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ABSTRACT The neural machine translation (NMT) model is a data hungry and domain-sensitive model but
it is almost impossible to obtain a large number of labeled data for training it. This requires the use of domain
transfer strategy. In order to solve the problem of domain data mismatch, this paper proposes a neural machine
translation transfer model based on domain mutual guidance and establishes the continuous impact through
the framework of mutual guidance. At the same time, self-ensemble and self-knowledge-distillation are used
in these independent domains so that the model will not deviate from the domain too much. Furthermore,
the model can better train the models from the batching way of domain data. It mainly uses the pretraining
model out of domain, distillation of existing models in domain and data selection in the training process
to guide the in-domain model. These are unified in the training framework, so that model training can be
continuously and effectively guided in and out of domain. In this study, three typical experiment scenarios
were comprehensive tested and our model was compared with many conventional classic methods. The
experiment results showed that our proposed ‘‘inter-domain transfer training” and “‘curriculum scheduling
agent” was effective and robust. The most important results and findings are that this comprehensive guided
training framework (intra-domain and inter-domain) is suitable for the domain transfer in different scenarios,
and this framework doesn’t increase the decoding cost.

INDEX TERMS Neural machine translation, model transfer, self-ensemble, self-knowledge-distillation,
curriculum learning.

I. INTRODUCTION represent the source domain/task, whereas P;(x)/P;(y|x) can

Transfer learning [1] is an important research topic in the
machine learning field. Many machine learning methods
can be considered to perform transfer learning, including
multitask learning [2], domain adaptation [3], and semi-
supervised learning [4]. Transfer learning mainly assumes
two probability forms called domains ({P(x)|x € X}, X
for feature spaces) and tasks ({P(x|y)lx € X,y € Y}, Y
for label spaces). The probability form of an entire model
({P(x,y)|x € X,y € Y}) can be obtained through the joint
probability formula. Transfer learning is divided into source
and target domains and tasks. Ps(x)/Ps(y|x) can be used to
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be used to represent the target domain/task. The transfer
of learned information between domains is called domain
adaptation. It can be applied to training and/or testing corpora
from different domains. The transfer of learned information
between different tasks is called multitask learning or system
combination.

Neural machine translation (NMT) models have developed
rapidly. Many translation frameworks have been reported
in the relevant literature, including models using recurrent
neural networks (RNN) [5], convolutional neural networks
(CNN) [6], and transformer [7] models, as well as hybrid
[8], [9] and simple frameworks for small devices (including
neural architecture search [10] and knowledge distillation
(KD) [11]). From the perspective of translation style, existing

101595


https://orcid.org/0000-0002-8437-6894
https://orcid.org/0000-0002-3733-7286

IEEE Access

Y. Liu et al.: Neural Machine Translation Transfer Model Based on Mutual Domain Guidance

methods can be divided into multilingual translation systems
(including multiway translation such as one-to-many [12],
many-to-one [13], and many-to-many [14], and multisource
translation [15]), low-resource translation systems [16], and
domain adaptation [17].

The proposed approach unifies in-domain and
out-of-domain guidance to construct a training framework
that continuously affects the training process. It combines the
guidance within and out of the domain to construct a training
framework. Unlike traditional methods, this framework can
dynamically and continuously affect the training process so
that the knowledge transfer relationship between domains
can be considered more comprehensively. Training in the
domain is not only related to in-domain and out-of-domain
knowledge, but also to training data. To perform training and
inference effectively, we consider various guidance signals
from multiple perspectives, including in-domain and out-of-
domain models and training data. The main contributions of
this work are summarized here.

(1) A transfer training framework is proposed. It is designed
to perform mutual guidance within and out of a given
domain; both learning processes continuously guide each
other to improve overall performance.

(2) A self-ensemble training objective based on self-
knowledge-distillation and a dynamic pretraining are
proposed. The self-ensemble training objective can better
consider the in-domain information. The dynamic pre-
training can better consider the out-of-domain informa-
tion. During the training process, both in-domain and
out-of-domain knowledge can be considered.

(3) An adaptive batching learning method based on rein-
forcement learning is proposed, which can better con-
sider the sample feature. The difficulty of the training
samples can be learned adaptively. Samples with differ-
ent training difficulties are considered during the training
process.

