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ABSTRACT Acquiring welding domain relationships and forming a knowledge graph can positively impact
complex engineering problem solving and intelligent manufacturing applications. However, relationships
are lacking in the welding domain. The relationship extraction and processing solution are designed to
handle data with different characteristics in welding fabrication. The BiLSTM+Attention and CR-CNN
models are employed to extract relations in unstructured documents. The neighborhood rough set-based
association rule model is proposed for project-specific documents to accomplish relationship acquisition,
in which invalid attributes are removed via neighborhood rough sets and attribute values are related via
association rules. In addition, the knowledge graph is built based on extracted relationships, and unique
empirical relationships are handled by introducing relational nodes and databases. The results show that
BiLSTM+Attention gets a good score with Macro-average metrics (0.788 for Precision, 0.846 for Recall,
and 0.816 for F1-score). The relational rules obtained via the proposed model are consistent with the
production experience. The constructed knowledge graph effectively handles empirical relationships while
positively impacting knowledge retrieval, intelligent question and answer, and decision-making for complex
engineering problems.
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INDEX TERMS Welding manufacturing, relationship extraction, neighborhood rough sets, association rule,
knowledge graph.

I. INTRODUCTION17

Data is a critical factor in domain operation and develop-18

ment, and data-driven has gradually become an essential19

means to solve complex domain problems [1], [2]. In recent20

decades, data-based welding manufacturing has focused on21

meeting the development requirements for high quality and22

efficiency. Methods such as case-based [3] retrieval, rule-23

based reasoning [4], and fuzzy expert systems [5] are applied24

to welding process design, welding material selection, and25

production process planning. Although these intelligent data-26

based methods [6], [7] have become an effective means to27

solve engineering problems, the challenge of complex knowl-28

edge representation and relationship construction remains29
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unresolved. The knowledge graph is considered to address the 30

proposed limitations due to its compatibility in the knowledge 31

representation. Relationship extraction is an indispensable 32

step in knowledge graph construction, and it is an essential 33

medium for the logical composition of knowledge and linking 34

of domain entities. However, the specialized and complex 35

nature of the domain relationships makes relationship extrac- 36

tion challenging in manufacturing, especially in welding 37

fabrication. 38

Relational extraction methods are generally classified 39

as template-based [8], supervised-based [9], and weakly 40

supervised-based relationship extraction [10]. The template- 41

based approach uses pre-defined relationship templates by 42

domain experts and then matches relationships from the 43

text. This method has high applicability in a small range 44

of texts but relies on extensive manual work making it less 45
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portable. Supervised learning models are used for relation-46

