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ABSTRACT In general, classification tasks can differ significantly in their task complexity. For instance,
image-based differentiation between vehicles and pedestrians is most likely expected to be less complex than
CT-scan-based differentiation between several lung diseases. Intuitively, based on a human point of view,
one can identify some classification tasks as more complex than other classification tasks. Moreover, based
on expert knowledge and/or task-specific meta information, one could attempt to estimate the complexity
ranks of specific classification tasks. In this work, based on the publicly available BioVid Heat Pain Database
(BVDB), we experimentally confirm the intuitive assumption that the task of automated pain intensity recog-
nition (PIR) is very challenging. Inspired by the field of chaos theory, we show that the BVDB-specific PIR
task can not only be seen as highly complex, but is even identified as a classification task of chaotic nature.
To this end, we apply Hao’s working definition for chaotic systems and provide an experiment-based chaos
check method. To validate our approach, as a non-complex counterpart, we include a task of handwritten
numerals distinction. Our study provides two main contributions, i.e.: i) an enhanced understanding for the
still present and — more importantly — substantial gap between the ground truth and the predictions reported
by different research groups in combination with automated PIR tasks; and ii) an approach for a numerical
complexity check based on chaos theory. Different research directions are discussed for future work. Note
that improving PIR accuracy performance is not part of the study objective.

INDEX TERMS BioVid heat pain database, chaos theory, classification task complexity, decision trees, pain
intensity recognition, physiological signals.

I. INTRODUCTION

Machine learning-specific pain assessment based on physio-
logical signals constitutes a challenging task. Several studies
indicate that it seems feasible to design robust and effective
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models which can reliably distinguish between a person’s
no pain and severe pain conditions. For instance, in [30],
Werner et al. obtained an averaged accuracy value of 94.3%
based on the X-ITE Pain Database [9], in combination with
a leave-one-subject-out cross validation (LOSO-CV), with
focus on the binary scenario of no pain vs the highest electri-
cal pain level, using random forests. However, the distinction
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between different levels of pain constitutes a highly complex
classification (or regression) scenario that leads to unsatisfac-
tory performances, i.e. recognition rates. By unsatisfactory,
we mean that while it is possible to significantly outperform
the chance level, there is still a huge gap between the ground
truth and the obtained results in the literature. For instance,
in [24], Thiam et al. obtained an averaged accuracy value of
43.89% based on the SenseEmotion Database [27], in combi-
nation with a LOSO-CV with focus on all of the four available
classes (one baseline and three pain levels, i.e. a chance level
accuracy of 25%), also using random forests.

Intuitively, the task of classifying different types of flow-
ers, as for instance defined by the Iris data set [8], is much
less complex than classifying different levels of pain based on
physiological signals. Moreover, the implementation of well-
advanced models, such as (deep) artificial neural networks
(ANNs) [15], does not sufficiently close the gap to the ground
truth (e.g. [21] and [23]), as for instance in comparison to
several image-based classification tasks including one or even
two hundred classes [1] (e.g. defined by the CIFAR-100 [13]
or Caltech Birds [29] data sets). For readers that are inter-
ested in automated pain intensity recognition, we refer to
the recently published survey studies, [18] and [32], which
focus on ANN-based and hand-crafted feature extraction
approaches, respectively.

There exist different approaches to measure the complexity
of a given training algorithm (model). For instance, one can
determine or estimate the number of multiplications, adap-
tation steps, learning epochs or similar operations that are
applied during the training (and testing) phase. Alternatively,
one can simply measure the operational time. Equivalently,
one can think of different approaches to measure a classifica-
tion task complexity, which is defined by the combination of
the given data set and its labels. For instance, the labelled data
set’s meta information can be used as an initial estimation of
the corresponding task complexity, e.g. the amount of data
points, the feature space dimension, the type of the data (cat-
egorical, binary, numerical, time series, mixed, etc.), as well
as the number of classes and their distribution.