This paper discusses the application of deep networks
in an NMT transfer task. In Section 2, related work is
introduced. In Section 3, the neural translation model and
objective function are introduced with a focus on the trans-
former structure and training objective of the transfer learning
method. In Section 4, the training processes of model trans-
fer and batching methods based on reinforcement learning
are described. In Section 5, experimental results and their
analysis are presented. Finally, in Section 6, our findings are
summarized and some possible directions for further research
are suggested.

Il. RELATED WORK
A. DOMAIN TRANSFER
Domain transfer methods in machine translation are largely
divided into data augmentation and model enhancement
methods.

Data augmentation methods can be divided into mono-
lingual corpus augmentation, synthetic bilingual corpus
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augmentation, and out-of-domain parallel corpora aug-
mentation. Regarding monolingual corpus augmentation,
Zhang & Zong, [17] used monolingual source data to
enhance an NMT encoder through multitask learning to
predict translated and reordered source monolingual data.
Cheng et al., [18] used NMT as an auto-encoder to recon-
struct source and target monolingual data. Regarding syn-
thetic bilingual corpus augmentation, a synthetic parallel
corpus can be generated back translation of a target sentence
to enhance the decoder [19]. Considering out-of-domain
bilingual corpus augmentation, Chu et al., [20] used tagged
domain data to control their model. Chen & Huang [21] used
a domain classifier to select sentences. Poncelas et al. [22]
used sentence embedding to select sentences that were similar
to the average in a given domain, but dissimilar to the average
out of the domain. Poncelas et al. and Wang et al. [23], [24]
used a feature attenuation algorithm to perform sentence
selection. Cai et al. [70] and Vu et al. [71], both of whom used
a cross-lingual neural network to retrieve target sentences
with similar embeddings to a source sentence. Del ef al. [72]
clustered sentences embedding into domains that allowed for
better adaptation than pre-defined corpora. Martins et al. [73]
introduced a simple but effective caching strategy that
avoided performing retrieval when similar contexts had been
seen before.

Similarly, model enhancement methods may be largely
divided into those performing training- (changing training
objectives and processes), structure-, and decoding-based
enhancement. Regarding training objectives, the basic con-
cept is to weight training data. Shafiq et al. [25] used
noise-contrastive estimation to perform domain adaptation
of a translation system. Wang et al. [26] regularized trans-
lation tasks in the target domain using the marginal proba-
bility of the target side being monolingual. Chen et al. [27]
trained a domain classifier to distinguish source sentences
in the development set from those in the training set and
the translation process was weighted. Wang et al. [28] used
the loss difference between out-of-domain and in-domain
information regarding bilingual sentence pairs to weight the
translation process. For the training process, the basic concept
is to fine-tune a developed model. Li et al. [29] only updated
meta-parameters during the transfer process to achieve faster
domain adaptation. Thompson et al. [30] analyzed the roles
of an encoder, decoder, and probability calculation layer in
feature transfer. Along these lines, Vilar [31] considered the
contribution of a hidden layer in the transfer process. Regard-
ing model-based enhancement, Gulcehre et al. [32] and
Domhan & Hieber [33] integrated a language model (LM)
and NMT into a decoder. Gulcehre et al. [32] trained mod-
els separately, whereas Domhan & Hieber [33] performed
joint training. Britz et al. [34] used a discriminative network
to distinguish domains [35]. Specifically, the contexts of
domain-specific and domain-shared information were dis-
criminated at the word level. Su et al. [36] used source context
gates to accurately merge domain-independent and domain-
shared contexts. Regarding decoding-based enhancement,
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Dou et al. [37] used LMs within and out of a given domain
to change the decoding target. Freitag et al. [38] used ensem-
ble learning to integrate decoding objectives out of the tar-
get domain. Stickland et al. [74] decoupled these features
between domains using adapter sub-network. Cao et al. [75]
extended knowledge distillation for domain adaptation to a
continual learning scenario. Pham et al. [76] proposed a
method to better take advantage of these domain similarities,
using a latent-variable model.

