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ABSTRACT The neural machine translation (NMT) model is a data hungry and domain-sensitive model but
it is almost impossible to obtain a large number of labeled data for training it. This requires the use of domain
transfer strategy. In order to solve the problem of domain datamismatch, this paper proposes a neuralmachine
translation transfer model based on domain mutual guidance and establishes the continuous impact through
the framework of mutual guidance. At the same time, self-ensemble and self-knowledge-distillation are used
in these independent domains so that the model will not deviate from the domain too much. Furthermore,
the model can better train the models from the batching way of domain data. It mainly uses the pretraining
model out of domain, distillation of existing models in domain and data selection in the training process
to guide the in-domain model. These are unified in the training framework, so that model training can be
continuously and effectively guided in and out of domain. In this study, three typical experiment scenarios
were comprehensive tested and our model was compared with many conventional classic methods. The
experiment results showed that our proposed ‘‘inter-domain transfer training’’ and ‘‘curriculum scheduling
agent’’ was effective and robust. The most important results and findings are that this comprehensive guided
training framework (intra-domain and inter-domain) is suitable for the domain transfer in different scenarios,
and this framework doesn’t increase the decoding cost.
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17

INDEX TERMS Neural machine translation, model transfer, self-ensemble, self-knowledge-distillation,
curriculum learning.

I. INTRODUCTION18

Transfer learning [1] is an important research topic in the19

machine learning field. Many machine learning methods20

can be considered to perform transfer learning, including21

multitask learning [2], domain adaptation [3], and semi-22

supervised learning [4]. Transfer learning mainly assumes23

two probability forms called domains ({P(x)|x ∈ X}, X24

for feature spaces) and tasks ({P(x|y)|x ∈ X , y ∈ Y }, Y25

for label spaces). The probability form of an entire model26

({P(x, y)|x ∈ X , y ∈ Y }) can be obtained through the joint27

probability formula. Transfer learning is divided into source28

and target domains and tasks. Ps(x)/Ps(y|x) can be used to29
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represent the source domain/task, whereas Pt (x)/Pt (y|x) can 30

be used to represent the target domain/task. The transfer 31

of learned information between domains is called domain 32

adaptation. It can be applied to training and/or testing corpora 33

from different domains. The transfer of learned information 34

between different tasks is called multitask learning or system 35

combination. 36

Neural machine translation (NMT) models have developed 37

rapidly. Many translation frameworks have been reported 38

in the relevant literature, including models using recurrent 39

neural networks (RNN) [5], convolutional neural networks 40

(CNN) [6], and transformer [7] models, as well as hybrid 41

[8], [9] and simple frameworks for small devices (including 42

neural architecture search [10] and knowledge distillation 43

(KD) [11]). From the perspective of translation style, existing 44
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methods can be divided into multilingual translation systems45

