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ABSTRACT In general, classification tasks can differ significantly in their task complexity. For instance,
image-based differentiation between vehicles and pedestrians is most likely expected to be less complex than
CT-scan-based differentiation between several lung diseases. Intuitively, based on a human point of view,
one can identify some classification tasks as more complex than other classification tasks. Moreover, based
on expert knowledge and/or task-specific meta information, one could attempt to estimate the complexity
ranks of specific classification tasks. In this work, based on the publicly available BioVid Heat Pain Database
(BVDB), we experimentally confirm the intuitive assumption that the task of automated pain intensity recog-
nition (PIR) is very challenging. Inspired by the field of chaos theory, we show that the BVDB-specific PIR
task can not only be seen as highly complex, but is even identified as a classification task of chaotic nature.
To this end, we apply Hao’s working definition for chaotic systems and provide an experiment-based chaos
check method. To validate our approach, as a non-complex counterpart, we include a task of handwritten
numerals distinction. Our study provides two main contributions, i.e.: i) an enhanced understanding for the
still present and – more importantly – substantial gap between the ground truth and the predictions reported
by different research groups in combination with automated PIR tasks; and ii) an approach for a numerical
complexity check based on chaos theory. Different research directions are discussed for future work. Note
that improving PIR accuracy performance is not part of the study objective.
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INDEX TERMS BioVid heat pain database, chaos theory, classification task complexity, decision trees, pain
intensity recognition, physiological signals.

I. INTRODUCTION19

Machine learning-specific pain assessment based on physio-20

logical signals constitutes a challenging task. Several studies21

indicate that it seems feasible to design robust and effective22

The associate editor coordinating the review of this manuscript and

approving it for publication was Turgay Celik .

models which can reliably distinguish between a person’s 23

no pain and severe pain conditions. For instance, in [30], 24

Werner et al. obtained an averaged accuracy value of 94.3% 25

based on the X-ITE Pain Database [9], in combination with 26

a leave-one-subject-out cross validation (LOSO-CV), with 27

focus on the binary scenario of no pain vs the highest electri- 28

cal pain level, using random forests. However, the distinction 29
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between different levels of pain constitutes a highly complex30

