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ABSTRACT Nature is featured by the resiliency, which enables adaptivity to sudden change under many
circumstances. Meanwhile, the resiliency in robotic systems is far from comparable to that of the nature.
If a robot is partially damaged, often the whole system fails to operate properly. While some approaches
have been proposed, the majority of them are focusing on updating the control policy. Such approach,
while rather complex, is not always applicable to mechanical damage of the robot body, especially parts
that continuously interact with the surrounding environment. In the previous works Nguyen and Ho, (2022)
and Nguyen and Ho, (2021) we introduced an artificial whiskered sensor that exhibited resilience against
physical damage by active change of its morphology around the placement of sensory elements (strain
gauges), which allowed compensation of location sensing when the whisker was trimmed. In this paper,
we extend the approach by using the whisker sensor for texture discrimination tasks. We demonstrate that
changing the morphology of the whisker again helps to reduce mismatching between prior knowledge in
the frequency/time domain of the sensory signal. This allows the sensory whisker to recover the tactile
perception on texture discrimination after the whisker is partially damaged. Furthermore, we also observe
that using adaptive sensor morphology would augment tactile perception without the need of computationally
expensive recognition and re-classification. This work is expected to shed a light on a new generation of
robots that automatically work in the open world where self-maintenance against uncertainties is needed.

INDEX TERMS Adaptive morphology, augmented tactile perception, morphological computation, tactile
compensation, whisker tactile sensor.

NOMENCLATURE . .
C One-hot vector used for categorizing a specific SL, 82 Strain gauge 1 apd Strain gauge 2. .
SC Spectrum centroid of a band-pass filtered
texture. k )
WD  Width xDistance index for a texture. sighat. . .
S TP Total power of band-pass filtered signal.
H Height index for a texture. PF Predominant £ £ 2 band
RTP  Metrics for evaluating reliability of texture pre- ‘redommnant frequency ot a band-pass
diction filtered signal.
L' Multi-output vector for texture classifier includ- I Vecj[(?r Contal'nlng texture featu?es. .
. PM,APM Positive maximum peaks of a time-series
ing C, WD and H. . .
signals and their averages.
Qinit» Oc, O,  Pressure value in the air chamber of
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€, €p Strain gauge responses of whisker’s origi-
nal and broken states.

€, e" Strain gauge responses perceived from
existed and unknown texture.

A Trimmed length of the whisker body.

a Ratio of contact position with respect to
whisker body length.

3 Deflection of the whisker body measured
at the contact spot.

E Young’s modulus.

k,81,23 Geometrical parameters derived from

whisker structure.

I. INTRODUCTION

There is a long standing history of artificial comput-
ing machines ranging from Antikythera mechanism of the
Ancient Greeks, to the famous Turing machine - the foun-
dation of modern computers [3]. In general, these sys-
tems leverage a basic medium (such as mechanical parts,
electrical circuits and more recently optical waves [4] or
DNA molecules [5]) as computation means for implement-
ing relations of inputs and outputs. Similarly, morphological
characteristics in biological systems are well recognized by
cognitive [6] and biomimetic [7] scientists to implement com-
putation tasks - widely known as Morphological Computation
(MC). Such features not only facilitate interaction with the
environment but also, during this process, serve as an archi-
tecture based on intrinsic properties (e.g., material stiffness)
and structural configuration, where information transmission
and processing are performed simultaneously. This allows
animals, even primitive ones with deficient nervous systems,
to continuously adapt their functionalities to unstructured
real-world scenarios [7].

Motivated by the above observations, there have been
increasing efforts to exploit the versatility of morphology for
engineering intelligent abilities in artificial robotic applica-
tions such as locomotion [8], tactile sensing [9], and control
[10]. Owing to advances in additive manufacturing, func-
tional material and recent emergence of soft robotics, MC has
been widely elaborated. However, current exploitation of
MC is still far from its potential. According to literature to
date, soft tactile sensors apparently stand as one of the most
benefited from MC since their sensing function is generally
embodied through their morphological properties. For exam-
ple, Ho et al. [11] demonstrates a multi-modal tactile sensor
can be achieved by switching the morphology from one to
another. A similar attempt was done by Nurzaman et al. [12]
where different physical quantities (e.g., softness and temper-
ature) were obtained separately thanks to adjustable sensor
morphology. Highly non-linear characteristic of materials
commonly used in soft bodies (e.g., silicone rubber) under
different levels of external stress excitation is effectively
employed to amplify tactile response [13], [14]. Interest-
ingly, the sensor morphology is not only the characteris-
tics of the body alone but combined with other components.
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FIGURE 1. lllustration of wrong tactile inference for discrimination tasks
due to physical damages and our proposed solution for tactile resilience
via adaptive morphology [1], [2].

