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ABSTRACT Acquiring welding domain relationships and forming a knowledge graph can positively impact
complex engineering problem solving and intelligent manufacturing applications. However, relationships
are lacking in the welding domain. The relationship extraction and processing solution are designed to
handle data with different characteristics in welding fabrication. The BiLSTM+Attention and CR-CNN
models are employed to extract relations in unstructured documents. The neighborhood rough set-based
association rule model is proposed for project-specific documents to accomplish relationship acquisition,
in which invalid attributes are removed via neighborhood rough sets and attribute values are related via
association rules. In addition, the knowledge graph is built based on extracted relationships, and unique
empirical relationships are handled by introducing relational nodes and databases. The results show that
BiLSTM+Attention gets a good score with Macro-average metrics (0.788 for Precision, 0.846 for Recall,
and 0.816 for Fl-score). The relational rules obtained via the proposed model are consistent with the
production experience. The constructed knowledge graph effectively handles empirical relationships while
positively impacting knowledge retrieval, intelligent question and answer, and decision-making for complex
engineering problems.

INDEX TERMS Welding manufacturing, relationship extraction, neighborhood rough sets, association rule,
knowledge graph.

I. INTRODUCTION unresolved. The knowledge graph is considered to address the

Data is a critical factor in domain operation and develop-
ment, and data-driven has gradually become an essential
means to solve complex domain problems [1], [2]. In recent
decades, data-based welding manufacturing has focused on
meeting the development requirements for high quality and
efficiency. Methods such as case-based [3] retrieval, rule-
based reasoning [4], and fuzzy expert systems [5] are applied
to welding process design, welding material selection, and
production process planning. Although these intelligent data-
based methods [6], [7] have become an effective means to
solve engineering problems, the challenge of complex knowl-
edge representation and relationship construction remains
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proposed limitations due to its compatibility in the knowledge
representation. Relationship extraction is an indispensable
step in knowledge graph construction, and it is an essential
medium for the logical composition of knowledge and linking
of domain entities. However, the specialized and complex
nature of the domain relationships makes relationship extrac-
tion challenging in manufacturing, especially in welding
fabrication.

Relational extraction methods are generally classified
as template-based [8], supervised-based [9], and weakly
supervised-based relationship extraction [10]. The template-
based approach uses pre-defined relationship templates by
domain experts and then matches relationships from the
text. This method has high applicability in a small range
of texts but relies on extensive manual work making it less
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portable. Supervised learning models are used for relation-
ship extraction based on pre-labeled data to acquire many
textual relationships. The method is also divided into pipeline
operations [11], [12] and joint operations [13], considering
the training process of the entity and relation. Entities and
relationships are trained separately in a pipeline approach,
such as the CR-CNN [14] and Attention CNNs [15] mod-
els. Joint extraction methods consider entity and relationship
model training to combine entity and relationship extraction.
Miwa and Bansal [16] propose an end-to-end neural model to
extract entities and their relationships. Word sequences and
dependency tree substructure information are captured via
LSTM-RNN. Such methods require a large amount of anno-
tated data before training. Weakly supervised approaches
have been proposed to address the limitation of insuffi-
cient corpus data. Their model training is achieved with a
small number of labeled samples, such as the APCNNs [17]
model and the NELL system [18]. However, most research
focuses on enhancing models and techniques on non-domain
data or biomedical [19] domains for relationship extraction.
Relationships in the manufacturing domain are neglected,
especially in welding manufacturing. Several existential chal-
lenges: (i) Almost no relevant studies concentrate on extract-
ing weld manufacturing relationships, resulting in a lack of
research data. (ii) Relation extraction in weld-specific files
is challenging because the association discovery between
attributes is hard. (iii) Relationship handling for engineering
applications needs to be explored. Automatic acquisition of
basic relations, refinement of specific relations, and process-
ing of empirical relations are the significant challenges of
relation extraction in the welding domain.