classification (or regression) scenario that leads to unsatisfac-31

tory performances, i.e. recognition rates. By unsatisfactory,32

we mean that while it is possible to significantly outperform33

the chance level, there is still a huge gap between the ground34

truth and the obtained results in the literature. For instance,35

in [24], Thiam et al. obtained an averaged accuracy value of36

43.89% based on the SenseEmotion Database [27], in combi-37

nationwith a LOSO-CVwith focus on all of the four available38

classes (one baseline and three pain levels, i.e. a chance level39

accuracy of 25%), also using random forests.40

Intuitively, the task of classifying different types of flow-41

ers, as for instance defined by the Iris data set [8], is much42

less complex than classifying different levels of pain based on43

physiological signals. Moreover, the implementation of well-44

advanced models, such as (deep) artificial neural networks45

(ANNs) [15], does not sufficiently close the gap to the ground46

truth (e.g. [21] and [23]), as for instance in comparison to47

several image-based classification tasks including one or even48

two hundred classes [1] (e.g. defined by the CIFAR-100 [13]49

or Caltech Birds [29] data sets). For readers that are inter-50

ested in automated pain intensity recognition, we refer to51

the recently published survey studies, [18] and [32], which52

focus on ANN-based and hand-crafted feature extraction53

approaches, respectively.54

There exist different approaches to measure the complexity55

of a given training algorithm (model). For instance, one can56

determine or estimate the number of multiplications, adap-57

tation steps, learning epochs or similar operations that are58

applied during the training (and testing) phase. Alternatively,59

one can simply measure the operational time. Equivalently,60

one can think of different approaches to measure a classifica-61

tion task complexity, which is defined by the combination of62

the given data set and its labels. For instance, the labelled data63

set’s meta information can be used as an initial estimation of64

the corresponding task complexity, e.g. the amount of data65

points, the feature space dimension, the type of the data (cat-66

egorical, binary, numerical, time series, mixed, etc.), as well67

as the number of classes and their distribution.68

In [16], the authors introduced three data complexity mea-69

sures, which they identified as infeasible in practice. How-70

ever, they showed that the complexity can be approximated71

by classificationmodels. To this end, they used support vector72

machines (SVMs) [26] for their data complexity analysis.73

More precisely, they focused on the number of support vec-74

tors obtained during the training, with a higher amount of75

support vectors implying a higher complexity.76

In this work, we focus on the complexity of a given fea-77

ture space. We aim at showing that a classification task can78

be identified as chaotic (and hence as complex) based on79

Hao’s working definition for chaotic systems [10]. Similar80

to the classification model-based approach in [16], to this81

end, we will use decision tree models to propose a chaos82

check method based on Hao’s definition. Note that in contrast83

to [16], we use the term task complexity instead of data com-84

plexity to emphasise that a classification task [19] is defined85

by the combination of data samples and the corresponding 86

labels. Note that improving pain assessment accuracy perfor- 87

mance is not part of our current contribution. 88

The remainder of this study is organised as follows. 89

In Section II, we motivate our work, present the goal of the 90

study, provide Hao’s working definition for chaotic systems 91

and justify the choice of decision tree models. Subsequently, 92

in Section III, we briefly describe the BioVid Heat Pain 93

Database, which constitutes the main example of our numeri- 94

cal chaos check. The formalisation is presented and discussed 95

in Section IV. Section V consists of the experimental evalu- 96

ation, including a brief description of the Multiple Features 97

data set [25] – which constitutes a low-complex classification 98

task and which is used as the counterpart in our proposed 99

chaos (complexity) check approach –, the experimental set- 100

tings, as well as the illustration and discussion of the results. 101

Finally, the paper is concluded in Section VI. 102

II. MOTIVATION: CHAOS AND COMPLEXITY 103

In this section, we will first discuss the versatile usability of 104

decision tree models. Subsequently, we will provide a sum- 105

mary of Hao’s working definition for chaotic systems and 106

check its applicability to decision tree classifiers. 107

Note that our motivation is based on the following intuitive 108

idea. Identifying a classification task as chaotic based on the 109

decision tree model (i.e. system), implies that the correspond- 110

ing task is (highly) complex. 111

A. DECISION TREES—MORE THAN CLASSIFICATION AND 112

REGRESSION TOOLS 113

Classification and regression trees [7] are classic machine 114

learning models. In this work, we focus on classification 115

trees, which we will simply denote as decision trees. In gen- 116

eral, in their main function, decision trees serve as base classi- 117

fiers in classification ensembles [14], such as in the methods 118

bagging [5], boosting [20], and random forests [6]. However, 119

one can also count the number of decision nodes constructed 120

during the training process to obtain an initial estimation of 121

the corresponding task (labelled data) complexity. In addi- 122

tion, decision trees can be used to get feedback on the impor- 123

tance of individual features. 124

Note that decision trees are instable classification mod- 125

els [5]. This means that small changes of the training data 126

can lead to large changes in the final model. Although small 127

and large are relative terms, we will focus on the decision 128

trees’ instability. We will use this characteristic for the iden- 129

tification of some chaos-specific properties and hence clas- 130

sification task complexity. In the following section, i.e. in 131

Section II-B, we will discuss the importance of stability and 132

instability in chaotic systems. 133

B. HAO’s WORKING DEFINITION FOR CHAOS 134

Hao provided a working definition for chaotic systems [10], 135

[17], which can be summarised as in Definition 1. 136

Definition 1 (Working Definition for Chaos): A system is 137

called chaotic, if it fulfils the following four properties. 138
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1. The system’s dynamics are deterministic.139