The placement of sensing elements in the body layout is
similar to the interface between mechanoreceptors and the
environment in living creatures that drives what the sen-
sor perceives [15], [16]. Authors in [17] attempted to alter
the layered rubber skin of a vision-based tactile sensor,
which contains a number of markers on it, in order to
vary the human-robot haptic interaction for control purposes.
Hughes et al. [18] proposed a changeable jamming-based fil-
ter to enhance successful rate of the tactile discrimination
task. This work has proposed that, instead of trying to opti-
mize the design in advance, the sensor body should be able
to adapt itself continuously and dependently on the sensing
task.

Most of the attention to this research area aims to enrich
information gain, it is lacking elaboration on how variable
morphology can be utilized to remain sensing ability against
unexpected damage to the original sensor body (e.g., being
broken, eroded). Our previous work [1] tackled this issue
on a whiskered tactile sensor. By actively changing the sen-
sor’s morphology thanks to air regulation of the embedded
air chamber, the tactile information (mechanical strain) per-
ceived by the broken one was compensated to get close to
that of the same stimuli before being damaged [2]. In this
work, we highlighted the efficiency of such tactile resilience
strategy for the contact localization task which is actually
an analysis of quasi-static deformation between equilibrium
states of the whisker-object contact. The performance drop of
the broken sensor remains unclear in more complex dynamic
sensing problems as simply illustrated in Fig. 1. From this
perspective, two following research questions will be clari-
fied in this paper:

1) Could adaptive morphology help to recover sensing
ability of a broken sensor for texture discrimination
task?

2) Could adaptive morphology help to aid tactile percep-
tion with uncertainties from environment, for example,
geometrical changes or unknown environment?

To address both questions, we aim to train a feature-based
texture classifier based on a supervised regression learning
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model for the whisker sensor. Then, we in turn sweep
our whisker sensor (both intact and broken whiskers) back
and forth over different types of textures. Temporal sensor
responses (i.e., mechanical strain) during this process will
be recorded and fed into the above classifier. Texture pre-
diction results of the broken sensor before and after apply-
ing the tactile compensation strategy show that we can rely on
the adaptive variation of morphology to significantly recover
the discriminability even with a considerable damage level
(see Fig. 1). Furthermore, we also proposed a novel approach,
in the context of morphological computation, to give a rough
estimate of an unknown surface characteristic (i.e., rough-
ness). An effort has recently tackled the same problem by
using morphological features of a tapered spring whisker to
predict the roughness of unknown terrains [19]. In this study,
the proposed approach is based on the effort to calibrate
tactile data obtained from a new texture close to that of a
known one. We assume that the difference in morphology
could give a hint to the difference in roughness between
two textures. This could augment trained tactile perception
in real-time with limited usage of computation sources for
online training and recognition.

Il. TACTILE COMPENSATION VIA ADAPTIVE
MORPHOLOGY

A. INSPIRATION FROM NATURE PERSPECTIVE

The proposed approach was mainly inspired by tactile sensing
organs in living creatures such as rats, which play a vital role
in collecting essential informative cues from the environment
through continuous interaction. Thus, structural damage is
unavoidable. To deal with such circumstances (whether tem-
porary during regrow or permanent), instead of completely
relying on the central nervous system, animals tend to allow
also their sensing organs to adapt by altering morphology.
Such recovery ability was observed in, e.g., spider leg, thanks
to morphological change of Lyriform organs, which act as
mechanoreceptors at leg joints [20], [21]. Such research
indicated the morphological computation role of Lyriform,
which is actually sensible to strain and vibration. In detail,
it is speculated that the shape of Lyriform organs changed
so that resulted feedback of the broken leg facilitates the
neural system (i.e., the brain) to justify the performance in
comparison to the original leg. Rodent’s vibrissae system
exposes a similar phenomenon. A region in the brain called
Barrel cortex allocated to the damaged whisker will be shrunk
in shape to reduce its sensitivity, while the contrary (i.e., sen-
sitivity increase) will happen to neighbor whiskers to allow
them to take over the sensing task temporarily [22].

The above biological observation suggests that a compu-
tation process in controller can also be successfully accom-
plished by adaptable mechanical systems. We previously
transferred this idea into an artificial whiskered sensory sys-
tem as presented in Fig. 2. The whisker body and an air
chamber housed inside are tapered with the same inclined
angle. Two inextensible fibers are wound helically around
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FIGURE 2. (A) Design illustration of our artificial whisker sensor and its
capability to enable morphology transformation from
chamber-unpressurized state (B) to chamber-pressurized states (C).

the chamber’s middle wall to allow only axial length exten-
sion (i.e., in x-direction) of the chamber region under inner
compressed air Q of the chamber. Two strain gauges (S1
and S2) are bonded onto the chamber region so that their
principal sensing planes are perpendicular one to another.
By increasing the air pressure Q, the chamber wall will be
stiffened. As a consequence, mechanical responses measured
by strain gauge are expected to be tuned appropriately to aid
sensing capabilities (classification in particular) even with a
damaged structure.