ship extraction based on pre-labeled data to acquire many47

textual relationships. The method is also divided into pipeline48

operations [11], [12] and joint operations [13], considering49

the training process of the entity and relation. Entities and50

relationships are trained separately in a pipeline approach,51

such as the CR-CNN [14] and Attention CNNs [15] mod-52

els. Joint extraction methods consider entity and relationship53

model training to combine entity and relationship extraction.54

Miwa and Bansal [16] propose an end-to-end neural model to55

extract entities and their relationships. Word sequences and56

dependency tree substructure information are captured via57

LSTM-RNN. Such methods require a large amount of anno-58

tated data before training. Weakly supervised approaches59

have been proposed to address the limitation of insuffi-60

cient corpus data. Their model training is achieved with a61

small number of labeled samples, such as the APCNNs [17]62

model and the NELL system [18]. However, most research63

focuses on enhancing models and techniques on non-domain64

data or biomedical [19] domains for relationship extraction.65

Relationships in the manufacturing domain are neglected,66

especially in weldingmanufacturing. Several existential chal-67

lenges: (i) Almost no relevant studies concentrate on extract-68

ing weld manufacturing relationships, resulting in a lack of69

research data. (ii) Relation extraction in weld-specific files70

is challenging because the association discovery between71

attributes is hard. (iii) Relationship handling for engineering72

applications needs to be explored. Automatic acquisition of73

basic relations, refinement of specific relations, and process-74

ing of empirical relations are the significant challenges of75

relation extraction in the welding domain.76

In this study, we aim to support the solution of com-77

plex problems in welding manufacturing via extracting data78

relationships, reducing the limitations of knowledge repre-79

sentation, and building a relational network. However, the80

challenges of missing data, domain specificity, and prac-81

tical engineering applications must be solved. Therefore,82

we design a scheme that integrates neural networks, attribute83

reduction, and association rules and construct a knowl-84

edge graph for engineering applications. Our approach has85

the following features: (i) Professionalism and reference.86

Oriented to practical welding production, we dig deeper into87

the domain data characteristics by extracting unique relations88

and processing empirical relations. In addition, the method89

we describe has a substantial reference value for domain rela-90

tion extraction. (ii) Covering multiple types of data. The data91

includes the underlying unstructured files, structured result92

files, and empirical data. (iii) High engineering application93

value. Industry-specific method design with relationships94

embedded in the knowledge graph forms a knowledge system95

in the welding field. Data support is provided for developing96

intelligent technologies and engineering problem-solving in97

the industry.98

We divided the relationship extraction task into three99

subtasks: general relationship extraction, engineered doc-100

ument relationship extraction, and empirical relationship101

processing, based on several challenges in welding rela- 102

tionship extraction. Models BiLSTM+Attention [20] and 103

CR-CNN are employed to extract relationships from unstruc- 104

tured documents such as welding standards, production 105

guidance documents, design guidelines, etc. The actual pro- 106

duction knowledge text is trained in advance as word vec- 107

tors to support the training of the relational extraction model 108

through the word2vec [21] method. We propose a neigh- 109

borhood rough set-based association model for engineered 110

documents to extract special relations from the normalized 111

result file. Valid attribute links are determined based on 112

neighborhood rough sets [22], and relationships between 113

attribute values are extracted based on association rules [23]. 114

In addition, empirical formulas and models are collected 115

in a relational database, and the knowledge graph embed- 116

ding is implemented using key-value pairs. Actual data 117

from the production of welded bogies for high-speed trains 118

is collated to support model validation. The results show 119

that model BiLSTM+Attention has good scores (Precision: 120

0.788, Recall: 0.846, F1-score: 0.816) in our data with 121

Macro-average evaluation metrics. Special relations in real 122

production are extracted from the 110 result file data via 123

the proposed special relation extraction model and have high 124

consistency with experience. Empirical data and extracted 125

relationships are embedded in a domain knowledge graph 126

to support complex problem-solving and important decision- 127

making in welding manufacturing. The main contributions of 128

this paper are as follows: 129

(i) We implemented the relationship extraction of unstruc- 130

tured documents oriented to the lack of knowledge in welding 131

manufacturing. The baseline for welding relationship extrac- 132

tion was listed on our data to support the relevant studies. 133

(ii) A neighborhood rough set-based association rule 134

model for welding data structure characteristics is pro- 135

posed to extract the relationships in the attributes and 136

attribute values from the actual welded structured documents, 137

respectively. 138

(iii) Empirical relational databases and extracted relation- 139

ships are embedded in domain knowledge graphs to sup- 140

port complex problem-solving and critical decision-making 141

in welding manufacturing. 142

The aim is to extract relations and build a knowledge graph 143

for welding manufacturing data. For this reason, we designed 144

three kinds of relationship extraction and processing methods 145

for different data forms. In addition, the experimental results 146

were obtained via data processing, attribute restoration, and 147

relationshipmodel construction.We predict that our work can 148

support the digital construction ofweldingmanufacturing and 149

the data requirements of intelligent systems. 150

II. METHODS 151

A. RELATIONSHIP EXTRACTION 152

Unstructured data such as welding standards, production 153

requirements, and guidance documents contain essential 154

knowledge to ensure weld fabrication. Automatic acquisi- 155

tion of relationships benefits welding knowledge system 156
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construction and automated production. Relationships are157

carried out in sentences expressed with natural language.158

Extracting dependency features between word sequences159

is the key to extracting relationships. BiLSTM+Attention160

is employed for sentence-level relation extraction due161

to its good bidirectional semantic feature acquisition perfor-162

mance. Long short-term memory (LSTM) [24] is an essential163

element of BiLSTM+Attention construction which contains164

three vital structures: forget gate, input gate, and output gate.165

This model calculates the current output and cell state via the166

output and cell state at the previous time. The behavior of this167

model is shown in FIGURE 1.168

FIGURE 1. LSTM cell structure diagram.