2. No external noise is added to the system.140

3. The apparently erratic behaviour of individual trajectories141

is sensitively influenced by infinitesimally small changes142

in the initial conditions.143

4. In contrast to individual trajectories, there are global char-144

acteristics or quantities that are not sensitively influenced145

by the initial conditions.146

In this work, we will define decision trees as our system.147

To this end, let us check the first two properties of Defini-148

tion 1. Firstly, decision trees are deterministic models, in gen-149

eral. More precisely, repeating the training process with the150

same training set and parameters always leads to identical151

decision tree models. The same holds for the repetitive label152

output (excluding ties), based on some test set. Therefore,153

Property 1 (deterministic system) of Definition 1 is true for154

decision treemodels. Secondly, once the training and test data155

are fixed, there is no external noise during the training or156

classification phases of a decision tree. Therefore, Property 2157

(closed system) of Definition 1 is also true for decision tree158

models.159

Note that we will check Properties 3 (instability condition)160

and 4 (stability condition) of Definition 1 experimentally,161

in Section V. To this end, we will define infinitesimally small162

changes in the initial conditions as the removal of one single163

data point from the training set. Moreover, as the individual164

characteristics (trajectories) we will focus on the analysis of165

the number of nodes constructed during the training process,166

the test set accuracy and the test set-specific label outputs.167

Since there is no universal task complexity measure [16],168

we will use Definition 1 in combination with these character-169

istics as an indicator for the complexity of classification tasks.170

For additional task (data) complexity definitions, we refer the171

reader to [2] and [16].172

III. BioVid HEAT PAIN DATABASE PART A173

In this work, we focus on Part A of the BioVid Heat Pain174

Database (BVDB) [28]. In total, 87 subjects (43 female,175

44 male) participated in controlled heat pain elicitation176

experiments. A heat thermode, which was attached at the177

participant’s forearm, was used to induce pain. The experi-178

ments consisted of individual calibration phases and the main179

procedure.180

The calibration phase was introduced to define the ground181

truth labels. To this end, starting at 32◦C , the temperature182

was slowly increased, until the participant felt a change from183

warmth to low pain. The corresponding temperature was184

defined as the pain threshold level and is denoted by T1.185

Subsequently, the temperature was further increased until186

the participant classified the pain as unbearable, which was187

defined as the pain tolerance level and is denoted by T4. Note188

that it was not allowed to exceed 50.5◦C . Two intermediate189

pain levels, denoted by T2 and T3 were defined between T1190

and T4 in equidistant manner. The no pain level was defined191

as 32◦C and is denoted by T0.192

After defining the ground truth, each participant was stim- 193

ulated 20 times with each of the pain levels in randomised 194

order. To this end, the temperature was linearly increased 195

to the corresponding value and held for four seconds. After 196

decreasing the temperature back to T0, i.e. 32◦C , the no 197

pain level was held for a random duration of eight to twelve 198

seconds. 199

During the main phase, the experimenters recorded videos 200

from three different angles as well as three physiological 201

signals. In this work, we focus on the recorded physiological 202

signals, i.e. electrocardiogram (ECG), electrodermal activity 203

(EDA) and electromyogram (EMG). ECG measures a per- 204

son’s heart activity, whereas EDA and EMG measure a per- 205

son’s skin conductance and muscle activity, respectively. The 206

EMG sensors were attached in the shoulder area with focus 207

on the trapezius muscle. The EDA sensors were attached to 208

the ring finger and index finger, on one of the participant’s 209

hands. 210

To keep this study consistent with our previous works, 211

we will use the exactly same hand-crafted features as in [11] 212

and [12]. The features were extracted from windows of 213

5.5 seconds length from the temporal and frequency domains, 214

including statistical descriptors, such as mean and extreme 215

values, and signal-specific descriptors, such as the heart rate 216

variability (defined by the ECG signal), amongst others. 217

In total, 194 features were extracted, including 56, 68 and 218

70 features for the signals EMG, ECG and EDA, respectively. 219

Each person-specific feature set was normalised, leading to 220

