IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 1 September 2022, accepted 19 September 2022, date of publication 22 September 2022,
date of current version 30 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3208921

==l RESEARCH ARTICLE

Deep Learning-Based Detection of Inappropriate
Speech Content for Film Censorship

ABDULAZIZ SALEH BA WAZIR", HEZERUL ABDUL KARIM", (Senior Member, IEEE),
HOR SUI LYN, (Student Member, IEEE),

MOHAMMAD FAIZAL AHMAD FAUZI", (Senior Member, IEEE),

SARINA MANSOR", AND MOHD HARIS LYE", (Member, IEEE)

Faculty of Engineering, Multimedia University, Cyberjaya 63000, Malaysia
Corresponding author: Abdulaziz Saleh Ba Wazir (zezu9512@gmail.com)

This work was supported by Telekom Malaysia (TM) Research and Development, Malaysia, under Project MMUE/180029.

ABSTRACT Audible content has become an effective tool for shaping one’s personality and character
due to the ease of accessibility to a huge audible content that could be an independent audio files or an
audio of online videos, movies, and television programs. There is a huge necessity to filter inappropriate
audible content of the easily accessible videos and films that are likely to contain an inappropriate speech
content. With this in view, all the broadcasting and online video/audio platform companies hire a lot of
manpower to detect the foul voices prior to censorship. The process has a large cost in terms of manpower,
time and financial resources. In addition to inaccurate detection of foul voices due to fatigue of manpower
and weakness of human visual and hearing system in long time and monotonous tasks. As such, this paper
proposes an intelligent deep learning-based system for film censorship through a fast and accurate detection
and localization approach using advanced deep Convolutional Neural Networks (CNNs). The dataset of foul
language containing isolated words samples and continuous speech were collected, annotated, processed, and
analyzed for the development of automated detection of inappropriate speech content. The results indicated
the feasibility of the suggested systems by reporting a high volume of inappropriate spoken terms detection.
The proposed system outperformed state-of-the-art baseline algorithms on the novel foul language dataset
evaluation metrics in terms of macro average AUC (93.85%), weighted average AUC (94.58%), and all
other metrics such as Fl-score. Additionally, proposed acoustic system outperformed ASR-based system
for profanity detection based on the evaluation metrics including AUC, accuracy, precision, and F1-score.
Additionally, proposed system was proven to be faster than human manual screening and detection of audible
content for films’ censorship.

INDEX TERMS Foul language, speech recognition, key word spotting, spoken term detection, censorship,
deep learning, convolutional neural network.

I. INTRODUCTION

With the increased exposure to portable and immediate screen
time sources such as televisions, computers and smartphones,
filtering of audio and visual contents is becoming crucial.
This is because media commonly include offensive and sen-
sitive contents, e.g., foul languages, nudity, and sexually
explicit contents, which could attract the attention of users
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in entertainment videos, games and movies available through
broadcasting channels or at online platforms. Tuttle [1] stated
that most movies incorporate the usage of profanity that could
negatively affect the society [2] and that she believed that
this frequency would increase over the years. Broadcasting
companies and media-sharing platforms are responsible in
ensuring the appropriateness of contents shared to the public
through their respective channels. In the case of language,
censorship is a complex filtering process that provides lan-
guage content appropriate to consumers due to the restrictions
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in personnel, time, cost and human attention that may cause
indetection of content that should be removed. The objec-
tive of this research was to design and implement a censor-
ing system to accurately detect spoken profane language in
audio signals of audio and video files. Specifically, neural
networks that reported intriguing properties of such tech-
niques was utilized in facilitating the audio censorship of
videos.

In recent years, the application of deep learning tech-
niques in speech recognition has gained popularity. Vari-
ous utterance types, such as spontaneous and continuous
speeches, and connected and isolated words, were targeted
to be detected by different speech identifying systems [3].
One of the popular techniques was Spoken Term search-
ing technique, which could be further divided into Spoken
Term Detection (STD) and Keyword Spotting (KWS). Spo-
ken Term Detection (STD), or spoken term discovery, is the
identification of recurrent speech fragments from raw speech
without prior knowledge of the language, i.e., automatic
retrieval of speech from a database through specific audio
keywords or queries [4], [5], [6].

The speech searching could be performed either by typing
the keyword directly or speaking it to an Automatic Speech
Recognizer (ASR) to convert the speech into text form. Each
of the retrieved files from the search process would have a
label or caption with the keyword included [7]. The obvious
disadvantage of this method is the requirement for all audio
contents to be labeled, which is a difficult task. Furthermore,
it is difficult to detect occurrences of the target keyword by
searching for similar speech signals produced by the same
person. Speech signals for the same keyword spoken at dif-
ferent times are not identical [8]. This is due to the (sub-
consciously) differing pitch, energy content, speech length,
emphasis and pauses which could be related to other factors
such as age, voice condition and mood. Therefore, it is only
reasonable for the detection task to be even more challenging
when more than one individual contributed to the utterances
of words in the speech database due to the differences in
human vocal attributes, accent, dialect, gender, age and so on.
This poses challenges in STD and speech recognition task as
a whole [6], [7], [8].

Spoken keyword spotting (KWS) is a fast-growing technol-
ogy due to the increased usage often coupled with deep learn-
ing techniques that involves the identification of keywords
in audio streams [9]. As a consequence of the rapid growth
of human-machine interaction via voice, the social usage of
this technology is expected to achieve sustainable growth.
For instance, usage of voice assistants requires activation
through specific spoken keyword, i.e., wake-up word, which
reduces the computational requirement and cost of the sys-
tem significantly [10]. Although the far more computational
expensive ASR is not required, KWS technique utilized in
voice assistants could be interpreted as a sub-problem of
ASR [11]. Besides the voice assistant activation, applications
of KWS are common in audio indexing, speech data mining,
phone call routing, etc. [12].
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One of the earlier methods of application of KWS involved
the usage of large-vocabulary continuous speech recognition
(LVCSR) systems [13], [14]. Such systems were deployed to
decode speech signal to allow keyword to be identified in the
generated lattices (i.e., in the phonetic units’ representations
of different sequences, given the speech signal, were likely
sufficient). This approach is superior in the sense that it allows
flexibility to handle changing or non-predefined keywords
[15], [16], [17] (although often with performance drop when
keywords are out of vocabulary [18]).

The main weakness of LVCSR-based KWS systems lies in
the computational complexity dimension. Specifically, these
systems require high computational resources in order to
generate complex lattices [16], [19], which introduces latency
[20]. Therefore, this approach is not suitable for the applica-
tion of real time speech recognition and monitoring. For the
application of voice assistants and machine wake-up words,
the high computational resource and memory requirements
also place constraints on the usage of LVCSR systems [19],
[21], [22].

As deep learning techniques mature over the years, usages
of deep spoken KWS systems [23], [24], [25], [26] have
increased due to progressively improving performance in
terms of efficiency and accuracy, in voice assistants for
instance. The sequence of word posterior probabilities gen-
erated by deep neural networks is processed to identify the
possible existence of keywords directly without intervention
of any Hidden Markov Model (HMM) or Gaussian Mixture
Model (GMM). This deep KWS method has been attracting
attention due to flexible complexity of DNN generating the
posteriors, or acoustic model, which is dependent on compu-
tational resource availability [27], [28], [29].

Deep spoken keyword spotting system [30], [31], [32]
typically contains three main blocks [9]: 1) the speech feature
extractor that converts the input signal to a compact speech
representation, 2) the deep learning-based acoustic model
that generates posteriors over the keyword and filler (non-
keyword) classes based on the speech features, and 3) the
posterior handler that processes the temporal sequence of
posteriors to determine the possible existence of keywords
in the input signal.

Mel-scale-related features, low-precision features, learn-
able filter-bank features, and other features are the most rele-
vant speech features used in deep KWS systems [9]. Speech
features based on the perceptually-motivated Mel-scale filter-
bank, e.g., log-Mel spectral coefficients and Mel-frequency
cepstral coefficients (MFCCs), have been commonly utilized
in the areas of ASR and KWS. Despite the many attempts
to learn optimal, alternative representations from speech sig-
nals, Mel-scale-related features is still a safe, solid, and com-
petitive choice to date [33].

In most deep KWS systems, both types of speech features
are normalized to have zero mean and unit standard deviation
prior to being input to the acoustic model in order to stabilize
and accelerate training and improve model generalization
[34]. The most employed speech feature type in deep KWS
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thus far is Mel-scale-related features, as seen in the usage of
MFCCs with temporal context are used in [34], [35], [36],
[37], and [38]. Particularly, application of discrete cosine
transform on the log-Mel spectrogram produces the corre-
sponding MFCCs. This transform generates approximately
decorrelated features suitable for acoustic models. Since deep
learning networks are capable of exploiting spectro-temporal
correlations, log-Mel spectrogram is used to yield MFCCs
equivalent or better ASR and KWS performance [39]. Con-
sequently, log-Mel or Mel filter-bank speech features with
temporal context is widely utilized in deep KWS systems
[40], [41], [42], [43].