In this study, we aim to support the solution of com-
plex problems in welding manufacturing via extracting data
relationships, reducing the limitations of knowledge repre-
sentation, and building a relational network. However, the
challenges of missing data, domain specificity, and prac-
tical engineering applications must be solved. Therefore,
we design a scheme that integrates neural networks, attribute
reduction, and association rules and construct a knowl-
edge graph for engineering applications. Our approach has
the following features: (i) Professionalism and reference.
Oriented to practical welding production, we dig deeper into
the domain data characteristics by extracting unique relations
and processing empirical relations. In addition, the method
we describe has a substantial reference value for domain rela-
tion extraction. (ii) Covering multiple types of data. The data
includes the underlying unstructured files, structured result
files, and empirical data. (iii) High engineering application
value. Industry-specific method design with relationships
embedded in the knowledge graph forms a knowledge system
in the welding field. Data support is provided for developing
intelligent technologies and engineering problem-solving in
the industry.

We divided the relationship extraction task into three
subtasks: general relationship extraction, engineered doc-
ument relationship extraction, and empirical relationship
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processing, based on several challenges in welding rela-
tionship extraction. Models BiLSTM+Attention [20] and
CR-CNN are employed to extract relationships from unstruc-
tured documents such as welding standards, production
guidance documents, design guidelines, etc. The actual pro-
duction knowledge text is trained in advance as word vec-
tors to support the training of the relational extraction model
through the word2vec [21] method. We propose a neigh-
borhood rough set-based association model for engineered
documents to extract special relations from the normalized
result file. Valid attribute links are determined based on
neighborhood rough sets [22], and relationships between
attribute values are extracted based on association rules [23].
In addition, empirical formulas and models are collected
in a relational database, and the knowledge graph embed-
ding is implemented using key-value pairs. Actual data
from the production of welded bogies for high-speed trains
is collated to support model validation. The results show
that model BiLSTM+Attention has good scores (Precision:
0.788, Recall: 0.846, Fl-score: 0.816) in our data with
Macro-average evaluation metrics. Special relations in real
production are extracted from the 110 result file data via
the proposed special relation extraction model and have high
consistency with experience. Empirical data and extracted
relationships are embedded in a domain knowledge graph
to support complex problem-solving and important decision-
making in welding manufacturing. The main contributions of
this paper are as follows:

(i) We implemented the relationship extraction of unstruc-
tured documents oriented to the lack of knowledge in welding
manufacturing. The baseline for welding relationship extrac-
tion was listed on our data to support the relevant studies.

(ii)) A neighborhood rough set-based association rule
model for welding data structure characteristics is pro-
posed to extract the relationships in the attributes and
attribute values from the actual welded structured documents,
respectively.

(iii) Empirical relational databases and extracted relation-
ships are embedded in domain knowledge graphs to sup-
port complex problem-solving and critical decision-making
in welding manufacturing.

The aim is to extract relations and build a knowledge graph
for welding manufacturing data. For this reason, we designed
three kinds of relationship extraction and processing methods
for different data forms. In addition, the experimental results
were obtained via data processing, attribute restoration, and
relationship model construction. We predict that our work can
support the digital construction of welding manufacturing and
the data requirements of intelligent systems.

Il. METHODS

A. RELATIONSHIP EXTRACTION

Unstructured data such as welding standards, production
requirements, and guidance documents contain essential
knowledge to ensure weld fabrication. Automatic acquisi-
tion of relationships benefits welding knowledge system
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construction and automated production. Relationships are
carried out in sentences expressed with natural language.
Extracting dependency features between word sequences
is the key to extracting relationships. BiLSTM+-Attention
is employed for sentence-level relation extraction due
to its good bidirectional semantic feature acquisition perfor-
mance. Long short-term memory (LSTM) [24] is an essential
element of BILSTM+Attention construction which contains
three vital structures: forget gate, input gate, and output gate.
This model calculates the current output and cell state via the
output and cell state at the previous time. The behavior of this
model is shown in FIGURE 1.

/151

@ férget gate inbut gate output gate

FIGURE 1. LSTM cell structure diagram.

The function of the forget gate is to discard negative infor-
mation in the cell state. The sigmoid activation function (6)
defines whether the information is retained based on the out-
put at the last moment and the input at the moment. The
calculation formula is as follows:

fi=oWr - [hi—1,x:]+ by) (1)

where 6 is the sigmoid activation function, Wy and by repre-
sent weights and biases, i;_1 represents the output of the last
time, and x; is the input at the moment.

The input gate is employed to update the state at the current
moment. The calculation process is expressed in (2), (3),
and (4). Where “tanh” is the hyperbolic tangent activation
function, it represents the current moment of the reserved
information, Ct and Ct are the current cell input and output
status.

ir = (W - [h—1, %]+ by) (2)
C; = tanh(W¢ - [h;_1, x:] + bc) 3
C=f*xC+irxC 4

The positive state of the cell is assigned to the current
output via the output gate. The output is calculated via (5)
and (6). Where o is the current output cell status, and A is
the current output value.