zero mean and a standard deviation of value one. To focus on 221

our current contribution, we refer the reader to [11] and [12] 222

for a complete description of the preprocessing and feature 223

extraction steps. 224

Moreover, we refer the readers interested in facial 225

videos-specific pain intensity recognition based on the 226

BVDB to [22] and [31]. 227

IV. FORMALIZATION 228

By X ⊂ Rd , d ∈ N, we denote a d-dimensional, 229

labelled data set. More precisely, the elements of X consist 230

of pairs of data points and corresponding labels, i.e. X = 231

{(x1, y1), . . . , (xN , yN )}, with N = |X |, whereby yi denotes 232

the label of data point xi, for i = 1, . . . ,N . 233

Our analysis is based on decision tree (DT) classifiers. 234

By 2, we denote the set of DT-specific training parameters 235

and settings, for instance, including the split criterion or the 236

cost of misclassification. Moreover, by DT2
X , we denote the 237

decision tree that is designed in combination with training set 238

X and parameter set 2. Note that in most cases, we will omit 239

the superscript for the sake of readability, simply using the 240

term DTX . For any data point z ∈ Rd , we denote the label 241

output of model DTX specific to z simply by DTX (z). 242

By Q, we denote the set of model-specific measures, such 243

as the number of decision tree nodes. 244

Let X1,X2
⊂ Rd be two training sets. In the current study, 245

we focus on measuring the differences between the resulting 246

DT classifiers. To this end, we evaluate the relative difference, 247

102772 VOLUME 10, 2022



P. Bellmann et al.: Machine Learning-Based Pain Intensity Estimation: Where Pattern Recognition Meets Chaos Theory

1, between the corresponding classification models DTX1248

and DTX2 , which we define as follows,249

1(DTX1 ,DTX2; q) :=

∣∣∣∣q(DTX1 )− q(DTX2 )
q(DTX1 )

∣∣∣∣ , (1)250

whereby q ∈ Q is a DT-specific measure as discussed above.251

Note that 1 is undefined if the corresponding denominator252

is equal to zero. However, this case never occurred in our253

experiments, which are presented in Section V. Moreover,254

note that 1, as defined in Eq. (1), is not symmetric, i.e. in255

general, it holds 1(DTX1 ,DTX2; q) 6= 1(DTX2 ,DTX1; q).256

In addition, let Z 6= ∅ be a set of d-dimensional data257

points, i.e. Z ∈ Rd . Tomeasure the relative difference of label258

outputs between models DTX1 and DTX2 specific to the set Z ,259

we define 1Z as follows,260

1Z (DTX1 ,DTX2 ) :=

∣∣{z ∈ Z : DTX1 (z) 6= DTX2 (z)
}∣∣

|Z |
, (2)261

whereby in contrast to Eq. (1), in Eq. (2), | · | denotes the262

number of elements of the corresponding sets, instead of the263

absolute value.264

V. EXPERIMENTS265

In this section, we will first briefly describe the Multiple266

Features data set, which will be used as an intuitive non-267

complex (and non-chaotic) counterpart to the BioVid Heat268

Pain Database. Subsequently, we will provide the evaluation269

protocol and finally present and discuss the outcomes. Note270

that, as already discussed, the focus of the experiments is not271

set on improving the pain assessment accuracy performance.272

A. MULTIPLE FEATURES DATA SET273

The Multiple Features (MFeat) data set [25] is publicly274

available at the UCI Machine Learning Repository.1 The275

MFeat data set consists of 2,000 handwritten numerals,276

i.e. 0, . . . , 9, thus constituting a 10-class classification task.277

The provided feature dimension of the data is equal to 649.278

The features are organised in the following six feature sets:279

Fourier coefficients of the character shapes (76 features), pro-280

file correlations (216 features), Karhunen-Loeve coefficients281

(64 features), pixel averages in 2 × 3 windows, Zernike282

moments (47 features), and morphological features283

(6 features). The data set is balanced, including 200 samples284

per class.285

B. EXPERIMENTAL SETTINGS AND SOFTWARE286

As discussed in Sections II and IV, we are using decision tree287

(DT) classifiers for our numerical analysis. More precisely,288

we use the Gini Index as the impurity measure in combination289

with the standard cost function, i.e. all types of classifica-290

tion errors are treated equally with cost value one. Moreover,291

we leave each decision tree unpruned, to measure the exact292

differences between the constructed DT models.293

1MFeat data set: https://archive.ics.uci.edu/ml/datasets/Multiple+Features

FIGURE 1. Evaluation protocol per test fold (epoch). For the given training
set, X , a reference decision tree model is trained in combination with
parameter set 2 (DT2

X ). In each iteration, i , one single data point is
removed from the initial training set X , leading to decision tree DT2

Xi .