(including multiway translation such as one-to-many [12],46

many-to-one [13], and many-to-many [14], and multisource47

translation [15]), low-resource translation systems [16], and48

domain adaptation [17].49

The proposed approach unifies in-domain and50

out-of-domain guidance to construct a training framework51

that continuously affects the training process. It combines the52

guidance within and out of the domain to construct a training53

framework. Unlike traditional methods, this framework can54

dynamically and continuously affect the training process so55

that the knowledge transfer relationship between domains56

can be considered more comprehensively. Training in the57

domain is not only related to in-domain and out-of-domain58

knowledge, but also to training data. To perform training and59

inference effectively, we consider various guidance signals60

from multiple perspectives, including in-domain and out-of-61

domain models and training data. The main contributions of62

this work are summarized here.63

(1) A transfer training framework is proposed. It is designed64

to perform mutual guidance within and out of a given65

domain; both learning processes continuously guide each66

other to improve overall performance.67

(2) A self-ensemble training objective based on self-68

knowledge-distillation and a dynamic pretraining are69

proposed. The self-ensemble training objective can better70

consider the in-domain information. The dynamic pre-71

training can better consider the out-of-domain informa-72

tion. During the training process, both in-domain and73

out-of-domain knowledge can be considered.74

(3) An adaptive batching learning method based on rein-75

forcement learning is proposed, which can better con-76

sider the sample feature. The difficulty of the training77

samples can be learned adaptively. Samples with differ-78

ent training difficulties are considered during the training79

process.80

This paper discusses the application of deep networks81

in an NMT transfer task. In Section 2, related work is82

introduced. In Section 3, the neural translation model and83

objective function are introduced with a focus on the trans-84

former structure and training objective of the transfer learning85

method. In Section 4, the training processes of model trans-86

fer and batching methods based on reinforcement learning87

are described. In Section 5, experimental results and their88

analysis are presented. Finally, in Section 6, our findings are89

summarized and some possible directions for further research90

are suggested.91

II. RELATED WORK92

A. DOMAIN TRANSFER93

Domain transfer methods in machine translation are largely94

divided into data augmentation and model enhancement95

methods.96

Data augmentation methods can be divided into mono-97

lingual corpus augmentation, synthetic bilingual corpus98

augmentation, and out-of-domain parallel corpora aug- 99

mentation. Regarding monolingual corpus augmentation, 100

Zhang & Zong, [17] used monolingual source data to 101

enhance an NMT encoder through multitask learning to 102

predict translated and reordered source monolingual data. 103

Cheng et al., [18] used NMT as an auto-encoder to recon- 104

struct source and target monolingual data. Regarding syn- 105

thetic bilingual corpus augmentation, a synthetic parallel 106

corpus can be generated back translation of a target sentence 107

to enhance the decoder [19]. Considering out-of-domain 108

bilingual corpus augmentation, Chu et al., [20] used tagged 109

domain data to control their model. Chen & Huang [21] used 110

a domain classifier to select sentences. Poncelas et al. [22] 111

used sentence embedding to select sentences that were similar 112

to the average in a given domain, but dissimilar to the average 113

out of the domain. Poncelas et al. and Wang et al. [23], [24] 114

used a feature attenuation algorithm to perform sentence 115

selection. Cai et al. [70] and Vu et al. [71], both of whom used 116

a cross-lingual neural network to retrieve target sentences 117

with similar embeddings to a source sentence. Del et al. [72] 118

clustered sentences embedding into domains that allowed for 119

better adaptation than pre-defined corpora.Martins et al. [73] 120

introduced a simple but effective caching strategy that 121

avoided performing retrieval when similar contexts had been 122

seen before. 123

Similarly, model enhancement methods may be largely 124

divided into those performing training- (changing training 125

objectives and processes), structure-, and decoding-based 126

enhancement. Regarding training objectives, the basic con- 127

cept is to weight training data. Shafiq et al. [25] used 128

noise-contrastive estimation to perform domain adaptation 129

of a translation system. Wang et al. [26] regularized trans- 130

lation tasks in the target domain using the marginal proba- 131

bility of the target side being monolingual. Chen et al. [27] 132

trained a domain classifier to distinguish source sentences 133

in the development set from those in the training set and 134

the translation process was weighted. Wang et al. [28] used 135

the loss difference between out-of-domain and in-domain 136

information regarding bilingual sentence pairs to weight the 137

translation process. For the training process, the basic concept 138

is to fine-tune a developed model. Li et al. [29] only updated 139

meta-parameters during the transfer process to achieve faster 140

domain adaptation. Thompson et al. [30] analyzed the roles 141

of an encoder, decoder, and probability calculation layer in 142

feature transfer. Along these lines, Vilar [31] considered the 143

contribution of a hidden layer in the transfer process. Regard- 144

ing model-based enhancement, Gulcehre et al. [32] and 145

Domhan & Hieber [33] integrated a language model (LM) 146

and NMT into a decoder. Gulcehre et al. [32] trained mod- 147

els separately, whereas Domhan & Hieber [33] performed 148

joint training. Britz et al. [34] used a discriminative network 149

to distinguish domains [35]. Specifically, the contexts of 150

domain-specific and domain-shared information were dis- 151

criminated at the word level. Su et al. [36] used source context 152

gates to accurately merge domain-independent and domain- 153

shared contexts. Regarding decoding-based enhancement, 154
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Dou et al. [37] used LMs within and out of a given domain155