0y = oWy - [hi—1,x:] + Do) (5)
h; = o; * tanh(Cy) (6)
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BiLSTM+Attention obtains bidirectional semantic infor-
mation in a sentence via fusing a forward LSTM, a reverse
LSTM, and an attention mechanism, including an input layer,
an encoding layer, an LSTM layer, attention, and an out-
put layer. The input layer splits the sentence into several
words to complete the data input. The embedding layer imple-
ments vocabulary mapping to low latitude space LSTM layers
acquire high-level features from the forward and reverses
directions. The Attention layer is weighted by the posi-
tion weights to obtain the sentence vector. The output layer
completes relational classification based on sentence feature
vectors. The schematic diagram is described as shown in
FIGURE 2.

Output Layer
T
Attention Layer
1 t
Forward LSTM <« Reverse LSTM
1 t
Embedding Layer
T
Input Layer

FIGURE 2. BiLSTM+Attention model principle structure.

B. SPECIAL RELATIONSHIP COMPLEMENT

Companies usually keep many standardized result files in
welding production, guiding production and ensuring quality.
These files contain multiple attributes, and it is not easily
defined whether the attributes are related. Extracting rela-
tionships oriented towards valid attributes is positive for our
work. The neighborhood rough set-based association rule
model is proposed, which takes the field attributes in the data
as decision attributes and the remaining attributes as condi-
tional attributes, respectively. And complete attribute simpli-
fication and relationship extraction for welding production
data. The reduced attributes and the decision attributes form
an inference relationship. The specific workflow of the model
can be divided into four steps as follows:

(1) The information decision system S = (U, A, V, f)
is built separately for the field attributes in the data. Where
U is a non-empty finite set of objects called the theoretical
domain; A is a non-empty set of attributes that is the con-
catenation of conditional attributes C and decision attributes
D; V is the value domain; f is an information function that
meets Vx € U,a € A, f (x, a) € V,. Defining x; € U, the
neighborhood of x needs to satisfy (7).

3(x) = {xjlxi € U, Alxi, xj) < 8} @)
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(2) Lower approximation of computational information
decision system. The decision attribute D divides the argu-
ment domain U into N equivalence classes (X1, X>...Xy),
VB C A. The lower approximation of the decision attribute D
concerning subset B is calculated by (8) and (9).

N

NgD = JNpX; ®)
i=1

NgX = {x;16p(x) € X, x; € U} 9

(3) Reduction of attribute sets based on importance. The
dependence of the decision attribute D on the conditional
attribute B can be expressed as the lower approximation to
the upper theoretical domain of B, as in (10). Importance
can be understood as the degree of influence of a conditional
attribute on a decision attribute and is a vital reference for
attribute simplification. It is calculated as in (11). The reduced
set of attributes is represented in (12).

kp = yp(D) = %, Posg(D) = NgD
(10)
Sig(a, B, D) = yg(D) — yB—(p)(D) (11)
R = (b|Sig(a,B,D)> A, b eA) (12)

(4) Define the dataset P = RUD, and calculate the support
of the item set p in the dataset. The number of occurrences of
item set p in the dataset P as a proportion of the total dataset is
the support degree, as in (13). Items greater than a threshold
in the set of items are called frequent itemsets. For the set
that satisfies the condition of the frequent itemset, define r €
R,d € D, and r Ud = p, then the confidence of r and d is as
in (14). Relationships can be extracted from rules that exceed
the confidence threshold t, as in (15).

Support(p) = 2umP) (13)
uppor = —
PP num(P)
S rt
Confidence(d < r) = M 14
Support(r)
Rules(d < r) = {d < r|Confidence(d < r) > t}
(15)