The function of the forget gate is to discard negative infor-169

mation in the cell state. The sigmoid activation function ( )170

defines whether the information is retained based on the out-171

put at the last moment and the input at the moment. The172

calculation formula is as follows:173

ft = σ (Wf · [ht−1, xt ]+ bf ) (1)174

where is the sigmoid activation function, Wf and bf repre-175

sent weights and biases, ht−1 represents the output of the last176

time, and xt is the input at the moment.177

The input gate is employed to update the state at the current178

moment. The calculation process is expressed in (2), (3),179

and (4). Where ‘‘tanh’’ is the hyperbolic tangent activation180

function, it represents the current moment of the reserved181

information, C̃ t and Ct are the current cell input and output182

status.183

it = σ (Wi · [ht−1, xt ]+ bi) (2)184

C̃t = tanh(WC · [ht−1, xt ]+ bC ) (3)185

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)186

The positive state of the cell is assigned to the current187

output via the output gate. The output is calculated via (5)188

and (6). Where ot is the current output cell status, and ht is189

the current output value.190

ot = σ (Wo · [ht−1, xt ]+ bo) (5)191

ht = ot ∗ tanh(Ct ) (6)192

BiLSTM+Attention obtains bidirectional semantic infor- 193

mation in a sentence via fusing a forward LSTM, a reverse 194

LSTM, and an attention mechanism, including an input layer, 195

an encoding layer, an LSTM layer, attention, and an out- 196

put layer. The input layer splits the sentence into several 197

words to complete the data input. The embedding layer imple- 198

ments vocabularymapping to low latitude space LSTM layers 199

acquire high-level features from the forward and reverses 200

directions. The Attention layer is weighted by the posi- 201

tion weights to obtain the sentence vector. The output layer 202

completes relational classification based on sentence feature 203

vectors. The schematic diagram is described as shown in 204

FIGURE 2. 205

FIGURE 2. BiLSTM+Attention model principle structure.

B. SPECIAL RELATIONSHIP COMPLEMENT 206

Companies usually keep many standardized result files in 207

welding production, guiding production and ensuring quality. 208

These files contain multiple attributes, and it is not easily 209

defined whether the attributes are related. Extracting rela- 210

tionships oriented towards valid attributes is positive for our 211

work. The neighborhood rough set-based association rule 212

model is proposed, which takes the field attributes in the data 213

as decision attributes and the remaining attributes as condi- 214

tional attributes, respectively. And complete attribute simpli- 215

fication and relationship extraction for welding production 216

data. The reduced attributes and the decision attributes form 217

an inference relationship. The specific workflow of the model 218

can be divided into four steps as follows: 219

(1) The information decision system S = (U , A, V , f ) 220

is built separately for the field attributes in the data. Where 221

U is a non-empty finite set of objects called the theoretical 222

domain; A is a non-empty set of attributes that is the con- 223

catenation of conditional attributes C and decision attributes 224

D; V is the value domain; f is an information function that 225

meets ∀x ∈ U , a ∈ A, f (x, a) ∈ Va. Defining xi ∈ U , the 226

neighborhood of x needs to satisfy (7). 227

δ(xi) = {xj |xi ∈ U ,1(xi, xj) ≤ δ} (7) 228
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(2) Lower approximation of computational information229