to change the decoding target. Freitag et al. [38] used ensem-156

ble learning to integrate decoding objectives out of the tar-157

get domain. Stickland et al. [74] decoupled these features158

between domains using adapter sub-network. Cao et al. [75]159

extended knowledge distillation for domain adaptation to a160

continual learning scenario. Pham et al. [76] proposed a161

method to better take advantage of these domain similarities,162

using a latent-variable model.163

B. CURRICULUM LEARNING164

In contrast to the traditional batch method [39], curricu-165

lum learning focuses on statistical efficiency rather than166

computational efficiency, even at the cost of performance.167

To the best of our knowledge, Tom & Ondrej [40] were168

the first to study curriculum learning in the context of169

NMT by using different features for curriculum scheduling170

on a Czech-English translation task. Curriculum learning is171

mainly designed to solve the problem of curriculum schedul-172

ing and can be divided into three research problems: sample173

difficulty, model capacity, and the relationship between them.174

Regarding sample difficulty, Xuan et al. [41] systematically175

modeled curriculum learning, classified sample difficulty,176

and conducted comprehensive experiments and analysis on177

the entire training process. Wang et al. [42] used sentence178

difficulty to weight sentence sampling. Wang et al. [43]179

weighted sentences in multiple domains to obtain the influ-180

ence of sentences in a target domain. Regarding model capa-181

bility, Platanios et al. [44] used a heuristic capacity function.182

Xu et al. [45] applied a BLEU-based process to a pretrained183

model as an adaptive capacity function. Liu et al. [46] used184

a norm to measure sample difficulty and model capacity.185

Zhou et al. [47] used data and model uncertainty to measure186

sample difficulty and model capacity. To accurately describe187

the relationship between sample difficulty and model capac-188

ity, Kumar et al. [48] and Zhao [49] expressed their nonlinear189

relationship and performed sequential decision modeling on190

different data selection methods. Wan et al. [50] used the191

concept of self-paced learning to weight an objective func-192

tion to combine the training and sample selection processes.193

Wu et al. [77] used model uncertainty on a small, trusted194

multi-domain dataset to determine a curriculum across cor-195

pora. Hasler et al. [78] demonstrate that mixed fine-tuning196

without domain tags was complementary to directly regular-197

izing parameters using Elastic Weight Consolidation (EWC).198

III. TRANSLATION MODELING199

A. MODEL200

The proposed approach adopts a translation model based on a201

transformer [51] that relies on a self-attention network (a self-202

attention mechanism is an extension of traditional attention203

mechanisms [52]). The self-attention network is a type of204

neural network without recursion or convolutional operations205

that completely depends on a self-attention mechanism to206

implement an encoder (left side of Figure 1) and decoder207

(right side of Figure 1). The input sequence is token embed- 208

ding and position embedding. The encoder is composed of N 209

mixed add layers, multihead attention layers and feedforward 210

layers, while the decoder is composed of N mixed add layers, 211

multihead attention layers, feedforward layers and masked 212

multihead attention layers. Unlike the multihead attention 213

layer, the text sequence cannot be output at one time in 214

masked multihead attention layers, and the ungenerated text 215

is masked. 216

Specifically, a source input H0 with position embedding is 217

first transformed into a query matrix Q0, key matrix K 0, and 218

value matrix V 0. Multihead attention is then applied to Q0, 219

K 0, and V 0 as follows: 220

MultiHead(Q0,K 0,V 0) = Concat(Q1
1 : · · · : Q

1
H )W

O, (1) 221

Q1
h = softmax

(
Q0
hK

0T
h

√
d mod el

)
V 0
h , (2) 222

Q0
h,K

0
h ,V

0
h = Q0WQ

h ,K
0WK

h ,V
0WV

h , (3) 223

where Q0
h, K

0
h , and V

0
h are the h-th header query, key, and 224

value matrices of layer zero, respectively.
{
WQ
h ,W

K
h ,W

V
h

}
∈ 225

Rdmodel×dk represents the parameter matrix. dmodel and dk 226

represent the dimensions of the model and header, respec- 227

tively. A position-based feedforward neural network [a fully 228

connected network with a rectified linear unit (ReLU) activa- 229

tion function applied to each position equally] is applied as 230

follows: 231

Q1
= FFNN(MultiHead(Q0,K 0,V 0))+ Q0, (4) 232

whereQ1 is a source representation with global feature infor- 233

mation and Q0 is added to implement residual connections to 234

overcome gradient vanishing. 235

Similarly, this processing sequence is formally expressed 236

as a function fSAN, which is used to learn the source repre- 237

sentation Q1. 238

Q1
= f 1SAN(Q

0,K 0,V 0). (5) 239

The self-attention network uses a set of different layers to 240

learn the source representation. 241[
Qn = f nSAN(Q

n−1,K n−1,V n−1)
]
N
. (6) 242

Here, [· · · ]N (n ∈ {1, 2, . . . ,N }) indicates that N identical 243

layers of the encoder are stacked together. The output QN of 244

the N-th attention network layer is the final source represen- 245

tation that is sent to the decoder to learn a translation context 246

vector used to predict the target word. The only difference 247

between the decoder and encoder is the masked attention 248

layer because the target output is generated dynamically. 249

The decoded output calculates the probability 250

p(yj|y<j, x;2) of each word using the softmax function, 251

where 2 denotes the parameter set of the encoder and 252

decoder. 253
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FIGURE 1. Neural translation model based on a transformer with encoder
and decoder.

B. TRAINING OBJECTIVE254

Because the proposed approach adopts the training mode of255

fine-tuning an out-of-domain model, in-domain knowledge256

is required to guide the training process and perform KD257

[53]. Distillation models typically include two submodels258

called the student and teacher models. The loss function of259

the student model is composed of the weighted sum of the260

following two components.261

(1) The traditional loss function is a cross-entropy [54] one262

between prediction probability and true labels that is also263

known as a negative log-likelihood loss function.264

LNNL(2t ;C) =
∑

(e,f )∈C

∑m

j=1
−I (yj)265

× log p(yj|y<j, x;2t ). (7)266

(2) The KD loss function is the cross-entropy or Kullback–267

Leibler distance [21] loss between the output probabili-268

ties of the student and teacher models.269

LKD(2t ;C, 2̄t ) =
∑

(e,f )∈C

∑m

j=1
−q(yj|y<j, x; 2̄t )270

× log p(yj|y<j, x;2t ). (8)271

Here, q(yj|y<j, x; 2̄t ) and 2̄t are the distribution and param- 272

eter set of the teacher model, and p(yj|y<j, x;2t ) and 2t 273

are the distribution and parameter set of the student model, 274

respectively. 275

Inspired by Zeng et al. [53], a maximum strategy 2̄t = 276

2∗t (where 2∗t is the model parameter set yielding the best 277

performance in previous rounds), average strategy 2̄t = 278

1
N

∑
n
2

(n)
t (average of the model parameter sets 2(n)

