all samples and the 898

averaged figures, in which the operating curves and the rela- 899

tionship between TPR and FPR can be visually interpreted. 900
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FIGURE 5. ROC curves for all samples and averaged figures.

FIGURE 6. DET curves for all samples and averaged figures.

Additionally, AUC were computed based on the ROC curves901

for all samples with averaged AUC values. In contrary, DET902

curves in Figure 6 illustrates the relation between the false903

rates (FNR vs FPR), which indicates the values of errors can904

be produced at certain operating points.905

AUC for ROC curves is another way to interpreter the906

overall model for all the operating points of thresholds from907

zero to one threshold/confidence score. AUC is the area under908

the ROC curves, which is the relation between (TPR vs FPR),909

in which each operating points highlights the number of910

correct predictions rate of foul language and the rate of wrong911

predictions of foul language while it is a normal speech.912

Table 16 elaborates the averaged values of AUC and AUC913

for each sample.914

TABLE 16. AUC metrics for all samples and averaged figures.

TABLE 17. Processing and inference time of profanity censorship system.

Figure 5 and Table 16 elaborates the model’s performance 915

in terms of the AUC metric. It shows the AUC for all the 916

samples to visualize the system’s performance of the different 917

samples. The highest AUC was achieved by sample 3 of 918

96.33%, while the lowest was achieved by sample 2 of around 919

83.79%. TheAUC for the rest of the sample’s swings between 920

94.79% for sample 6 and 96.17% for sample 5. The model 921

average performance can be highlighted with the average 922

AUCvalues, where themodelmacro averageAUC is 93.85%, 923

and the weighted average is around 94.85. Therefore, the 924

overall model performance lies within AUC of 94.85% and 925

93.85% for all the different samples. 926

D. SPEED ANALYSIS OF PROFANITY CENSORSHIP SYSTEM 927

Table 17 shows the inference time of state-of-the-art CNN 928

model and the system overall process time from the input 929

of continuous speech, segmentation, through detection and 930

time estimation, where it was found that the proposed CNN 931

has inference time of 2.63 ms (0.00263 seconds) calculated 932

from the time step of applying the spectrogram image sam- 933

ple at the input to the time step of model’s prediction. The 934

reason behind that is the minimum number of parameters and 935

lightweight CNN of small filters and few layers. According 936

to Table 17, the average process time per each second of 937

the long audio samples, which can be defined as the average 938

time taken to process the input sample through all steps from 939

segmentation to automated detection per each second, which 940

is 0.46 seconds. This means each second of the long audio 941

will be processed completely in 0.46 seconds, that makes 942

this process to be real time process and even faster than the 943

human manual films’ detection, filtering, and censorship of 944

inappropriate speech content. For example, sample 1 consist 945

of 371 seconds in total. However, the average time will be 946

taken to pass through the developed automated detection 947

for film censorship process, will be around 170.66 seconds, 948

which is less than half the length of the original sample. 949

Hence, the proposed system yield in saving time compared 950

to manual detection and censorship process. In addition to the 951
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TABLE 18. Macro average performance metrics of baseline 1.