C. EXPERIENCE RELATIONSHIP PROCESSING

The knowledge graph is a collection of entities and relations;
generally, the entities are linked one-to-one via the corre-
sponding relations. However, many relationships in weld-
ing manufacturing require many-to-many, many-to-one, and
linear mappings between entities. For example, “welding
method and groove form corresponding to the assembly gap,”
“development of welding process specification,” and “the
number of weld passes have a linear correlation with the weld
depth.” Many nodes need to be built to satisfy the knowledge
expression. The numerous scoped nodes reduce the knowl-
edge’s accuracy and increase the knowledge graph’s com-
plexity. Therefore, we construct the particular relationship
database and introduce relationship nodes to overcome the
proposed limitations.
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The relational database contains fundamental logical rela-
tions (greater than, less than, starts at, ends at, not equal
to, etc.), empirical relations (logic rules, empirical formulas,
etc.), and model relations (classification or regression models
based on actual engineering data, etc.). In addition, the rela-
tionship is called according to the unique key. The physical
form of arelational library can be seen as a collection of mul-
tiple interfaces. When knowledge search involves relational
nodes, we can obtain relational content based on key-value
pairs. The schematic structure is shown in FIGURE 3.

__________________________
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simple logical operations such
as “and”, “or”, “not”.
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FIGURE 3. Relationship processing schematic.

Ill. EXPERIMENTS

A. RELATIONSHIP SYSTEM CONSTRUCTION

Relationships are essential ties between properties of things
and connect entities to form domain knowledge networks
in the welding manufacturing knowledge system. In actual
production, relationships are often contained in unstruc-
tured documents, standardized production data, empirical for-
mulas, etc. Extracting domain relationships from different
structures is significant for domain knowledge system con-
struction and welding engineering applications. The relation-
ship extraction for practical welding production is divided
into three sub-tasks: unstructured data extraction, relationship
complementation, and experience relationships processing.
Relationship extraction and knowledge graph construction
are expressed in FIGURE 4.

Unstructured data extraction is the process of converting
unstructured data into standard relational triples. The rela-
tionships are obtained through data processing, word vec-
tor, and the relational model. The engineering data char-
acteristics are considered in the relationship extraction of
standardization result documents. The attribute dependency
relationship is established through attribute reduction, and
the standard triplet relationship between attribute values is
obtained through association rules. Empirical data and for-
mulas are collected into relational databases and associated
with knowledge maps through key-value pairs. In addition, a
knowledge map is constructed based on the acquired standard
triples.
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TABLE 1. Word vector training parameters.

Parameter Value Parameter Interpretation

vector_size 100

window 10

min_count 3
- value 5 to 3.

The dimensionality of the word vector. Select vector_size 100 according to corpus size.

Word vector context maximum distance. The selection window is 10 due to a long-distance association of data.

The minimum frequency of the word vector. Minor frequency specialized features affect subsequent work reduction default

workers 4 Select 4 threads to train the model based on hardware conditions.
sg 1 The 1 indicates the selection of the Skip-Gram model.
alpha 0.025  The initial step of the iteration.

» Extraction
‘ Splitting words H Word vectors o relationships
? extraction

Unstructured Sentence-level ot Results
documents processing

] ]
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relational extraction from empirical data.

+ Extraction of relationships from standardized result files relying on model fusion

neighborhood rough sets and association rules.

'
'

'

'

i

H + Establishing node mapping between relational databases and knowledge graphs to achieve <«
|

'

'

1 <---
'

'

'

* Unstructured document extraction is based on word embedding to obtain semantic
features in sentences and achieve relational classification by BILSTM+Attention model.

FIGURE 4. The process of relationship extraction and knowledge graph
construction.

B. DATA PROCESSING

In welding manufacturing, data exists mainly in unstructured,
semi-structured empirical data and standardized production
documents. In unstructured data relationship extraction, these
confusing and disordered data are divided into design, pro-
cess, production, inspection, and maintenance according to
manufacturing stages. Punctuation classification data is at the
sentence level and is manually checked to form the initial
standardized data.

In unstructured relation extraction tasks, relation deter-
mination requires reference to contextual semantic features.
However, most models cannot obtain semantic features
directly through entity characters. Welding terminology
related to welding design, process, production, inspection,
and maintenance is collected, and the sentence-level data is
segmented into words via the CRF model. Word embedding
methods are considered to convert characters to numeric vec-
tor features. We trained the words with the skip-gram model
of Word2vec and obtained the corresponding word vectors
to characterize the semantic features. In addition, we have
customized the dictionary of domain-specific terms to ensure
that essential terms are not separated. The training parameters
are shown in TABLE 1.

Standardized results documents and production data are
unique data resources organized into tabular form via fixed
tabs. In addition, label encoding is employed to convert
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character features to numeric features for standard-
ized result files. The normalized method avoids erro-
neous feature gradients caused by category and numerical
differences.

