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ABSTRACT Nature is featured by the resiliency, which enables adaptivity to sudden change under many
circumstances. Meanwhile, the resiliency in robotic systems is far from comparable to that of the nature.
If a robot is partially damaged, often the whole system fails to operate properly. While some approaches
have been proposed, the majority of them are focusing on updating the control policy. Such approach,
while rather complex, is not always applicable to mechanical damage of the robot body, especially parts
that continuously interact with the surrounding environment. In the previous works Nguyen and Ho, (2022)
and Nguyen and Ho, (2021) we introduced an artificial whiskered sensor that exhibited resilience against
physical damage by active change of its morphology around the placement of sensory elements (strain
gauges), which allowed compensation of location sensing when the whisker was trimmed. In this paper,
we extend the approach by using the whisker sensor for texture discrimination tasks. We demonstrate that
changing the morphology of the whisker again helps to reduce mismatching between prior knowledge in
the frequency/time domain of the sensory signal. This allows the sensory whisker to recover the tactile
perception on texture discrimination after the whisker is partially damaged. Furthermore, we also observe
that using adaptive sensormorphologywould augment tactile perceptionwithout the need of computationally
expensive recognition and re-classification. This work is expected to shed a light on a new generation of
robots that automatically work in the open world where self-maintenance against uncertainties is needed.
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INDEX TERMS Adaptive morphology, augmented tactile perception, morphological computation, tactile
compensation, whisker tactile sensor.

NOMENCLATURE19

C One-hot vector used for categorizing a specific
texture.

WD Width×Distance index for a texture.
H Height index for a texture.
RTP Metrics for evaluating reliability of texture pre-

diction.
9 Multi-output vector for texture classifier includ-

ing C, WD and H .
20

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Wang .

S1, S2 Strain gauge 1 and Strain gauge 2.
SC Spectrum centroid of a band-pass filtered

signal.
TP Total power of band-pass filtered signal.
PF Predominant frequency of a band-pass

filtered signal.
0 Vector containing texture features.
PM , APM Positive maximum peaks of a time-series

signals and their averages.
Qinit , Qc, Qu Pressure value in the air chamber of

the whisker’s initial, compensated
and unknown-predicting states.
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21 ε, εb Strain gauge responses of whisker’s origi-
nal and broken states.

εe, εu Strain gauge responses perceived from
existed and unknown texture.

1 Trimmed length of the whisker body.
a Ratio of contact position with respect to

whisker body length.
δ Deflection of the whisker body measured

at the contact spot.
E Young’s modulus.
κ , δ1,2,3 Geometrical parameters derived from

whisker structure.
22

I. INTRODUCTION23

There is a long standing history of artificial comput-24

ing machines ranging from Antikythera mechanism of the25

Ancient Greeks, to the famous Turing machine - the foun-26

dation of modern computers [3]. In general, these sys-27

tems leverage a basic medium (such as mechanical parts,28

electrical circuits and more recently optical waves [4] or29

DNA molecules [5]) as computation means for implement-30

ing relations of inputs and outputs. Similarly, morphological31

characteristics in biological systems are well recognized by32

cognitive [6] and biomimetic [7] scientists to implement com-33

putation tasks - widely known asMorphological Computation34

(MC). Such features not only facilitate interaction with the35

environment but also, during this process, serve as an archi-36

tecture based on intrinsic properties (e.g., material stiffness)37

and structural configuration, where information transmission38

and processing are performed simultaneously. This allows39

animals, even primitive ones with deficient nervous systems,40

to continuously adapt their functionalities to unstructured41

real-world scenarios [7].42

Motivated by the above observations, there have been43

increasing efforts to exploit the versatility of morphology for44

engineering intelligent abilities in artificial robotic applica-45

tions such as locomotion [8], tactile sensing [9], and control46

[10]. Owing to advances in additive manufacturing, func-47

tional material and recent emergence of soft robotics, MC has48

been widely elaborated. However, current exploitation of49

MC is still far from its potential. According to literature to50

date, soft tactile sensors apparently stand as one of the most51

benefited from MC since their sensing function is generally52

embodied through their morphological properties. For exam-53

ple, Ho et al. [11] demonstrates a multi-modal tactile sensor54

can be achieved by switching the morphology from one to55

another. A similar attempt was done by Nurzaman et al. [12]56

where different physical quantities (e.g., softness and temper-57

ature) were obtained separately thanks to adjustable sensor58

morphology. Highly non-linear characteristic of materials59

commonly used in soft bodies (e.g., silicone rubber) under60

different levels of external stress excitation is effectively61

employed to amplify tactile response [13], [14]. Interest-62

ingly, the sensor morphology is not only the characteris-63

tics of the body alone but combined with other components.64

FIGURE 1. Illustration of wrong tactile inference for discrimination tasks
due to physical damages and our proposed solution for tactile resilience
via adaptive morphology [1], [2].