achieved high AUC metrics values, which shows this system952

feasibility for speech films’ censorship. The results of speed953

analysis were reported based on system’s evaluation using954

the CPU to mimic the real-life scenario of films screening,955

detection, and censorship that is always executed using CPUs.956

E. BENCHMARK ANALYSIS957

This work proposed to use novel datasets for model’s train-958

ing including MMUTM and TAPAD offensive language959

dataset. Additionally, this research proposed the use of a960

novel test dataset containing continuous speech dataset with961

frequent utterances of foul words. Due to the lack of stud-962

ies on spoken profanity detection from continuous audio963

input using neural networks, this work results were mainly964

compared against two baseline models of which one is a965

recent work on MMUTM dataset [66]. The recent research966

has produced deep learning models for the foul language967

recognition of isolated keywords input on the MMUTM foul968

language dataset [66], but the developed RNN model were969

not tested on continuous real-world test samples. In this970

research, we addressed these issues and designed different971

novel models for the foul language detection that were tested972

on continuous audio samples. Hence, the recent work RNN973

model were used as baseline 1 model. Additionally, a 2-974

convolution layers CNN model were constructed and used975

as baseline 2 model, as 2-layers CNN is a common model976

architecture that were used for keywords and caustic sounds977

detection [9]. The two baseline models were re-trained and978

tested using the same protocol to train and test the current979

model and compared using several evaluation metrics.980

Table 18 presents the macro average metrics of baseline 1981

[66] over all test samples, whereas Table 14 details the982

figures of current model macro average metrics. Based on983

the comparison between Table 18 and Table 14, it can be984

noteworthy that proposed CNN model outperforms baseline985

1 model based on most of the evaluation metrics except for986

precision and FPR, where the precision and FPR for both987

models are slightly the same. Based on the macro average988

metrics for both models, current model outperformed base-989

line 1 by around (5% to 6%) average accuracy, (2% to 4%)990

recall/TPR and FNR, and about 1% F1-score for all the991

thresholds. Table 19 presents the weighted average metrics992

of baseline 1, whereas Table 15 details the weighted average993

metrics of proposed CNN model. Based on the comparison994

TABLE 19. Weighted average performance metrics of baseline 1.

TABLE 20. Macro average performance metrics of baseline 2.

between Table 19 and Table 15, it is noted that current model 995

outperforms baseline 1 model based on all the evaluation 996

metrics. Based on the weighted average metrics for both 997

models, current model outperformed baseline 1 by around 998

(1% to 2%) average accuracy, (2% to 3%) recall/TPR and 999

FNR, (0.5% to 1%) precision, and about 1% F1-score. Thus, 1000

proposed model outperformed baseline 1. 1001

Table 20 highlights the macro average metrics of baseline 1002

2 over all test samples, whereas Table 14 details the figures 1003

of current model macro average metrics. Based on the com- 1004

parison between Table 20 and Table 14, it can be noted that 1005

current CNN model outperforms baseline 2 model based on 1006

all the evaluation metrics Based on the macro average metrics 1007

for both models, current model outperformed baseline 2 by 1008

around 6% average accuracy, (2% to 5%) recall/TPR and 1009

FNR, (1% to 3%) precision, and about (1% to 3%) F1-score. 1010

Table 21 presents the weighted average metrics of baseline 1011

2, whereas Table 15 details the weighted average metrics 1012

of proposed CNN model. Based on the comparison between 1013

Table 21 and Table 15, it is noteworthy that current model 1014

outperforms baseline 2 model based on all the evaluation 1015

metrics. Based on the weighted average metrics for both 1016

models, current model outperformed baseline 1 by around 1017

(1% to 2%) average accuracy, (3% to 6%) recall/TPR and 1018

FNR, (1% to 2%) precision, and about (2% to 3%) F1-score 1019

for all the thresholds. Hence, proposed model outperformed 1020

baseline 2. 1021

ROC curve, AUC, and DET curve is a more favorable 1022

way of visualizing the performance of several model at all 1023

operating points and compare the different performance of 1024

each model. Figure 7 presents the ROC curves for current and 1025

baseline models, in which the operating curves and the rela- 1026

tionship between TPR and FPR can be visually interpreted. 1027

Additionally, average AUC values were computed based on 1028
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TABLE 21. Weighted average performance metrics of baseline 2.

FIGURE 7. ROC curves for current and baseline models.

FIGURE 8. DET curves for current and baseline models.

the ROC curves. In contrast, DET curves in Figure 8 illus-1029

trates the relation between the false rates (FNR vs FPR),1030

which indicates the values of errors can be produced at all1031

operating points of thresholds.1032

Figure 7 and Table 22 highlight the model’s performance1033

in terms of AUC metric. The highest AUC was achieved by1034

TABLE 22. AUC metrics of current and baseline models for the novel
inappropriate speech dataset.