Model DT2

Xi is used to compute the relative difference to the ground truth

defined by DT2
X .

For each test set, wewill focus on the percentage difference 294

in the number of nodes, accuracy, as well as the output diver- 295

sity. The first two measures are computed by using Eq. (1), 296

whereas the output diversity is calculated by applying Eq. (2). 297

Note that will analyse whether Properties 3 (instability con- 298

dition) and 4 (stability condition) of Definition 1 are fulfilled. 299

More precisely, we will check whether all of the three mea- 300

sures are sensitively or not sensitively influenced by small 301

changes in the training data. 302

For the BVDB, we will apply a nested 87-fold cross vali- 303

dation as follows. Note that the BVDB consists of 87 partici- 304

pants, with 100 data points each, i.e. 20 per class (5 classes). 305

For each test fold (i.e. test subject), we will apply 8,601 306

iterations. In each iteration, we will remove one data point 307

from the initial training set, which consists of 8,600 data 308

points. Thus, the change of the initial conditions is equal to 309

1/8600 ≈ 0.012%, for the BVDB. 310

For theMFeat data set, we will apply a nested 20-fold cross 311

validation. Note that the MFeat data set consists of 2,000 data 312

points in total, with 200 points per class (10 classes). For each 313

test fold, we will apply 1,901 iterations. In each iteration, 314

we will remove one data point from the initial training set, 315

which consists of 1,900 data points. Thus, the change of the 316

initial conditions is equal to 1/1900 ≈ 0.053%, for theMFeat 317

data set. 318

Note that for both data sets,MFeat and the BVDB, each test 319

fold consists of 100 data points, equally distributed among the 320

classes, i.e. 20 per class for the BVDB and 10 per class for 321
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TABLE 1. Cross validation evaluation parameters. The term +1 indicates
that one model is used to train on all available training data to provide
the reference values. The MFeat and BVDB data sets consist of 10 and
5 equally distributed classes, respectively. Each test fold is equally
distributed as well.

TABLE 2. Percentage change averaged over all test epochs. For each
test epoch, one single data point is removed from the training set per
iteration. 1Nds: Difference in number of decision tree nodes. 1Acc:
Difference in accuracy. 1Out: Difference in label outputs. To compute
1Nds and 1Acc, Eq. (1) is used, whereas Eq. (2) is used for 1Out. The
number of test folds (epochs) is denoted in brackets. The change of the
initial conditions is equal to 0.012% and 0.053% for the BVDB and the
MFeat data set, respectively.

the MFeat data set. The test fold-specific evaluation protocol322

is summarised in Figure 1. The evaluation protocol leads323

to 87 × 8601 and 20 × 1901 nested cross validations for324

the BVDB and the MFeat data sets, respectively. The first325

iteration is used to train the reference model in combination326

with the whole training set, without removing any data points.327

The data sets-specific nested cross validation parameters are328

summarised in Table 1.329

We used Matlab2 (version R2019b) for the experiments330

with the build-in function fitctree for the construction of the331

decision trees.332

C. RESULTS333

Table 2 depicts the averaged percentage changes for the num-334

ber of decision tree nodes (1Nds), the accuracy (1Acc)335

and label output difference (1Out), including the standard336

deviation values. From Table 2, we can make the following337

observations. Firstly, the highest averaged mean values are338

observed for the difference in outputs, for both data sets,339

MFeat and the BVDB. Secondly, for theMFeat data set, all of340

the relative differences (1Nds,1Acc,1Out) are smaller than341

1% – even smaller than 0.3% – on average. Thirdly, for the342

BVDB, only the relative difference for the number of nodes343

is less than 1% and also even less than 0.3%. For 1Acc and344

1Out, the averaged relative difference is equal to 2.5% and345

3.67%, respectively. Note that the change of the training data346

is equal to 0.012% for the BVDB. Fourthly, the averaged347

maximum changes are the highest for the number of nodes348

(9.48%), in combination with the MFeat data set. Based on349

the BVDB, the highest averaged maximum change is noted350

for 1Out, with 41.1%.351

2Matlab website: https://www.mathworks.com/

FIGURE 2. Averaged percentage change per test epoch. Each dot
represents the mean value of 1,900 iterations. In each iteration, one data
point is removed from the training set (0.053% training data change).