In [16], the authors introduced three data complexity mea-
sures, which they identified as infeasible in practice. How-
ever, they showed that the complexity can be approximated
by classification models. To this end, they used support vector
machines (SVMs) [26] for their data complexity analysis.
More precisely, they focused on the number of support vec-
tors obtained during the training, with a higher amount of
support vectors implying a higher complexity.

In this work, we focus on the complexity of a given fea-
ture space. We aim at showing that a classification task can
be identified as chaotic (and hence as complex) based on
Hao’s working definition for chaotic systems [10]. Similar
to the classification model-based approach in [16], to this
end, we will use decision tree models to propose a chaos
check method based on Hao’s definition. Note that in contrast
to [16], we use the term task complexity instead of data com-
plexity to emphasise that a classification task [19] is defined
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by the combination of data samples and the corresponding
labels. Note that improving pain assessment accuracy perfor-
mance is not part of our current contribution.

The remainder of this study is organised as follows.
In Section II, we motivate our work, present the goal of the
study, provide Hao’s working definition for chaotic systems
and justify the choice of decision tree models. Subsequently,
in Section III, we briefly describe the BioVid Heat Pain
Database, which constitutes the main example of our numeri-
cal chaos check. The formalisation is presented and discussed
in Section IV. Section V consists of the experimental evalu-
ation, including a brief description of the Multiple Features
data set [25] — which constitutes a low-complex classification
task and which is used as the counterpart in our proposed
chaos (complexity) check approach —, the experimental set-
tings, as well as the illustration and discussion of the results.
Finally, the paper is concluded in Section VI.

Il. MOTIVATION: CHAOS AND COMPLEXITY

In this section, we will first discuss the versatile usability of
decision tree models. Subsequently, we will provide a sum-
mary of Hao’s working definition for chaotic systems and
check its applicability to decision tree classifiers.

Note that our motivation is based on the following intuitive
idea. Identifying a classification task as chaotic based on the
decision tree model (i.e. system), implies that the correspond-
ing task is (highly) complex.

A. DECISION TREES—MORE THAN CLASSIFICATION AND
REGRESSION TOOLS

Classification and regression trees [7] are classic machine
learning models. In this work, we focus on classification
trees, which we will simply denote as decision trees. In gen-
eral, in their main function, decision trees serve as base classi-
fiers in classification ensembles [14], such as in the methods
bagging [5], boosting [20], and random forests [6]. However,
one can also count the number of decision nodes constructed
during the training process to obtain an initial estimation of
the corresponding task (labelled data) complexity. In addi-
tion, decision trees can be used to get feedback on the impor-
tance of individual features.

Note that decision trees are instable classification mod-
els [5]. This means that small changes of the training data
can lead to large changes in the final model. Although small
and large are relative terms, we will focus on the decision
trees’ instability. We will use this characteristic for the iden-
tification of some chaos-specific properties and hence clas-
sification task complexity. In the following section, i.e. in
Section II-B, we will discuss the importance of stability and
instability in chaotic systems.

B. HAO’s WORKING DEFINITION FOR CHAOS

Hao provided a working definition for chaotic systems [10],

[17], which can be summarised as in Definition 1.
Definition 1 (Working Definition for Chaos): A system is

called chaotic, if it fulfils the following four properties.
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The system’s dynamics are deterministic.

2. No external noise is added to the system.

3. The apparently erratic behaviour of individual trajectories
is sensitively influenced by infinitesimally small changes
in the initial conditions.

4. In contrast to individual trajectories, there are global char-

acteristics or quantities that are not sensitively influenced

by the initial conditions.

In this work, we will define decision trees as our system.
To this end, let us check the first two properties of Defini-
tion 1. Firstly, decision trees are deterministic models, in gen-
eral. More precisely, repeating the training process with the
same training set and parameters always leads to identical
decision tree models. The same holds for the repetitive label
output (excluding ties), based on some test set. Therefore,
Property 1 (deterministic system) of Definition 1 is true for
decision tree models. Secondly, once the training and test data
are fixed, there is no external noise during the training or
classification phases of a decision tree. Therefore, Property 2
(closed system) of Definition 1 is also true for decision tree
models.