sample 3 of around 96.33%, while the lowest was achieved by 1035

sample 2 of about 83.79%. The AUC for the rest of the sam- 1036

ples varies with about 94.79% for sample 6 and 96.17% for 1037

sample 5. The model average performance can be highlighted 1038

with the averageAUCvalues, where themodelmacro average 1039

AUC is 93.85%, and the weighted average is around 94.85. 1040

Therefore, the overall model performance lies within AUC of 1041

94.85% and 93.85% for all the different samples. Notably, the 1042

model performs differently with different evaluation samples 1043

attesting to the different properties and characteristics of 1044

different samples. However. The model performs positively 1045

regardless of the variations. 1046

In Table 22, we showed the outperforming results of the 1047

proposed system based on AUCmetric, which is significantly 1048

better than other baseline systems, where proposed model 1049

outperformed baseline 1 algorithms with 2.55% macro aver- 1050

age AUC and weighted average AUC of 0.64%. On the other 1051

hand, current model outperformed baseline 2 algorithms with 1052

4.58% macro average AUC and weighted average AUC of 1053

2.22%. Thus, current model outperformed baseline models 1054

in terms of AUC and all other metrics. 1055

1) BENCHMARK OF ASR-BASED CENSORSHIP SYSTEM 1056

Given the scarcity of experiments on inappropriate speech 1057

content detection, the first past of this subsection highlighted 1058

a comparative analysis using acoustic-based systems for pro- 1059

fanity detection. On the other hand, this part benchmark the 1060

current work against previous work that uses ASR systems 1061

for the detection of profanities. Recent research proposed 1062

a solution for analyzing the video, which helps to iden- 1063

tify the profane content through the use of text detection 1064

approaches after videos being transcribed by means of ASR 1065

systems [70]. The audio samples were extracted from the 1066

input video. Then, audio samples were converted into text 1067

using Speech-to-Text library for detection and localization of 1068

profane words. The text data samples were checked against 1069

a profanity list of words. The proposed system was tested 1070

with 50 videos collected from various sources like Facebook, 1071

YouTube etc. Additionally, some of the videos were made 1072

by authors containing profane keywords. The total length of 1073

test samples was only 1734 second (∼ 28.9 minutes). The 1074

developed profanity detection using ASR systems and text 1075

detection approaches achieved an accuracy of around 85.03% 1076

on the reported dataset [70]. 1077

The reported ASR-based system containing two stages that 1078

are Speech-to-Text phase, and text detection approach, was 1079

retrained on the list of profanities proposed in this work to 1080
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TABLE 23. Comparative figures of current and ASR-based systems for
inappropriate speech detection and localization.

benchmark current work against ASR-based system. Then,1081

the ASR-based system was tested using the six video samples1082

used to test the current proposed system. The evaluation1083

metrics and comparative figures of ASR-based system and1084

current system are highlighted in Table 23. The two models1085

were evaluated using AUC, accuracy, precision, and F1-score1086

metrics. Additionally, the systems were compared based on1087

the overall processing time of each second of the continu-1088

ous input sample for the detection of inappropriate speech1089

content. CPU was used to only assess the processing time as1090

reported in the table.1091

Table 23 details the evaluation metrics and processing time1092

per every second of test input for ASR-based system and1093

current system that utilizes acoustic features for the detec-1094

tion of profanities within continuous audio input. Notably,1095

the proposed acoustic system outperformed the ASR-based1096

system in terms of evaluation metrics. For example, pro-1097

posed system achievedAUC of 94.58%weighted average and1098

93.85% macro average, while ASR-based system achieved1099

AUC of 91.02% weighted average and 88.69% macro aver-1100

age. The proposed acoustic system using CNN also outper-1101

formed ASR-based system by significant margin in terms of1102

accuracy, precision, and F1-score. This can be attested to the1103

main disadvantage of the ASR-based system, which is the1104

use of multiple pipeline blocks serially, where text profanity1105

detection and localization happened after speech-to-text tran-1106

scription. Therefore, a failure in accurate transcription led to1107

failure in the detection stage. Hence, the overall detection and1108

censorship performance dropped significantly.1109

The ASR-based system outperformed acoustic system in1110

terms of processing time by small margin of 0.01 second1111

(10 ms) as ASR-based system requires 0.45 seconds, while1112

ASR-based system requires 0.46 seconds for each second of1113

the input for the whole process that results in the detection1114

and localization of profanity within a given continuous audio.1115

This attested to the multistage of acoustic system including1116

time for segmentation process and inference time. On the1117

other hand, ASR-based system requires multiple inference1118

times of text detectionmodel andASR that explicitly contains1119

language and acoustic models and does not require an input1120

segmentation process. It is also noteworthy that only one1121

inference is required for acoustic system when using CNN1122

TABLE 24. Performance metrics of proposed and pre-trained CNN models
for inappropriate speech detection and localization.