decision system. The decision attribute D divides the argu-230

ment domain U into N equivalence classes (X1, X2 . . .XN ),231

∀B ⊆ A. The lower approximation of the decision attribute D232

concerning subset B is calculated by (8) and (9).233

NBD =
N⋃
i=1

NBXi (8)234

NBX = {xi |δB(x) ⊆ X , xi ∈ U} (9)235

(3) Reduction of attribute sets based on importance. The236

dependence of the decision attribute D on the conditional237

attribute B can be expressed as the lower approximation to238

the upper theoretical domain of B, as in (10). Importance239

can be understood as the degree of influence of a conditional240

attribute on a decision attribute and is a vital reference for241

attribute simplification. It is calculated as in (11). The reduced242

set of attributes is represented in (12).243

kD = γB(D) =
|PosB(D)|
|U |

,PosB(D) = NBD244

(10)245

Sig(a,B,D) = γB(D)− γB−{b}(D) (11)246

R = {b |Sig(a,B,D) ≥ 1, b ∈ A } (12)247

(4) Define the dataset P = R∪D, and calculate the support248

of the item set p in the dataset. The number of occurrences of249

item set p in the dataset P as a proportion of the total dataset is250

the support degree, as in (13). Items greater than a threshold251

in the set of items are called frequent itemsets. For the set252

that satisfies the condition of the frequent itemset, define r ∈253

R, d ∈ D, and r ∪ d = p, then the confidence of r and d is as254

in (14). Relationships can be extracted from rules that exceed255

the confidence threshold t, as in (15).256

Support(p) =
num(p)
num(P)

(13)257

Confidence(d ← r) =
Support(p)
Support(r)

(14)258

Rules(d ← r) = {d ← r|Confidence(d ← r) > t}259

(15)260

C. EXPERIENCE RELATIONSHIP PROCESSING261

The knowledge graph is a collection of entities and relations;262

generally, the entities are linked one-to-one via the corre-263

sponding relations. However, many relationships in weld-264

ing manufacturing require many-to-many, many-to-one, and265

linear mappings between entities. For example, ‘‘welding266

method and groove form corresponding to the assembly gap,’’267

‘‘development of welding process specification,’’ and ‘‘the268

number of weld passes have a linear correlation with the weld269

depth.’’ Many nodes need to be built to satisfy the knowledge270

expression. The numerous scoped nodes reduce the knowl-271

edge’s accuracy and increase the knowledge graph’s com-272

plexity. Therefore, we construct the particular relationship273

database and introduce relationship nodes to overcome the274

proposed limitations.275

The relational database contains fundamental logical rela- 276

tions (greater than, less than, starts at, ends at, not equal 277

to, etc.), empirical relations (logic rules, empirical formulas, 278

etc.), and model relations (classification or regression models 279

based on actual engineering data, etc.). In addition, the rela- 280

tionship is called according to the unique key. The physical 281

form of a relational library can be seen as a collection of mul- 282

tiple interfaces. When knowledge search involves relational 283

nodes, we can obtain relational content based on key-value 284

pairs. The schematic structure is shown in FIGURE 3. 285

FIGURE 3. Relationship processing schematic.

III. EXPERIMENTS 286

A. RELATIONSHIP SYSTEM CONSTRUCTION 287

Relationships are essential ties between properties of things 288

and connect entities to form domain knowledge networks 289

in the welding manufacturing knowledge system. In actual 290

production, relationships are often contained in unstruc- 291

tured documents, standardized production data, empirical for- 292

mulas, etc. Extracting domain relationships from different 293

structures is significant for domain knowledge system con- 294

struction and welding engineering applications. The relation- 295

ship extraction for practical welding production is divided 296

into three sub-tasks: unstructured data extraction, relationship 297

complementation, and experience relationships processing. 298

Relationship extraction and knowledge graph construction 299

are expressed in FIGURE 4. 300

Unstructured data extraction is the process of converting 301

unstructured data into standard relational triples. The rela- 302

tionships are obtained through data processing, word vec- 303

tor, and the relational model. The engineering data char- 304

acteristics are considered in the relationship extraction of 305

standardization result documents. The attribute dependency 306

relationship is established through attribute reduction, and 307

the standard triplet relationship between attribute values is 308

obtained through association rules. Empirical data and for- 309

mulas are collected into relational databases and associated 310

with knowledge maps through key-value pairs. In addition, a 311

knowledge map is constructed based on the acquired standard 312

triples. 313
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TABLE 1. Word vector training parameters.

FIGURE 4. The process of relationship extraction and knowledge graph
construction.