The placement of sensing elements in the body layout is 65

similar to the interface between mechanoreceptors and the 66

environment in living creatures that drives what the sen- 67

sor perceives [15], [16]. Authors in [17] attempted to alter 68

the layered rubber skin of a vision-based tactile sensor, 69

which contains a number of markers on it, in order to 70

vary the human-robot haptic interaction for control purposes. 71

Hughes et al. [18] proposed a changeable jamming-based fil- 72

ter to enhance successful rate of the tactile discrimination 73

task. This work has proposed that, instead of trying to opti- 74

mize the design in advance, the sensor body should be able 75

to adapt itself continuously and dependently on the sensing 76

task. 77

Most of the attention to this research area aims to enrich 78

information gain, it is lacking elaboration on how variable 79

morphology can be utilized to remain sensing ability against 80

unexpected damage to the original sensor body (e.g., being 81

broken, eroded). Our previous work [1] tackled this issue 82

on a whiskered tactile sensor. By actively changing the sen- 83

sor’s morphology thanks to air regulation of the embedded 84

air chamber, the tactile information (mechanical strain) per- 85

ceived by the broken one was compensated to get close to 86

that of the same stimuli before being damaged [2]. In this 87

work, we highlighted the efficiency of such tactile resilience 88

strategy for the contact localization task which is actually 89

an analysis of quasi-static deformation between equilibrium 90

states of the whisker-object contact. The performance drop of 91

the broken sensor remains unclear in more complex dynamic 92

sensing problems as simply illustrated in Fig. 1. From this 93

perspective, two following research questions will be clari- 94

fied in this paper: 95

1) Could adaptive morphology help to recover sensing 96

ability of a broken sensor for texture discrimination 97

task? 98

2) Could adaptive morphology help to aid tactile percep- 99

tion with uncertainties from environment, for example, 100

geometrical changes or unknown environment? 101

To address both questions, we aim to train a feature-based 102

texture classifier based on a supervised regression learning 103
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model for the whisker sensor. Then, we in turn sweep104

our whisker sensor (both intact and broken whiskers) back105

and forth over different types of textures. Temporal sensor106

responses (i.e., mechanical strain) during this process will107

be recorded and fed into the above classifier. Texture pre-108

diction results of the broken sensor before and after apply-109

ing the tactile compensation strategy show that we can rely on110

the adaptive variation of morphology to significantly recover111

the discriminability even with a considerable damage level112

(see Fig. 1). Furthermore, we also proposed a novel approach,113

in the context of morphological computation, to give a rough114

estimate of an unknown surface characteristic (i.e., rough-115

ness). An effort has recently tackled the same problem by116

using morphological features of a tapered spring whisker to117

predict the roughness of unknown terrains [19]. In this study,118

the proposed approach is based on the effort to calibrate119

tactile data obtained from a new texture close to that of a120

known one. We assume that the difference in morphology121

could give a hint to the difference in roughness between122

two textures. This could augment trained tactile perception123

in real-time with limited usage of computation sources for124

online training and recognition.125

II. TACTILE COMPENSATION VIA ADAPTIVE126

MORPHOLOGY127

A. INSPIRATION FROM NATURE PERSPECTIVE128

The proposed approachwasmainly inspired by tactile sensing129

organs in living creatures such as rats, which play a vital role130

in collecting essential informative cues from the environment131

through continuous interaction. Thus, structural damage is132

unavoidable. To deal with such circumstances (whether tem-133

porary during regrow or permanent), instead of completely134

relying on the central nervous system, animals tend to allow135

also their sensing organs to adapt by altering morphology.136

Such recovery ability was observed in, e.g., spider leg, thanks137

to morphological change of Lyriform organs, which act as138

mechanoreceptors at leg joints [20], [21]. Such research139

indicated the morphological computation role of Lyriform,140

which is actually sensible to strain and vibration. In detail,141

it is speculated that the shape of Lyriform organs changed142

so that resulted feedback of the broken leg facilitates the143

neural system (i.e., the brain) to justify the performance in144

comparison to the original leg. Rodent’s vibrissae system145

exposes a similar phenomenon. A region in the brain called146

Barrel cortex allocated to the damagedwhisker will be shrunk147

in shape to reduce its sensitivity, while the contrary (i.e., sen-148

sitivity increase) will happen to neighbor whiskers to allow149

them to take over the sensing task temporarily [22].150

The above biological observation suggests that a compu-151

tation process in controller can also be successfully accom-152

plished by adaptable mechanical systems. We previously153

transferred this idea into an artificial whiskered sensory sys-154

tem as presented in Fig. 2. The whisker body and an air155

chamber housed inside are tapered with the same inclined156

angle. Two inextensible fibers are wound helically around157

FIGURE 2. (A) Design illustration of our artificial whisker sensor and its
capability to enable morphology transformation from
chamber-unpressurized state (B) to chamber-pressurized states (C).