B. ANALYTICAL FOUNDATION
A comprehensive understanding of the correlation between
sensor morphology (both geometrical and material aspects)
and the robotic device outcome is crucial to establishing a
proper tactic for damage compensation. In this regard, we pre-
viously introduced an analytical model that estimates the
strain gauge output for a wide range of contact conditions and
morphology states [1]. Based on this, an optimized whisker’s
layout (upon pressure Q) equivalent to the desired sensitivity
is chosen to perform the tactile compensation task. A physics
engine based on FE was used to prove that job could be
accomplished with high accuracy [2]. A brief derivation of the
model is introduced below. For the detail, please refer to [2]

The model leverages two classical beam theories: Hooke’s
laws and Castigliano’s theorem, for the derivation of mechan-
ical strain & generated due to a certain applied stress o:

o _ yM®x
Ey Exb(x)’

where o is applied stress generated in whisker body due to
pure bending moment M (x), y is the radius of the outermost
layer of the chamber’s wall where the strain gauge is attached.
The final expression is:

ey

4p @)
&= —«,
Erm
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where « is a function that is ascribed to the contribution of
geometrical parameters (illustrated in Fig. 2) at each equilib-
rium state of the whisker body. Its expression can be fully
reviewed in [1]. In the meantime, the second law is used to
describe body’s deflection § by assessing the strain energy
stored in each whisker body’s region and applying superpo-
sition principle in beam deflection:

alL M(x)z
9 Of 2E L9
da) = — =

opP apP ’ )
where U is the total strain energy within the body, a is the
contact ratio - a coefficient used to generalize the contact
distance along the whisker length L: Contact distance =
a x L. The final expression of equation 3 is:

Sa) = (25 @)
a_JT Eq E, E3)’

with §; (i = 1, 2, 3) indicates the contribution of geometrical
parameters of the region i to total deflection 8(a) (see full
expressions in [1]). Also, /;(x) and E; represent the second
moment of cross-sectional area and Young’s modulus for
region i, respectively. Final formulation for the analytical
model for the “unpressurized” whisker body is achieved by
taking ratio of equation 2 and 4:

L _ K
and when the chamber is under a certain air pressurization:
Q) k(Q)
@~ py(0) (AR + 2G + 22)

=f. &)

=f(Q). (6

Equations 5 and 6 imply two important points. Firstly, any
change in either geometrical or material properties (i.e.,
reflected by f(Q)) will result in the variation of sensor
response even in a same contact condition. Secondly, we can
rely on this model to predict desired morphology state for a
certain task, for instance, tactile compensation.

ill. METHODOLOGY

This section describes the experimental setup for collecting
tactile data, signal decoding and processing the tactile dis-
crimination task. To answer the two aforementioned research
questions, our concern is not to distinguish a large number of
texture types but just a few with variations in their intrinsic
(geometry) parameters. This is expected to clarify the role of
sensor morphology in aiding tactile recognition.

A. ARTIFICIAL WHISKER SENSOR AND TEXTURE SAMPLES
We employed the same whisker prototype as in [1] except for
an extra strain gauge being used. In detail, S1 plays a major
role in generating tactile perception since its sensing plane
is coincident with whisker deformation space. Considering
the rubbing interaction between a whisker sensor and a tex-
tured plate, strain outputs generated by bending deformation
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TABLE 1. List of textures and their geometrical dimensions.

Index Texture codes WD (mm) | H(mm)
1 DBI1, HCI, PB1 10 1
2 DB2, HC2, PB2 10 2
3 DB3, HC3, PB3 15 1
4 DB4, HC4, PB4 15 2
5 DB5, HC5, PB5 20 1
6 DB6, HC6, PB6 20 2

are expected to be sufficient to reveal 3-dimensional (3-D)
geometry characteristics of the scanned surface. The sensor
fabrication is done through a four-step molding process (ini-
tially detailed in [1]) using silicon-rubber Dragon Skin 30
(Smooth-On, USA). The strain gauge KFGS-2-120-C1-11
LIM?2R (Kyowa, Japan) was used.

Here, our whisker sensor explored 3 sets of textures. Each
set represents a specific type of surface pattern (see Fig. 3B):
Dimple bumps (DB), Honeycomb (HC) and Pyramid bump
(PB). These textures are parameterized by three measures:
width (W), distance (D) from a pattern to the adjacent one
and height (H). For simplification, W and D are set equal to
each other in all samples (hereafter, WD is used to present
both metrics). Each texture collection has 6 different textured
plates (numbered from 1 to 6) whose geometrical parameters
are listed in Table 1. In summary, a total of 18 samples were
designed and 3D printed using ABS-based filament in such a
way those pattern elements are centered along the plate.