TABLE 25. Comparison between the proposed and pre-trained CNN
models in terms of network parameters.

model, while ASR-based system requires two inferences for 1123

Speech-to-Text and text detection models. 1124

This experiment was performed on a particular dataset of 1125

a spoken English profane words with positive outcomes in 1126

any derivation of the profanities. Nevertheless, the proposed 1127

system performance may be varied by using a different range 1128

of English verbal words or spoken utterances from different 1129

language, as the proposed model uses the direct acoustic 1130

features of utterances for the detection, unlike ASR systems 1131

where spoken terms can be transcribed based on the language 1132

models used in ASR models and accommodate wider range 1133

of keywords. However, the use of ASR models suffers of 1134

the issues that majorly concern a large dataset and large 1135

computational cost, in which the two major issues is solved 1136

in this work for the development of profane words detec- 1137

tor. Additionally, ASR systems uses a few stages of models 1138

like acoustic models and language models. In this context, 1139

an additional text detector will need to be applied to locate the 1140

inappropriate speech content. Therefore, ASR-based systems 1141

for the detection of profane words suffers of performance 1142

metrics drop due to the sequenced models, as a failure in one 1143

stage leads to performance drop in the following stage. 1144

2) BENCHMARK OF PRE-TRAINED MODELS 1145

The proposed CNN model for profanity detection and cen- 1146

sorship was further analyzed and compared with four dif- 1147

ferent pre-trained CNN models, which are MobileNet [71], 1148

Inception-v3 [72], AlexNet [73], and ResNet-50 [74] as 1149

detailed in Table 24 and Table 25. The models are compared 1150
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in terms of network architecture characteristics (e.g., model1151