the chamber’s middle wall to allow only axial length exten- 158

sion (i.e., in x-direction) of the chamber region under inner 159

compressed air Q of the chamber. Two strain gauges (S1 160

and S2) are bonded onto the chamber region so that their 161

principal sensing planes are perpendicular one to another. 162

By increasing the air pressure Q, the chamber wall will be 163

stiffened. As a consequence, mechanical responses measured 164

by strain gauge are expected to be tuned appropriately to aid 165

sensing capabilities (classification in particular) even with a 166

damaged structure. 167

B. ANALYTICAL FOUNDATION 168

A comprehensive understanding of the correlation between 169

sensor morphology (both geometrical and material aspects) 170

and the robotic device outcome is crucial to establishing a 171

proper tactic for damage compensation. In this regard, we pre- 172

viously introduced an analytical model that estimates the 173

strain gauge output for a wide range of contact conditions and 174

morphology states [1]. Based on this, an optimized whisker’s 175

layout (upon pressure Q) equivalent to the desired sensitivity 176

is chosen to perform the tactile compensation task. A physics 177

engine based on FE was used to prove that job could be 178

accomplishedwith high accuracy [2]. A brief derivation of the 179

model is introduced below. For the detail, please refer to [2] 180

The model leverages two classical beam theories: Hooke’s 181

laws and Castigliano’s theorem, for the derivation of mechan- 182

ical strain ε generated due to a certain applied stress σ : 183

ε=
σ

E2
=

yM (x)
E2I2(x)

, (1) 184

where σ is applied stress generated in whisker body due to 185

pure bending moment M (x), y is the radius of the outermost 186

layer of the chamber’s wall where the strain gauge is attached. 187

The final expression is: 188

ε =
4P
E2π

κ, (2) 189
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where κ is a function that is ascribed to the contribution of190

geometrical parameters (illustrated in Fig. 2) at each equilib-191

rium state of the whisker body. Its expression can be fully192

reviewed in [1]. In the meantime, the second law is used to193

describe body’s deflection δ by assessing the strain energy194

stored in each whisker body’s region and applying superpo-195

sition principle in beam deflection:196

δ(a) =
∂U
∂P
=

∂

(
aL∫
0

M (x)2
2EiIi(x)

dx

)
∂P

, (3)197

where U is the total strain energy within the body, a is the198

contact ratio - a coefficient used to generalize the contact199

distance along the whisker length L: Contact distance =200

a× L. The final expression of equation 3 is:201

δ(a) =
P
π

(
δ1

E1
+
δ2

E2
+
δ3

E3

)
, (4)202

with δi (i = 1, 2, 3) indicates the contribution of geometrical203

parameters of the region i to total deflection δ(a) (see full204

expressions in [1]). Also, Ii(x) and Ei represent the second205

moment of cross-sectional area and Young’s modulus for206

region i, respectively. Final formulation for the analytical207

model for the ‘‘unpressurized’’ whisker body is achieved by208

taking ratio of equation 2 and 4:209

ε

δ(a)
=

κ

E2
(
δ1
E1
+

δ2
E2
+

δ3
E3

) = f , (5)210

and when the chamber is under a certain air pressurization:211

ε(Q)
δ(a)
=

κ(Q)

E2(Q)
(
δ1(Q)
E1
+

δ2(Q)
E2(Q)

+
δ3(Q)
E3

) = f (Q). (6)212

Equations 5 and 6 imply two important points. Firstly, any213

change in either geometrical or material properties (i.e.,214

reflected by f (Q)) will result in the variation of sensor215

response even in a same contact condition. Secondly, we can216

rely on this model to predict desired morphology state for a217

certain task, for instance, tactile compensation.218

III. METHODOLOGY219

This section describes the experimental setup for collecting220

tactile data, signal decoding and processing the tactile dis-221

crimination task. To answer the two aforementioned research222

questions, our concern is not to distinguish a large number of223

texture types but just a few with variations in their intrinsic224

(geometry) parameters. This is expected to clarify the role of225

sensor morphology in aiding tactile recognition.226

A. ARTIFICIAL WHISKER SENSOR AND TEXTURE SAMPLES227

We employed the same whisker prototype as in [1] except for228

an extra strain gauge being used. In detail, S1 plays a major229

role in generating tactile perception since its sensing plane230

is coincident with whisker deformation space. Considering231

the rubbing interaction between a whisker sensor and a tex-232

tured plate, strain outputs generated by bending deformation233

TABLE 1. List of textures and their geometrical dimensions.