Note that we will check Properties 3 (instability condition)
and 4 (stability condition) of Definition 1 experimentally,
in Section V. To this end, we will define infinitesimally small
changes in the initial conditions as the removal of one single
data point from the training set. Moreover, as the individual
characteristics (trajectories) we will focus on the analysis of
the number of nodes constructed during the training process,
the test set accuracy and the test set-specific label outputs.
Since there is no universal task complexity measure [16],
we will use Definition 1 in combination with these character-
istics as an indicator for the complexity of classification tasks.
For additional task (data) complexity definitions, we refer the
reader to [2] and [16].

Ill. BioVid HEAT PAIN DATABASE PART A

In this work, we focus on Part A of the BioVid Heat Pain
Database (BVDB) [28]. In total, 87 subjects (43 female,
44 male) participated in controlled heat pain elicitation
experiments. A heat thermode, which was attached at the
participant’s forearm, was used to induce pain. The experi-
ments consisted of individual calibration phases and the main
procedure.

The calibration phase was introduced to define the ground
truth labels. To this end, starting at 32°C, the temperature
was slowly increased, until the participant felt a change from
warmth to low pain. The corresponding temperature was
defined as the pain threshold level and is denoted by T7.
Subsequently, the temperature was further increased until
the participant classified the pain as unbearable, which was
defined as the pain tolerance level and is denoted by T,4. Note
that it was not allowed to exceed 50.5°C. Two intermediate
pain levels, denoted by 7> and 73 were defined between T
and T4 in equidistant manner. The no pain level was defined
as 32°C and is denoted by Tj.

102772

After defining the ground truth, each participant was stim-
ulated 20 times with each of the pain levels in randomised
order. To this end, the temperature was linearly increased
to the corresponding value and held for four seconds. After
decreasing the temperature back to Ty, i.e. 32°C, the no
pain level was held for a random duration of eight to twelve
seconds.

During the main phase, the experimenters recorded videos
from three different angles as well as three physiological
signals. In this work, we focus on the recorded physiological
signals, i.e. electrocardiogram (ECG), electrodermal activity
(EDA) and electromyogram (EMG). ECG measures a per-
son’s heart activity, whereas EDA and EMG measure a per-
son’s skin conductance and muscle activity, respectively. The
EMG sensors were attached in the shoulder area with focus
on the trapezius muscle. The EDA sensors were attached to
the ring finger and index finger, on one of the participant’s
hands.

To keep this study consistent with our previous works,
we will use the exactly same hand-crafted features as in [11]
and [12]. The features were extracted from windows of
5.5 seconds length from the temporal and frequency domains,
including statistical descriptors, such as mean and extreme
values, and signal-specific descriptors, such as the heart rate
variability (defined by the ECG signal), amongst others.
In total, 194 features were extracted, including 56, 68 and
70 features for the signals EMG, ECG and EDA, respectively.
Each person-specific feature set was normalised, leading to
zero mean and a standard deviation of value one. To focus on
our current contribution, we refer the reader to [11] and [12]
for a complete description of the preprocessing and feature
extraction steps.

Moreover, we refer the readers interested in facial
videos-specific pain intensity recognition based on the
BVDB to [22] and [31].

IV. FORMALIZATION

By X C RY, d € N, we denote a d-dimensional,
labelled data set. More precisely, the elements of X consist
of pairs of data points and corresponding labels, i.e. X =
{(x1,y1)s - -, (xn, yn)}, with N = |X]|, whereby y; denotes
the label of data point x;, fori =1, ..., N.

Our analysis is based on decision tree (DT) classifiers.
By ©®, we denote the set of DT-specific training parameters
and settings, for instance, including the split criterion or the
cost of misclassification. Moreover, by DT)(?, we denote the
decision tree that is designed in combination with training set
X and parameter set ®. Note that in most cases, we will omit
the superscript for the sake of readability, simply using the
term DTy. For any data point z € R4, we denote the label
output of model DTy specific to z simply by DTx(2).