B. CURRICULUM LEARNING

In contrast to the traditional batch method [39], curricu-
lum learning focuses on statistical efficiency rather than
computational efficiency, even at the cost of performance.
To the best of our knowledge, Tom & Ondrej [40] were
the first to study curriculum learning in the context of
NMT by using different features for curriculum scheduling
on a Czech-English translation task. Curriculum learning is
mainly designed to solve the problem of curriculum schedul-
ing and can be divided into three research problems: sample
difficulty, model capacity, and the relationship between them.
Regarding sample difficulty, Xuan et al. [41] systematically
modeled curriculum learning, classified sample difficulty,
and conducted comprehensive experiments and analysis on
the entire training process. Wang et al. [42] used sentence
difficulty to weight sentence sampling. Wang et al. [43]
weighted sentences in multiple domains to obtain the influ-
ence of sentences in a target domain. Regarding model capa-
bility, Platanios et al. [44] used a heuristic capacity function.
Xu et al. [45] applied a BLEU-based process to a pretrained
model as an adaptive capacity function. Liu et al. [46] used
a norm to measure sample difficulty and model capacity.
Zhou et al. [47] used data and model uncertainty to measure
sample difficulty and model capacity. To accurately describe
the relationship between sample difficulty and model capac-
ity, Kumar et al. [48] and Zhao [49] expressed their nonlinear
relationship and performed sequential decision modeling on
different data selection methods. Wan et al. [50] used the
concept of self-paced learning to weight an objective func-
tion to combine the training and sample selection processes.
Wu et al. [77] used model uncertainty on a small, trusted
multi-domain dataset to determine a curriculum across cor-
pora. Hasler et al. [78] demonstrate that mixed fine-tuning
without domain tags was complementary to directly regular-
izing parameters using Elastic Weight Consolidation (EWC).

IIl. TRANSLATION MODELING

A. MODEL

The proposed approach adopts a translation model based on a
transformer [51] that relies on a self-attention network (a self-
attention mechanism is an extension of traditional attention
mechanisms [52]). The self-attention network is a type of
neural network without recursion or convolutional operations
that completely depends on a self-attention mechanism to
implement an encoder (left side of Figure 1) and decoder
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(right side of Figure 1). The input sequence is token embed-
ding and position embedding. The encoder is composed of N
mixed add layers, multihead attention layers and feedforward
layers, while the decoder is composed of N mixed add layers,
multihead attention layers, feedforward layers and masked
multihead attention layers. Unlike the multihead attention
layer, the text sequence cannot be output at one time in
masked multihead attention layers, and the ungenerated text
is masked.

Specifically, a source input H® with position embedding is
first transformed into a query matrix QO, key matrix K 0 and
value matrix V. Multihead attention is then applied to Q°,
K9, and VY as follows:

MultiHead(Q°, K°, V%) = Concat(Q! : ---: Q}p)W?, (1)
T
RKL 1\ Lo
Q1 = softmax | —=—]V,", (2)
h \/dmod el h
00, KD, v = 0"w2 k'wk vow) . (3)

where Qg, K}? , and V}? are the h-th header query, key, and
value matrices of layer zero, respectively. {WhQ, W}{( , Whv} €

Rmodet % di represents the parameter matriX. dpoder and di
represent the dimensions of the model and header, respec-
tively. A position-based feedforward neural network [a fully
connected network with a rectified linear unit (ReLU) activa-
tion function applied to each position equally] is applied as
follows:

0! = FFNN(MultiHead(Q°, K°, V9)) + 0°, )

where Q' is a source representation with global feature infor-
mation and Q° is added to implement residual connections to
overcome gradient vanishing.

Similarly, this processing sequence is formally expressed
as a function fsan, which is used to learn the source repre-
sentation Q!.

0" = (0", K%, V0. Q)

The self-attention network uses a set of different layers to
learn the source representation.

[Qn ZfSnAN(Qn—l’ K"l Vn—l)]N _ (6)

Here, [--- ]y (n € {1,2,...,N}) indicates that N identical
layers of the encoder are stacked together. The output Oy of
the N-th attention network layer is the final source represen-
tation that is sent to the decoder to learn a translation context
vector used to predict the target word. The only difference
between the decoder and encoder is the masked attention
layer because the target output is generated dynamically.

The decoded output calculates the probability
pWjly<j, x; ®) of each word using the softmax function,
where © denotes the parameter set of the encoder and
decoder.
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FIGURE 1. Neural translation model based on a transformer with encoder
and decoder.

B. TRAINING OBJECTIVE

Because the proposed approach adopts the training mode of
fine-tuning an out-of-domain model, in-domain knowledge
is required to guide the training process and perform KD
[53]. Distillation models typically include two submodels
called the student and teacher models. The loss function of
the student model is composed of the weighted sum of the
following two components.