are expected to be sufficient to reveal 3-dimensional (3-D) 234

geometry characteristics of the scanned surface. The sensor 235

fabrication is done through a four-step molding process (ini- 236

tially detailed in [1]) using silicon-rubber Dragon Skin 30 237

(Smooth-On, USA). The strain gauge KFGS-2-120-C1-11 238

L1M2R (Kyowa, Japan) was used. 239

Here, our whisker sensor explored 3 sets of textures. Each 240

set represents a specific type of surface pattern (see Fig. 3B): 241

Dimple bumps (DB), Honeycomb (HC) and Pyramid bump 242

(PB). These textures are parameterized by three measures: 243

width (W ), distance (D) from a pattern to the adjacent one 244

and height (H ). For simplification, W and D are set equal to 245

each other in all samples (hereafter, WD is used to present 246

both metrics). Each texture collection has 6 different textured 247

plates (numbered from 1 to 6) whose geometrical parameters 248

are listed in Table 1. In summary, a total of 18 samples were 249

designed and 3D printed using ABS-based filament in such a 250

way those pattern elements are centered along the plate. 251

B. EXPERIMENTAL SETUP FOR DATA COLLECTION 252

A series of sweeping experiments were implemented using 253

the setup shown in Fig. 3A. Two motorized linear stages 254

(Suruga Seiki, Japan) were set up orthogonally to carry the 255

whisker sensor (X-axis stage) and the texture plates (Y-axis 256

stage). While the X stage is responsible to ensure the rela- 257

tive position of the whisker tip and the textured plate, the 258

Y stage drives texture plates back and forth with constant 259

velocity v = 20mm/s for surface exploration. Both stages 260

are controlled by a motor controller DS102 (Suruga Seiki, 261

Japan). During the surface exploring process of the whisker, 262

the strain output was recorded at a sampling rate of 100Hz by 263

EDX-15A connected with a bridge box UI-54A-120, Kyowa, 264

Japan, in synchronizationwith themovement of stages. Strain 265

output in µm/m from the measuring device is converted by 266

the equation: ε = εread
GF × 10−3, where: εread is read from the 267

software and GF stands for the gauge factor provided by the 268

vendor (GF = 2.21±1%). Additionally, the air chamber was 269

pressurized to the desired value ofQ by a pneumatic actuation 270

system comprising a solenoid valve VQO1211 (SMC Co., 271

Japan) and a pressure control valve AS2211FE-01 within 272

the mainstream. Thanks to this combination, desired levels 273

of inner pressure Q were always ensured. This system is 274

controlled by a microprocessor (Arduino MEGA 2560) with 275

feedback from a digital pressure sensor ISE20A-R-M (SMC 276

Co., Japan). 277

The following identical procedure was performed for every 278

texture. Firstly, the chamber was given an initial condition 279

equivalent to the inner pressureQinit = 100 kPa as previously 280
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FIGURE 3. (A) Experiment setup. (B)The texture plates are grouped in 3 different categories: Dimple Bump - DB, Honeycomb - HC and Pyramid
bump - PB, which are attached to motorized linear stages for tactile exploration. Their geometry can be parameterized by three parameters: width
(W ), distance (D) from a pattern to the adjacent one and height (H). The morphology transformation is activated by an air actuation system under
control of a micro processor. All measurement devices are managed by a desktop computer. (C) Three raw signal samples of DB1, HC1 and PB1 (in
frequency domain) obtained by driving the intact whisker with constant velocity of 20 mm/s: The shaded area indicates the eliminated redundant
frequency components. The yellow marker, green vertical line represent for PF and SC , respectively. (D) Respective power spectrum and converted
signals in time-domain (inset graphs) after data processing as well as three texture features (SC (green lines), TP and PF (orange markers)) in such
cases are also included.

suggested in [1] and [2]. The test did not begin until the281

whisker tip reached the base of the texture plate. Then, a com-282

plete cycle of texture exploration is carried out as followed:283

a) sliding the texture plate forward for 160mm (the plate284

length) at a preset speed of 20mm/s. In the meantime, the285

response of S1 and S2 will be recorded within a time window286

of 6 seconds (i.e., a 600 time-series of strain values) and287

labeled as forward data; b) repeating the same procedure288

for the backward direction. Note that a following sweeping289

session will start instantly after the whisker flicks over the290

texture plate (i.e., no pre-bending). Here, 50 repeated cycles291

(i.e., 25 forward and 25 backward datasets) were performed292

to create a database for texture classification.293

C. FEATURE EXTRACTION FOR REGRESSION294

Potential exploratory behaviors of a whisker sensor have295

been exploited for many purposes such as radial distance296

estimation [13], measuring geometrical attributes [23] and297

also texture discrimination [24]. Although up to date, the data 298

processing method of rodent brains to extract the nature of 299

a texture has not been fully understood, many approaches 300

to biomimetic or artificial whiskers have shown that spec- 301

tral analysis could prove significant texture-related informa- 302

tion [25]. However, since we address a classification problem 303

for variable textures (see Table 1), the spectral analysis may 304

infer a wrong conclusion when there were differences in 305

spectral phase [26]. Thus, texture discrimination based solely 306

on frequency-amplitude spectrum is considered insufficient, 307

resulting in the necessity of time-series data. 308

The signal spectrum in the frequency domain was obtained 309

using Fast Fourier Transformation (FFT) over the data win- 310

dows (see Fig. 3C-D). In details, three properties will be 311

used as texture-related features: Spectrum centroid (SC - 312

the green vertical line in Fig. 3C), total power (TP) of the 313

spectrum and predominant frequency (PF - the yellowmarker 314

in Fig. 3C). Correspondences of the first two measures with 315
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physical frequency and depth of bumps of the texture were316

previously established [27]. The last feature PF is the most317

powerful frequency component, thus, this signal is expected318

to capture the coupling between plate’s driving speed and319

geometrical patterns of each texture. First of all, it is essential320

to eliminate redundant signal components that are indepen-321

dent of the texture geometry. We analyzed three samples322

of raw tactile data for DB1, HC1 and PB1 textures in the323

frequency domain (see Fig. 3C). We ascertain that unrelated324

frequency components located at very low frequencies up to325

0.8333Hz and from 20Hz to 50Hz (shaded area in Fig. 3C).326

As mentioned in [25], very-low-frequency components with327

large power correspond to bending effects of the whisker328

sensor during exploratory sweeping but are not related to the329

textured surface. On the other hand, high-frequency com-330

ponents are often found with very small power and they331

reflect less information about the texture. For example, the332

40Hz component has relatively high power (compared to its333

neighbors) due to layer-to-layer 3D-printing gap (approxi-334

mately 0.5mm). Hence, the residual signals (see Fig. 3D) will335

be eventually identified by low-pass and high-pass filtering336

components ranging from 0Hz to 0.8333Hz and 20Hz to337

50Hz, respectively. Afterward, the spectrum centroid (SC)338

of the filtered spectrum is calculated as amplitude-weighted339

mean frequency:340

SC =
1
N

N−1∑
n=0

n× ω × X (n)