The acoustic model is the core of deep spoken KWS
systems, in which the objective of its design is to achieve
increasing accurate models with minimal computational
complexity. This system block could be filled using differ-
ent deep learning models, e.g., fully-connected feed-forward
networks [44], [45], convolutional networks [29], and recur-
rent and time-delay neural networks [46], [47], which could
be used as standalone models, or as a combination of two
models such as Convolutional Recurrent Neural Network
CRNN [48]. Studies have shown that Convolutional Neural
Networks (CNNs), with less parameters, could outperform
fully-connected networks in the role of acoustic model in
deep KWS [29], [49], [50], [51]. An attractive property of
CNNs is that the number of multiplications of the model
can be easily restrained to meet the computational limitations
by adjusting several hyperparameters such as filter striding,
and kernel and pooling sizes, without necessarily sacrificing
much performance [25].

The decision of whether a specific keyword exists in an
audio stream is made after processing the sequence of pos-
teriors produced by the acoustic model. The main posterior
handling modes are non-streaming (static) mode and stream-
ing (dynamic) mode. Non-streaming mode is a standard
multi-class categorization of independent input segments
(either segmented automatically or manually) formed from a
single or part of word each, i.e., isolated word classification.
The input segments would need to be long enough in order
to cover the duration of an entire word, e.g., speech com-
mand dataset [52]. In this mode, the input segment x is often
assigned to the class with highest posterior probability. The
non-streaming deep KWS systems generated sharply peaked
posterior distributions in [53] and [54]. One possible expla-
nation for this phenomenon is that the non-streaming systems
handle isolated, well-defined class realizations, and not the
inter-class transition information, as opposed to the streaming
system case. Despite that, non-streaming performance and
streaming performance are apparently highly correlated [53],
[54], thus causing the non-streaming KWS approaches to be
more effective and relevant for KWS posterior handling.

On the other hand, streaming mode relates to continuous
processing, like in real-life, of an input audio stream in which
keywords are not segmented or isolated. It is possible for
a given segment to not contain (parts of) the target key-
word. For this mode, the inherently noisy sequence of raw
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posteriors, typically smoothed over time, e.g., via moving
average, on a class basis [55], [56] prior to processing. Next,
smoothed word posteriors are commonly utilized to make
the decision of whether a keyword is present, either through
comparison with a sensitivity threshold [57] or by selecting
the class with highest posterior within a time sliding win-
dow [58]. One disadvantage of streaming mode processing
is that false detection may occur when the same keyword
realization is detected more than once in the smoothed pos-
terior sequence as consecutive input segments may cover
parts of the same keyword realization. Post processing tech-
nique would need to be employed in order to avoid this
problem [26].

The current trend involves usage of KWS for voice activa-
tion voice assistants [59] and Voice Control of Hearing Assis-
tive Devices [54]. Hence, the literature on automated speech
recognition models using deep learning techniques mostly
revolved around inoffensive language identification only.
For instance, conversational and read speech dataset clear
of profane language utterances such as LibriSpeech [60],
Google’s voice search traffic dataset [61], Google commands
dataset [52], spoken digits dataset [62], and speech emotions
dataset of conversational speech dialogues [63], [64] have
been explored in recent years.

In 2020, [65] researched on the efficiency of foul lan-
guage detection using pre-trained CNNs (e.g., Alexnet and
Resnet50). The proposed solutions had inaccurate detection
and high computational cost due to large number of net-
work parameters, causing the system to fail to meet the
requirements for real time usages, i.e., real time monitoring
for profanity filtering in videos. Another work studied the
categorization of isolated foul words versus isolated nor-
mal speech using a novel foul language dataset. Despite
the acceptable performance on the tested dataset, the detec-
tion and localization performances within audio samples of
the proposed methods (CNN and RNN) on other dataset
consisting of conversational speech of continuous audios
were not explored [66], [67]. In brief, the feasibility of
spoken profanity detection and localization within audio
files has not been proven for real time audio filtering
applications.

This experiment was carried out on English profanities
and its derivatives. The model utilizes the acoustic features
of profanities for the purpose of detecting profane words
and localize it within a continuous audio sample, unlike
Automatic speech recognition (ASR) models that transcript
any spoken words based on the language model that are
used as a part of the whole ASR system. However, the use
of ASR systems requires huge computational cost for the
use of a large dataset. Furthermore, ASR systems consist
of several sequenced stages including acoustic models and
language models. In the scenario of detecting and localizing
inappropriate speech content within a continuous audio input,
requires an additional text detection model. Consequently,
ASR-based systems for the detection of profanities suffers
of latency. Additionally, the use of sequenced models could
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probably lead to a decrees of system performance, as a
performance drop in one stage leads to performance drop in
the following stage.

This paper makes several contributions as follows:

« A real-time censorship system for inappropriate speech
content including profanities that aims to detect the
audible profane content in a stream of audio whether as
standalone audio file or incorporated within videos and
films.

o The real-time detection, localization, and censor-
ship speeds up the monitoring, scanning, and fil-
tering processes of audible content moderation and
reduces the physical effort of manual screening and
censorship.

o The system uses a lightweight CNN with small filters
and tiny architecture model that can be used using CPU
and can still reduce the censorship process time. Fur-
thermore, the proposed model can be used for future
researches on the field of KWS and STD with the advan-
tage of short inference time.

« A novel spoken profanities dataset that will be avail-
able on request by other researchers for future works
in the field of inappropriate speech content. Addition-
ally, the dataset and developed system with CNN model
can also be utilized for future speech-based film rating
researches.

o System evaluation is carried on with real-time videos
and films dataset containing continuous audio samples
that will be available with ready annotations for future
works.

o A comparative analysis of proposed acoustic-based
detection systems and ASR-based detection system is
performed to highlights the advantages and disadvan-
tages of both systems in terms of model’s performance
metrics and speed for speech term detection and local-
ization within a continuous audio input.

In this work, KWS approaches using a novel, lightweight
and distinct end-to-end neural networks (E2E CNN) was
proposed for foul language identification and localization.
Acoustic Log-Mel spectrograms were applied on a deep
learning architecture, named CNN, to recognize and localize
spoken profane language samples within continuous audio
samples extracted from real videos. The reciprocal detection
and localization task included foul words class and normal
conversational speech class from a continuous audio input.
Hence, this work is not an ASR system, where speech content
if transcribed into the corresponding words. Additionally, the
proposed work is not a simple audio recognition where a
single spoken term from the same pool of dataset is fed into a
model and classified into the corresponding label. The orga-
nization of this paper is as follows: Section II describes the
study materials and methods, Section III presents the experi-
mental settings, and evaluation metrics, Section IV details the
experimental results, and Section V concludes the study and
its possible implications.
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Il. MATERIALS AND METHODS

The datasets utilized in this study of English profanities are
described in this section. Next, the methodology is explained
in detail. Firstly, feature extraction process in Log-Mel spec-
trogram methods applied on raw audio samples is performed.
Secondly, E2E CNN is used for feature learning. Thirdly,
posterior handling methods are done for further processing.
A short review of each method and its function are summa-
rized in the following subsections.

A. DATASETS OVERVIEW

Three datasets were used in different experiments for various
purposes. Summaries of the datasets, experiments and usages
of the datasets are listed below:

1. MMUTM dataset including 4541 isolated spoken inap-
propriate words and 12100 isolated normal conversa-
tional speech samples. The proposed E2E CNN, and
baseline models were trained and validated using the
augmented data samples this dataset.

2. A subset of The Abused Project Audio Dataset
(TAPAD) including 4511 isolated spoken inappropriate
words. The proposed E2E CNN, and baseline models
were trained and validated using the augmented sam-
ples of this dataset.

3. A new continuous speech foul language dataset that
consists of 6 continuous audio samples. The E2E
CNN, and baseline models were compared utilizing
this dataset for the purpose of testing models on con-
tinuous speech samples.

1) MMUTM DATASET

This study uses a novel dataset (the MMUTM foul language
dataset) obtained and analyzed at Multimedia University,
Malaysia for a film censorship research project in collabo-
ration with Telekom Malaysia (TM) [66]. The dataset is a
selection of profane language collected through recordings
and natural data samples from random videos to increase the
sample variations that contributed to the dataset complexities.
The first version of this dataset that is published in [66],
contains nine classes of profanity (e.g. F-word) and total of
3105 isolated foul language samples. Regardless, the deriva-
tion of the aforementioned classes posed study complications
regarding offensive language identification. The first version
also includes a normal class representing casual speech and
distinguishing profane words from normal counterparts dur-
ing censorship. The normal class consist of 5100 original
and 45900 augmented samples using various augmentation
techniques that were detailed in [66]. However, for this work
only 12100 samples of normal class were used to mitigate
the issue of imbalance dataset and foul language data samples
scarcity as data imbalance and rarity is a major issue for KW'S
systems [9]. Additionally, the effect of data augmentation
has led to improving model’s performance and robustness to
noise [66].
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For this work, MMUTM dataset have been updated with
new data samples and different foul words/classes that were
collected and prepared based on the approaches used in the
first version that are fully described in [66]. The samples were
collected through recordings in controlled and uncontrolled
environments, in addition to samples extraction from existing
videos. A total of 1436 isolated foul samples have been added
to this novel and unique dataset. The new samples cover
10 new/different inappropriate spoken terms that contribute
to 10 new classes for the dataset. For example, the word
‘slut’ is a new category that is added by the addition of
this new samples, as this word did not exist in the original
dataset. Therefore, the updated MMUTM dataset now consist
of 4541 samples covering 19 different classes of foul words.
MMUTM dataset were used to only train the models using
two main labels (Foul vs Normal), as this study proposes
to test the proposed model with continuous audio samples
instead of only isolated samples. The samples’ audio proper-
ties were set at 16-bits PCM, whereas the 1-channel samples
were set at 16-kHz. MMUTM dataset was augmented to
increase the number of samples eight times from 4541 foul
and 12100 normal sample to 36328 foul and 96800 normal
samples to enhance the models’ robustness to noise, avoid
models’ over-fitting, performance improvement, and improve
models’ generalization as justified in [66].