(1) The traditional loss function is a cross-entropy [54] one
between prediction probability and true labels that is also
known as a negative log-likelihood loss function.

m
ICTHOED DN SR ()
x logp(yjly<j, x; ®).  (7)

(2) The KD loss function is the cross-entropy or Kullback—
Leibler distance [21] loss between the output probabili-
ties of the student and teacher models.

— m —
Lip(®; C, 00 = D> —40ily<, % 60
x log p(yjly<j» x; ©1). ®)

101598

Here, q(yjly<;, x; ©,) and O, are the distribution and param-
eter set of the teacher model, and p(yj|y<;, x; ®;) and O,
are the distribution and parameter set of the student model,
respectively.

Inspired by Zeng et al. [53], a maximum strategy ©, =
©F (where ©F is the model parameter set yielding the best
performance in previous rounds), average strategy ©; =

¥ ®'" (average of the model parameter sets ®" in the
n

previous n rounds), or weighted average strategy ©; =
> eval — n0rm(M(®§n)))®£" [where eval — norm(.) is the
n

normalized function after the n-th evaluation M(®") of the
model parameter set @5’”] can be adopted for a self-ensemble
model. In the average and weighted average strategies, the
student model is typically more robust because it gathers
information from the previous iterations of the teacher model.

IV. INTERDOMAIN TRANSFER TRAINING

Inspired by the concept of coteaching [55], the proposed
approach models, i.e., the out-of-domain and in-domain mod-
els, perform transfer learning through pretraining.

Figure 2 illustrates the alternative training processes for
in-domain and out-of-domain data. Each round of out-of-
domain parameters is used to initialize the following round
of in-domain parameters and vice versa. These processes
are repeated to complete the mutual transmission of infor-
mation. Through this alternative iterative training processes,
each domain can absorb knowledge beneficial to this domain.
Therefore, in-domain and out-of-domain features can be
transferred to each other in a model-level transfer that can
better retain shared knowledge between models and provides
better transfer performance. Here, we need to evaluate the
quality of the model. The source and target domain data
Cs, C; are divided into training sets CI", C!" and development
sets C ;’“l , Ctml that are used to train and evaluate the model,
respectively.

Algorithm 1 is the domain transfer algorithm for the pro-
posed NMT model, mainly divided into two stages.

(1) In the initialization phase, the main task is to complete
initialization of the in-domain and out-of-domain model
parameters.

e The TrainModel(-) function is used to train the model.
The nondistillation objective function is used on the train-
ing set C}" and the model parameter set ®§0) is initialized
on Lyr1(®y; Ct”). The same process is performed for the
source domain.

(2) In the iteration phase, the main task is to complete
information transfer between the in-domain and out-of-
domain models.

e The TransModel(-) function is used for model transfer.
The objective functions with self-knowledge-distillation
functions Ly.(®F™V; €y and Lgp(@F™"; Cr, ;)
are used in the training set C/” (the weighted average
method is used to balance the likelihood and distillation
functions). To perform model transfer, the in-domain
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FIGURE 2. Alternative iterative training processes for in-domain and out-of-domain learning.

Algorithm 1 Model Transfer for NMT

1: Input: Training sets {C/", CI'}, development sets
{cyel, ¢y}, and iteration number K
2: Output: In-domain NMT model®, and out-of-domain
NMT model® s
//In-domain model training
@50) <« TrainModel (Lyz(©;; C"))
//Out-of-domain model training
0 < TrainModel (Lnro(®y; CI))
//nitializing in-domain and out-of-domain self-
ensemble model parameters
8 0, <0 o, o
9: fork=1,2,...,K do
10:  //In-domain model transfer training and evaluation
11: ®% « TransModel (LNLL(®§"‘”; Cm), Lgp(©F Y

Cttrs (:Dl)>

12: @, < EvalModel (C}, ©F)

13:  //Out-of-domain model transfer training and evalua-

tion

14: % « TransModel (LNLL(@)E"‘”; Cn), Lgp(©F Y
cr.6,)

15: @, < EvalModel (CSV“I; @2’”)

16: end for

AN A

model parameter set ®; in a given round is initialized
using the previous round of the out-of-domain model
parameter set ®§k_1). After initialization, fine-tuning
based on pretraining is performed on the in-domain
model. The same processes are repeated for the source
domain.

e The EvalModel(-) and self-ensemble functions are used
to evaluate the performance of @5") on the development
set C, t"“l and form the self-ensemble parameter set O, (see
Section II1.B).