N−1∑
n=0

X (n)

, (7)341

whereX (n) is magnitude or weighted frequency value, f is the342

width of each spectral bin, N is the dimension of frequency343

domain and n represents for bin number. The value of TP for344

each spectrum is as:345

TP =
1
N

N−1∑
n=0

X (n). (8)346

Temporal analysis is a subsequent step focusing347

on useful information in time-series signals that are348

inverse-transformed from filtered frequency spectra. More349

specifically, the average positive maximum1 (APM - shown350

as red markers in Fig. 4A) signal peaks within a consecutive351

range of time (set to 0.3 s) were collected. In summary, for352

each strain gauge, we can draw out a feature vector 94×1
S as353

shown below:354

94×1
S = [SC, TP, PF, APM ]T ,∀S ∈ [S1, S2]. (9)355

The combined feature vector is:98×1
=

[
94×1
S1 94×1

S2

]
. Note356

that this feature vector is for strain data in a 6-second time357

window (either forward or backward).358

1peaks correspond to whisker bending phase

D. CLASSIFICATION PROBLEMS AND SOLUTIONS 359

To fulfill the purpose of this study, we attempted to solve a 360

multi-output classification problem, in which, outputs char- 361

acterize separately texture types and geometrical dimensions 362

of texture (WD and H ). In terms of labeling for texture types, 363

we apply One-Hot encoding approach [28] to categorize a 364

texture by a 3 × 1 vector (notated as C) of binary variables 365

where a texture is ascribed to a specific element and set to 366

‘‘1’’, while the rest are dummy variables (i.e., ‘‘0’’). Vector C 367

is equivalent to the probability of which texture category an 368

arbitrary input data could belong to. Vector C combines with 369

numerical values of WD and H to form the final observation 370

vector for training and testing: 05×1
=
[
C3×1 WD H

]T
. 371

We employed supervised Linear Regression (LR) learning 372

algorithms. It should be noticed that the reference model 373

was only trained with a subset of the database (80% of 374

it) acquired from the intact whisker at initial pressure (i.e., 375

Qinit = 100 kPa). Consequently, performance assessment 376

for any sensor configuration was compared against results 377

of the remaining 20% testing data. Model training and 378

data pre-processing were implemented with scikit-learn [29]. 379

Database splitting for training and testing data was repeat- 380

edly conducted 10 times to demonstrate the independence of 381

tactile sensing ability on random data selection. Therefore, 382

experimental results (shown in the next section) are averaged 383

over 10 trials. 384

The reliability of the above model will be challenged with 385

two critical problems: (1) partially damaged whisker body 386

and (2) encountering novel textures. Whilst most previous 387

research focused on developing an often computationally 388

expensive correction algorithm and manually adding new 389

tactile data into the database, we rely on the interplay between 390

the mechanics of the whisker morphology and external stim- 391

uli to form desired afferent sensory feedback to the central 392

system. This interdependency is used to form a correction for 393

strain data to maintain the sensing ability. 394

1) PROBLEM 1: TACTILE COMPENSATION FOR DAMAGED 395

STRUCTURE 396

Tactile information is inferred from the consequences of 397

physical interaction between soft bodies and the environ- 398

ment. Therefore, physical damages occurring to the sensor 399

body lead to erroneous tactile information (e.g., mechanical 400

strain) transmitted to the controller. Assuming the whisker 401

sensor used for data collection is trimmed off by a certain 402

length 1 (mm). The corresponding whisker’s sensitivity to 403

bending is increased proportionally to the fourth power of 404

the outer diameter, making the strain output larger with the 405

same stimuli (texture). Figure 4 pictures the signal magnitude 406

in time domain and spectral power of three example cases: 407

1 = 0mm (intact), 1 = 1mm, and 1 = 5mm for 408

texture HC1. One may observe the amplification of strain 409

magnitude and power spectrum as 1 increases. This was 410

also observed for the other texture features. In detail, except 411

for the predominant frequency, other attributes (e.g., when 412
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FIGURE 4. Comparison of tactile signal perceived from HC1 in time
(figure (A) with PM peaks represented by markers) and frequency (figure
(B) with PF , SC and TP features) domain among three prototypes: The
original (light blue lines), 1 mm (orange lines) and 5 mm trimming length
(dark blue lines).