B. EXPERIMENTAL SETUP FOR DATA COLLECTION
A series of sweeping experiments were implemented using
the setup shown in Fig. 3A. Two motorized linear stages
(Suruga Seiki, Japan) were set up orthogonally to carry the
whisker sensor (X-axis stage) and the texture plates (Y-axis
stage). While the X stage is responsible to ensure the rela-
tive position of the whisker tip and the textured plate, the
Y stage drives texture plates back and forth with constant
velocity v = 20mm/s for surface exploration. Both stages
are controlled by a motor controller DS102 (Suruga Seiki,
Japan). During the surface exploring process of the whisker,
the strain output was recorded at a sampling rate of 100 Hz by
EDX-15A connected with a bridge box UI-54A-120, Kyowa,
Japan, in synchronization with the movement of stages. Strain
output in wm/m from the measuring device is converted by
the equation: ¢ = Sg—;" x 1073, where: €44 is read from the
software and GF stands for the gauge factor provided by the
vendor (GF = 2.2141%). Additionally, the air chamber was
pressurized to the desired value of Q by a pneumatic actuation
system comprising a solenoid valve VQO1211 (SMC Co.,
Japan) and a pressure control valve AS2211FE-01 within
the mainstream. Thanks to this combination, desired levels
of inner pressure Q were always ensured. This system is
controlled by a microprocessor (Arduino MEGA 2560) with
feedback from a digital pressure sensor ISE20A-R-M (SMC
Co., Japan).

The following identical procedure was performed for every
texture. Firstly, the chamber was given an initial condition
equivalent to the inner pressure Q;,;; = 100 kPa as previously
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FIGURE 3. (A) Experiment setup. (B)The texture plates are grouped in 3 different categories: Dimple Bump - DB, Honeycomb - HC and Pyramid
bump - PB, which are attached to motorized linear stages for tactile exploration. Their geometry can be parameterized by three parameters: width
(W), distance (D) from a pattern to the adjacent one and height (H). The morphology transformation is activated by an air actuation system under
control of a micro processor. All measurement devices are managed by a desktop computer. (C) Three raw signal samples of DB1, HC1 and PB1 (in
frequency domain) obtained by driving the intact whisker with constant velocity of 20 mm/s: The shaded area indicates the eliminated redundant
frequency components. The yellow marker, green vertical line represent for PF and SC, respectively. (D) Respective power spectrum and converted
signals in time-domain (inset graphs) after data processing as well as three texture features (SC (green lines), TP and PF (orange markers)) in such

cases are also included.

suggested in [1] and [2]. The test did not begin until the
whisker tip reached the base of the texture plate. Then, a com-
plete cycle of texture exploration is carried out as followed:
a) sliding the texture plate forward for 160 mm (the plate
length) at a preset speed of 20 mm/s. In the meantime, the
response of S1 and S2 will be recorded within a time window
of 6 seconds (i.e., a 600 time-series of strain values) and
labeled as forward data; b) repeating the same procedure
for the backward direction. Note that a following sweeping
session will start instantly after the whisker flicks over the
texture plate (i.e., no pre-bending). Here, 50 repeated cycles
(i.e., 25 forward and 25 backward datasets) were performed
to create a database for texture classification.

C. FEATURE EXTRACTION FOR REGRESSION

Potential exploratory behaviors of a whisker sensor have
been exploited for many purposes such as radial distance
estimation [13], measuring geometrical attributes [23] and
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also texture discrimination [24]. Although up to date, the data
processing method of rodent brains to extract the nature of
a texture has not been fully understood, many approaches
to biomimetic or artificial whiskers have shown that spec-
tral analysis could prove significant texture-related informa-
tion [25]. However, since we address a classification problem
for variable textures (see Table 1), the spectral analysis may
infer a wrong conclusion when there were differences in
spectral phase [26]. Thus, texture discrimination based solely
on frequency-amplitude spectrum is considered insufficient,
resulting in the necessity of time-series data.

The signal spectrum in the frequency domain was obtained
using Fast Fourier Transformation (FFT) over the data win-
dows (see Fig. 3C-D). In details, three properties will be
used as texture-related features: Spectrum centroid (SC -
the green vertical line in Fig. 3C), total power (TP) of the
spectrum and predominant frequency (PF - the yellow marker
in Fig. 3C). Correspondences of the first two measures with
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physical frequency and depth of bumps of the texture were
previously established [27]. The last feature PF is the most
powerful frequency component, thus, this signal is expected
to capture the coupling between plate’s driving speed and
geometrical patterns of each texture. First of all, it is essential
to eliminate redundant signal components that are indepen-
dent of the texture geometry. We analyzed three samples
of raw tactile data for DB1, HC1 and PB1 textures in the
frequency domain (see Fig. 3C). We ascertain that unrelated
frequency components located at very low frequencies up to
0.8333 Hz and from 20 Hz to 50 Hz (shaded area in Fig. 3C).
As mentioned in [25], very-low-frequency components with
large power correspond to bending effects of the whisker
sensor during exploratory sweeping but are not related to the
textured surface. On the other hand, high-frequency com-
ponents are often found with very small power and they
reflect less information about the texture. For example, the
40 Hz component has relatively high power (compared to its
neighbors) due to layer-to-layer 3D-printing gap (approxi-
mately 0.5 mm). Hence, the residual signals (see Fig. 3D) will
be eventually identified by low-pass and high-pass filtering
components ranging from 0Hz to 0.8333 Hz and 20 Hz to
50 Hz, respectively. Afterward, the spectrum centroid (SC)
of the filtered spectrum is calculated as amplitude-weighted
mean frequency:
N-1
Y nxwxXn
I »=o0