t in the 279

previous n rounds), or weighted average strategy 2̄t = 280∑
n
eval − norm(M (2(n)

t ))2(n)
t [where eval − norm(.) is the 281

normalized function after the n-th evaluation M (2(n)
t ) of the 282

model parameter set2(n)
t ] can be adopted for a self-ensemble 283

model. In the average and weighted average strategies, the 284

student model is typically more robust because it gathers 285

information from the previous iterations of the teacher model. 286

IV. INTERDOMAIN TRANSFER TRAINING 287

Inspired by the concept of coteaching [55], the proposed 288

approachmodels, i.e., the out-of-domain and in-domainmod- 289

els, perform transfer learning through pretraining. 290

Figure 2 illustrates the alternative training processes for 291

in-domain and out-of-domain data. Each round of out-of- 292

domain parameters is used to initialize the following round 293

of in-domain parameters and vice versa. These processes 294

are repeated to complete the mutual transmission of infor- 295

mation. Through this alternative iterative training processes, 296

each domain can absorb knowledge beneficial to this domain. 297

Therefore, in-domain and out-of-domain features can be 298

transferred to each other in a model-level transfer that can 299

better retain shared knowledge between models and provides 300

better transfer performance. Here, we need to evaluate the 301

quality of the model. The source and target domain data 302

Cs,Ct are divided into training setsC tr
s ,C

tr
t and development 303

sets Cval
s ,Cval

t that are used to train and evaluate the model, 304

respectively. 305

Algorithm 1 is the domain transfer algorithm for the pro- 306

posed NMT model, mainly divided into two stages. 307

(1) In the initialization phase, the main task is to complete 308

initialization of the in-domain and out-of-domain model 309

parameters. 310

• The TrainModel(·) function is used to train the model. 311

The nondistillation objective function is used on the train- 312

ing set C tr
t and the model parameter set2(0)

t is initialized 313

on LNLL(2t ;C tr
t ). The same process is performed for the 314

source domain. 315

(2) In the iteration phase, the main task is to complete 316

information transfer between the in-domain and out-of- 317

domain models. 318

• The TransModel(·) function is used for model transfer. 319

The objective functions with self-knowledge-distillation 320

functions LNLL(2
(k−1)
s ;C tr

t ) and LKD(2
(k−1)
s ;C tr

t , 2̄t ) 321

are used in the training set C tr
t (the weighted average 322

method is used to balance the likelihood and distillation 323

functions). To perform model transfer, the in-domain 324

101598 VOLUME 10, 2022



Y. Liu et al.: Neural Machine Translation Transfer Model Based on Mutual Domain Guidance

FIGURE 2. Alternative iterative training processes for in-domain and out-of-domain learning.

Algorithm 1 Model Transfer for NMT

1: Input: Training sets
{
C tr
t ,C

tr
s
}
, development sets{

Cval
t ,Cval

s
}
, and iteration number K

2: Output: In-domain NMT model2̂t and out-of-domain
NMT model2̂s

3: //In-domain model training
4: 2(0)

t ← TrainModel
(
LNLL(2t ;C tr

t )
)

5: //Out-of-domain model training
6: 2(0)

s ← TrainModel
(
LNLL(2s;C tr

s )
)

7: //Initializing in-domain and out-of-domain self-
ensemble model parameters

8: 2̄t ← 2
(0)
t , 2̄s← 2

(0)
s

9: for k = 1, 2, . . . ,K do
10: //In-domain model transfer training and evaluation
11: 2(k)

t ← TransModel
(
LNLL(2

(k−1)
s ;C tr

t ),LKD(2
(k−1)
s ;

C tr
t , 2̄t )

)
12: 2̄t ← EvalModel

(
Cval
t ,2

(k)
t

)
13: //Out-of-domain model transfer training and evalua-

tion
14: 2(k)

s ← TransModel
(
LNLL(2

(k−1)
t ;C tr

s ),LKD(2
(k−1)
t ;

C tr
s , 2̄s)