1 = 5mm) grow rapidly in comparison with those in the413

case 1 = 1mm. Significant impairment of tactile sensing is414

inevitable.415

To prevent such circumstances, the whisker morphology416

should be varied in themanner of lowering the strain feedback417

(i.e., sensitivity is decreased). According to Eq. 6, the strain418

value is inversely proportional to the material stiffness E2(Q)419

of the chamber, meanwhile, the contribution of geometrical420

parameters (i.e., κ(Q), δi (i = 1, 2, 3)) is not entirely unclear.421

Therefore, softening the chamber region (equivalent to reduc-422

ing E2(Q)) is the most promising solution. The experimental423

results reported in [1] and simulation results in [2] support424

this approach. The change in morphology was achieved by425

depressurizing the air chamber down to a proper value Qc.426

To identify proper compensation pressureQc, we applied two427

methods:428

1) The first method relies on the analytical model in429

section II-B. An optimal value for Qc is obtained if the430

corresponding strain gauge output εb(Qc) estimated by431

Eq. 6 does not differ significantly from the original ones432

in a same contact condition. We here searched for Qc433

with contact ratio a = 1 (since the contact is occurred434

at the tip) and deflection δ(a) ranging up to 5mm.435

Notice that this searching process was implemented436

for only S1 since its contribution to texture detection 437

outperforms its counterpart (S2). Short expression for 438

above method is as follows: 439

ε(Qinit ) = εb(Qc). (10) 440

2) The second approach is inspired by searching adap- 441

tive behaviors of natural creatures throughout a ‘‘trial- 442

and-error’’ process [30], [31]. Similarly, a trial-and- 443

error could allow the whisker sensor to creatively 444

discover compensatory solutions without an model. 445

More specifically, the whisker sensors will gradually 446

decrease inner pressure Q to maximize their sensing 447

performance in spite of being damaged. Compensa- 448

tion results produced by these two methods will be 449

compared for further clarification on pros and cons of 450

resilient function based on an analytical approach. 451

2) PROBLEM 2: SURFACE ROUGHNESS ESTIMATION FOR 452

UNKNOWN TEXTURE 453

Supervised learning techniques strongly depend on the qual- 454

ity and quantity of training data. Once an outlier appears, 455

it is often necessary to collect related information and man- 456

ually assign new labels to the training database for restarting 457

the learning process (either online or offline). Otherwise, 458

a degrading trend in classifier performance is unavoidable. 459

However, the experimental data acquisition process is often 460

burdensome in terms of time and cost. Not to mention the 461

failure in control based on unfamiliar feedback from the envi- 462

ronment will cause the failure of the robotic system. In this 463

section, we tackle the problem when the classifier encounters 464

a novel texture patterned similarly to DB, HC or PB, but with 465

differences in geometrical dimensions. 466

To significantly improve the real-time roughness (i.e., 467

parameter H ) recognition for unknown texture properties, 468

our proposition is to actively change the sensor morphology 469

(i.e., changing from Q to Qu) to enforce tactile information 470

perceived from an unknown texture close to the one already 471

included in the prior database. This variation in morphology 472

could be referred equivalently to differences in geometry 473

between them. Therefore, once the contribution of each state 474

of sensor morphology to its perception is well-understood, 475

we might be able to get knowledge about new textures with 476

the help of solely morphological computation instead of any 477

expensive-computational data analysis. 478

Let us assume that the strain signal reaches PM peaks (i.e., 479

whisker deflection δ is maximum) only when the whisker 480

tip is sweeping over the highest points of the texture. In this 481

scenario, the similarity in tactile data acquired from existed 482

and unknown texture after calibration at these PM points (i.e., 483

εeAPM = ε
u
APM ) yields following expression based on Eq. 6: 484

δumax(a)
δemax(a)

=
f u(Qu)
f e(Qinit )

. (11) 485

We argue that the ratio of whisker deflection in Eq. 10 (the 486

left-hand side) is intuitively proportional to difference in 487

height of the unknown texture and its counterpart. Moreover, 488
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this measure is mathematically estimated through morpho-489