The augmented dataset was then used to train proposed and
baseline models. The augmentation was performed using two
different augmentation techniques, which are noise incorpo-
ration (four real background noise and white noise), and pitch
manipulation with two different setting to manipulate sam-
ples’ pitch. Each augmentation method was used only once
on each training sample. Therefore, each sample will have
8 different variation including original sample, one white
noise inappropriate sample, four different background noise
incorporated samples, and two pitch manipulated samples
with two different pitch settings that differs from the original
sample.

2) TAPAD DATASET

TAPAD dataset [68] is an open dataset, it is still a growing
database and open for contribution. The dataset collection and
preparation procedures are described in [68]. Dataset consists
of 26365 audio files covering 75 profane words classes. Most
of these audio classes have 347 MP3 files of ~5.783 minutes
each. To best of our knowledge, this dataset has not been used
previously in any speech recognition/detection researches
before. For this work, only a subset of TAPAD was used to
train the developed models under the foul class/label. The
used subset consists of 4511 samples, covering 13 profanities
that are totally different from the ones used from MMUTM
dataset. Although, the samples’ audio properties are 32-bits,
1-channel, and at sampling frequency of 24-kHz, the samples’
audio properties were set to 16-bits PCM, 1-channel, and
sampled at 16-kHz to match as an input to the system. This
dataset was used to only train the models using under ‘foul’
label/class.
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TABLE 1. Testing dataset summary.

. Sample Length # Foul
D Title Source (hh:mm:ss)  words
1 F-Word Movie Clips YouTube 00:08:44 1062
2 Top 10 Movies with YouTube 00:10:39 94
Excessive Swearing
3 A F_cking Video About YouTube 00:06:11 50
Swearing in Movies
4 Best Of: Tom Segura | YouTube 00:05:45 12
Netflix Is A Joke
5 Beavis and Butt-Head Do Film 01:21:00 414
America
6 Uncut Gems Film 02:15:00 646

TAPAD dataset was augmented to increase the number of
samples eight times from 4511 foul sample to 36088 foul
samples to enhance the models’ robustness to noise, avoid
models’ over-fitting, and improve models’ generalization and
reduce. The augmented dataset was then used to train pro-
posed and baseline models. The augmentation was performed
using the same approaches used for MMUTM dataset that are
described in the previous part.

3) TESTING CONTINUOUS AUDIO DATASET

This dataset is a novel challenging database that are only used
for testing and model’s evaluation purposes. This data con-
sists of six real-world audios that were retrieved from videos
available on the internet, four of the samples were retrieved
from YouTube videos, while the other two are a full films.
Full films are used in the evaluation as this research designed
to propose a solution for films to provide real time moni-
toring and censorship for the inappropriate speech content.
As described in Table 1. The total length of the testing videos
is about four hours, seven minutes, and nineteen seconds,
which is ~ 247.32 minutes in total. It is obvious that the
testing dataset intensively consist of foul languages within the
normal conversation speech, as the dataset consist of 1322
profanity, where all the profanities are also existed in the
training dataset of MMUTM and TAPAD dataset.

The rate of foul words per minute is what makes this dataset
to be challenging, as there is about 5.345 offensive words
per minutes in this dataset. Additionally, this dataset is a real
dataset that is taken directly to test and evaluate the trained
model, which adds to how challenging this dataset. The only
per-processing happened to this dataset is the properties of the
audio file that were set at sampling rate of 16-kHz, 1-channel,
and 19-bits PCM. This dataset was purposely created for
this research. Therefore, we have labeled all this dataset by
manually finding the foul words within the audio file and the
corresponding timestamps, in which the profane word occurs.
Therefore, the annotations of this dataset consist of the foul
words and its timestamps, as this work is to predict the foul
word and localize it within a long audio file. Hence, the
parts of the audio samples that were not labeled as foul,
are considered as normal conversational speech by default,
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TABLE 2. Summary of datasets used for models training and testing
purposes.

#Samples #Samples
Dataset Usage (original) (augmented)
MMUTM Training and 4541 foul and 36328 foul and
validation 12100 normal 96800 normal
TAPAD Training and 4511 foul 36088 foul
validation
Testing continuous Model’s 6 continuous Not augmented
audio dataset testing audios from
videos

whether it contains speech, noise, silence, or even music.
Table 1 details the testing dataset.

In short, the training datasets MMUTM and TAPAD com-
plement each other, contributing to 9052 profane word sam-
ples of 32 distinct vulgar words, and 12100 normal speech
samples. Both datasets were only used for training the trained
and baseline models while the testing was performed using a
third dataset consisting of continuous audio samples retrieved
from real videos. Table 2 summarizes the usages and number
of samples of the three datasets.

B. LOG-MEL SPECTRAL FEATURES

Generally, the spectral content represented through Log-Mel
spectrograms characterizes the target speech. To ensure frame
overlapping, vectors were applied by sliding an analysis win-
dow over a portion of the frame size. Nevertheless, following
the duration and properties of target speech, unpredictable
differences occur in the coefficient vectors representing a
given speech [69]. Visual inputs were analyzed in tempo-
ral dimension using CNN structures, whereby 2D Log-Mel
spectrograms were obtained through coefficient vectors for
CNNs. The complete spectral content features were then
extracted using convolution process from the time and fre-
quency domains.

A vector of features obtained from speech and acoustic
signals could represent the temporal sequence features. Log-
Mel spectrograms were used to extract serial vectors. In gen-
eral, signal representations were formed after several steps
using feature extraction approach. Firstly, pre-emphasis step
filters and places emphasis on the higher frequencies to bal-
ance voiced sounds spectrum with steep roll-off in the high-
frequency region. Next, windowing step involves the division
of input signal into smaller frames with overlapping window
to ensure that all serial sample features are extracted. Discrete
Fourier Transform (DFT) is then applied on the windowed
parts, which the log of the magnitude is taken and warped into
the frequency domain on a Mel scale, generating the Log-Mel
frequency sequence features.

Feature vectors converted from the corresponding 16-bits
PCM, 1-channel audio samples obtained at 16-kHz com-
prised the dataset. The visual representations in the form of
frequency spectrum of energy levels of speech were defined
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FIGURE 1. Two foul words’ raw signal and the corresponding
spectrograms.

using 101 Log-Mel frequency spectrogram coefficients. Inap-
propriate and safe speech spectrogram analysis was per-
formed using the following parameters: 0.03 frame duration,
1 second segment duration, 0.015 overlap window between
frames, and 40 frequency bands. Furthermore, a lightweight
model with small-sized filters was proposed in order to
minimize the computational resource requirement and allow
the target application of real time film audio filtering to
be achieved. Therefore, the generated Log-Mel spectrogram
image dimensions had small size, 40-by-101 in size specifi-
cally, where 40 is the normalized frequency of times 400-kHz
(40 times 400 kHz = 16-kHz) and 101 is the number of
spectrogram samples used. An example of raw signals of
two profane words and their corresponding spectrograms are
shown in Figure 1.

C. E2E CNN

In the case of supervised CNN model, E2E learning mode
is done to fine-tune parameters of the whole CNN. Since
spectrogram images and labels were available during training
process, supervised learning was applied. The CNN is com-
posed of convolutional, fully connected, pooling and batch
normalization layers. For detection of distinct signals, filters
in horizontal and vertical lines present in CNNs were passed
over input images. Mapping of image feature portions of the
signals were then performed, and the classifiers were trained
on the target task. Extraction of features of input images
and pixel relationships were sustained by obtaining image
features via small squares of input data using the convolution
layers. A mathematical operation that involves two inputs,
i.e., image matrix and a filter/kernel, was applied for the
extraction.

Reduction of parameters of a specific image was allowed
by the pooling layers. A common instance would be spatial
pooling, i.e., downsampling or sub-sampling, which retained
vital information while reducing dimensionality of each map.
This pooling type could be categorized into (i) max pooling,
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TABLE 3. Lightweight CNN architecture details.

Operation layer #of Feature Stride & Output
filters map Padding
Image input layer
40 x 101 x1
st convolution layer 14 3x3x1 [11] 40 x 101 x14
ReLU 40 x 101 x14
Max pooling 14 3x3 [2 2] 20 x 51 x14
2™ convolution layer 28 3 x3x14 [11] 20 x 51 x28
ReLU 20 x 51 x28
Max pooling 28 3x3 [2 2] 10 x 26 x28
3 convolution layer 56 3 x3x28 [11] 10 x 26 x56
ReLU 10 x 26 x56
Max Pooling 56 3x3 [2 2] 5 x 13 x56
4™ convolution layer 56 3 x 3 x56 [11] 5% 13 x56
ReLU 5 x 13 x56
Max pooling 56 1x13 [11]& 5x1x56
0 padding
Dropout layer 5x1x56
Dense layer 2 nodes - - 2

Softmax layer
Classification layer

which selects the largest element from the corrected feature
map, (ii) average pooling, which takes the average value
of the feature map elements, and (iii) sum pooling, which
sums up all feature map elements. A flattened matrix vector
under the convolution and pooling processes forms the fully-
connected layer. This layer acted like a neutral network that
integrated the convolution process features to build a model.
In order to classify outputs related to the target task, an acti-
vation method involving SoftMax or sigmoid can be applied.
Conversion of a vector of N values into a vector of N values
that sums up to 1 was done by the SoftMax function. This
function converts any input with positive, zero and negative
values into values between O and 1 to allow the converted
values to be interpreted as prediction probabilities.