By Q, we denote the set of model-specific measures, such
as the number of decision tree nodes.

Let X!, X% ¢ R? be two training sets. In the current study,
we focus on measuring the differences between the resulting
DT classifiers. To this end, we evaluate the relative difference,
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A, between the corresponding classification models DTy
and DTy, which we define as follows,

DTy1) — ¢(DT
A(DTy1, DTye: ) o= [1PTx) —dOT2)) = )

q(DTx1)

whereby g € Q is a DT-specific measure as discussed above.
Note that A is undefined if the corresponding denominator
is equal to zero. However, this case never occurred in our
experiments, which are presented in Section V. Moreover,
note that A, as defined in Eq. (1), is not symmetric, i.e. in
general, it holds A(DTy1, DTy2; q) # A(DTx2, DTx1; g).

In addition, let Z # ¢ be a set of d-dimensional data
points,i.e. Z € R4, To measure the relative difference of label
outputs between models DTy and DTy specific to the set Z,
we define Az as follows,

|{z € Z : DTy1(z) # DTy2(2)}|
1Z]

Az(DTy1, DTy2):=

. @

whereby in contrast to Eq. (1), in Eq. (2), | - | denotes the
number of elements of the corresponding sets, instead of the
absolute value.

V. EXPERIMENTS

In this section, we will first briefly describe the Multiple
Features data set, which will be used as an intuitive non-
complex (and non-chaotic) counterpart to the BioVid Heat
Pain Database. Subsequently, we will provide the evaluation
protocol and finally present and discuss the outcomes. Note
that, as already discussed, the focus of the experiments is not
set on improving the pain assessment accuracy performance.

A. MULTIPLE FEATURES DATA SET

The Multiple Features (MFeat) data set [25] is publicly
available at the UCI Machine Learning Repository.! The
MFeat data set consists of 2,000 handwritten numerals,
ie. 0,...,9, thus constituting a 10-class classification task.
The provided feature dimension of the data is equal to 649.
The features are organised in the following six feature sets:
Fourier coefficients of the character shapes (76 features), pro-
file correlations (216 features), Karhunen-Loeve coefficients
(64 features), pixel averages in 2 x 3 windows, Zernike
moments (47 features), and morphological features
(6 features). The data set is balanced, including 200 samples
per class.

B. EXPERIMENTAL SETTINGS AND SOFTWARE

As discussed in Sections Il and IV, we are using decision tree
(DT) classifiers for our numerical analysis. More precisely,
we use the Gini Index as the impurity measure in combination
with the standard cost function, i.e. all types of classifica-
tion errors are treated equally with cost value one. Moreover,
we leave each decision tree unpruned, to measure the exact
differences between the constructed DT models.

IMFeat data set: https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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Input:
o Training set: X C R4, with Nyain = | X|
o Test set: Z C R?
e DT parameters: ©
e.g. © = {split criterion, cost of misclassification}
o Set of measures: ()
e.g. Q = {test set accuracy, number of tree nodes}
Initialisation:
o Set 09 = 0™Vmin_for each ¢ € Q
o Set 5ot = QNwin
e Design a DT in combination with X and O,
i.e. DTS% (+— this model defines the ground truth)
FOR i =1,..., Ny, and each element ¢ € Q:
« X=X\ {2}
o Design a DT in combination with X? and O,
ie. DTS,
o 8¢ = A(DTS, DTS ; q), as defined in Eq. (1)
o 0% = Ay (DTS, DTS.), as defined in Eq. (2)

FIGURE 1. Evaluation protocol per test fold (epoch). For the given training
set, X, a reference decision tree model is trained in combination with
parameter set © (DT)G(’). In each iteration, 7/, one single data point is

removed from the initial training set X, leading to decision tree DT)G(’,. .
Model DT;)’. is used to compute the relative difference to the ground truth
defined by DT?.