size and parameters) and performance metrics including1152

AUC, accuracy, recall, precision, and F1-score. The models1153

are compared based on the average metrics including macro1154

and weighted averages.1155

The proposed system outperforms the other four1156

pre-trainedmodels in all evaluationmetrics in bothmacro and1157

weighted averages as highlighted in Table 24. The compari-1158

son table shows a different metrics for the different models.1159

For example, the models order based on AUC metric are our1160

proposed model, Resnet50, MobileNet, Inception-v3, then1161

Alexnet. However, the order changes when comparing mod-1162

els based on accuracy, where proposed model achieved best1163

accuracy, followed by Resnet50, Alextnet, then Inception-1164

v3 and MobileNet achieve similar accuracy. Proposed CNN1165

model outperformed the pre-trained model in terms of all1166

metrics. For instance, proposed model outperformed pre-1167

trained model based on macro averaged AUC by around1168

2.07%, 3.93%, 4.38%, and 4.83% compared to Resent50,1169

MobileNet, Inception-v3, and Alexnet, respectively. Fur-1170

thermore, proposed model outperformed pre-trained model1171

based on macro averaged accuracy by around 1.57%,1172

4.38%, 4.54%, and 4.54% compared to Resent50, Alexnet,1173

Inception-v3, and MobileNet, respectively.1174

The proposed model is also compared with the other pre-1175

trained models in terms of network characteristics such as1176

model size, training parameters, number of layers, inference1177

time, and processing time as highlighted is Table 25. Pro-1178

posed CNNmodel does not only achieve the highest detection1179

accuracy but also has the smallest model size of 13 MB1180

and lowest training parameters of only 46.7k. On the other1181

hand, the largest model size belongs to Alexnet of around1182

244 MB. Our model achieves better performance by using1183

only 15 of smaller size and filter, which helps to reduce the1184

computational cost and time. In contrast, Resnet50 has the1185

highest number of layers of up to 50 layers. The inference1186

and overall processing time of proposed model are 2.36ms1187

and 0,45s, respectively. Our model inference time is at almost1188

eight times less than those of other pre-trained models. These1189

outstanding values for the network parameters of proposed1190

CNNmodel and its superior performance prove the effective-1191

ness and efficiency of our system in automated detection and1192

localization of inappropriate speech for censorship purpose.1193

As the proposed solution uses only acoustic features of1194

a given number of profane words. Therefore, the proposed1195

system could be used for different English profane terms or1196

any other profanities from different language provided the1197

use of the same procedure of data preparation that would1198

match the acoustic features extraction methods and the pro-1199

posed architecture. In this case, the CNN model must adapt1200

to the new keywords. Several approaches are recommended1201

to tackle the study gap of including wider range of foul1202

words, such as executing a full or partial system retraining1203

or introducing the well-known transfer learning approaches1204

for CNN networks [25]. As this work was designed to detect1205

direct utterances of profanities in continuous stream, it is1206

recommended to consider several future developments for 1207

censorship and films rating researches. The context in which 1208

keyword is uttered is crucial to define a set of words that could 1209

represent the keyword. Therefore, considering the sequence 1210

and context of uttered words is recommended in future works. 1211

V. CONCLUSION 1212

This research suggested the implementation of CNN model 1213

for the detection and localization of spoken foul language 1214

in continuous speech samples with static keyword detection 1215

mode test for automated video/audio/film censorship. The 1216

current work utilizes a novel dataset of foul languages to 1217

train the model. MMUTM and TAPAD datasets were man- 1218

ually labeled with 2 annotations (Foul vs Normal). The CNN 1219

model was trained to classify the labels of pre-segmented 1220

isolated samples, whereas current model was tested with 1221

continuous incoming audio samples for offensive language 1222

identification. The novel test dataset consists of several real- 1223

world video samples with high rate of offensive words per 1224

minute. The model input was an extracted features of the 1225

audio samples in a form of Log-Mel spectrogram images, 1226

while the output of the whole system contains the detected 1227

foul word and timestamps of profanity occurrences within 1228

lengthy audio samples. 1229

The proposed system performed differently based on the 1230

different properties and characteristics of test samples. How- 1231

ever, the overall foul language detection system has per- 1232

formed positively with macro average accuracy ranging from 1233

95.11% to 97.67% and weighted average accuracy of 95.34% 1234

to 97.47% for all the operating points of thresholds. Further- 1235

more, the reported F1-score metric for model performance 1236

showed a balance between sensitivity and specificity of pro- 1237

posed CNN by achieving F1-score ranging from 88.54% to 1238

90.45% macro averaged and 89.96% to 92.91% for weighted 1239

average metrics. Additionally, current model achieved a high 1240

AUC metric of the ROC curve of around 93.85% macro 1241

averaged and 94.58% weighted average AUC metrics. 1242

The proposed lightweight CNN model was benchmarked 1243

against two baseline models that uses only acoustic fea- 1244

tures on the novel offensive language dataset. It is reported 1245

that the current model outperformed the acoustic baseline 1246

algorithms in terms of performance metrics. We showed 1247

the outperforming results of the proposed system based on 1248

AUC metric, which is significantly better than other base- 1249

line models, where proposed model outperformed baseline 1250

1 algorithms with 2.55% macro average AUC and weighted 1251

average AUC of 0.64%. On the other hand, proposed system 1252

outperformed baseline 2 model with 4.58% macro average 1253

AUC and weighted average AUC of 2.22%. Thus, current 1254

model outperformed baseline models in terms of AUC and all 1255

other metrics. Additionally, proposed acoustic system outper- 1256

formed ASR-based system for profanity detection based on 1257

the evaluation metrics including AUC, accuracy, precision, 1258

and F1-score. 1259

This work also demonstrated that proposed system for 1260

audible and speech content processing and detection of 1261
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inappropriate content within, had performed positively in1262

terms of inference and overall process speed. It was found1263

that the proposed CNN has inference time of 2.63 ms1264

(0.00263 seconds), which is attested to the light-weight struc-1265

ture of developed model. Furthermore, the average time1266

taken to process the input sample through all steps from1267

segmentation to automated detection per each second, which1268

is 0.46 seconds. This means each second of the long audio1269

will be processed completely in 0.46 seconds, that makes1270

this process to be real time process and even faster than the1271

human manual films’ detection, filtering, and censorship of1272

inappropriate speech content. This attested to the light-weight1273

structure of CNN architecture, which make the process and1274

inference to be faster and suitable for content screening,1275

filtering, and censorship.1276
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