A lightweight CNN designed and evaluated for vulgar
speech content detection was experimented in this work. This
CNN model was trained using E2E scheme for feature learn-
ing and classification involved categorization of inputs into
one of the two classes: normal and foul. Four convolutional
layers, four ReLU layers and three max pooling layers were
used to build the proposed CNN model. The top (last) layers,
i.e., fully-connected and SoftMax layers, allowed Log-Mel
spectrogram images to be mapped for the classification task.
Table 3 shows the details of the proposed CNN model archi-
tecture.

D. POSTERIOR HANDLER

In this work, non-streaming (static) KWS mode, which
involved the standard multi-class categorization of indepen-
dent input segments comprising a single word each (i.e.,
isolated word categorization), was employed. However, input
segments in the training data pool did not contain isolated
words only, instead, this work proposes to utilize lengthy
continuous audio samples as test data samples. The audio
files were passed through an automated windowing process
to segment them into shorter samples of specific length. The
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FIGURE 2. Proposed system architecture for inappropriate language
detection.

windowed sub-sample was then input to the CNN model for
class predictions performed based on the posterior probabil-
ity, e.g., the class with highest posterior probability or positive
detection if decision threshold was exceeded. The predicted
class of the sub-sample is then assigned to the corresponding
timestamps generated during windowing phase. Localization
of recognized keyword within a long input audio sample
could be related to the timestamps of which the sample
consisted of identified profane word. Although continuous
speech or audio sample was used as input, windowing process
caused the inference for windowed samples to be consid-
ered as static mode. This mode is used due to its simplicity
and produce a low number of false positives compared to
dynamic mode. Hence, dynamic mode requires additional
post-processing approaches to avoid such issue of increased
false positive rate [9].

Ill. EXPERIMENTAL SETUP

The experimental setup, performance metrics and testing
results of the proposed system are discussed in this section.
The experimental settings and procedures utilized for appli-
cation of automated detection of profane speech content in
film censorship are included in this section. The architecture
of the proposed foul language detector system is illustrated
in Figure 2. Feature extraction was performed on isolated
samples of English language to obtain the Log-Mel spectral
features, which were then sent into the CNNs for model
training. Similarly, the test features were obtained from audio
samples of real long audio files. These test features were used
to evaluate the performance of the trained models.

The expected outputs of the system were the prediction
probabilities of recognized profanity and the corresponding
timestamps to allow localization of the foul word detection
within test samples for film filtering. Hence, this work is not
an Automatic Speech Recognition (ASR), where speech con-
tent if transcribed into the corresponding words. Additionally,
the proposed work is not a simple audio recognition where a
single spoken term from the same pool of dataset is fed into
a model and classified into the corresponding label, as the
test samples used is a continuous audio input of real-world
samples that are out of the training dataset pool.
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The evaluation pipeline begins consisting of serial steps
with an input of real-time video sample, that is converted
into an audio sample. Next, the audio sample is automatically
segmented into smaller samples of fixed window length with
an overlap time. After that, an automated censorship block
receives the serial segments to perform an automated features
computation of spectrograms and model inference. Hence,
the spectrograms of the audio segments are calculated every
0.5 seconds (for example) of a continuous audio input stream
to determine whether it belongs to inappropriate speech con-
tent or normal speech content. The outcome of the automated
censorship block of probabilities, predictions, and utterance
keywords is used to define the segment in which profane word
was uttered. Furthermore, the process including windowing,
spectrogram computation, and inference is carried out serially
for every segment in continuous and automated manner to
cover all the segments of an input sample. This process is
to mimic the real-life scenario of films screening and censor-
ship, which is presented as the test pipeline of this experimen-
tal work. Therefore, the system detects and localize a profane
word in continuous audio input. Experiment implementation
was carried out using Intel Core 17-8700 CPU @ 3.20 GHz,
64 GB RAM, and an NVIDIA GeForce GTX 1080 Ti GPU.

A. TRAINING ALGORITHM SETTINGS

All samples used for training and testing obtained from the
datasets had similar properties of 1-channel, bit rate of 16-bits
PCM, sampled at 16-kHz. CNN models were trained using
E2E framework on isolated inappropriate words in MMUTM
and TAPAD datasets, while testing was performed using the
novel continuous audio profanity dataset composed of real
videos and films. Momentum technique (Adaptive Moment
Estimation) was utilized for the model training, with cross-
entropy loss function applied. Regarding testing phase, seg-
mentation was performed on the lengthy test data files using
window lengths of 0.3, 0.4 and 0.5 seconds to determine
the optimum segment length that could generate optimized
performance metrics. After segmentation process, the fixed
length, short samples were input to the trained model seri-
ally for identification of targeted profane words included in
training process.

B. EVALUATION METRICS

Confusion matrix components were utilized in the calcula-
tions of evaluation metrics related to accurate detection of
profane word samples. In this work, the model performance
for detection of offensive spoken language was assessed using
Accuracy, Precision, Fl-score, True Positive Rate (TPR),
False Positive Rate (FPR), and FNR as follows:

Accuracy = ((N,p —I—Nm) /Nwml) x 100 (1)
TPR = R= (Nyp/ (Nyp + Np)) x 100 (2)
FPR = (Nj/ (Njp + Nin)) x 100 3)
FNR = (N / (Np + Nim)) x 100 4)
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2(PxR)
F1—score = | —— | x 100 5)
(P+R)
F1-score computed under precision (P) and recall (R):
P = (Np/ (Npp + Npp)) x 100 (©)

In the equations, Ny, Ny, Nfy, and Nygyq referred to the
number of true positives, false positives, false negatives,
and total samples in all the segments respectively. Further-
more, the performance was evaluated using area under curve
(AUC) and detection error trade-off (DET) curve. AUC was
computed after plotting the receiver operating characteristic
(ROC) curve which used FPR as the horizontal axis and TPR
as the vertical axis. This measurement reflects the robustness
of a binary classifier as the sensitivity threshold is varied.
On the contrary, DET is a graphical plot of error rates for
binary classification systems, i.e., graph of false rejection rate
(FNR) against false alarms rate (FPR).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The audio-based foul word recognition model proposed in
this research was designed to be applied for automated cen-
sorship of audio channels of films. The experimental results
were obtained by running the novel test dataset, comprising
of continuous video files with high inappropriate word rates
per minute, through the trained models. Performance of the
model was determined using performance metrics such as
accuracy, F1 score, TPR, FPR and AUC. The results are dis-
cussing the model’s performance based on segment lengths,
probability thresholds, and process time figures.

A. SEGMENT LENGTH ANALYSIS

The experiment includes a windowing and segmentation pro-
cess for the lengthy continuous test samples, before it goes to
feature extraction, then inference and detection stages. There-
fore, the segment length affects the detection and evaluation
metrics. Hence, all the test samples were evaluated using
three different segment lengths of 0.3, 0.4, and 0.5 seconds
to find the optimized segment length, that produce the best
and optimal system/model metrics for the detection of foul
languages. Although all the test samples were tested based
on different segment lengths, this paper will only demonstrate
the effect of segment length on foul language detection within
continuous audio samples, by highlighting the performance
metrics of two samples that are sample 1 and sample 2 at
a single probability threshold (th = 0.50) and three differ-
ent segment lengths. Table 4 and Table 5 present the foul
language detection model performance using two samples
(sample 1 and 2), while Figure 3 and Figure 4 highlights
the two samples performance based on average accuracy and
F1-score, respectively.

Following Table 4 and Table 5, proposed model performed
positively in the detection of foul language with high average
accuracy, TPR, precision and F1-score, with low FNR and
FPR. For example, samples 1 achieved 20.75%, 11.32%, and
3.83% FNR, for segment length of 0.3, 0.4, and 0.5 segments
length respectively. Regardless, the model performance was
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FIGURE 4. F1-score of samples 1 and 2 for different segment length.

TABLE 4. Performance metrics of sample 1 at 0.5 confidence score and
different segment length.

Window Avg. Recall FNR Precision FPR Fl-score

length (s) accuracy (%) (%) (%) (%) (%) (%)
0.3 87.83 79.25 2075  63.16  36.84  70.29
0.4 95.13 88.68 1132 7759 2241 8276
0.5 98.31 96.17 3.83 94.50 550 9533

TABLE 5. Performance metrics of sample 2 at 0.5 confidence score and
different segment length.

Window Avg. Recall FNR Precision FPR Fl-score
length (s) accuracy (%) (%) (%) (%) (%) (%)

0.3 82.69 67.02 3298  43.15 56.85  52.50
0.4 88.32 8191 18.09 5283 47.17 64.23
0.5 95.71 9149 851 81.00 19.00  85.93

improved for the longer segment length. For example, Sam-
ple 1 FNR was improved with about 16.92% when segment
length used was 0.5 second, instead of 0.3 seconds. Likewise,
the FNR of sample 2 were improved by around 24.47% when
evaluated using 0.5 seconds compared to 0.3 second segment
length. Based on Table 4 and Table 5, all the performance
metrics were improved using larger segmentation length.
For example, TPR/recall and precision were improved and
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TABLE 6. Overlap effect on performance metrics of sample 1 at
0.5 confidence score and 0.5 segment length.