For each test set, we will focus on the percentage difference
in the number of nodes, accuracy, as well as the output diver-
sity. The first two measures are computed by using Eq. (1),
whereas the output diversity is calculated by applying Eq. (2).
Note that will analyse whether Properties 3 (instability con-
dition) and 4 (stability condition) of Definition 1 are fulfilled.
More precisely, we will check whether all of the three mea-
sures are sensitively or not sensitively influenced by small
changes in the training data.

For the BVDB, we will apply a nested 87-fold cross vali-
dation as follows. Note that the BVDB consists of 87 partici-
pants, with 100 data points each, i.e. 20 per class (5 classes).
For each test fold (i.e. test subject), we will apply 8,601
iterations. In each iteration, we will remove one data point
from the initial training set, which consists of 8,600 data
points. Thus, the change of the initial conditions is equal to
1/8600 =~ 0.012%, for the BVDB.

For the MFeat data set, we will apply a nested 20-fold cross
validation. Note that the MFeat data set consists of 2,000 data
points in total, with 200 points per class (10 classes). For each
test fold, we will apply 1,901 iterations. In each iteration,
we will remove one data point from the initial training set,
which consists of 1,900 data points. Thus, the change of the
initial conditions is equal to 1/1900 = 0.053%, for the MFeat
data set.

Note that for both data sets, MFeat and the BVDB, each test
fold consists of 100 data points, equally distributed among the
classes, i.e. 20 per class for the BVDB and 10 per class for
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TABLE 1. Cross validation evaluation parameters. The term +1 indicates

that one model is used to train on all available training data to provide
the reference values. The MFeat and BVDB data sets consist of 10 and
5 equally distributed classes, respectively. Each test fold is equally
distributed as well.

Data set MFeat BVDB
Total number of data points 2,000 8,700
Number of epochs 20 87
Test data size per epoch 100 100
Training iterations per epoch 1,900+1  8,600+1
Change in training size (initial condition) ~ 0.053%  0.012%

TABLE 2. Percentage change averaged over all test epochs. For each
test epoch, one single data point is removed from the training set per
iteration. ANds: Difference in number of decision tree nodes. AAcc:
Difference in accuracy. AOut: Difference in label outputs. To compute
ANds and AAcc, Eq. (1) is used, whereas Eq. (2) is used for AOut. The
number of test folds (epochs) is denoted in brackets. The change of the
initial conditions is equal to 0.012% and 0.053% for the BVDB and the
MFeat data set, respectively.

Averaged Mean Averaged Max
MFeat (20) BVDB (87) MFeat (20) BVDB (87)
ANds | 0.194+0.15 0.25+£0.11 | 9.484+2.40 1.66 £0.45
AAcc | 0.144+0.27 250+£1.55 | 2.89+1.32 29.0+£14.8
AOut | 0.27£0.47 3.67+1.57 | 490+1.97 41.1+17.1

the MFeat data set. The test fold-specific evaluation protocol
is summarised in Figure 1. The evaluation protocol leads
to 87 x 8601 and 20 x 1901 nested cross validations for
the BVDB and the MFeat data sets, respectively. The first
iteration is used to train the reference model in combination
with the whole training set, without removing any data points.
The data sets-specific nested cross validation parameters are
summarised in Table 1.

We used Matlab? (version R2019b) for the experiments
with the build-in function firctree for the construction of the
decision trees.

C. RESULTS

Table 2 depicts the averaged percentage changes for the num-
ber of decision tree nodes (ANds), the accuracy (AAcc)
and label output difference (AOut), including the standard
deviation values. From Table 2, we can make the following
observations. Firstly, the highest averaged mean values are
observed for the difference in outputs, for both data sets,
MFeat and the BVDB. Secondly, for the MFeat data set, all of
the relative differences (ANds, AAcc, AOut) are smaller than
1% — even smaller than 0.3% — on average. Thirdly, for the
BVDB, only the relative difference for the number of nodes
is less than 1% and also even less than 0.3%. For AAcc and
AOut, the averaged relative difference is equal to 2.5% and
3.67%, respectively. Note that the change of the training data
is equal to 0.012% for the BVDB. Fourthly, the averaged
maximum changes are the highest for the number of nodes
(9.48%), in combination with the MFeat data set. Based on
the BVDB, the highest averaged maximum change is noted
for AOut, with 41.1%.