B. DATA PROCESSING314

In welding manufacturing, data exists mainly in unstructured,315

semi-structured empirical data and standardized production316

documents. In unstructured data relationship extraction, these317

confusing and disordered data are divided into design, pro-318

cess, production, inspection, and maintenance according to319

manufacturing stages. Punctuation classification data is at the320

sentence level and is manually checked to form the initial321

standardized data.322

In unstructured relation extraction tasks, relation deter-323

mination requires reference to contextual semantic features.324

However, most models cannot obtain semantic features325

directly through entity characters. Welding terminology326

related to welding design, process, production, inspection,327

and maintenance is collected, and the sentence-level data is328

segmented into words via the CRF model. Word embedding329

methods are considered to convert characters to numeric vec-330

tor features. We trained the words with the skip-gram model331

of Word2vec and obtained the corresponding word vectors332

to characterize the semantic features. In addition, we have333

customized the dictionary of domain-specific terms to ensure334

that essential terms are not separated. The training parameters335

are shown in TABLE 1.336

Standardized results documents and production data are337

unique data resources organized into tabular form via fixed338

tabs. In addition, label encoding is employed to convert339

character features to numeric features for standard- 340

ized result files. The normalized method avoids erro- 341

neous feature gradients caused by category and numerical 342

differences. 343

C. RESULTS FILE ATTRIBUTE SIMPLIFICATION 344

Welding process specifications (WPS) are essential doc- 345

uments for welding manufacturing and are used to sup- 346

port the task of extracting relationships from standardized 347

result files. The critical attributes that make up the WPS 348

include weld method, weld joint, weld groove, assembly 349

parameters, base material parameters, preheat, and other 350

information in the welding process design. We collected 351

standard WPS files for bogie welding fabrication of high- 352

speed trains. Selected welding position (Position), blunt edge 353

range (Blunt), assembly gap (Assembly), preheating tem- 354

perature (Preheat), and gas flow rate (Flow) as decision 355

attributes to complete the property reduction. The detailed 356

information is listed in TABLE 2. The conditional attributes 357

have 9 categories: weld method (Method), weld type (Type), 358

weld groove (Groove), the base material 1 (Base-1), the 359

base material 2 (Base-2), the thickness of base material 1 360

(Min-1, Max-1), and thickness of base material 2 (Min-2, 361

Max-2). Significance (Sig) andweights (Weight) characterize 362

the influence of conditional attributes on decision attributes. 363

As shown in TABLE 2, the invalid attribute’s significance and 364

weight are denoted as ‘‘-,’’ defined by a significance threshold 365

of 0.01. 366

D. MODEL TRAINING AND EVALUATION 367

We train models based on the trained word embedding in 368

the supervised condition to accomplish unstructured docu- 369

ment relationship extraction. The 1832 sentence-level data 370

related to welding manufacturing are divided into training, 371

validation, and test sets and contain five relationship cat- 372

egories (belong_to, reference, requirement, applicable_to, 373

unknown). The detailed information is shown in TABLE 3. 374

Furthermore, we run programs written via the python 375

programming language (version:3.7) in the TensorFlow 376

framework (version: 1.14.0). 377

Accuracy is the commonly used evaluation metric in most 378

conditions. However, in classification problems, the accuracy 379

calculation relies on large sample categories and has low 380
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TABLE 2. Property simplification results.

TABLE 3. Relationship classification information.