Fl-
score
(%)
96.17 3.83 9450 550 9533
90.36_9.64 8135 18.65 85.62

Accuracy Recall FNR Precision FPR
(%) %) (%) (%) (%)

With overlap 98.31
Without overlap 96.01

Overlap time

TABLE 7. Overlap effect on performance metrics of sample 2 at 0.5
confidence score and 0.5 segment length.

Accuracy Recall FNR Precision FPR slgélje
(%) ) o) (W) (%)

(%)
With overlap 9571 9149 851 8100 19.00 85.93

Without overlap 90.63  84.09 1591 5729 4271 68.15

Overlap time

increased drastically with longer window length, while FNR
and FPR were improved and drops hugely at 0.5 second
segment length.

Figure 3 and Figure 4 highlights model performance using
sample 1 and sample 2 based on average accuracy and
F1-score, respectively. Fl-score measures the performance
based on the precision and recall and produce a better view
of the performance for an imbalanced dataset as in this work.

F1-score and average accuracy charts and figures show that
increasing the segment length contributes into increment of
model performance metrics, which are increasing accuracy,
recall, precision, and F1-score. Consequently, the proposed
system achieved the best performance on profane language
detection using 0.5 segment length, where model achieved
a high Fl-score 95.33% and 85.93% for the sample and
sample 2 test samples. Similarly, the model produced a high
average accuracy of 98.31% and 95.71% for sample 1 and
sample 2, successively. Therefore, 0.5 seconds considered as
the optimal window length for the developed system. Hence,
the proposed model was evaluated using 0.5 second segment
length and the following detailed results were obtained based
on the optimal window duration.

1) OVERLAP TIME ANALYSIS

The experiment includes an automated windowing and seg-
mentation process for continuous test samples. Therefore, the
fixed segment length affects the detection and evaluation met-
rics for words that are longer than window length, in addition
to some keywords that might be spitted into two segments
due to the automated and fixed windowing process. Hence,
an overlap time was introduced to mitigate the error arises
from this issue and find the optimal performance of pro-
fanities detection in a continuous sample with an automated
and fixed windowing process. Although all the test samples
were tested with and without overlap time, this paper only
demonstrates the effect of overlap length for foul words detec-
tion within continuous audio, by detailing the performance
metrics of two samples that are sample 1 and sample 2 at
a single probability threshold (th = 0.50) and 0.5 segment
lengths.
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TABLE 8. Performance metrics of sample 1.

Threshold Avg. accuracy Recall FNR Precision Fl-score FPR

(%) o) (%) (%) ) (%)
0.10 98.50 97.17 283  88.03 9238 1197
0.25 98.50 97.17 283 9279 9493 721
0.50 98.50 97.17 283 9279 9493 721
0.60 98.31 96.17 383 9450 9533 550
0.70 97.94 96.17 383 9537 9577  4.63
0.80 97.94 96.17 383 9537 9577  4.63
0.90 96.82 96.17 383 9537 9577  4.63

TABLE 9. Performance metrics of sample 2.

Threshold Avg. Recall FNR  Precision Fl-score FPR
accuracy (%) (%) (%) (%) (%)
(%)

0.10 95.71 9149 851 60.71 7299  39.29
0.25 95.71 9149 851 69.37 7891  30.63
0.50 95.71 9149 851 81.00 85.93  19.00
0.60 94.92 86.17 13.83 81.00 83.51  19.00
0.70 94.92 86.17 13.83 81.90 83.98 18.10
0.80 91.90 81.91 18.09 81.90 8191 18.10
0.90 88.89 7234 27.66 81.90 76.83  18.10

Table 6 and Table 7 present the performance of profanity
detection performance using two samples (sample 1 and 2)
and highlight the effect of introducing overlap time to win-
dowing process. This overlap time is introduced to mitigate
the error of keywords misdetection when uttered profane
word is longer than the segment length or appears in two
different segments due to the automatic windowing process of
a continuous stream input. According to Table 6 and Table 7,
proposed model performance was significantly improved in
the detection of profanities when overlap time is introduced,
which mitigates the error of foul words detection in a contin-
uous audio sample. The overlap time produces higher perfor-
mance metrics including average accuracy, recall, precision,
and F1-score, with lower FNR and FPR. For example, the
error of missing the target keywords for sample 1 achieved
9.64% and 3.83% FNR, for windowing process with and
without overlap time, respectively.

Notably, the model performance was improved when over-
lap time was introduced. This is explained by FNR increase
with around 5.81% when the windowing process of con-
tinuous input audio sample was executed with an over-
lap time. Likewise, the FNR of sample 2 were improved
by around 7.4% when evaluated with overlap time. Based
on Table 6 and Table 7, all the performance metrics were
improved using windowing overlap time. Hence, the error
arising from the issue of utterances with length larger than
window length and utterance split was mitigated. There-
fore, the overall foul words keywords detection in contin-
uous audio was improved. For instance, accuracy, recall,
precision, and Fl-score were improved and increased sig-
nificantly, while FNR and FPR were improved and dropped
dramatically.

B. THRESHOLD-BASED MODEL PERFORMANCE

The performance assessment of the proposed models on the
detection of foul language for the six test samples is pre-
sented in Table 8 through Table 13 for sample 1 through
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TABLE 10. Performance metrics of sample 3.

Threshold Avg. Recall FNR  Precision Fl-score FPR
accuracy (%) (%) (%) (%) (%)
(%)

0.10 98.11 96.00  4.00 88.89 92.31 11.11
0.25 97.84 94.00  6.00 90.38 92.16 9.62
0.50 97.57 92.00  8.00 93.88 92.93 6.12
0.60 97.30 90.00 10.00 93.75 91.84 6.25
0.70 97.04 90.00 10.00 95.65 92.74 4.35
0.80 96.77 88.00 12.00 95.74 91.71 4.26
0.90 96.50 88.00 12.00 97.78 92.63 222

TABLE 11. Performance metrics of sample 4.

Threshold Avg. Recall FNR  Precision Fl-score FPR
accuracy (%) (%) (%) (%) (%)
(%)

0.10 98.26 96.67 3.33 85.29 90.63  14.71
0.25 97.97 94.17 5.83 91.87 93.00 8.13
0.50 97.68 92.50 7.50 92.81 92.65 7.19
0.60 97.39 90.83  9.17 93.16 91.98 6.84
0.70 97.39 86.67 13.33 93.69 90.04 6.31
0.80 97.10 84.17 15.83 94.39 88.99 5.61
0.90 96.52 82.50 17.50 95.19 88.39 4.81

TABLE 12. Performance metrics of sample 5.

Threshold Avg. Recall FNR  Precision Fl-score FPR
accuracy (%) (%) (%) (%) (%)
(%)
0.10 98.50 96.62  3.38 88.11 92.17 11.89
0.25 98.35 9541 4.59 90.80 93.05 9.20
0.50 98.29 9493  5.07 92.47 93.68 7.53
0.60 98.11 94.69 531 92.89 93.78 7.11
0.70 97.92 9420 5.80 93.98 94.09 6.02
0.80 97.53 9420 5.80 95.12 94.66 4.88
0.90 96.71 9420 5.80 95.59 94.89 441

TABLE 13. Performance metrics of sample 6.

Threshold Avg. Recall FNR  Precision Fl-score FPR
accuracy (%) (%) (%) (%) (%)
(%)

0.10 96.91 95.58  4.42 86.44 90.78  13.56
0.25 96.91 95.58  4.42 91.20 93.34 8.80
0.50 96.91 95.58 4.42 91.20 93.34 8.80
0.60 96.72 94.58 542 92.91 93.74 7.09
0.70 96.35 94.58 542 93.78 94.18 6.22
0.80 96.35 94.58 542 93.78 94.18 6.22
0.90 95.23 94.58 542 93.78 94.18 6.22

sample 6. Although model test was done using threshold zero
through one, the tables present 0.1, 0.25, and 0.5 through
0.9 probability threshold. This is due to the common concern
of threshold performance above the common 0.5 confidence
score. However, all the thresholds starting from zero were
used when evaluating the model using ROC and DET curves
that are highlighted in the subsequent section. The results of
all samples’ performance are presented due to the concern
of highlighting the model performance depending on differ-
ent real-world samples, as different real time samples will
exhibit different characteristics like audio quality, noise, pitch
speed, etc. These characteristics produces different model’s
response in terms of target keyword detection. Therefore,
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TABLE 14. Macro average performance of profanity censorship system
using all test samples.

TABLE 15. Weighted average performance of profanity censorship system
using all test samples.