SC = —
N-—1
> X(m)
n=0

) (N

where X (n) is magnitude or weighted frequency value, f is the
width of each spectral bin, N is the dimension of frequency
domain and 7 represents for bin number. The value of TP for
each spectrum is as:

1 N-—1
TP = IZ:OX(n). )

Temporal analysis is a subsequent step focusing
on useful information in time-series signals that are
inverse-transformed from filtered frequency spectra. More
specifically, the average positive maximum' (APM - shown
as red markers in Fig. 4A) signal peaks within a consecutive
range of time (set to 0.3's) were collected. In summary, for
each strain gauge, we can draw out a feature vector WéXI as
shown below:

vl = [SC, TP, PF, APM]" VS € [S1,52]. (9)

The combined feature vector is: W8*! = [\IIAS‘;<1 \Ilg 1]. Note
that this feature vector is for strain data in a 6-second time
window (either forward or backward).

1peaks correspond to whisker bending phase

VOLUME 10, 2022

D. CLASSIFICATION PROBLEMS AND SOLUTIONS

To fulfill the purpose of this study, we attempted to solve a
multi-output classification problem, in which, outputs char-
acterize separately texture types and geometrical dimensions
of texture (WD and H). In terms of labeling for texture types,
we apply One-Hot encoding approach [28] to categorize a
texture by a 3 x 1 vector (notated as C) of binary variables
where a texture is ascribed to a specific element and set to
“1”, while the rest are dummy variables (i.e., ““0"). Vector C
is equivalent to the probability of which texture category an
arbitrary input data could belong to. Vector C combines with
numerical values of WD and H to form the final observation
vector for training and testing: I°*! = [C3*! WD H]T.

We employed supervised Linear Regression (LR) learning
algorithms. It should be noticed that the reference model
was only trained with a subset of the database (80% of
it) acquired from the intact whisker at initial pressure (i.e.,
QOinir = 100kPa). Consequently, performance assessment
for any sensor configuration was compared against results
of the remaining 20% testing data. Model training and
data pre-processing were implemented with scikit-learn [29].
Database splitting for training and testing data was repeat-
edly conducted 10 times to demonstrate the independence of
tactile sensing ability on random data selection. Therefore,
experimental results (shown in the next section) are averaged
over 10 trials.

The reliability of the above model will be challenged with
two critical problems: (1) partially damaged whisker body
and (2) encountering novel textures. Whilst most previous
research focused on developing an often computationally
expensive correction algorithm and manually adding new
tactile data into the database, we rely on the interplay between
the mechanics of the whisker morphology and external stim-
uli to form desired afferent sensory feedback to the central
system. This interdependency is used to form a correction for
strain data to maintain the sensing ability.

1) PROBLEM 1: TACTILE COMPENSATION FOR DAMAGED
STRUCTURE

Tactile information is inferred from the consequences of
physical interaction between soft bodies and the environ-
ment. Therefore, physical damages occurring to the sensor
body lead to erroneous tactile information (e.g., mechanical
strain) transmitted to the controller. Assuming the whisker
sensor used for data collection is trimmed off by a certain
length A (mm). The corresponding whisker’s sensitivity to
bending is increased proportionally to the fourth power of
the outer diameter, making the strain output larger with the
same stimuli (texture). Figure 4 pictures the signal magnitude
in time domain and spectral power of three example cases:
A = Omm (intact), A = 1mm, and A = 5mm for
texture HC1. One may observe the amplification of strain
magnitude and power spectrum as A increases. This was
also observed for the other texture features. In detail, except
for the predominant frequency, other attributes (e.g., when
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FIGURE 4. Comparison of tactile signal perceived from HC1 in time
(figure (A) with PM peaks represented by markers) and frequency (figure
(B) with PF, SC and TP features) domain among three prototypes: The
original (light blue lines), 1 mm (orange lines) and 5 mm trimming length
(dark blue lines).

A = 5mm) grow rapidly in comparison with those in the
case A = 1 mm. Significant impairment of tactile sensing is
inevitable.