ZMatlab website: https://www.mathworks.com/

102774

MFeat: Averaged Change in % (per Test Fold)
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FIGURE 2. Averaged percentage change per test epoch. Each dot
represents the mean value of 1,900 iterations. In each iteration, one data
point is removed from the training set (0.053% training data change).
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FIGURE 3. Maximum percentage change per test epoch. Each dot
represents the maximum value within 1,900 iterations. In each iteration,
one data point is removed from the training set (0.053% training data
change).

Note that the averaged mean values from Table 2 represent
the averaged values over 20 x 1,900 = 38,000 and 87 x
8,600 = 748, 200 iterations for the MFeat data set and the
BVDB, respectively. Figures 2-5 depict the epoch-specific
values, which led to the results presented in Table 2.

From Figure 2 (MFeat data set), we can observe that the
averages of ANds, AAcc and AOut exceed the value of 0.5%
only once, i.e. in epoch 15. Moreover, the value of 1% is
exceeded only in epoch 16 and solely for AAcc and AOut,
whereby the averaged AOut also exceeds the value of 2% (in
epoch 16).

Figure 3 depicts the maximum percentage changes for the
MFeat data set per epoch, i.e. the maximum of 1,900 training
iterations, with a change of 0.053% of the initial training data.
From Figure 3, we can observe that the maximum relative
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BVDB: Averaged Change in % (per Test Subject)
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FIGURE 4. Averaged percentage change per test epoch (subject). Each dot
represents the mean value of 8,600 iterations. In each iteration, one data
point is removed from the training set (0.012% training data change).

BVDB: Maximum Change in % (per Test Subject)
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FIGURE 5. Maximum percentage change per test epoch (subject). Each
dot represents the maximum value within 8,600 iterations. In each
iteration, one data point is removed from the training set (0.012%
training data change).

changes are observed for the number of decision tree nodes,
exceeding 13% in epoch 2. The maximum change of accuracy
is observed in epoch 20, exceeding 6%, whereas the maxi-
mum value for AOut is observed for epoch 3, leading to 9%.
Note that the size of the test sets is always equal to 100 data
points. Therefore, a change of 9% implies that by removing
one data point from the 1,900 training points leads to a model
that provides 9 different label outputs for the given test set,
in comparison to the ground truth model that is trained in
combination with the whole training data.

From Figure 4 (BVDB), we can make the following obser-
vations. The averaged relative change in the number of nodes
never exceeds 1%. The corresponding difference in accu-
racy falls below 1% in only four epochs, i.e. epochs 9, 25,
71 and 75. The averaged AOut values exceed always 1%.
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In epoch 22, the averaged AOut and AAcc values even
exceed 9% and 10%, respectively.

Figure 5 depicts the maximum percentage changes for the
BVDB per epoch, i.e. the maximum of 8,600 training iter-
ations, with a change of 0.012% of the initial training data.
From Figure 5, we can observe that the relative change in
the number of decision tree nodes never exceeds 10%. The
maximum value is observed for epoch 3 and is approximately
equal to 3% (3.0004%). The maximum A Acc and AOut val-
ues always exceed 10%. The maximum change in accuracy is
observed in epoch 42, exceeding 90%. The maximum AOut
value is noted in epoch 57 and is equal to 79%. That means
that by removing one single data point from the 8,600 training
data points led, at least once, to 79 differences in the label
outputs on the corresponding 100 data points-specific test set,
in comparison to the decision tree model that was trained in
combination with the whole data set.