Threshold Avg. Recall FNR Precision Fl-score FPR Threshold Avg. Recall FNR Precision Fl-score FPR
accuracy (%) (%) (%) (%) (%) accuracy (%) (%) (%) (%) (%)
(%) (%)

0.10 97.67 9559 441 82.91 88.54  17.09 0.10 97.47 95.68 4.32 85.12 89.96  14.88
0.25 97.55 94.64 5.36 87.74 9090 12.26 0.25 97.40 95.13  4.87 89.34 92.07  10.66
0.50 97.45 9394  6.06 90.69 92.24 9.31 0.50 97.36 94.83  5.17 91.05 92.88 8.95
0.60 97.13 92.07 7.93 91.37 91.69 8.63 0.60 97.12 93.64 6.36 92.07 92.84 7.93
0.70 96.93 9130 8.70 92.40 91.80 7.60 0.70 96.85 9345  6.55 93.08 93.25 6.92
0.80 96.27 89.84 10.16 92.72 91.20 7.28 0.80 96.46 9294  7.06 93.45 93.18 6.55
0.90 95.11 87.97 12.03 93.27 90.45 6.73 0.90 95.34 92.16 7.84 93.75 9291 6.25

a specific metric can be used as a key for optimal model that
can be used for different kind of application.

Following the six samples outcome metrics, it can be
obviously noted that that the model’s performed well for all
the test samples, based on all metrics for all the thresholds.
Notably, the performance of the model varies depending on
the test model. This attest to the variations of proprieties and
characteristics of the different samples, which yield to differ-
ent performance metrics. It was reported that model performs
well in terms of average accuracy for all the thresholds, for
example, a high average accuracy for all the six test sam-
ples (exceeding 95% for all samples except sample 2 where
average accuracy vary between 88% to 95%). Additionally,
the model achieved F1-socre above 90% for all thresholds
on all test samples except sample 2 and sample 4, where
sample 2 Flscore varies between 72% and 85%, and sam-
ple 4 Fl-score varies between 88% and 93%. Thus, imply-
ing positive sensitivity and specificity in offensive language
detection. Contrarily, reported false rates (FNR) and (FPR)
is considerably low, which indicates that the percentage of
producing a false prediction is quite low.

Looking into the most common threshold used for deep
learning application, which is 0.5 confidence score, the model
produces an average accuracy of sample’s detection of around
95% to 98%. The system also produced a TPR/recall of about
91% to 97%, which implies that the rate of rejection (FNR)
is quite low of merely 4% to 8% FNR. Contrary, the systems
exhibit a precise detection rate that can be interpreted using
precision metrics as it swings between 81% and 93%. That
contributes to the low false alarms (FPR) detected by the sys-
tem. On the other hand, the model produced a good sensitivity
and specificity, that can be elaborated with F1-score figures
that is between 85% and 95%. Therefore, choosing the suit-
able threshold is crucial and depends on the application and
test samples itself and depends on what is the acceptable rate
of false alarms and false misses that can be more elaborated
using ROC and DET curves.

C. AVERAGE MODEL PERFORMANCE AND DETECTION
CURVES

The performance assessment of the proposed models on the
detection of foul language for the six test samples have var-
ied depending on the differences. Therefore, average model
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performance reported in Table 14 and Table 15. Table 14 and
Table 15 presents the average performance of system for all
the six test samples, in which macro average and weighted
average were computed. Macro average is the average of
the sum of all figures divided by the total samples, whereas
weighted average was computed where each sample’s figures
contribute to the average numbers based on the weight of the
foul words within each sample compared to total foul words
for the whole dataset. The average metrics were computed
for all the thresholds. However, here we just highlight sim-
ilar thresholds to the thresholds analysis tables. Therefore,
the models varied performance can be highlighted based on
different thresholds. For instance, how precision is affected
with varying thresholds. Hence, an operation threshold can
be chosen depending on the optimal metrics required for the
detection of profanities like minimizing FNR or minimizing
FPR.

Looking at the average metrics, it can be noteworthy that
increasing threshold contributes to a slight drop in aver-
age accuracy (from 97.47% at 0.1 threshold to 95.34%
at 0.9 threshold for weighted average) and TPR/recall
(from 95.68% at 0.1 threshold to 92.16% at 0.9 threshold
for weighted average). Hence, FNR increases with thresh-
old increment (from 4.32% at 0.1 threshold to 7.84% at
0.9 threshold for weighted average). In contrast, precision
increases dramatically with threshold increment from 85.12%
at 0.1 threshold to 93.75% at 0.9 threshold for weighted
average). Therefore, a huge drop in false detection (FPR)
(from 14.88% at 0.1 threshold to 6.25% at 0.9 threshold for
weighted average) occurred with threshold increment.

On the other hand, F1-score that is calculated based on
precision and recall varies with changing threshold and varies
between 89.96% and 93.25%. It is known that choosing
the operation points depends on the rates the user wishes
to achieve. For example, if F1-score matters more than all
the other metrics, then choosing 0.7 confidence score as the
best performing point, as it yields to the highest Fl-score
based on the weighted average of around 93.25% F1-score.
ROC curve, AUC, and DET curve is another way of visual-
izing the performance of the model at all operating points.
Figure 5 presents the ROC curves for all samples and the
averaged figures, in which the operating curves and the rela-
tionship between TPR and FPR can be visually interpreted.
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FIGURE 5. ROC curves for all samples and averaged figures.
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FIGURE 6. DET curves for all samples and averaged figures.

Additionally, AUC were computed based on the ROC curves
for all samples with averaged AUC values. In contrary, DET
curves in Figure 6 illustrates the relation between the false
rates (FNR vs FPR), which indicates the values of errors can
be produced at certain operating points.

AUC for ROC curves is another way to interpreter the
overall model for all the operating points of thresholds from
zero to one threshold/confidence score. AUC is the area under
the ROC curves, which is the relation between (TPR vs FPR),
in which each operating points highlights the number of
correct predictions rate of foul language and the rate of wrong
predictions of foul language while it is a normal speech.
Table 16 elaborates the averaged values of AUC and AUC
for each sample.
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TABLE 16. AUC metrics for all samples and averaged figures.

Samples AUC (%)
Sample 1 95.86
Sample 2 83.79
Sample 3 96.33
Sample 4 95.14
Sample 5 96.17
Sample 6 94.79
Macro average 93.85

Weighted average 94.58

TABLE 17. Processing and inference time of profanity censorship system.

Processing time Model inference time

(s) (ms/segemnt)
0.46 for each 2.63
second

Figure 5 and Table 16 elaborates the model’s performance
in terms of the AUC metric. It shows the AUC for all the
samples to visualize the system’s performance of the different
samples. The highest AUC was achieved by sample 3 of
96.33%, while the lowest was achieved by sample 2 of around
83.79%. The AUC for the rest of the sample’s swings between
94.79% for sample 6 and 96.17% for sample 5. The model
average performance can be highlighted with the average
AUC values, where the model macro average AUC is 93.85%,
and the weighted average is around 94.85. Therefore, the
overall model performance lies within AUC of 94.85% and
93.85% for all the different samples.

D. SPEED ANALYSIS OF PROFANITY CENSORSHIP SYSTEM
Table 17 shows the inference time of state-of-the-art CNN
model and the system overall process time from the input
of continuous speech, segmentation, through detection and
time estimation, where it was found that the proposed CNN
has inference time of 2.63 ms (0.00263 seconds) calculated
from the time step of applying the spectrogram image sam-
ple at the input to the time step of model’s prediction. The
reason behind that is the minimum number of parameters and
lightweight CNN of small filters and few layers. According
to Table 17, the average process time per each second of
the long audio samples, which can be defined as the average
time taken to process the input sample through all steps from
segmentation to automated detection per each second, which
is 0.46 seconds. This means each second of the long audio
will be processed completely in 0.46 seconds, that makes
this process to be real time process and even faster than the
human manual films’ detection, filtering, and censorship of
inappropriate speech content. For example, sample 1 consist
of 371 seconds in total. However, the average time will be
taken to pass through the developed automated detection
for film censorship process, will be around 170.66 seconds,
which is less than half the length of the original sample.
Hence, the proposed system yield in saving time compared
to manual detection and censorship process. In addition to the
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TABLE 18. Macro average performance metrics of baseline 1.

TABLE 19. Weighted average performance metrics of baseline 1.

Threshold Avg. Recall FNR  Precision Fl-score FPR Threshold Avg. Recall FNR  Precision Fl-score FPR
accuracy (%) (%) (%) (%) (%) accuracy (%) (%) (%) (%) (%)
(%) (%)

0.10 92.32 91.21 8.79 83.91 87.41 17.09 0.10 96.23 94.54 5.46 84.27 88.97 15.98
0.25 92.07 91.03 8.97 86.87 88.90 12.26 0.25 96.11 93.98 6.02 88.32 90.98 11.46
0.50 91.67 89.76  10.24 88.91 89.33 9.31 0.50 95.96 93.34 6.66 90.42 91.83 9.13
0.60 90.93 88.13  11.87 89.72 88.92 8.63 0.60 95.57 91.87 8.13 91.31 91.57 8.28
0.70 90.93 87.71 12.29 91.27 89.45 7.60 0.70 95.39 91.48 8.52 92.46 91.94 7.26
0.80 90.43 87.71  12.29 92.12 89.86 7.28 0.80 94.90 90.86 9.14 92.94 91.86 691
0.90 89.03 85.91 14.09 93.21 89.41 6.73 0.90 93.71 89.55 1045 93.50 91.42 6.49

achieved high AUC metrics values, which shows this system
feasibility for speech films’ censorship. The results of speed
analysis were reported based on system’s evaluation using
the CPU to mimic the real-life scenario of films screening,
detection, and censorship that is always executed using CPUs.