C. RESULTS FILE ATTRIBUTE SIMPLIFICATION

Welding process specifications (WPS) are essential doc-
uments for welding manufacturing and are used to sup-
port the task of extracting relationships from standardized
result files. The critical attributes that make up the WPS
include weld method, weld joint, weld groove, assembly
parameters, base material parameters, preheat, and other
information in the welding process design. We collected
standard WPS files for bogie welding fabrication of high-
speed trains. Selected welding position (Position), blunt edge
range (Blunt), assembly gap (Assembly), preheating tem-
perature (Preheat), and gas flow rate (Flow) as decision
attributes to complete the property reduction. The detailed
information is listed in TABLE 2. The conditional attributes
have 9 categories: weld method (Method), weld type (Type),
weld groove (Groove), the base material 1 (Base-1), the
base material 2 (Base-2), the thickness of base material 1
(Min-1, Max-1), and thickness of base material 2 (Min-2,
Max-2). Significance (Sig) and weights (Weight) characterize
the influence of conditional attributes on decision attributes.
As shown in TABLE 2, the invalid attribute’s significance and
weight are denoted as ““-,”” defined by a significance threshold
of 0.01.

D. MODEL TRAINING AND EVALUATION
We train models based on the trained word embedding in
the supervised condition to accomplish unstructured docu-
ment relationship extraction. The 1832 sentence-level data
related to welding manufacturing are divided into training,
validation, and test sets and contain five relationship cat-
egories (belong_to, reference, requirement, applicable_to,
unknown). The detailed information is shown in TABLE 3.
Furthermore, we run programs written via the python
programming language (version:3.7) in the TensorFlow
framework (version: 1.14.0).

Accuracy is the commonly used evaluation metric in most
conditions. However, in classification problems, the accuracy
calculation relies on large sample categories and has low

103093



IEEE Access

K. Guan et al.: Relationship Extraction and Processing for Knowledge Graph of Welding Manufacturing

TABLE 2. Property simplification results.

Position Flow Preheat Assembly Blunt
Attributes
Sig Weight Sig Weight Sig Weight Sig Weight Sig Weight
Method - - 0.0545 0.3158 0.0182 0.1818 - - 0.0182 0.0476
Type - - - - - - - - - -
Groove 0.1455 0.6957 - - 0.0182 0.1818 0.1000 0.5000 0.1273 0.3333
Base-1 - - 0.0545 0.3158 - - 0.0182 0.0909 0.0727 0.1905
Base-2 - - 0.0364 0.2105 - - - - 0.1091 0.2857
Min-1 - - - - - - - - 0.0182 0.0476
Max-1 0.0182 0.0870 - - 0.0182 0.1818 - - - -
Min-2 - - 0.0182 0.1053 - - 0.0182 0.0909 - -
Max-2 0.0455 0.2173 - - 0.0273 0.2727 0.0636 0.3182 - -
TABLE 3. Relationship classification information.

Categories Train Validation Test Total Example

belong_to 298 37 37 372 The welding position contains PA. (PA, belong_to, welding position)

reference 357 45 45 447 Bogie welding reference EN 15085. (Bogie welding, reference, EN 15085)
requirement 266 33 33 332 Welding grade CP CA requires defect grade B. (CP CA, requirement, defect grade B)
applicable_t 243 30 30 303 ISQ 17638:2016 applies to the magnetic.particle inspectiqn in th.e no_n—destmctive

o testing of welds. (ISO 17638:2016, applicable to, magnetic particle inspection)
unknown 302 38 38 378 ;{;:;éliitézgls:_ut);cannot be defined via belong_to, reference, requirement, and
Total 1466 183 183 1832

confidence for small sample categories due to different sam-
ple sizes. Hence, considering the effect of the sample category
employing Precision (P), Recall (R), and Fl-score (F) as
model evaluation metrics. We can calculate these indicators
according to True Positive (Both true and predicted cate-
gories are positive examples, TP), False Positive (The true
category is negative and the predicted category is positive,
FP), and True Negative (Both true and predicted categories
are negative examples, TN), and False Negative (The true
category is positive and the predicted category is negative,
FN). The calculation process is listed in (16) and (17). Macro-
averaging effectively avoids metric errors caused by cate-
gory imbalances and is obtained by calculating the arithmetic
mean of each metric for each category to improve the cred-
ibility of the metrics. The calculation process is shown in
(18) and (19).