D. DISCUSSION

The reason why we included the difference in the label out-
puts (AOut) is that it is more precise than the difference in
accuracy (AAcc). Note that two classifiers can have an accu-
racy of 50%, respectively, while disagreeing on all of their
label outputs. Therefore, in the following, we set the focus
on the measures ANds and AOut. While in a chaotic system,
i.e. complex classification task, we expect the difference in
the number of nodes, ANds, to be low on average, we assume
the difference in the label outputs, AOut, to be relatively high
in comparison. Moreover, in non-complex tasks, we expect
both measures to be low on average and thus violating
Property 3 (instability condition) of Definition 1.

Since our current work presents the initial outcomes in
combination with our proposed complexity check, we do not
have any empirical data to compare with. We observed that
both measures, ANds and AOut, stayed below 0.3% on aver-
age, based on a 20 x 1, 900 cross validation evaluation, for
the MFeat data set. On the other hand, while ANds stayed
below 0.3%, the averaged AOut values exceeded 3.5% based
on a 87 x 8,600 cross validation evaluation in combina-
tion with the BVBD, with a change of 0.012% in the initial
conditions.

If we focus on the relation between the mean AOut and
ANds values, we obtain the following outcomes. For the
MPFeat data set, it holds AOut : ANds =~ 1.42. In contrast, for
the BVDB, it holds AOut : ANds ~ 14.68. While it could
be difficult to define task-independent absolute thresholds for
ANds and AOut, the relation ANds : AOut might allow
for a complexity comparison across different classification
tasks.

VI. CONCLUSION
From the current work, we can draw the following
conclusions.

Firstly, we made a general observation based on the exper-
imental outcomes with regard to the instability of decision
tree (DT) classifiers. It is well known that DTs are
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instable models. However, in this work, we explicitly mea-
sured their instability in combination with the BioVid Heat
Pain Database (BVDB). More precisely, note that our ref-
erence DT classifiers were always trained on 8,600 data
points, whereas the corresponding comparison models were
always trained on 8,599 data points of the same training
data. We observed a maximum disagreement on 79 label out-
puts between the reference model and the comparison model
based on a test set consisting of 100 data points.

Secondly, based on Hao’s working definition for chaotic
systems, we introduced a simple method for a chaos check.
Note that our evaluation is based on the simple idea that a
chaotic classification task is of high complexity. Our chaos
check is based on the observation of relative changes in the
number of nodes (ANds), accuracy (AAcc) and label outputs
(AOut), in combination with small changes of the initial con-
ditions as proposed by Hao. To this end, we focused on the
smallest possible changes of the training data, by iteratively
removing one single data point from the initial training set.
Based on the resulting averaged values of ANds, AAcc and
AOut, we can decide whether Properties 3 and 4 of Defini-
tion 1 are fulfilled.

Note that we would like to emphasise that our proposed
chaos and hence complexity check is a first attempt to com-
bine supervised learning and chaos theory, based on DT mod-
els. There are different possibilities to adjust the introduced
method, e.g. by including different model-specific measures
or changing the evaluation protocol. Similar to our recently
proposed detection of ordinal class structures [3], [4], the
chaos/complexity check depends on the provided feature
space. Therefore, a different application of our proposed
approach could be the detection of features with chaotic
behaviour, leading to a possible feature selection approach.

As discussed in Section V-D, it might be sufficient to focus
on the relation between the measures ANds and AOut. This
might be used to find complex subtasks, which then could
be addressed more specifically, e.g. by dividing the initial
task into binary or trinary subtasks. Additionally, one might
include the number of classes, features or samples into the
relation calculation between ANds and AOut, or even in
Equations (1) and (2). For instance, intuitively speaking, in a
classification task with ten classes, two models are more
likely to disagree, with respect to the label outputs, than in
a task with only five classes. Finally, one could try to adapt
the proposed chaos/complexity check to time series data. This
might lead to a feature space-independent task complexity
analysis based on (filtered) raw data.
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