E. BENCHMARK ANALYSIS

This work proposed to use novel datasets for model’s train-
ing including MMUTM and TAPAD offensive language
dataset. Additionally, this research proposed the use of a
novel test dataset containing continuous speech dataset with
frequent utterances of foul words. Due to the lack of stud-
ies on spoken profanity detection from continuous audio
input using neural networks, this work results were mainly
compared against two baseline models of which one is a
recent work on MMUTM dataset [66]. The recent research
has produced deep learning models for the foul language
recognition of isolated keywords input on the MMUTM foul
language dataset [66], but the developed RNN model were
not tested on continuous real-world test samples. In this
research, we addressed these issues and designed different
novel models for the foul language detection that were tested
on continuous audio samples. Hence, the recent work RNN
model were used as baseline 1 model. Additionally, a 2-
convolution layers CNN model were constructed and used
as baseline 2 model, as 2-layers CNN is a common model
architecture that were used for keywords and caustic sounds
detection [9]. The two baseline models were re-trained and
tested using the same protocol to train and test the current
model and compared using several evaluation metrics.

Table 18 presents the macro average metrics of baseline 1
[66] over all test samples, whereas Table 14 details the
figures of current model macro average metrics. Based on
the comparison between Table 18 and Table 14, it can be
noteworthy that proposed CNN model outperforms baseline
1 model based on most of the evaluation metrics except for
precision and FPR, where the precision and FPR for both
models are slightly the same. Based on the macro average
metrics for both models, current model outperformed base-
line 1 by around (5% to 6%) average accuracy, (2% to 4%)
recall/TPR and FNR, and about 1% Fl1-score for all the
thresholds. Table 19 presents the weighted average metrics
of baseline 1, whereas Table 15 details the weighted average
metrics of proposed CNN model. Based on the comparison
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TABLE 20. Macro average performance metrics of baseline 2.

Threshold Avg. Recall FNR  Precision Fl-score FPR

accuracy (%) (%) (%) (%) (%)
(%)

0.10 91.80 90.34 9.66 81.42 85.65 18.58
0.25 91.64 89.98 10.02 85.00 87.42 15.00
0.50 91.42 89.19 10.81 86.88 88.02 13.12
0.60 90.93 87.78 12.22 87.79 87.79 12.21
0.70 90.79 87.48 12.52 89.08 88.27 10.92
0.80 90.34 87.23 12.77 89.69 88.44 10.31
0.90 89.09 85.94 14.06 90.38 88.10 9.62

between Table 19 and Table 15, it is noted that current model
outperforms baseline 1 model based on all the evaluation
metrics. Based on the weighted average metrics for both
models, current model outperformed baseline 1 by around
(1% to 2%) average accuracy, (2% to 3%) recall/TPR and
FNR, (0.5% to 1%) precision, and about 1% F1-score. Thus,
proposed model outperformed baseline 1.

Table 20 highlights the macro average metrics of baseline
2 over all test samples, whereas Table 14 details the figures
of current model macro average metrics. Based on the com-
parison between Table 20 and Table 14, it can be noted that
current CNN model outperforms baseline 2 model based on
all the evaluation metrics Based on the macro average metrics
for both models, current model outperformed baseline 2 by
around 6% average accuracy, (2% to 5%) recall/TPR and
FNR, (1% to 3%) precision, and about (1% to 3%) F1-score.
Table 21 presents the weighted average metrics of baseline
2, whereas Table 15 details the weighted average metrics
of proposed CNN model. Based on the comparison between
Table 21 and Table 15, it is noteworthy that current model
outperforms baseline 2 model based on all the evaluation
metrics. Based on the weighted average metrics for both
models, current model outperformed baseline 1 by around
(1% to 2%) average accuracy, (3% to 6%) recall/TPR and
FNR, (1% to 2%) precision, and about (2% to 3%) F1-score
for all the thresholds. Hence, proposed model outperformed
baseline 2.

ROC curve, AUC, and DET curve is a more favorable
way of visualizing the performance of several model at all
operating points and compare the different performance of
each model. Figure 7 presents the ROC curves for current and
baseline models, in which the operating curves and the rela-
tionship between TPR and FPR can be visually interpreted.
Additionally, average AUC values were computed based on
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TABLE 21. Weighted average performance metrics of baseline 2.

Threshold Avg. Recall FNR  Precision Fl-score FPR
accuracy (%) (%) (%) (%) (%)

(%)
0.10 94.99 93.40  6.60 83.41 87.97 17.09
0.25 94.81 92.83 717 87.30 89.90 12.26

0.50 94.56 91.85 8.15 89.80 90.79 9.31
0.60 94.03 90.10  9.90 90.54 90.31 8.63
0.70 93.93 89.50 10.50  91.83 90.63 7.60
0.80 93.35 88.77 11.23 92.42 90.53 7.28
0.90 92.07 86.94 13.06  93.24 89.93 6.73
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FIGURE 7. ROC curves for current and baseline models.
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FIGURE 8. DET curves for current and baseline models.

the ROC curves. In contrast, DET curves in Figure 8 illus-
trates the relation between the false rates (FNR vs FPR),
which indicates the values of errors can be produced at all
operating points of thresholds.

Figure 7 and Table 22 highlight the model’s performance
in terms of AUC metric. The highest AUC was achieved by
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TABLE 22. AUC metrics of current and baseline models for the novel
inappropriate speech dataset.

Model AUC (%)
Baseline 1 — macro average [66] 91.30
Baseline 1 — weighted average [66] 93.94
Baseline 2 — macro average [9] 89.27
Baseline 2 — weighted average [9] 92.36
Proposed CNN Model — macro average 93.85

Proposed CNN Model — weighted average 94.58

sample 3 of around 96.33%, while the lowest was achieved by
sample 2 of about 83.79%. The AUC for the rest of the sam-
ples varies with about 94.79% for sample 6 and 96.17% for
sample 5. The model average performance can be highlighted
with the average AUC values, where the model macro average
AUC is 93.85%, and the weighted average is around 94.85.
Therefore, the overall model performance lies within AUC of
94.85% and 93.85% for all the different samples. Notably, the
model performs differently with different evaluation samples
attesting to the different properties and characteristics of
different samples. However. The model performs positively
regardless of the variations.

In Table 22, we showed the outperforming results of the
proposed system based on AUC metric, which is significantly
better than other baseline systems, where proposed model
outperformed baseline 1 algorithms with 2.55% macro aver-
age AUC and weighted average AUC of 0.64%. On the other
hand, current model outperformed baseline 2 algorithms with
4.58% macro average AUC and weighted average AUC of
2.22%. Thus, current model outperformed baseline models
in terms of AUC and all other metrics.

1) BENCHMARK OF ASR-BASED CENSORSHIP SYSTEM
Given the scarcity of experiments on inappropriate speech
content detection, the first past of this subsection highlighted
a comparative analysis using acoustic-based systems for pro-
fanity detection. On the other hand, this part benchmark the
current work against previous work that uses ASR systems
for the detection of profanities. Recent research proposed
a solution for analyzing the video, which helps to iden-
tify the profane content through the use of text detection
approaches after videos being transcribed by means of ASR
systems [70]. The audio samples were extracted from the
input video. Then, audio samples were converted into text
using Speech-to-Text library for detection and localization of
profane words. The text data samples were checked against
a profanity list of words. The proposed system was tested
with 50 videos collected from various sources like Facebook,
YouTube etc. Additionally, some of the videos were made
by authors containing profane keywords. The total length of
test samples was only 1734 second (~ 28.9 minutes). The
developed profanity detection using ASR systems and text
detection approaches achieved an accuracy of around 85.03%
on the reported dataset [70].

The reported ASR-based system containing two stages that
are Speech-to-Text phase, and text detection approach, was
retrained on the list of profanities proposed in this work to
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TABLE 23. Comparative figures of current and ASR-based systems for
inappropriate speech detection and localization.

TABLE 24. Performance metrics of proposed and pre-trained CNN models
for inappropriate speech detection and localization.

Profanity Detection AUC  Accuracy Precision Fl-score Time
System (%) (%) (%) (%) (s)
ASR-based system —  88.69 88.51 86.84 87.67 045
macro average [70]

ASR-based system —  91.02 89.70 90.52 90.11
weighted average [70]

Current acoustic 93.85 97.45 90.69 92.24 0.46
system — macro

average

Current acoustic 94.58 97.36 91.05 92.88

system — weighted

average

benchmark current work against ASR-based system. Then,
the ASR-based system was tested using the six video samples
used to test the current proposed system. The evaluation
metrics and comparative figures of ASR-based system and
current system are highlighted in Table 23. The two models
were evaluated using AUC, accuracy, precision, and F1-score
metrics. Additionally, the systems were compared based on
the overall processing time of each second of the continu-
ous input sample for the detection of inappropriate speech
content. CPU was used to only assess the processing time as
reported in the table.

Table 23 details the evaluation metrics and processing time
per every second of test input for ASR-based system and
current system that utilizes acoustic features for the detec-
tion of profanities within continuous audio input. Notably,
the proposed acoustic system outperformed the ASR-based
system in terms of evaluation metrics. For example, pro-
posed system achieved AUC of 94.58% weighted average and
93.85% macro average, while ASR-based system achieved
AUC of 91.02% weighted average and 88.69% macro aver-
age. The proposed acoustic system using CNN also outper-
formed ASR-based system by significant margin in terms of
accuracy, precision, and F1-score. This can be attested to the
main disadvantage of the ASR-based system, which is the
use of multiple pipeline blocks serially, where text profanity
detection and localization happened after speech-to-text tran-
scription. Therefore, a failure in accurate transcription led to
failure in the detection stage. Hence, the overall detection and
censorship performance dropped significantly.