)
15: 2̄s← EvalModel

(
Cval
s ;2

(k)
s

)
16: end for

model parameter set 2t in a given round is initialized325

using the previous round of the out-of-domain model326

parameter set 2(k−1)
s . After initialization, fine-tuning327

based on pretraining is performed on the in-domain328

model. The same processes are repeated for the source329

domain.330

• The EvalModel(·) and self-ensemble functions are used331

to evaluate the performance of 2(k)
t on the development332

setCval
t and form the self-ensemble parameter set 2̄t (see333

Section III.B).334

V. TRAINING PROCESS IN DOMAIN335

For the in-domain data, we aim to select each batch of train-336

ing data to enable the model to learn effectively. The basic337

concept is to adopt the method of curriculum learning [42],338

[44], [45], [47]. The main advantage of this method is that it339

can be planned in batches (learning the simple samples before340

the difficult ones). However, such methods use heuristics to341

define the relationship between the accuracy and uncertainty 342

of the model, and the difficulty and uncertainty of the original 343

sample. Because the batch process is a sequential decision- 344

making process (the data for training are selected according to 345

the capacity of the model), we adopt the reinforcement learn- 346

ing framework to adaptively learn the relationships between 347

these characteristics. 348

A. REINFORCEMENT MODEL REPRESENTATION 349

Curriculum scheduling can be considered as a Markov deci- 350

sion process (MDP), where an agent interacts with its envi- 351

ronment (data and NMTmodel) to perform sample selection. 352

An MDP can be defined by a five tuple (S,A,P,R, γ ). 353

• State S. A neural translation model and data are used 354

to represent the current state s. The difficulty of the 355

present round of training is described by a feature. Gen- 356

erally, there are two types of difficulty [41]: model- and 357

linguistics-based difficulty. 358

• Action A. Action a ∈ Rk is a continuous parame- 359

ter vector, meaning that it selects samples according 360

to the current training scenario to perform curriculum 361

scheduling. 362

• Transition P. Once it is determined whether the current 363

sample is in the current curriculum or not, the state 364

transition probability p(s′|s, a) is confirmed. 365

• Reward R. Given a state and action, the scheduling 366

agent will provide an immediate reward (r(s, a)) accord- 367

ing to the current training scenario. 368

• Discount Rate γ . γ ∈ [0, 1] is a discount factor that 369

measures the current value of long-term rewards. 370

The entire reinforcement process can be described as fol- 371

lows. In each time step, the scheduling agent presents a ∈ A 372

according to the current data and model state s ∈ S, and 373

obtains the corresponding reward r(s, a). The original state 374

updates to the new state s′ according to the state transition 375

probability p(s′|s, a). The goal of the scheduling agent is to 376

identify the optimal strategy (µφ : S × A 7→ [0, 1]) to 377

maximize the expected cumulative reward. In the proposed 378

approach, we adopt the classic deep deterministic policy 379

gradient (DDPG) algorithm. The DDPG algorithm utilizes 380

an actor-critic framework that can model continuous behav- 381

ior. Compared with a model based solely on actors such as 382

the REINFORCE algorithm [56], the existence of the critic 383

reduces the update variance and accelerates the convergence 384

of the model. 385
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FIGURE 3. Schematic of curriculum scheduling based on deep deterministic policy gradient.

Figure 3 presents a schematic of the DDPG algorithm386

for curriculum scheduling. Take the interaction between the387

agent and the environment at time t as an example (the388

action, the state and the reward at time t are denoted as at , st389

and rt ). The environment contains machine translation model390

p(y|x;2), training and validation data data(x, y). The agent391

is divided into five components, including online actor-critic392

(at = µφ(st ) and Qω(st , at )) and target actor-critic networks393

(µφ′ (st ) and Qω′ (st , at )), and experience replay memory. The394

critic networks are divided into online and target networks395

because if the target network is updated frequently, the learn-396

ing process becomes highly unstable. The main purpose of397

experience replay memory is to overcome the correlation398

data and nonstationary distribution of experience data by399

storing the training sample (st , at , rt , st+1) at the current time400

t and taking out N training samples N ∗ (si, ai, ri, si+1). The401

curriculum scheduling agent needs to exploit and explore the402

environment to identify better strategies. To induce the model403

to perform explorationmore effectively, we introduce random404

noise on the action strategy.405

B. AGENT STRUCTURE406

The basic structure of the actor–critic network, shown in407

Figure 4, comprises several parts. Figure 5 is a detailed408

diagram of FM and SRM in Figure 4.409

• Feature model (FM in figure 4): The data and model 410

cannot be described comprehensively. Here, we take 411

the representative data and model description as the 412

features, of which there are two types. Features in FM 413

include: 414

â Data features (or linguistic features [41]): (1) source/ 415

target sentence length Lx and Ly [40]; (2) source/target 416

n-gram sparsity feature [41], [57] that calculates the 417

frequency of the word n-gram in a sentence(n = 418

{1, 2, 3, 4}); (3) source/target-side uncertainty u(x) and 419

u(y) [47] that uses a pretrained LM to compute sentence 420

complexity. Additionally, sentence embedding features 421

are used to obtain a more refined data representation. 422

â Model features include a log-likelihood score. Addi- 423

tionally, to represent the model more finely and reduce 424

its complexity, the output vector of the last softmax 425

layer in the transformer is used to represent the model 426

embedding features. 427

From different perspectives, these features can be divided into 428

different types: deep features (such as sentence and model 429

embedding features) and traditional (other) features, as well 430

as model and data features. To process these low-order data 431

and model features effectively to obtain high-order features, 432

the features are further divided into four types according to 433

the aforementioned feature types: a traditional model feature 434
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FIGURE 4. Schematic of curriculum scheduling agent (actor-critic)
network.