FIGURE 3. Maximum percentage change per test epoch. Each dot
represents the maximum value within 1,900 iterations. In each iteration,
one data point is removed from the training set (0.053% training data
change).

Note that the averaged mean values from Table 2 represent 352

the averaged values over 20 × 1, 900 = 38, 000 and 87 × 353

8, 600 = 748, 200 iterations for the MFeat data set and the 354

BVDB, respectively. Figures 2–5 depict the epoch-specific 355

values, which led to the results presented in Table 2. 356

From Figure 2 (MFeat data set), we can observe that the 357

averages of1Nds,1Acc and1Out exceed the value of 0.5% 358

only once, i.e. in epoch 15. Moreover, the value of 1% is 359

exceeded only in epoch 16 and solely for 1Acc and 1Out, 360

whereby the averaged 1Out also exceeds the value of 2% (in 361

epoch 16). 362

Figure 3 depicts the maximum percentage changes for the 363

MFeat data set per epoch, i.e. the maximum of 1,900 training 364

iterations, with a change of 0.053% of the initial training data. 365

From Figure 3, we can observe that the maximum relative 366
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FIGURE 4. Averaged percentage change per test epoch (subject). Each dot
represents the mean value of 8,600 iterations. In each iteration, one data
point is removed from the training set (0.012% training data change).

FIGURE 5. Maximum percentage change per test epoch (subject). Each
dot represents the maximum value within 8,600 iterations. In each
iteration, one data point is removed from the training set (0.012%
training data change).