The ASR-based system outperformed acoustic system in
terms of processing time by small margin of 0.01 second
(10 ms) as ASR-based system requires 0.45 seconds, while
ASR-based system requires 0.46 seconds for each second of
the input for the whole process that results in the detection
and localization of profanity within a given continuous audio.
This attested to the multistage of acoustic system including
time for segmentation process and inference time. On the
other hand, ASR-based system requires multiple inference
times of text detection model and ASR that explicitly contains
language and acoustic models and does not require an input
segmentation process. It is also noteworthy that only one
inference is required for acoustic system when using CNN

VOLUME 10, 2022

Average Model AUC Accuracy Recall Precision Fl-score
type (%) ) (o) (%) (%)

MobileNet [71] 90.02 9291 89.39 84.96 87.12
Inception v3 89.47 9291 89.70 83.63 86.56

Macro [72]
average  Alexnet [73] 89.02  93.07 90.56 8l.64 85.87
Resnet50 [74]  91.78  95.88 9237 88.36 90.32
Current model 93.85 9745 93.94 90.69 92.24

MobileNet [71] 90.55  92.85 90.45 85.23 87.76
Inceptionv3d  90.16  92.82 90.29 8431 87.20

Weighted [72]
average  Alexnet [73]  90.39 9299 90.45 84.76 87.51
Resnet50 [74] 9243 9515 93.62 91.02 90.97
Current model 94.58 97.36 94.83 91.05 92.88

TABLE 25. Comparison between the proposed and pre-trained CNN
models in terms of network parameters.

Model Model Training No. of Inference Processing

size Parameters layers time time

(MB) (ms) (s)

MobileNet [71] 16 4.3M 28 82.71 0.54
Inception v3 [72] 92 23.9M 48 90.23 0.55
Alexnet [73] 244 61M 25 18.08 0.48
Resnet50 [74] 98 25.6M 50 51.23 0.51
Current model 13 46.7k 15 2.36 0.46

model, while ASR-based system requires two inferences for
Speech-to-Text and text detection models.

This experiment was performed on a particular dataset of
a spoken English profane words with positive outcomes in
any derivation of the profanities. Nevertheless, the proposed
system performance may be varied by using a different range
of English verbal words or spoken utterances from different
language, as the proposed model uses the direct acoustic
features of utterances for the detection, unlike ASR systems
where spoken terms can be transcribed based on the language
models used in ASR models and accommodate wider range
of keywords. However, the use of ASR models suffers of
the issues that majorly concern a large dataset and large
computational cost, in which the two major issues is solved
in this work for the development of profane words detec-
tor. Additionally, ASR systems uses a few stages of models
like acoustic models and language models. In this context,
an additional text detector will need to be applied to locate the
inappropriate speech content. Therefore, ASR-based systems
for the detection of profane words suffers of performance
metrics drop due to the sequenced models, as a failure in one
stage leads to performance drop in the following stage.

2) BENCHMARK OF PRE-TRAINED MODELS

The proposed CNN model for profanity detection and cen-
sorship was further analyzed and compared with four dif-
ferent pre-trained CNN models, which are MobileNet [71],
Inception-v3 [72], AlexNet [73], and ResNet-50 [74] as
detailed in Table 24 and Table 25. The models are compared
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in terms of network architecture characteristics (e.g., model
size and parameters) and performance metrics including
AUC, accuracy, recall, precision, and F1-score. The models
are compared based on the average metrics including macro
and weighted averages.

The proposed system outperforms the other four
pre-trained models in all evaluation metrics in both macro and
weighted averages as highlighted in Table 24. The compari-
son table shows a different metrics for the different models.
For example, the models order based on AUC metric are our
proposed model, Resnet50, MobileNet, Inception-v3, then
Alexnet. However, the order changes when comparing mod-
els based on accuracy, where proposed model achieved best
accuracy, followed by Resnet50, Alextnet, then Inception-
v3 and MobileNet achieve similar accuracy. Proposed CNN
model outperformed the pre-trained model in terms of all
metrics. For instance, proposed model outperformed pre-
trained model based on macro averaged AUC by around
2.07%, 3.93%, 4.38%, and 4.83% compared to Resent50,
MobileNet, Inception-v3, and Alexnet, respectively. Fur-
thermore, proposed model outperformed pre-trained model
based on macro averaged accuracy by around 1.57%,
4.38%, 4.54%, and 4.54% compared to Resent50, Alexnet,
Inception-v3, and MobileNet, respectively.

The proposed model is also compared with the other pre-
trained models in terms of network characteristics such as
model size, training parameters, number of layers, inference
time, and processing time as highlighted is Table 25. Pro-
posed CNN model does not only achieve the highest detection
accuracy but also has the smallest model size of 13 MB
and lowest training parameters of only 46.7k. On the other
hand, the largest model size belongs to Alexnet of around
244 MB. Our model achieves better performance by using
only 15 of smaller size and filter, which helps to reduce the
computational cost and time. In contrast, Resnet50 has the
highest number of layers of up to 50 layers. The inference
and overall processing time of proposed model are 2.36ms
and 0,45s, respectively. Our model inference time is at almost
eight times less than those of other pre-trained models. These
outstanding values for the network parameters of proposed
CNN model and its superior performance prove the effective-
ness and efficiency of our system in automated detection and
localization of inappropriate speech for censorship purpose.

As the proposed solution uses only acoustic features of
a given number of profane words. Therefore, the proposed
system could be used for different English profane terms or
any other profanities from different language provided the
use of the same procedure of data preparation that would
match the acoustic features extraction methods and the pro-
posed architecture. In this case, the CNN model must adapt
to the new keywords. Several approaches are recommended
to tackle the study gap of including wider range of foul
words, such as executing a full or partial system retraining
or introducing the well-known transfer learning approaches
for CNN networks [25]. As this work was designed to detect
direct utterances of profanities in continuous stream, it is
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recommended to consider several future developments for
censorship and films rating researches. The context in which
keyword is uttered is crucial to define a set of words that could
represent the keyword. Therefore, considering the sequence
and context of uttered words is recommended in future works.

V. CONCLUSION

This research suggested the implementation of CNN model
for the detection and localization of spoken foul language
in continuous speech samples with static keyword detection
mode test for automated video/audio/film censorship. The
current work utilizes a novel dataset of foul languages to
train the model. MMUTM and TAPAD datasets were man-
ually labeled with 2 annotations (Foul vs Normal). The CNN
model was trained to classify the labels of pre-segmented
isolated samples, whereas current model was tested with
continuous incoming audio samples for offensive language
identification. The novel test dataset consists of several real-
world video samples with high rate of offensive words per
minute. The model input was an extracted features of the
audio samples in a form of Log-Mel spectrogram images,
while the output of the whole system contains the detected
foul word and timestamps of profanity occurrences within
lengthy audio samples.

The proposed system performed differently based on the
different properties and characteristics of test samples. How-
ever, the overall foul language detection system has per-
formed positively with macro average accuracy ranging from
95.11% to 97.67% and weighted average accuracy of 95.34%
to 97.47% for all the operating points of thresholds. Further-
more, the reported Fl-score metric for model performance
showed a balance between sensitivity and specificity of pro-
posed CNN by achieving F1-score ranging from 88.54% to
90.45% macro averaged and 89.96% to 92.91% for weighted
average metrics. Additionally, current model achieved a high
AUC metric of the ROC curve of around 93.85% macro
averaged and 94.58% weighted average AUC metrics.

The proposed lightweight CNN model was benchmarked
against two baseline models that uses only acoustic fea-
tures on the novel offensive language dataset. It is reported
that the current model outperformed the acoustic baseline
algorithms in terms of performance metrics. We showed
the outperforming results of the proposed system based on
AUC metric, which is significantly better than other base-
line models, where proposed model outperformed baseline
1 algorithms with 2.55% macro average AUC and weighted
average AUC of 0.64%. On the other hand, proposed system
outperformed baseline 2 model with 4.58% macro average
AUC and weighted average AUC of 2.22%. Thus, current
model outperformed baseline models in terms of AUC and all
other metrics. Additionally, proposed acoustic system outper-
formed ASR-based system for profanity detection based on
the evaluation metrics including AUC, accuracy, precision,
and F1-score.

This work also demonstrated that proposed system for
audible and speech content processing and detection of
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inappropriate content within, had performed positively in
terms of inference and overall process speed. It was found
that the proposed CNN has inference time of 2.63 ms
(0.00263 seconds), which is attested to the light-weight struc-
ture of developed model. Furthermore, the average time
taken to process the input sample through all steps from
segmentation to automated detection per each second, which
is 0.46 seconds. This means each second of the long audio
will be processed completely in 0.46 seconds, that makes
this process to be real time process and even faster than the
human manual films’ detection, filtering, and censorship of
inappropriate speech content. This attested to the light-weight
structure of CNN architecture, which make the process and
inference to be faster and suitable for content screening,
filtering, and censorship.
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