logical computation (the right-hand side of Eq. 11).490

IV. EXPERIMENTAL RESULTS AND EVALUATION491

This section describes assessment methods and experiment492

results of the aforementioned methods for two research prob-493

lems. Comparative experiments were conducted to demon-494

strate the robustness of the whisker sensor with adaptive495

morphology against physical damages at different levels.496

Subsequently, we tested the ability to discover the unknown497

texture’s roughness upon previously trained textures.498

A. EVALUATION METHODS499

The evaluation sessionmainly focuses on two following crite-500

ria: the ability to, (a) successfully identify the correct texture501

types; and (b) precisely estimate all geometrical dimensions502

of the texture patterns. On one hand, the texture type pre-503

diction depends on which element in the vector C has the504

smallest deviation from the nominal value ‘‘1’’, i.e., this is505

equivalent to the texture having the highest probability given506

the data sample. Additionally, this gap is also a measure507

to give an assessment on the reliability of texture predic-508

tion (shorten as RTP). On the other hand, estimations of509

geometrical parameters (WD and H ) are validated by Root510

Mean Squared Error (RMSE) between estimated values and511

ground-truth values.512

B. EXPERIMENT RESULTS513

1) PROBLEM 1: TACTILE COMPENSATION FOR DAMAGED514

STRUCTURE515

This section implements a comparative study of the classi-516

fication performance of the whisker sensor being trimmed517

with that of the intact one in two scenarios: before and after518

tactile compensation. In turn, two showcases of [1, 5]mm519

cut-off length were studied. Firstly, it is necessary to identify520

the compensation pressure value Qc for each case. The first521

method based on Eq. 9 suggests the proper values for Qc522

are [94, 48] kPa, respectively for the two above cases. For523

the intact whisker (i.e., 1 = 0mm and Q = 100 kPa),524

a high averaged success rate for texture type prediction is525

plotted in confusion matrix shown in Fig. 5. Figure 7 reports526

the texture characterization accuracy through RSME of three527

parameters RTP, WD and H and their standard deviation528

(SD). On contrary, texture classification results accomplished529

by broken whiskers have witnessed a significant decrease as530

the cut-off body length is increased as expected from Fig. 4.531

At the first glance, both trimmed whisker prototypes still532

retain the capability to correctly identify texture type, i.e.,533

the RSME of RTP in the case of δ = 1mm and δ = 5mm534

are approximately 0.2 and 0.4, respectively. However, these535

values are significantly larger than that of the intact whisker536

(around 0.1). This tendency remains true with that of H and537

even amplified for WD. Even far worse performance was538

implemented by the 5mm shortenwhisker. These results once539

again show that fragility could bring tremendous disability540

FIGURE 5. Confusion matrix of texture classifier for the case of intact
whisker at its initial condition.

FIGURE 6. Confusion matrices of texture classifier for the case of broken
whiskers with varied cut-off length: (A) 1 = 1 mm and (B) 1 = 5 mm.

to robot operation no matter how easy the task is. Corre- 541

sponding actions to change the whisker’s morphology (i.e., 542

lowering initial pressure Qinit down to compensation value 543

Qc) were activated to overcome the degrading in classifica- 544

tion results. To identify proper values for Qc, we first rely on 545

the analytical model (method 1). Similar effort done in [1] 546

suggested a reduction of the inner pressure down to 94 kPa 547

and 48 kPa to achieve compensated states for the whisker with 548

1 = [1, 5]mm, respectively. The compensation results are 549

summarized in Fig. 7. Only a slight improvement is observed 550

for the case of 1mm cut-off length, while a relatively substan- 551

tial enhancement in texture classifying with the 5mm cut-off 552

whisker sensor is recognized. However, their performances 553

are still far from what the intact whisker could achieve with 554

a perfect body. The above results demonstrate the feasibility 555

of tactile compensation ability against critical damages in 556

structure based on morphological change. Since the overall 557

sensing performance was not 100 percent recovered to the 558

original state, it suggests that morphological transformation 559

strategies tailored from the analytical model might not be 560

optimal. 561

The trial-and-error processes (method 2) for searching for 562

better morphology states were also executed. In detail, the 563

broken whisker sensor will be tested its sensing ability within 564

a decreasing range of pressure Q, with a step of 10 kPa until 565

the sensing performance converges. Figure 8 illustrates the 566

outcome of this approach. At first glance, the compensation 567

performances for both damage cases apparently started to 568

converge within the pressure range 90 − 80 kPa and 40 − 569

30 kPa when 1 = 1 and 5mm, respectively. This fact is 570

reflected in RMSE of all interested indicators (see Fig. 7). 571

Interestingly, these observations also narrow down the region 572
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FIGURE 7. Accuracy comparison in texture characterization of the intact
whisker sensor (1 = 0, Q = 100 kPa) and the broken whisker with
different cut-off length and compensation states: (A) 1 = 1 mm and
(B) 1 = 5 mm.

FIGURE 8. Evaluation of tactile compensation performance for broken
whiskers with: (A) 1 = 1 mm, Qc = 100− 70 kPa and (B) 1 = 5 mm,
Qc = 100− 30 kPa.

where the optimal sensor morphology can be found to recover573

malfunction in tactile sensing due to physical damages.574

2) PROBLEM 2: SURFACE ROUGHNESS ESTIMATION FOR575

UNKNOWN TEXTURE576

The results shown in the previous section have demonstrated577

that a tactile sensor could still achieve good classification578

and identification ability even, i.e., when its body is critically579

damaged, thanks to online adaptive morphology. This section580

tackles another common issue for any classifier when they581

encounter unprecedented texture leading regression classifier582

to adverse outcomes.583

To verify the solution described in Section III-D2, this584

session examined a new DB texture indexed as DB7 whose585

geometrical parameters are WD = 15mm and H = 1.5mm.586

The first step is to decide which existing textures will be587

TABLE 2. List of textures and their geometrical dimensions.