TP TP
P = R = (16)
TP + FP TP + FN
2x P xR
F=—— an
P+ R
1 n 1 n
Macro P = — ZPi, Macro_R = - ZRi (18)
n n
i=1 i=1
1 n
Macro_F = — > Fi (19)

i=1
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IV. RESULTS AND DISCUSSION

A. RELATIONSHIP EXTRACTION RESULTS

Unstructured data relationships in weld manufacturing are
extracted, and the extracted models are verified by the test
set with Precision, Recall, and F1-score metrics. Considering
the effect of different relationship categories on the accuracy,
we calculate the macro averages of the corresponding indica-
tors. The actual result data are listed in TABLE 4.

As shown in TABLE 4, BiLSTM+Attention achieves
better macro-average metrics results than CR-CNN. For
BiLSTM+Attention, the Fl-score of the “belong_to” cate-
gory is the highest, i.e., 0.912, while the category reference
Fl-score is the lowest, i.e., 0.688. The high score of cate-
gory ““belong_to”” may be due to the independent entities that
make the sentence relationship feature clear, such as “CP Cl1
belong_to the weld quality level”’. The low scores in category
reference may be because most target entities are composed
of multiple independent entities, making the sentence rela-
tionship characteristics ambiguous, such as “Arc bolt weld-
ing of metallic materials reference ENISO14555”°. Hence,
enhanced entity features may positively affect the extraction
of welding manufacturing relationships.

B. RELATIONSHIP COMPLEMENT RESULTS

The 110 actual production welding procedures were collected
as a sample to support the validation of the model. The sample
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TABLE 4. Models results and baseline.

Models Metrics belong to  reference requirement applicable_to unknown Macro-average

Precision 0.838 0.568 0.806 0.857 0.872 0.788

BiLSTM-+Attention Recall 1.000 0.875 0.625 0.878 0.850 0.846

F1-score 0912 0.688 0.704 0.867 0.861 0.816

Precision 0.912 0.704 0.670 0.818 0.850 0.791

CR-CNN Recall 1.000 0.792 0.763 0.878 0.638 0.814

F1-score 0.954 0.745 0.713 0.847 0.729 0.802

TABLE 5. Data on conditional attributes.
1D Method  Type Groove Base-1 Base-2 lz/rl;rrlr;)l 1\(/1“?;)1 lz/rl;lrrlr_j 1\(/1“;:;)2

1 t135 BW HY S355J2G3-EN10025 S355J2W-EN10025 35 35 14 14
2 t135 BW HY S355J2G3-EN10025 S355J2W-EN10025 30 30 18 18
3 t135 BW HY+a S355J2W-EN10025 S355J2W-EN10025 14 14 12 18
4 t135 BW HY+a S355J2W-EN10025 S355J2G3-EN10025 14 14 35 35
5 t135 BW HY+a S355J2W-EN10025 S355J2W-EN10025 14 18 12 12
6 t135 BW HY+a S355J2G3-EN10025 S355J2W-EN10025 20 20 14 14
7 t135 FW a S35512W+N-EN10025-5 S355J2W+N-EN10025-5 9 9 14 14
8 t135 FW a S35512W+N-EN10025-5 S355J2W+N-EN10025-5 10 14 12 18
110 v135 BW unv S355J2H-EN10210 S355J2H -EN 10210 15 15 15 15

attributes were divided into conditional attributes (Method,
Type, Groove, Base-1, Base-2, Min-1, Max-1, Min-2, Max-
2) and decision attributes (Position, Assembly, Blunt, Flow,
Preheat). Conditional attributes can be considered known
information, and decision attributes can be considered target
information. The detailed data information is presented in
TABLE 5 and TABLE 6.

As shown in TABLE 5 and TABLE 6, 9 conditional
attributes were selected to support the relationship acquisition
of 5 decision attributes. Conditional attributes have positive or
negative information gain for each decision attribute. There-
fore, the neighborhood rough set is employed to approximate
the useless attributes to improve the accuracy of the attribute
relationships. Moreover, this reduced attribute forms an infer-
ence relationship with the decision attribute. The attribute
simplification results are presented in TABLE 3, and the anal-
ysis of the results can be summarized as follows:

(1) For a certain structure and assembly conditions of weld-
ing, category Groove contains important structural informa-
tion, such as V-bevels are generally butt welds. Under certain
conditions, it should be preferred to the welding position PA.
Therefore, category Groove has extensive information gained
for selecting the weld position.