ftm (log-likelihood score), traditional data feature ftd (rep-435

resenting sentence length, sparsity, and uncertainty), deep436

model feature fdm (model embedding feature), and deep data437

feature fdd (sentence embedding feature). Because the dimen-438

sions of these features differ, a simple linear transformation439

is used to map them to the same dimension ei ∈ R1×n, i ∈440

{tm, td, dm, dd}, as indicated by the blue lines in Figure 5.441

• State representation model (SRM in figure 4): The442

state representation can be obtained through interactions443

between features. Here, the concept of simple pairwise444

interaction is adopted. As indicated by the red lines in445

Figure 5 (element-wise Hadamard product ⊗ between446

vectors), the state representation s ∈ R1×12n is obtained.447

• Actor network: By using two ReLU layers, i.e., a tanh448

layer and softmax layer, the state representation s is449

transformed into an action a = µφ(s) as the output of450

the critic network. Specifically, the action a is defined as451

a continuous probability parameter vector to select sam-452

ples. Because the output action is the input of the critic453

network, the actor network will update this parameter454

according to the direction of accelerating Q-values.455

• Critic network: This model is a deep Q-network that456

brings the parameterized deep neural network Qw(s, a)457

closer to the real state action function Qπ (s, a) (i.e.,458

a Q-value function)459

C. AGENT TRAINING ALGORITHM460

Algorithm 2 summarizes the training process of the curricu-461

lum scheduling agent. Specifically, at time t , the training462

process includes two stages: transition generation (lines 5 to463

9) and updating the model (lines 10 to 16).464

• In the first stage, the scheduling agent generates a state465

through the SRM (a state phasor model), then uses an466

ε-greedy function to explore the generated action and467

calculate the reward function, and finally stores the468

result in the experience replay memory.469

FIGURE 5. Schematic of Feature Model (FM) and State Representation
Model (SRM).

• In the second stage, some samples are removed from the 470

experience replay memory to update the actor and critic 471

networks for the two objective functions. According to 472

the time difference learning method [58], the objective 473

function and update formula for the critic network are 474

expressed as follows: 475

J (Qω) ≈
1
N

∑
i
(yi − Qω (si, ai))2 476

with yi = ri + γQω′
(
si+1, µφ′ (si+1)

)
, (9) 477

ω′ = ω + αωδ∇aQω (s, a) , (10) 478

where δ = yi − Qω (si, ai) is the temporal difference. 479

According to the deterministic policy gradient theorem 480

[59], the objective function and update formula for the 481

actor network are expressed as follows: 482

J (µφ) ≈
1
N

∑
t
Qω (s, a)

∣∣s=st ,a=µφ(st ) , (11) 483

φ′ = φ + αφ∇aQω (s, a)

∣∣∣∣ s=st ,a=µφ(st ) 484

×∇φµφ (s)
∣∣s=st , (12) 485

where αω and αφ are the learning rates of the two networks. 486

VI. EXPERIMENTS AND ANALYSIS 487

A. EXPERIMENTAL SETUP 488

1) DATASET 489

We performed an experiment on a Chinese-English trans- 490

lation task. We filtered sentences that were longer than 50 491

characters. For the English data, we used the Moses script1 492

to perform word segmentation and identify lowercase letters. 493

For the Chinese data, we used the Stanford word segmenta- 494

tion tool2 to perform word segmentation. Byte-pair encoding 495

[60] was used to segment sentences in parallel corpora (the 496

number of merging operations was 16k). To verify the effec- 497

tiveness of the proposed approach, we conducted experiments 498

under three data scenarios. 499

(1) In-domain and out-of-domain (general domain) setting: 500

OpenSubtitles 2018 [61] and WMT 2017 [62]were used 501

as out-of-domain data and randomly divided into a train- 502

ing dataset (1.8m in total), development set (2k in total), 503
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Algorithm 2 Training Algorithm for the Curriculum
Scheduling Agent
1 Initialize actor µφ and criticQω with parameters φ and ω
2 Initialize target network µφ′ and Qω′ with weights φ′ ←
φ and ω′← ω

3 Initialize experience replay memory M and soft update
parameter τ

4 for k = 1 . . .K do
5 for number of RL training iterations do
6 Observe state st
7 Obtain action at according to policy µφ with ε-
greedy exploration

8 Update p(y|x;2(k)) with selected sample to obtain
p(y|x;2(k ′))

9 Calculate the perplexity difference on the validation
set Cval between p(y|x;2(k ′)) and p(y|x;2(k)) as rtz

10 Observe new state st+1 and store transition
(st , at , rt , st+1) in M

11 Sample mini-batch transitions N ∗ (si, ai, ri, si+1)
in M using the prioritized experience replay sampling
technique

12 Update the critic network through Equation (11)
13 Update the actor network through Equation (13)
14 Update the parameters in the SRM with backpropa-

gation from the update signal of the actor
15 Update the target networks:

µ′ = τµ+ (1− τ) µ′

ω′ = τω + (1− τ) ω′

16 Select data C tr ′ from C tr using µφ
17 Update p(y|x;2(k)) with C tr ′ to obtain

p(y|x;2(k+1))

and testing set (2k in total), denoted by the tag ‘‘GEN.’’504

The in-domain data were the same as those in the specific505

domain setting.506

(2) Specific domain setting: We used the UM corpus [63]507

divided into specific domains. Three common domains508

were selected: news (denoted as NEWS, 1.5m in total),509

education (denoted as EDU, 1.5m in total), and law510

(denoted as LAW, 1.5m in total). We randomly selected511

2000 sentences from each domain as the development set512

and 2000 sentences as the test set.513

(3) Low-resource domain setting: This setting was the same514

as the in-domain and out-of-domain scenarios, but 50k,515

(4) 100k, and 300k data samples were randomly selected516

from the training set in the domain.517

2) NEURAL NETWORK518

We used PyTorch3 to implement the baseline model and our519

transformer model. The same hyperparameter settings were520

used for the self-ensemble and proposed models. L2-norm521

regularization was used to mitigate overfitting. Both the522

word vector and hidden variable length were set to 512.523

All parameters were initialized using a uniform distribution 524

in [−0.1, 0.1]. Our model used the Adam algorithm as an 525

optimizer and the initial learning rate was set to 0.0005.When 526

the performance of the development set did not exceed that 527

of the previous eight rounds of checkpoints, the learning rate 528

was set to 0.8 times the original value. When the performance 529

of the development set did not improve in 20 rounds of check- 530

points, the training process was terminated (one checkpoint 531

was equivalent to 1000 updates). 532

3) REINFORCEMENT LEARNING 533

For the curriculum scheduling agent, the actor-critic frame- 534

work was adopted and the system was constructed based on 535

reference [64]. The experience replay memory size was set to 536

2500 and a warm-up phase of 500 steps was performed. The 537

mixing factor of the target and online networks was τ = 0.1. 538

The target network was updated at 100 steps. The discount 539

factor was γ = 0.99. 540

4) MACHINE TRANSLATION 541

The source and target uncertainties were calculated by train- 542

ing the four-gram LM using KenLM [65] with modified 543

Kneser–Ney smoothing. The evaluation criteria were based 544

on four-gram BLEU scores [66]. The proposed model is 545

referred to as the domain mutual guidance model (DMGM). 546

A classic baseline system was selected for comparison. 547

• Simple model: IN: Only data in the domain were used 548

to perform training; IN + OUT: Data in both domains 549

were mixed together. 550

• Fine-tuning model: Oversampling (OS) [67] was first 551

used to train the NMTmodel on the out-of-domain train- 552

ing corpus and then fine-tune the NMT model. Iterative 553

dual domain adaptation (IDDA) [53] was alternately 554

used to fine-tune the out-of-domain and in-domain data. 555

• Discriminative model: Discriminative mixing (DM) 556

[34] included a discriminator in the encoder to predict 557

the domain of translation. For the discriminator, the 558

encoder and decoder were optimized jointly. 559

• Domain label model: Domain control (DC) [68] added 560

an additional domain label to each source statement 561

to merge the domain information with the source sen- 562

tences. Target token mixing (TTM) [34] was used to 563

mark the domain of the target-side sequence. 564

• KDmodel:KD [69] was used to train a model in its own 565

domain and fine-tune the out-of-domain model using in- 566

domain data. The trainedmodel was then used in domain 567

for supervision. 568

B. OVERALL PERFORMANCE 569

In our reported results, boldface indicates the best perfor- 570

mance on the testing set. A significance test was conducted 571

(where ∗∗ indicates significance level α = 0.01, and ∗ indi- 572

cates significance level α= 0.05). GEN-NEWS indicates that 573

the out-of-domain and in-domain data came from the general 574
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TABLE 1. Performance of in-domain and out-of -domain scenario and specific domain experiment scenar.

and news domains, respectively. The other symbols are used575

similarly.576

Table 1 lists the experimental performance measures under577

in-domain, out-of-domain, and specific-domain scenarios.578

An analysis of Table 1 reveals that the cross-domain transfer579

method is able to improve performance to a certain extent.580

For the overall baseline model, the performance of the sim-581

ple model is the worst (one possible reason is that it does582

not make good use of domain knowledge). Additionally, the583

discriminative, domain label, and KD models exhibit the584

second-best performance, which can be attributed to their585

separate use of out-of-domain and in-domain knowledge. The586

fine-tuning model exhibits the best performance, which may587

be because the out-of domain and in-domain corpora are used588

synthetically. However, this method has no effective guidance589

compared to the proposed approach. From the perspective of590

the baseline classification model, the method using mixed591

corpora (IN+OUT) in the simple model does not perform592

as well as the method using only in-domain corpora (IN).593

IDDA performs better than the OS model (one possible rea-594

son is that the iterative method is able to integrate out-of-595

domain and in-domain knowledge more effectively). When596

comparing the in-domain and out-of-domain scenarios to the597

specific-domain scenario, one can see that the performance598

of the specific domain is better than that of the general 599

domain, which can be attributed to the fact that the general 600

domain contains information frommultiple domains, causing 601

the data to be relatively noisy. From the perspective of the 602

experimental scenarios in and out of the domain, the transfer 603

effect of the news corpus and general domain is better. One 604

possible reason for this is that the news corpus has stronger 605

generalization ability in the domain. From the perspective of 606

the specific-domain experimental scenarios, we can make the 607

same observation. 608

Table 2 presents the performance of the low-resource 609

experimental scenario. NEWS-50 refers to the use of 50k 610

in-domain samples and the other results are similarly named. 611

As a result of the mismatching between the amount of out- 612

of-domain and low-resource-domain data, the fine-tuning 613

model, KD method, and our method only adopt a single 614

approach, namely, using data from out of the domain for 615

initialization, and they do not iteratively improve each other. 616

Additionally, the in-domain data are oversampled in the dis- 617

criminant and domain label models. As a result of this in- 618

domain-oriented training method, this section only discusses 619

the in-domain performance. 620

For the overall and classification baseline models (various 621

systems are compared in Table 2), the conclusions are similar 622
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TABLE 2. Performance in the low-resource experimental scenario.