To prevent such circumstances, the whisker morphology
should be varied in the manner of lowering the strain feedback
(i.e., sensitivity is decreased). According to Eq. 6, the strain
value is inversely proportional to the material stiffness E>(Q)
of the chamber, meanwhile, the contribution of geometrical
parameters (i.e., k(Q), 6; (i = 1, 2, 3)) is not entirely unclear.
Therefore, softening the chamber region (equivalent to reduc-
ing E»>(Q)) is the most promising solution. The experimental
results reported in [1] and simulation results in [2] support
this approach. The change in morphology was achieved by
depressurizing the air chamber down to a proper value Q..
To identify proper compensation pressure Q., we applied two
methods:

1) The first method relies on the analytical model in
section II-B. An optimal value for Q. is obtained if the
corresponding strain gauge output €,(Q.) estimated by
Eq. 6 does not differ significantly from the original ones
in a same contact condition. We here searched for Q.
with contact ratio a = 1 (since the contact is occurred
at the tip) and deflection §(a) ranging up to 5 mm.
Notice that this searching process was implemented
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for only S1 since its contribution to texture detection
outperforms its counterpart (S2). Short expression for
above method is as follows:

&(Qinir) = €p(Qc)- (10)

2) The second approach is inspired by searching adap-
tive behaviors of natural creatures throughout a “trial-
and-error” process [30], [31]. Similarly, a trial-and-
error could allow the whisker sensor to creatively
discover compensatory solutions without an model.
More specifically, the whisker sensors will gradually
decrease inner pressure ) to maximize their sensing
performance in spite of being damaged. Compensa-
tion results produced by these two methods will be
compared for further clarification on pros and cons of
resilient function based on an analytical approach.

2) PROBLEM 2: SURFACE ROUGHNESS ESTIMATION FOR
UNKNOWN TEXTURE

Supervised learning techniques strongly depend on the qual-
ity and quantity of training data. Once an outlier appears,
it is often necessary to collect related information and man-
ually assign new labels to the training database for restarting
the learning process (either online or offline). Otherwise,
a degrading trend in classifier performance is unavoidable.
However, the experimental data acquisition process is often
burdensome in terms of time and cost. Not to mention the
failure in control based on unfamiliar feedback from the envi-
ronment will cause the failure of the robotic system. In this
section, we tackle the problem when the classifier encounters
a novel texture patterned similarly to DB, HC or PB, but with
differences in geometrical dimensions.

To significantly improve the real-time roughness (i.e.,
parameter H) recognition for unknown texture properties,
our proposition is to actively change the sensor morphology
(i.e., changing from Q to Q,) to enforce tactile information
perceived from an unknown texture close to the one already
included in the prior database. This variation in morphology
could be referred equivalently to differences in geometry
between them. Therefore, once the contribution of each state
of sensor morphology to its perception is well-understood,
we might be able to get knowledge about new textures with
the help of solely morphological computation instead of any
expensive-computational data analysis.

Let us assume that the strain signal reaches PM peaks (i.e.,
whisker deflection § is maximum) only when the whisker
tip is sweeping over the highest points of the texture. In this
scenario, the similarity in tactile data acquired from existed
and unknown texture after calibration at these PM points (i.e.,
e4py = Eapy) yields following expression based on Eq. 6:

Smax(@  f"(Qw)
Sipax (@ [ Qinir)
We argue that the ratio of whisker deflection in Eq. 10 (the

left-hand side) is intuitively proportional to difference in
height of the unknown texture and its counterpart. Moreover,

(1)
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this measure is mathematically estimated through morpho-
logical computation (the right-hand side of Eq. 11).

IV. EXPERIMENTAL RESULTS AND EVALUATION

This section describes assessment methods and experiment
results of the aforementioned methods for two research prob-
lems. Comparative experiments were conducted to demon-
strate the robustness of the whisker sensor with adaptive
morphology against physical damages at different levels.
Subsequently, we tested the ability to discover the unknown
texture’s roughness upon previously trained textures.

A. EVALUATION METHODS

The evaluation session mainly focuses on two following crite-
ria: the ability to, (a) successfully identify the correct texture
types; and (b) precisely estimate all geometrical dimensions
of the texture patterns. On one hand, the texture type pre-
diction depends on which element in the vector C has the
smallest deviation from the nominal value “1”, i.e., this is
equivalent to the texture having the highest probability given
the data sample. Additionally, this gap is also a measure
to give an assessment on the reliability of texture predic-
tion (shorten as RTP). On the other hand, estimations of
geometrical parameters (WD and H) are validated by Root
Mean Squared Error (RMSE) between estimated values and
ground-truth values.