paired up with DB7 for a comparative study. Specifically, it is 588

reckoned as a good match-up when they 589

1) have a small deviation in terms of tactile information 590

produced in time and frequency domain, or in other 591

words, the dissimilarity in pattern dimensions is small- 592

est, and 593

2) allow successful sensitivity calibrationwithin the trans- 594

formability limit of the body and sensitive range of the 595

strain gauge. 596

As a result, for this experiment, the closest pairs for DB7 597

are DB3 or DB4 textures. Then, in order to predict the 598

roughness of DB7, we adjust the whisker’s sensitivity so as to 599

receive similar strain gauge’s outputs (εuAPM ) with that of DB3 600

and DB4 (εeAPM ) when the whisker reaches the texture’s high- 601

est points. The ratio of max deflection between two contesters 602

(δemax(a) and δumax(a)) can be attributed to the difference 603

in height among them and mathematically calculated using 604

Eq. 11. Table 2 reports the results of roughness estimation 605

based on the above hypothesis in comparison with real values 606

acquired from experiments. 607

The ratio 1.215 and 0.789 indicates that, due to the dif- 608

ference in H , interaction with DB7 would most likely deflect 609

the whisker sensor 1.215 times larger and 0.789 times smaller 610

than that of DB3 and DB4, respectively. Furthermore, these 611

ratios are not too far off from the real values (1.1875 and 612

0.869, respectively). They do not necessarily represent the 613

ratio of unforeseen texture roughness but a measure to give us 614

a rough estimate of it in general. If the correlation between 615

maximum deflection of the whisker and texture peaks is given 616

we could more precisely quantify the estimated value of H. 617

V. DISCUSSION AND CONCLUSION 618

Firstly, this paper extends our previous works to deal with 619

structural damages in the soft whiskered tactile sensor in 620

a more challenging sensing task (texture discrimination). 621

Despite being trimmed, the tactile perception of the sensory 622

whisker still remains unaffected, thanks to the tactile com- 623

pensation method via adaptive sensor morphology. In detail, 624

we demonstrated changing properly the whisker body by 625

air regulation in the chamber would ‘‘pre-processing’’ the 626

incorrect sensor response (mechanical strain) toward the right 627

classification of the texture in sensor space. This hypothesis 628

was tested with two: broken body length 1 = 1mm and 629

1 = 5mm. Two approaches are applied to discover the cor- 630

rect compensatory morphology, one is based on an analytical 631

model first introduced in [1] and the other is inspired by a 632

trial-and-error process that is widely used in natural creatures. 633

Evaluation results shown in Fig. 7 have proved the feasibility 634

of both approaches in enhancing the feature-based identifica- 635

tion of texture plates for the broken whisker prototypes. 636
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However, experimental results of compensation perfor-637

mance based on the analytical model showed a gap to those638

attained by the trial-and-error method (see Fig. 7). This639

can be explained by the fact that the model summarized in640

Section III-B does not take into account all dynamic aspects641

of physical interaction between the texture plates and the642

whisker sensor. The most obvious missing is friction force643

which temporally affects the whisker bending, then the strain644

gauge responses. Not to mention other factors such as sweep-645

ing velocity, and tactics for tactile exploration (passive or646

active) have been also testifiedwith rodent whiskers aswell as647

robotic whiskers to have an influence on overall distinguish-648

ing perception [32]. Instead of being the main provider for649

compensation actions, the analytical model should rather be650

utilized to orient other seeking techniques such as reinforce-651

ment learning (an advanced form of trial-and-error) toward652

feasible regions faster.653

Secondly, we also tried to take advantage of adaptable654

sensor morphology to augment tactile discriminability with655

newly encountered environments. While many researchers656

aim at vast labeled data collection serving for the advance-657

ment of classifier models, which is sometimes unaffordable,658

we hypothesized that: variation of sensor morphology to659

calibrate tactile data perceived from novel objects close to660

prior-learned data would shed a light on geometrical dif-661

ferences or similarities. Section IV-B2 showcases this idea662

with a rough characterization for the texture height (H ) of663

texture DB7 upon the most-similar textures (DB3 and DB4)664

in database. Another important point is the odd tactile infor-665

mation is filtered close to familiar ones so that the controller666

could still apply its pre-programmed policies without online667

re-specifying a new plan.668

Whilst the ability to strengthen tactile perception based669

on morphological change is promising, it must be admit-670

ted that overall tactile sensing performance after compen-671

sation still has a gap with its original state. We argue that672

tactile resilience is limited to shape-changeable space and673

included actuation modes for our current design but could be674

improved. Therefore, the most straightforward solution is to675

increase locally controllable degrees of freedom throughout676

the deformable body. For example, advances in 3D printing677

could allow complex custom arrangements of air chambers678

within the body. However, design optimization is another679

consideration. That poses a potential future work where680

an efficient, automated simulation pipeline for seeking an681

optimal design that facilitates fabrication process and mor-682

phology control, and compensatory behaviors for a given683

task. We plan to expand the proposed idea to other soft684

robotic mechanisms with similar structures and at high risk685

of being damaged, such as soft fingers. Even beyond that, the686

method of adaptive morphology could be leveraged to meet687

the demand in other aspects of robotics once the relation-688

ship between morphology and function/problem is given. For689

instance, laparoscopes used in Minimally Invasive Surgery690

(MIS) could potentially benefit from tactile sensors with691

variable morphology [33]. In addition to providing tactile692

sensation which is a commonly known drawback of MIS, 693

variable morphology allows controlling with adaptive sen- 694

sory feedback toward more safe interaction with different 695

types of organs. This direction is expected to push the role of 696

sensormorphology beyond being a crucial part of constituting 697

the sensory-actuator network. 698
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