TABLE 3. Influence of integration modes on performance.

to those in the resource-rich scenarios. The best performance623

can be observed for the news data and when comparing vari-624

ous domains, the performance of the corpus increases signifi-625

cantly for the news data (which demonstrates the particularity626

of low-resource scenarios). When comparing low-resource627

(Table 2) and resource-rich methods (Table 1), the perfor-628

mance of low-resource methods is much worse. It should629

be highlighted that the performance of the hybrid corpus630

(IN+OUT) is significantly worse than that of the in-domain 631

corpus (IN). One possible reason is that the noise in the hybrid 632

corpus has a greater influence in the low-resource scenario. 633

C. INFLUENCE OF THE SELF-ENSEMBLE MODE 634

Table 3 presents the effects of different self-ensemble meth- 635

ods on performance. The maximum, average, and weighted 636

strategies are represented by symbols +1, +2, and +3, 637
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TABLE 4. Ablation experiments with different characteristics.

FIGURE 6. Effect of iterations in the in-domain and out-of-domain scenario.

FIGURE 7. Effect of iterations in the specific-domain scenario.

respectively. The performances of different self-ensemble638

methods are approximately the same. One possible reason639

is that as model transfer proceeds, the knowledge obtained640

by distillation tends to be maximized. The boldface font641

indicates the best average performance and smallest variation642

range. Compared to the maximum strategy, the average and643

weighted strategies exhibit better robustness.644

D. INFLUENCE OF STATE FEATURES 645

In Table 4, representative datasets for three scenarios are 646

highlighted to present the results of our experiments. The 647

other datasets yielded similar conclusions. Base is the result 648

of learning without using curriculum scheduling. SenLen, 649

n-gram, Uncertainty, Logp, SenEmb, and ModelEmb are 650

the results of using the source and target sentence length, 651
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FIGURE 8. Effect of iterations in the low-resource scenario.

source/target n-gram sparsity, uncertainty, log-likelihood,652

sentence embedding and model embedding features, respec-653

tively. Compared with the baseline model, the performance654

improved significantly for the proposed model, particularly655

in the low-resource scenarios (one possible reason is that656

the data distribution is sparse and sensitive to the data). The657

deep features exhibit better performance than the traditional658

features and reflect the overall context of the target sentences.659

E. ITERATION NUMBER SENSITIVITY660

The number of alternative iterative training is a key fac-661

tor affecting the effectiveness of information transmission662

between domains. In the framework of inter-domain transfer,663

the iteration number k is a key hyperparameter that directly664

determines the number of translated knowledge transfers.665

We varied k from 0 to 10 in steps of 1. When k = 0, the666

framework degenerated to a single-domain model.667

In the in-domain and out-of-domain (Figures 6(a) to 6(c)),668

specific-domain (Figures 7(a) to 7(c)), and low-resource669

(Figures 8(a) to 8(c)) scenarios, DMGM exhibited perfor-670

mance near the top in the sixth, fourth, and seventh iterations,671

respectively, which could be attributed to the special data672

distributions in the general and small-data domains. When673

comparing Figures 6 and 7, one can observe that the two674

domains converged together in the in-domain and out-of-675

domain scenario as well as in the specific-domain scenario,676

indicating that the two domains were able to learn from each677

other until they were trained well. In each graph (e.g., when678

comparing Figures 6(a) to 6(c)), the convergence times of679

different domains were largely similar, indicating that the680

framework was not particularly sensitive to the domains.681

Naturally, this framework can also be applied to other domain682

transfer tasks.683

VII. CONCLUSION684

This paper explores the application of transfer learning in685

classical neural translation model. It proposes an effective686

translation transfer method that mainly includes: (1) the687

framework of alternative training out of and in domain,688

so that the in-domain and out-of-domain knowledge can be 689

transferred to each other; (2) in the in-domain, the previous 690

knowledge can be used to guide the training of the current 691

model through self-ensemble and distillation; (3) the diffi- 692

culty of data will also be considered in the current model 693

training. The classical transformer model was used to analyze 694

the experiment results in three typical experimental scenar- 695

ios, thereby, showing the effectiveness and robustness of the 696

proposed model. 697

From the commercial point of view, this framework is only 698

on the training stage and has no impact on the decoding stage. 699

It is suitable for offline training and deployment to online 700

system. In the future, we hope to develop a transfer training 701

framework suitable for more domains and further reduce the 702

training cost. In addition to cross-domain, we hope that this 703

method can also be applied to other similar tasks, such as 704

cross-lingually etc. 705
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