changes are observed for the number of decision tree nodes,367

exceeding 13% in epoch 2. Themaximum change of accuracy368

is observed in epoch 20, exceeding 6%, whereas the maxi-369

mum value for 1Out is observed for epoch 3, leading to 9%.370

Note that the size of the test sets is always equal to 100 data371

points. Therefore, a change of 9% implies that by removing372

one data point from the 1,900 training points leads to a model373

that provides 9 different label outputs for the given test set,374

in comparison to the ground truth model that is trained in375

combination with the whole training data.376

From Figure 4 (BVDB), we can make the following obser-377

vations. The averaged relative change in the number of nodes378

never exceeds 1%. The corresponding difference in accu-379

racy falls below 1% in only four epochs, i.e. epochs 9, 25,380

71 and 75. The averaged 1Out values exceed always 1%.381

In epoch 22, the averaged 1Out and 1Acc values even 382

exceed 9% and 10%, respectively. 383

Figure 5 depicts the maximum percentage changes for the 384

BVDB per epoch, i.e. the maximum of 8,600 training iter- 385

ations, with a change of 0.012% of the initial training data. 386

From Figure 5, we can observe that the relative change in 387

the number of decision tree nodes never exceeds 10%. The 388

maximum value is observed for epoch 3 and is approximately 389

equal to 3% (3.0004%). The maximum 1Acc and 1Out val- 390

ues always exceed 10%. The maximum change in accuracy is 391

observed in epoch 42, exceeding 90%. The maximum 1Out 392

value is noted in epoch 57 and is equal to 79%. That means 393

that by removing one single data point from the 8,600 training 394

data points led, at least once, to 79 differences in the label 395

outputs on the corresponding 100 data points-specific test set, 396

in comparison to the decision tree model that was trained in 397

combination with the whole data set. 398

D. DISCUSSION 399

The reason why we included the difference in the label out- 400

puts (1Out) is that it is more precise than the difference in 401

accuracy (1Acc). Note that two classifiers can have an accu- 402

racy of 50%, respectively, while disagreeing on all of their 403

label outputs. Therefore, in the following, we set the focus 404

on the measures 1Nds and 1Out. While in a chaotic system, 405

i.e. complex classification task, we expect the difference in 406

the number of nodes,1Nds, to be low on average, we assume 407

the difference in the label outputs,1Out, to be relatively high 408

in comparison. Moreover, in non-complex tasks, we expect 409

both measures to be low on average and thus violating 410

Property 3 (instability condition) of Definition 1. 411

Since our current work presents the initial outcomes in 412

combination with our proposed complexity check, we do not 413

have any empirical data to compare with. We observed that 414

both measures, 1Nds and 1Out, stayed below 0.3% on aver- 415

age, based on a 20 × 1, 900 cross validation evaluation, for 416

the MFeat data set. On the other hand, while 1Nds stayed 417

below 0.3%, the averaged 1Out values exceeded 3.5% based 418

on a 87 × 8, 600 cross validation evaluation in combina- 419

tion with the BVBD, with a change of 0.012% in the initial 420

conditions. 421

If we focus on the relation between the mean 1Out and 422

1Nds values, we obtain the following outcomes. For the 423

MFeat data set, it holds1Out : 1Nds ≈ 1.42. In contrast, for 424

the BVDB, it holds 1Out : 1Nds ≈ 14.68. While it could 425

be difficult to define task-independent absolute thresholds for 426

1Nds and 1Out, the relation 1Nds : 1Out might allow 427

for a complexity comparison across different classification 428

tasks. 429

VI. CONCLUSION 430

From the current work, we can draw the following 431

conclusions. 432

Firstly, we made a general observation based on the exper- 433

imental outcomes with regard to the instability of decision 434

tree (DT) classifiers. It is well known that DTs are 435
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instable models. However, in this work, we explicitly mea-436

sured their instability in combination with the BioVid Heat437

Pain Database (BVDB). More precisely, note that our ref-438

erence DT classifiers were always trained on 8,600 data439

points, whereas the corresponding comparison models were440

always trained on 8,599 data points of the same training441

data. We observed a maximum disagreement on 79 label out-442

puts between the reference model and the comparison model443

based on a test set consisting of 100 data points.444

Secondly, based on Hao’s working definition for chaotic445

systems, we introduced a simple method for a chaos check.446

Note that our evaluation is based on the simple idea that a447

chaotic classification task is of high complexity. Our chaos448

check is based on the observation of relative changes in the449

number of nodes (1Nds), accuracy (1Acc) and label outputs450

(1Out), in combination with small changes of the initial con-451

ditions as proposed by Hao. To this end, we focused on the452

smallest possible changes of the training data, by iteratively453

removing one single data point from the initial training set.454

Based on the resulting averaged values of 1Nds, 1Acc and455

1Out, we can decide whether Properties 3 and 4 of Defini-456

tion 1 are fulfilled.457

Note that we would like to emphasise that our proposed458

chaos and hence complexity check is a first attempt to com-459

bine supervised learning and chaos theory, based on DTmod-460

els. There are different possibilities to adjust the introduced461

method, e.g. by including different model-specific measures462

or changing the evaluation protocol. Similar to our recently463

proposed detection of ordinal class structures [3], [4], the464

chaos/complexity check depends on the provided feature465

space. Therefore, a different application of our proposed466

approach could be the detection of features with chaotic467

behaviour, leading to a possible feature selection approach.468

As discussed in Section V-D, it might be sufficient to focus469

on the relation between the measures 1Nds and 1Out. This470

might be used to find complex subtasks, which then could471

be addressed more specifically, e.g. by dividing the initial472

task into binary or trinary subtasks. Additionally, one might473

include the number of classes, features or samples into the474

relation calculation between 1Nds and 1Out, or even in475

Equations (1) and (2). For instance, intuitively speaking, in a476

classification task with ten classes, two models are more477

likely to disagree, with respect to the label outputs, than in478

a task with only five classes. Finally, one could try to adapt479

the proposed chaos/complexity check to time series data. This480

might lead to a feature space-independent task complexity481

analysis based on (filtered) raw data.482
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