confidence for small sample categories due to different sam-381

ple sizes. Hence, considering the effect of the sample category382

employing Precision (P), Recall (R), and F1-score (F) as383

model evaluation metrics. We can calculate these indicators384

according to True Positive (Both true and predicted cate-385

gories are positive examples, TP), False Positive (The true386

category is negative and the predicted category is positive,387

FP), and True Negative (Both true and predicted categories388

are negative examples, TN), and False Negative (The true389

category is positive and the predicted category is negative,390

FN). The calculation process is listed in (16) and (17).Macro-391

averaging effectively avoids metric errors caused by cate-392

gory imbalances and is obtained by calculating the arithmetic393

mean of each metric for each category to improve the cred-394

ibility of the metrics. The calculation process is shown in395

(18) and (19).396

P =
TP

TP+ FP
,R =

TP
TP+ FN

(16)397

F =
2× P× R
P+ R

(17)398

Macro_P =
1
n

n∑
i=1

Pi,Macro_R =
1
n

n∑
i=1

Ri (18)399

Macro_F =
1
n

n∑
i=1

Fi (19)400

IV. RESULTS AND DISCUSSION 401

A. RELATIONSHIP EXTRACTION RESULTS 402

Unstructured data relationships in weld manufacturing are 403

extracted, and the extracted models are verified by the test 404

set with Precision, Recall, and F1-score metrics. Considering 405

the effect of different relationship categories on the accuracy, 406

we calculate the macro averages of the corresponding indica- 407

tors. The actual result data are listed in TABLE 4. 408

As shown in TABLE 4, BiLSTM+Attention achieves 409

better macro-average metrics results than CR-CNN. For 410

BiLSTM+Attention, the F1-score of the ‘‘belong_to’’ cate- 411

gory is the highest, i.e., 0.912, while the category reference 412

F1-score is the lowest, i.e., 0.688. The high score of cate- 413

gory ‘‘belong_to’’ may be due to the independent entities that 414

make the sentence relationship feature clear, such as ‘‘CP C1 415

belong_to the weld quality level’’. The low scores in category 416

reference may be because most target entities are composed 417

of multiple independent entities, making the sentence rela- 418

tionship characteristics ambiguous, such as ‘‘Arc bolt weld- 419

ing of metallic materials reference ENISO14555’’. Hence, 420

enhanced entity features may positively affect the extraction 421

of welding manufacturing relationships. 422

B. RELATIONSHIP COMPLEMENT RESULTS 423

The 110 actual production welding procedures were collected 424

as a sample to support the validation of themodel. The sample 425
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TABLE 4. Models results and baseline.

TABLE 5. Data on conditional attributes.

attributes were divided into conditional attributes (Method,426

Type, Groove, Base-1, Base-2, Min-1, Max-1, Min-2, Max-427

2) and decision attributes (Position, Assembly, Blunt, Flow,428

Preheat). Conditional attributes can be considered known429

information, and decision attributes can be considered target430

information. The detailed data information is presented in431

TABLE 5 and TABLE 6.432

As shown in TABLE 5 and TABLE 6, 9 conditional433

attributes were selected to support the relationship acquisition434

of 5 decision attributes. Conditional attributes have positive or435

negative information gain for each decision attribute. There-436

fore, the neighborhood rough set is employed to approximate437

the useless attributes to improve the accuracy of the attribute438

relationships. Moreover, this reduced attribute forms an infer-439

ence relationship with the decision attribute. The attribute440

simplification results are presented in TABLE 3, and the anal-441

ysis of the results can be summarized as follows:442

(1) For a certain structure and assembly conditions of weld-443

ing, category Groove contains important structural informa-444

tion, such as V-bevels are generally butt welds. Under certain445

conditions, it should be preferred to the welding position PA.446

Therefore, category Groove has extensive information gained447

for selecting the weld position.448

(2) Suitable welding assembly gap is one of the critical449

factors in ensuring welding quality, which significantly corre-450

lates with the geometric form of the weld. Categories Groove,451

Max-2, and Max-1 contain important geometric information 452

that positively impacts the selection of attribute Assembly. 453

(3) The blunt edge refers to the part without a groove 454

in the thickness direction, which is used to prevent weld- 455

ing penetration. Groove and partial plate thickness infor- 456

mation are considered factors affecting the selection of 457

blunt edges. And Category Method, Base-1, and Base-2 458

also influence the choice of a blunt edge due to different 459

base materials and welding methods with different melting 460

depths. 461

(4) The choice of welding gas flow rate directly affects the 462

quality of welding production. In practice, the gas flow rate 463

is related to the welding method, the material of the welded 464

part, and some plate thickness information. Therefore, the 465

simplification results have credibility. 466

(5) Preheating before welding effectively controls weld- 467

ing quality, incredibly thick plate welding. Maximum plate 468

thickness information positively influences the selection of 469

preheating temperature. In addition, different bevel geome- 470

tries and heat flow densities will result in different preheating, 471

whichmakes propertyMethod and property Groove influence 472

property Preheat. 473

The simplification results are highly similar to the actual 474

production experience based on the above information. 475

Therefore, we extracted the relationship between different 476

decision attribute values and conditional attribute values 477
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TABLE 6. Data on decision attributes.