(2) Suitable welding assembly gap is one of the critical
factors in ensuring welding quality, which significantly corre-
lates with the geometric form of the weld. Categories Groove,
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Max-2, and Max-1 contain important geometric information
that positively impacts the selection of attribute Assembly.

(3) The blunt edge refers to the part without a groove
in the thickness direction, which is used to prevent weld-
ing penetration. Groove and partial plate thickness infor-
mation are considered factors affecting the selection of
blunt edges. And Category Method, Base-1, and Base-2
also influence the choice of a blunt edge due to different
base materials and welding methods with different melting
depths.

(4) The choice of welding gas flow rate directly affects the
quality of welding production. In practice, the gas flow rate
is related to the welding method, the material of the welded
part, and some plate thickness information. Therefore, the
simplification results have credibility.

(5) Preheating before welding effectively controls weld-
ing quality, incredibly thick plate welding. Maximum plate
thickness information positively influences the selection of
preheating temperature. In addition, different bevel geome-
tries and heat flow densities will result in different preheating,
which makes property Method and property Groove influence
property Preheat.

The simplification results are highly similar to the actual
production experience based on the above information.
Therefore, we extracted the relationship between different
decision attribute values and conditional attribute values
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TABLE 6. Data on decision attributes.

Assembly

Blunt Flow

D Position (mm) (mm) (/min) Preheat
1 PA 0-1 2 10-15 150°C
2 PA 0-1 2 10-15 150°C
3 PA+PB 2 0-1 10-15 /
4 PA+PB 2 0-1 10-15 150°C
5 PA+PB 0-1 0 10-15 /
6 PA 0-1 0.5-1 10-15 /
7 PB 0-1 0 10-15 /
8 PB 0-1 0 10-15 /
110 PA 0-0.5 2 15-20 /
TABLE 7. The results of rule and relationship extraction.
Categories Rules Relationships Confidence
{'HY+a'}=>{'"PA+PB'} (HY+a, requirement, PA+PB) 0.9032
{'HY'}=>{'PA"} (HY, requirement, PA) 1.0000
Position {'a'}=>{'PB'} (a, requirement, PB) 1.0000
{'Max-2: 18','HY+a'}=>{'PA+PB'} (Max-2: 18 and HY+a, requirement, PA+PB) 0.9333
{'Base-1: S355J2W+N-EN10025-5'}=>{'0-1'"} (S355J2W+N-EN10025-5, requirement, 0-1) 0.9200
Assembly {'Min-2: 14'})=>{'0-1" (Min-2: 14, requirement, 0-1) 0.9286
‘a', 't135'}=>{'0"} (a and t135, requirement, 0) 1.0000
Blunt {'a"}=>{'0"} (a, requirement, 0) 1.0000
{'Base-2: Q345E-GB/T 1591'}=>{'15-20"} (Q345E-GB/T 1591, requirement, 15-20) 0.9260
{'Base-2: Q345E-GB/T 1591', 't135"}=>{'15-20'} (Q345E-GB/T 1591 and t135, requirement, 15-20) 0.9260
Flow {'Base-2: S355]2W+N-EN10025-5", 't135'} =>{"'10-15'} (S355]2W+N-EN10025-5 and t135, requirement, 10-15) 0.9583
{'Min-2: 14','t135'}=>{'10-15'} (Min-2: 14 and t135, requirement, 10-15) 1.0000
{'Max-2: 12'}=>{"/"} (Max-2: 12, requirement, /) 0.9333
{'Max-1: 10"}=>{"/"} (Max-1: 10, requirement, /) 0.9375
Preheat {'Max-2: 12, 't135"=>{'/ (Max-2: 12 and t135, requirement, /) 0.9286
{'t135', 'Max-1: 10"} =>{"/"} (t135 and Max-1: 10, requirement, /) 0.9333

based on the simplification results via association rules. The
extracted relations are described in the form of a triplet whose
easy-to-implement knowledge graph embedding. Detailed
rules and related information are listed in TABLE 7, where
nodes with the same value are considered the same.