V. TRAINING PROCESS IN DOMAIN

For the in-domain data, we aim to select each batch of train-
ing data to enable the model to learn effectively. The basic
concept is to adopt the method of curriculum learning [42],
[44], [45], [47]. The main advantage of this method is that it
can be planned in batches (learning the simple samples before
the difficult ones). However, such methods use heuristics to
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define the relationship between the accuracy and uncertainty
of the model, and the difficulty and uncertainty of the original
sample. Because the batch process is a sequential decision-
making process (the data for training are selected according to
the capacity of the model), we adopt the reinforcement learn-
ing framework to adaptively learn the relationships between
these characteristics.

A. REINFORCEMENT MODEL REPRESENTATION
Curriculum scheduling can be considered as a Markov deci-
sion process (MDP), where an agent interacts with its envi-
ronment (data and NMT model) to perform sample selection.
An MDP can be defined by a five tuple (S, A, P, R, y).

« State S. A neural translation model and data are used
to represent the current state s. The difficulty of the
present round of training is described by a feature. Gen-
erally, there are two types of difficulty [41]: model- and
linguistics-based difficulty.

o Action A. Action ¢ € RF is a continuous parame-
ter vector, meaning that it selects samples according
to the current training scenario to perform curriculum
scheduling.

o Transition P. Once it is determined whether the current
sample is in the current curriculum or not, the state
transition probability p(s’|s, a) is confirmed.

+ Reward R. Given a state and action, the scheduling
agent will provide an immediate reward (r (s, a)) accord-
ing to the current training scenario.

« Discount Rate y. y € [0, 1] is a discount factor that
measures the current value of long-term rewards.

The entire reinforcement process can be described as fol-
lows. In each time step, the scheduling agent presents a € A
according to the current data and model state s € §, and
obtains the corresponding reward r(s, a). The original state
updates to the new state s’ according to the state transition
probability p(s’|s, a). The goal of the scheduling agent is to
identify the optimal strategy (ugy : S x A +— [0,1]) to
maximize the expected cumulative reward. In the proposed
approach, we adopt the classic deep deterministic policy
gradient (DDPG) algorithm. The DDPG algorithm utilizes
an actor-critic framework that can model continuous behav-
ior. Compared with a model based solely on actors such as
the REINFORCE algorithm [56], the existence of the critic
reduces the update variance and accelerates the convergence
of the model.
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FIGURE 3. Schematic of curriculum scheduling based on deep deterministic policy gradient.

Figure 3 presents a schematic of the DDPG algorithm
for curriculum scheduling. Take the interaction between the
agent and the environment at time ¢ as an example (the
action, the state and the reward at time ¢ are denoted as ay, s;
and r;). The environment contains machine translation model
p(y|x; ®), training and validation data data(x, y). The agent
is divided into five components, including online actor-critic
(a; = me(sy) and Q, (s, a,)) and target actor-critic networks
(g (sy) and Qg (sy, a;)), and experience replay memory. The
critic networks are divided into online and target networks
because if the target network is updated frequently, the learn-
ing process becomes highly unstable. The main purpose of
experience replay memory is to overcome the correlation
data and nonstationary distribution of experience data by
storing the training sample (s;, a;, ¢, S;+1) at the current time
t and taking out N training samples N * (s;, a;, 7i, Sit+1). The
curriculum scheduling agent needs to exploit and explore the
environment to identify better strategies. To induce the model
to perform exploration more effectively, we introduce random
noise on the action strategy.

B. AGENT STRUCTURE
The basic structure of the actor—critic network, shown in

Figure 4, comprises several parts. Figure 5 is a detailed
diagram of FM and SRM in Figure 4.
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o Feature model (FM in figure 4): The data and model
cannot be described comprehensively. Here, we take
the representative data and model description as the
features, of which there are two types. Features in FM
include:

> Data features (or linguistic features [41]): (1) source/
target sentence length L, and Ly [40]; (2) source/target
n-gram sparsity feature [41], [57] that calculates the
frequency of the word n-gram in a sentence(n =
{1,2,3,4}); (3) source/target-side uncertainty u(x) and
u(y) [47] that uses a pretrained LM to compute sentence
complexity. Additionally, sentence embedding features
are used to obtain a more refined data representation.

> Model features include a log-likelihood score. Addi-
tionally, to represent the model more finely and reduce
its complexity, the output vector of the last softmax
layer in the transformer is used to represent the model
embedding features.