TABLE 7. The results of rule and relationship extraction.

based on the simplification results via association rules. The478

extracted relations are described in the form of a triplet whose479

easy-to-implement knowledge graph embedding. Detailed480

rules and related information are listed in TABLE 7, where481

nodes with the same value are considered the same.482

TABLE 7 summarizes the relationship data extracted from483

the engineering documents and lists the extraction results’484

corresponding rules and confidence levels. It can be seen from485

the results that the extracted relationship has high quality486

and reliability, and the accompanying confidence is higher487

than 0.9. A possible explanation is that deleting redundant488

attributes will reduce the negative gain of data on the extrac-489

tion results. Another possible explanation we found is a490

strong correlation between the effective attribute and the491

result attribute. Therefore, we think the proposed method 492

can effectively handle the relationship extraction of many 493

redundant data and provide a reference for engineering data 494

processing similar structures. 495

C. KNOWLEDGE GRAPH EMBEDDING 496

A knowledge graph is a networked form of data storage that 497

positively impacts transforming knowledge and relationships 498

into practical engineering applications. Relationships as an 499

essential factor in knowledge graph construction are focused 500

on in this paper. The relationship extraction in welding man- 501

ufacturing differs from traditional extraction methods due 502

to the complexity and specialization of engineering data. 503

This study divided the relationship extraction task into three 504
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FIGURE 5. Knowledge graph of welding process specification.

subtasks: unstructured data extraction, relationship comple-505

mentation, and experience relationships processing. We have506

employed and trained the BiLSTM+Attention model for507

such relationship extraction. Production result documents508

such as welding plans and welding process specifications509

contain much relational knowledge, which is also unique510

to welding products in data. Neighborhood rough set-based511

association rules are proposed to transform the result file into512

a structural relationship of the form (entity, relation, entity).513

In addition, relational databases are constructed to support514

knowledge graph embedding and knowledge reasoning of515

empirical relationships.516

The data collected in the welding production of high-speed517

train bogies are used for the research of relationship extrac-518

tion. The knowledge graph based on WPS data is described519

in FIGURE 5. Relationships in unstructured data and result520

files are characterized via the entity node-relationship-entity521

node form. Empirical relationships are characterized through522

the entity node-relationship node-entity node form, and the523

relationship nodes correspond to the content of the associated524

relationship base.525

As shown in FIGURE 5, the left side is the empirical rela-526

tionship process; the right side is the knowledge graph about527

welding process specifications. The results could be applied528

to solve complex problems in welding manufacturing, such529

as knowledge retrieval, intelligent question and answer, and530

decision-making.531

(1) Knowledge retrieval. For example, we only enter the532

weld position, and this correlation and node can be obtained.533

Based on the search results, we can also obtain valid infor-534

mation such as the weld position containing PA, PB, and535

PA+PB, an element of the welding process specifications.536

(2) Intelligent question and answer. For example, for a537

question: What is the preheating temperature for a weld-538

ing method of t135 and a maximum plate thickness of539

12 mm for base material 2? The answer (Preheat temper-540

ature of ‘‘/’’) can be obtained according to the knowledge541

graph.542

(3) Decision-making. For example, for a joint with a543

bevel ‘‘V’’ and a plate thickness of 12, a 3-layer weld layer544

can be acquired based on the corresponding empirical rela-545

tionship. Furthermore, welding positions, assembly gaps,546

blunt edge preheating, etc., can also be obtained through the 547

knowledge graph, which can be used to make decisions on 548

welding process design. 549

V. CONCLUSION 550

This work describes methods for extracting and process- 551

ing relationships under different data types and structures in 552

welding manufacturing. 553

(i) Unstructured data relationships are extracted by 554

employing the BiLSTM+Attention model. This model is 555

trained based on pre-trained word vectors under supervised 556

conditions and has good Macro-average metrics (0.788 for 557

Precision, 0.846 for Recall, and 0.816 for F1-score). 558

(ii) The actual engineering file relationships are extracted 559

through a neighborhood rough set-based association rule 560

model. Several relationship rules are obtained from 110 engi- 561

neering data and are consistent with engineering experience. 562

(iii) Relational databases and relational nodes are intro- 563

duced to implement knowledge graph embeddings of empir- 564

ical relationships with positive engineering application 565

effects. 566

The proposed method can complete the extraction of weld- 567

ing relations, especially suitable for processing a large num- 568

ber of redundant data. The domain knowledge graph based 569

on the extracted relationship can support the solution of 570

complex engineering problems such as domain knowledge 571

retrieval, intelligent question answering, and expert decision- 572

making. Furthermore, our research may extend data appli- 573

cability, improve model accuracy, and efficient engineering 574

applications based on obtained results. 575
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