TABLE 7 summarizes the relationship data extracted from
the engineering documents and lists the extraction results’
corresponding rules and confidence levels. It can be seen from
the results that the extracted relationship has high quality
and reliability, and the accompanying confidence is higher
than 0.9. A possible explanation is that deleting redundant
attributes will reduce the negative gain of data on the extrac-
tion results. Another possible explanation we found is a
strong correlation between the effective attribute and the
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result attribute. Therefore, we think the proposed method
can effectively handle the relationship extraction of many
redundant data and provide a reference for engineering data
processing similar structures.

C. KNOWLEDGE GRAPH EMBEDDING

A knowledge graph is a networked form of data storage that
positively impacts transforming knowledge and relationships
into practical engineering applications. Relationships as an
essential factor in knowledge graph construction are focused
on in this paper. The relationship extraction in welding man-
ufacturing differs from traditional extraction methods due
to the complexity and specialization of engineering data.
This study divided the relationship extraction task into three
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K. Guan et al.: Relationship Extraction and Processing for Knowledge Graph of Welding Manufacturing

IEEE Access

L-R Database ~ 4-

i 1
1| KEY -KEY !
1 VaLUE -VALUE H
|

|

|

I

]

'
'
'
: REBASE
: - Logical Relationship Database r = = = =
L |~ Experienced Relationship Database

- Model Relationship Database = = = =,
'
'
Model Relationship Database <«
-KEY
-VALUE

FIGURE 5. Knowledge graph of welding process specification.

subtasks: unstructured data extraction, relationship comple-
mentation, and experience relationships processing. We have
employed and trained the BiLSTM+Attention model for
such relationship extraction. Production result documents
such as welding plans and welding process specifications
contain much relational knowledge, which is also unique
to welding products in data. Neighborhood rough set-based
association rules are proposed to transform the result file into
a structural relationship of the form (entity, relation, entity).
In addition, relational databases are constructed to support
knowledge graph embedding and knowledge reasoning of
empirical relationships.

The data collected in the welding production of high-speed
train bogies are used for the research of relationship extrac-
tion. The knowledge graph based on WPS data is described
in FIGURE 5. Relationships in unstructured data and result
files are characterized via the entity node-relationship-entity
node form. Empirical relationships are characterized through
the entity node-relationship node-entity node form, and the
relationship nodes correspond to the content of the associated
relationship base.

As shown in FIGURE 5, the left side is the empirical rela-
tionship process; the right side is the knowledge graph about
welding process specifications. The results could be applied
to solve complex problems in welding manufacturing, such
as knowledge retrieval, intelligent question and answer, and
decision-making.

(1) Knowledge retrieval. For example, we only enter the
weld position, and this correlation and node can be obtained.
Based on the search results, we can also obtain valid infor-
mation such as the weld position containing PA, PB, and
PA+PB, an element of the welding process specifications.

(2) Intelligent question and answer. For example, for a
question: What is the preheating temperature for a weld-
ing method of t135 and a maximum plate thickness of
12 mm for base material 2? The answer (Preheat temper-
ature of */”’) can be obtained according to the knowledge
graph.

(3) Decision-making. For example, for a joint with a
bevel “V” and a plate thickness of 12, a 3-layer weld layer
can be acquired based on the corresponding empirical rela-
tionship. Furthermore, welding positions, assembly gaps,
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blunt edge preheating, etc., can also be obtained through the
knowledge graph, which can be used to make decisions on
welding process design.

V. CONCLUSION

This work describes methods for extracting and process-
ing relationships under different data types and structures in
welding manufacturing.

(1) Unstructured data relationships are extracted by
employing the BiLSTM+-Attention model. This model is
trained based on pre-trained word vectors under supervised
conditions and has good Macro-average metrics (0.788 for
Precision, 0.846 for Recall, and 0.816 for F1-score).

(i1) The actual engineering file relationships are extracted
through a neighborhood rough set-based association rule
model. Several relationship rules are obtained from 110 engi-
neering data and are consistent with engineering experience.

(iii) Relational databases and relational nodes are intro-
duced to implement knowledge graph embeddings of empir-
ical relationships with positive engineering application
effects.

The proposed method can complete the extraction of weld-
ing relations, especially suitable for processing a large num-
ber of redundant data. The domain knowledge graph based
on the extracted relationship can support the solution of
complex engineering problems such as domain knowledge
retrieval, intelligent question answering, and expert decision-
making. Furthermore, our research may extend data appli-
cability, improve model accuracy, and efficient engineering
applications based on obtained results.
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