From different perspectives, these features can be divided into
different types: deep features (such as sentence and model
embedding features) and traditional (other) features, as well
as model and data features. To process these low-order data
and model features effectively to obtain high-order features,
the features are further divided into four types according to
the aforementioned feature types: a traditional model feature

VOLUME 10, 2022
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FIGURE 4. Schematic of curriculum scheduling agent (actor-critic)
network.

fim (log-likelihood score), traditional data feature fi; (rep-
resenting sentence length, sparsity, and uncertainty), deep
model feature fz,, (model embedding feature), and deep data
feature f;; (sentence embedding feature). Because the dimen-
sions of these features differ, a simple linear transformation
is used to map them to the same dimension e; € RIX" i e
{tm, td, dm, dd}, as indicated by the blue lines in Figure 5.

o State representation model (SRM in figure 4): The
state representation can be obtained through interactions
between features. Here, the concept of simple pairwise
interaction is adopted. As indicated by the red lines in
Figure 5 (element-wise Hadamard product ® between
vectors), the state representation s € R' 12 is obtained.

o Actor network: By using two ReLU layers, i.e., a tanh
layer and softmax layer, the state representation s is
transformed into an action a = ug(s) as the output of
the critic network. Specifically, the action a is defined as
a continuous probability parameter vector to select sam-
ples. Because the output action is the input of the critic
network, the actor network will update this parameter
according to the direction of accelerating Q-values.

o Critic network: This model is a deep Q-network that
brings the parameterized deep neural network Q,,(s, a)
closer to the real state action function Q7 (s, a) (i.e.,
a Q-value function)

C. AGENT TRAINING ALGORITHM

Algorithm 2 summarizes the training process of the curricu-
lum scheduling agent. Specifically, at time ¢, the training
process includes two stages: transition generation (lines 5 to
9) and updating the model (lines 10 to 16).

« In the first stage, the scheduling agent generates a state
through the SRM (a state phasor model), then uses an
e-greedy function to explore the generated action and
calculate the reward function, and finally stores the
result in the experience replay memory.
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FIGURE 5. Schematic of Feature Model (FM) and State Representation
Model (SRM).

« In the second stage, some samples are removed from the
experience replay memory to update the actor and critic
networks for the two objective functions. According to
the time difference learning method [58], the objective
function and update formula for the critic network are
expressed as follows:

1
JQo) ~ 5D i = Qo (s @)

with y; = ri + ¥ Qur (Sit1, ey (Six1)) 9
o = w+0,8V,0, (s, a), (10)

where 6 = y; — Q,, (si, a;) is the temporal difference.
According to the deterministic policy gradient theorem
[59], the objective function and update formula for the
actor network are expressed as follows:

1
Tg) ~ =32 0o (5@ s ampgsp» (A1)

s=s;,a=[L¢(S1)

¢ =+ aypViQo (s, a)

X Vg (5) |S:St s (12)

where o, and a4 are the learning rates of the two networks.

VI. EXPERIMENTS AND ANALYSIS

A. EXPERIMENTAL SETUP

1) DATASET

We performed an experiment on a Chinese-English trans-

lation task. We filtered sentences that were longer than 50

characters. For the English data, we used the Moses script!

to perform word segmentation and identify lowercase letters.

For the Chinese data, we used the Stanford word segmenta-

tion tool? to perform word segmentation. Byte-pair encoding

[60] was used to segment sentences in parallel corpora (the

number of merging operations was 16k). To verify the effec-

tiveness of the proposed approach, we conducted experiments
under three data scenarios.

(1) In-domain and out-of-domain (general domain) setting:
OpenSubtitles 2018 [61] and WMT 2017 [62]were used
as out-of-domain data and randomly divided into a train-
ing dataset (1.8m in total), development set (2k in total),
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Algorithm 2 Training Algorithm for the Curriculum
Scheduling Agent
I Initialize actor pg and critic Q,, with parameters ¢ and w
2 Initialize target network g and Q,, with weights ¢' <
¢and 0 <~ w
3 Initialize experience replay memory M and soft update
parameter t
fork=1...K do
for number of RL training iterations do
Observe state s;
Obtain action a; according to policy ug with &-
greedy exploration
8 Update p(y|x; ©®)) with selected sample to obtain
pOylx; ©F))
9 Calculate the perplexity difference on the validation
set C between p(y|x; ©K)) and p(y|x; ©F)) as r,,
10 Observe new state s;4; and store transition
(st ar, re, Se1) in M
11 Sample mini-batch transitions N x (s, a;, 1i, Si+1)
in M using the prioritized experience replay sampling
technique
12 Update the critic network through Equation (11)
13 Update the actor network through Equation (13)
14 Update the parameters in the SRM with backpropa-
gation from the update signal of the actor
15 Update the target networks:

BN e N, N

wW=tu+d-1)u

o =two+(1-17)d

16 Select data C*” from C"" using e

17 Update p(ylx; ©®) with € to
pOlx; ©FFD)

obtain

and testing set (2k in total), denoted by the tag “GEN.”
The in-domain data were the same as those in the specific
domain setting.