B. EXPERIMENT RESULTS

1) PROBLEM 1: TACTILE COMPENSATION FOR DAMAGED
STRUCTURE

This section implements a comparative study of the classi-
fication performance of the whisker sensor being trimmed
with that of the intact one in two scenarios: before and after
tactile compensation. In turn, two showcases of [1, S]mm
cut-off length were studied. Firstly, it is necessary to identify
the compensation pressure value Q. for each case. The first
method based on Eq. 9 suggests the proper values for Q.
are [94, 48] kPa, respectively for the two above cases. For
the intact whisker (i.e, A = Omm and Q = 100kPa),
a high averaged success rate for texture type prediction is
plotted in confusion matrix shown in Fig. 5. Figure 7 reports
the texture characterization accuracy through RSME of three
parameters RTP, WD and H and their standard deviation
(SD). On contrary, texture classification results accomplished
by broken whiskers have witnessed a significant decrease as
the cut-off body length is increased as expected from Fig. 4.
At the first glance, both trimmed whisker prototypes still
retain the capability to correctly identify texture type, i.e.,
the RSME of RTP in the case of § = 1mm and § = 5mm
are approximately 0.2 and 0.4, respectively. However, these
values are significantly larger than that of the intact whisker
(around 0.1). This tendency remains true with that of H and
even amplified for WD. Even far worse performance was
implemented by the 5 mm shorten whisker. These results once
again show that fragility could bring tremendous disability
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FIGURE 5. Confusion matrix of texture classifier for the case of intact
whisker at its initial condition.
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FIGURE 6. Confusion matrices of texture classifier for the case of broken
whiskers with varied cut-off length: (A) A = 1Tmm and (B) A = 5mm.

to robot operation no matter how easy the task is. Corre-
sponding actions to change the whisker’s morphology (i.e.,
lowering initial pressure Q;,;; down to compensation value
Q.) were activated to overcome the degrading in classifica-
tion results. To identify proper values for Q., we first rely on
the analytical model (method 1). Similar effort done in [1]
suggested a reduction of the inner pressure down to 94 kPa
and 48 kPa to achieve compensated states for the whisker with
A = [1, 5] mm, respectively. The compensation results are
summarized in Fig. 7. Only a slight improvement is observed
for the case of 1 mm cut-off length, while a relatively substan-
tial enhancement in texture classifying with the 5 mm cut-off
whisker sensor is recognized. However, their performances
are still far from what the intact whisker could achieve with
a perfect body. The above results demonstrate the feasibility
of tactile compensation ability against critical damages in
structure based on morphological change. Since the overall
sensing performance was not 100 percent recovered to the
original state, it suggests that morphological transformation
strategies tailored from the analytical model might not be
optimal.

The trial-and-error processes (method 2) for searching for
better morphology states were also executed. In detail, the
broken whisker sensor will be tested its sensing ability within
a decreasing range of pressure Q, with a step of 10 kPa until
the sensing performance converges. Figure 8 illustrates the
outcome of this approach. At first glance, the compensation
performances for both damage cases apparently started to
converge within the pressure range 90 — 80kPa and 40 —
30kPa when A = 1 and 5 mm, respectively. This fact is
reflected in RMSE of all interested indicators (see Fig. 7).
Interestingly, these observations also narrow down the region
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4 A =0 (Intact)

Q =100 (No compensation)
A =1 (Damaged)
Q =100 (No compensation)
A =1 (Damaged)
Q =94 (With compensation)

44 A = 0 (Intact)
05 Q = 100 (No compensation)
& 3{ 04 A =5 (Damaged)
§ 0.3 Q=100 (No compensation)
2 0.2

A =5 (Damaged)
Q =48 (With compensation)

TTRIPT WD (mm) A (i)
FIGURE 7. Accuracy comparison in texture characterization of the intact
whisker sensor (A = 0, Q = 100 kPa) and the broken whisker with
different cut-off length and compensation states: (A) A = 1 mm and
(B) A =5mm.
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FIGURE 8. Evaluation of tactile compensation performance for broken
whiskers with: (A) A = 1 mm, Q¢ = 100 — 70kPa and (B) A = 5mm,
Q¢ = 100 — 30kPa.

where the optimal sensor morphology can be found to recover
malfunction in tactile sensing due to physical damages.

2) PROBLEM 2: SURFACE ROUGHNESS ESTIMATION FOR
UNKNOWN TEXTURE

The results shown in the previous section have demonstrated
that a tactile sensor could still achieve good classification
and identification ability even, i.e., when its body is critically
damaged, thanks to online adaptive morphology. This section
tackles another common issue for any classifier when they
encounter unprecedented texture leading regression classifier
to adverse outcomes.

To verify the solution described in Section III-D2, this
session examined a new DB texture indexed as DB7 whose
geometrical parameters are WD = 15mm and H = 1.5 mm.
The first step is to decide which existing textures will be
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TABLE 2. List of textures and their geometrical dimensions.

Comparative pair | Q. (kPa) | 0% .. (a)/dS,.(a)*
DB7 vs DB3 59 1.215
DB7 vs DB4 127 0.789

*Estimated from Eq. 11

paired up with DB7 for a comparative study. Specifically, it is
reckoned as a good match-up when they

1) have a small deviation in terms of tactile information
produced in time and frequency domain, or in other
words, the dissimilarity in pattern dimensions is small-
est, and

2) allow successful sensitivity calibration within the trans-
formability limit of the body and sensitive range of the
strain gauge.