(2) Specific domain setting: We used the UM corpus [63]
divided into specific domains. Three common domains
were selected: news (denoted as NEWS, 1.5m in total),
education (denoted as EDU, 1.5m in total), and law
(denoted as LAW, 1.5m in total). We randomly selected
2000 sentences from each domain as the development set
and 2000 sentences as the test set.

(3) Low-resource domain setting: This setting was the same
as the in-domain and out-of-domain scenarios, but 50k,

(4) 100k, and 300k data samples were randomly selected
from the training set in the domain.

2) NEURAL NETWORK

We used PyTorch? to implement the baseline model and our
transformer model. The same hyperparameter settings were
used for the self-ensemble and proposed models. L2-norm
regularization was used to mitigate overfitting. Both the
word vector and hidden variable length were set to 512.
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All parameters were initialized using a uniform distribution
in [—0.1, 0.1]. Our model used the Adam algorithm as an
optimizer and the initial learning rate was set to 0.0005. When
the performance of the development set did not exceed that
of the previous eight rounds of checkpoints, the learning rate
was set to 0.8 times the original value. When the performance
of the development set did not improve in 20 rounds of check-
points, the training process was terminated (one checkpoint
was equivalent to 1000 updates).

3) REINFORCEMENT LEARNING

For the curriculum scheduling agent, the actor-critic frame-
work was adopted and the system was constructed based on
reference [64]. The experience replay memory size was set to
2500 and a warm-up phase of 500 steps was performed. The
mixing factor of the target and online networks was T = 0.1.
The target network was updated at 100 steps. The discount
factor was y = 0.99.

4) MACHINE TRANSLATION

The source and target uncertainties were calculated by train-
ing the four-gram LM using KenLM [65] with modified
Kneser-Ney smoothing. The evaluation criteria were based
on four-gram BLEU scores [66]. The proposed model is
referred to as the domain mutual guidance model (DMGM).
A classic baseline system was selected for comparison.

« Simple model: IN: Only data in the domain were used
to perform training; IN + OQUT: Data in both domains
were mixed together.

o Fine-tuning model: Oversampling (OS) [67] was first
used to train the NMT model on the out-of-domain train-
ing corpus and then fine-tune the NMT model. Iterative
dual domain adaptation (IDDA) [53] was alternately
used to fine-tune the out-of-domain and in-domain data.

o Discriminative model: Discriminative mixing (DM)
[34] included a discriminator in the encoder to predict
the domain of translation. For the discriminator, the
encoder and decoder were optimized jointly.

o Domain label model: Domain control (DC) [68] added
an additional domain label to each source statement
to merge the domain information with the source sen-
tences. Target token mixing (TTM) [34] was used to
mark the domain of the target-side sequence.

o KD model: KD [69] was used to train a model in its own
domain and fine-tune the out-of-domain model using in-
domain data. The trained model was then used in domain
for supervision.

B. OVERALL PERFORMANCE

In our reported results, boldface indicates the best perfor-
mance on the testing set. A significance test was conducted
(where ** indicates significance level « = 0.01, and * indi-
cates significance level @ = 0.05). GEN-NEWS indicates that
the out-of-domain and in-domain data came from the general
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TABLE 1. Performance of in-domain and out-of -domain scenario and specific domain experiment scenar.