As a result, for this experiment, the closest pairs for DB7
are DB3 or DB4 textures. Then, in order to predict the
roughness of DB7, we adjust the whisker’s sensitivity so as to
receive similar strain gauge’s outputs (€} 5, ) with that of DB3
and DB4 (€4 ;) when the whisker reaches the texture’s high-
est points. The ratio of max deflection between two contesters
(Bac(@) and 87 (a)) can be attributed to the difference
in height among them and mathematically calculated using
Eq. 11. Table 2 reports the results of roughness estimation
based on the above hypothesis in comparison with real values
acquired from experiments.

The ratio 1.215 and 0.789 indicates that, due to the dif-
ference in H, interaction with DB7 would most likely deflect
the whisker sensor 1.215 times larger and 0.789 times smaller
than that of DB3 and DB4, respectively. Furthermore, these
ratios are not too far off from the real values (1.1875 and
0.869, respectively). They do not necessarily represent the
ratio of unforeseen texture roughness but a measure to give us
a rough estimate of it in general. If the correlation between
maximum deflection of the whisker and texture peaks is given
we could more precisely quantify the estimated value of H.

V. DISCUSSION AND CONCLUSION

Firstly, this paper extends our previous works to deal with
structural damages in the soft whiskered tactile sensor in
a more challenging sensing task (texture discrimination).
Despite being trimmed, the tactile perception of the sensory
whisker still remains unaffected, thanks to the tactile com-
pensation method via adaptive sensor morphology. In detail,
we demonstrated changing properly the whisker body by
air regulation in the chamber would “pre-processing” the
incorrect sensor response (mechanical strain) toward the right
classification of the texture in sensor space. This hypothesis
was tested with two: broken body length A = 1mm and
A = 5mm. Two approaches are applied to discover the cor-
rect compensatory morphology, one is based on an analytical
model first introduced in [1] and the other is inspired by a
trial-and-error process that is widely used in natural creatures.
Evaluation results shown in Fig. 7 have proved the feasibility
of both approaches in enhancing the feature-based identifica-
tion of texture plates for the broken whisker prototypes.
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However, experimental results of compensation perfor-
mance based on the analytical model showed a gap to those
attained by the trial-and-error method (see Fig. 7). This
can be explained by the fact that the model summarized in
Section III-B does not take into account all dynamic aspects
of physical interaction between the texture plates and the
whisker sensor. The most obvious missing is friction force
which temporally affects the whisker bending, then the strain
gauge responses. Not to mention other factors such as sweep-
ing velocity, and tactics for tactile exploration (passive or
active) have been also testified with rodent whiskers as well as
robotic whiskers to have an influence on overall distinguish-
ing perception [32]. Instead of being the main provider for
compensation actions, the analytical model should rather be
utilized to orient other seeking techniques such as reinforce-
ment learning (an advanced form of trial-and-error) toward
feasible regions faster.

Secondly, we also tried to take advantage of adaptable
sensor morphology to augment tactile discriminability with
newly encountered environments. While many researchers
aim at vast labeled data collection serving for the advance-
ment of classifier models, which is sometimes unaffordable,
we hypothesized that: variation of sensor morphology to
calibrate tactile data perceived from novel objects close to
prior-learned data would shed a light on geometrical dif-
ferences or similarities. Section IV-B2 showcases this idea
with a rough characterization for the texture height (H) of
texture DB7 upon the most-similar textures (DB3 and DB4)
in database. Another important point is the odd tactile infor-
mation is filtered close to familiar ones so that the controller
could still apply its pre-programmed policies without online
re-specifying a new plan.

Whilst the ability to strengthen tactile perception based
on morphological change is promising, it must be admit-
ted that overall tactile sensing performance after compen-
sation still has a gap with its original state. We argue that
tactile resilience is limited to shape-changeable space and
included actuation modes for our current design but could be
improved. Therefore, the most straightforward solution is to
increase locally controllable degrees of freedom throughout
the deformable body. For example, advances in 3D printing
could allow complex custom arrangements of air chambers
within the body. However, design optimization is another
consideration. That poses a potential future work where
an efficient, automated simulation pipeline for seeking an
optimal design that facilitates fabrication process and mor-
phology control, and compensatory behaviors for a given
task. We plan to expand the proposed idea to other soft
robotic mechanisms with similar structures and at high risk
of being damaged, such as soft fingers. Even beyond that, the
method of adaptive morphology could be leveraged to meet
the demand in other aspects of robotics once the relation-
ship between morphology and function/problem is given. For
instance, laparoscopes used in Minimally Invasive Surgery
(MIS) could potentially benefit from tactile sensors with
variable morphology [33]. In addition to providing tactile

VOLUME 10, 2022

sensation which is a commonly known drawback of MIS,
variable morphology allows controlling with adaptive sen-
sory feedback toward more safe interaction with different
types of organs. This direction is expected to push the role of
sensor morphology beyond being a crucial part of constituting
the sensory-actuator network.
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