Model In-domain and out-of-domain scenario Specific domain scenario
GEN-NEWS GEN-EDU GEN-LAW NEWS-EDU = NEWS-LAW EDU-LAW
Simple model
IN 31.42 30.62 30.25 32.25 32.62 30.25
(23.77) (22.78) (22.61) (30.63) (30.14) (30.21)
IN+O 29.82 28.77 28.46 30.84 30.41 2941
UT (21.46) (20.85) (20.17) (29.53) (29.02) (29.14)
Fine-tuning model
(0N 33.65 32.78 32.63 34.45 34.54 32.56
(25.75) (24.65) (24.98) (32.85) (32.65) (32.47)
IDDA 34.10 33.28 33.14 35.15 35.28 33.61
(26.42) (25.47) (25200 (33.56) (33.71) (33.87)
Discriminative model
DM 32.31 31.35 31.28 3341 33.54 31.77
(24.74) (23.46) (23.84) (31.88) (31.66) (31.05)
Domain token model
DC 32.26 31.75 31.14 33.35 33.14 31.35
(24.33) (23.36) (2321 (31.25) (31.14) (31.21)
TT™M 32.54 31.57 31.48 33.74 33.05 31.58
(24.71) (23.45) (23.62) (31.56) (31.47) (31.51)
KD model
KD 32.61 31.54 31.45 33.68 33.09 31.58
(24.42) (23.28) (23.54) (31.93) (31.66) (31.44)
DMGM
DMG 35.52%* 34.91%* 34.88* 36.12%* 36.41** 34.18*
M (27.42%%) (26.65%*) (26.88*) (34.59%%*) (34.25%*) (34.15%)

and news domains, respectively. The other symbols are used
similarly.

Table 1 lists the experimental performance measures under
in-domain, out-of-domain, and specific-domain scenarios.
An analysis of Table 1 reveals that the cross-domain transfer
method is able to improve performance to a certain extent.
For the overall baseline model, the performance of the sim-
ple model is the worst (one possible reason is that it does
not make good use of domain knowledge). Additionally, the
discriminative, domain label, and KD models exhibit the
second-best performance, which can be attributed to their
separate use of out-of-domain and in-domain knowledge. The
fine-tuning model exhibits the best performance, which may
be because the out-of domain and in-domain corpora are used
synthetically. However, this method has no effective guidance
compared to the proposed approach. From the perspective of
the baseline classification model, the method using mixed
corpora (IN+OUT) in the simple model does not perform
as well as the method using only in-domain corpora (IN).
IDDA performs better than the OS model (one possible rea-
son is that the iterative method is able to integrate out-of-
domain and in-domain knowledge more effectively). When
comparing the in-domain and out-of-domain scenarios to the
specific-domain scenario, one can see that the performance

VOLUME 10, 2022

of the specific domain is better than that of the general
domain, which can be attributed to the fact that the general
domain contains information from multiple domains, causing
the data to be relatively noisy. From the perspective of the
experimental scenarios in and out of the domain, the transfer
effect of the news corpus and general domain is better. One
possible reason for this is that the news corpus has stronger
generalization ability in the domain. From the perspective of
the specific-domain experimental scenarios, we can make the
same observation.

Table 2 presents the performance of the low-resource
experimental scenario. NEWS-50 refers to the use of 50k
in-domain samples and the other results are similarly named.
As a result of the mismatching between the amount of out-
of-domain and low-resource-domain data, the fine-tuning
model, KD method, and our method only adopt a single
approach, namely, using data from out of the domain for
initialization, and they do not iteratively improve each other.
Additionally, the in-domain data are oversampled in the dis-
criminant and domain label models. As a result of this in-
domain-oriented training method, this section only discusses
the in-domain performance.

For the overall and classification baseline models (various
systems are compared in Table 2), the conclusions are similar
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TABLE 2. Performance in the low-resource experimental scenario.

Model NEWS NEWS- NEWS- | EDU- EDU-  EDU- LAW- LAW- LAW-
-50 100 300 50 100 300 50 100 300
Simple model
IN 9.21 17.56 23.88 928 1747 23.45 8.45 1625 2298
IN+OUT 6.01 13.22 18.18 6.12 1322 18.18 5.89 1227  17.76
Fine-tuning model
oS ‘ 10.33 18.64 24.92 ‘9.88 17.98 24.12 | 8.98 1721 23.12
Discriminative model
DM | 10.51 18.27 24.62 |9.24 17.58 2421 | 8.45 1734 2324
Domain token model
DC 10.52 18.86 24.57 9.75  17.67 2431 8.52 17.71 2351
TT™M 10.64 18.58 24.64 9.64 1725 24.45 8.87 17.42  23.12
KD model
KD 10.28 18.47 2427 974  17.68 24.17 8.69 17.14 2334
Domain mutual guidance model
DMGM 12.17%  19.21%%  2534%* | 11.87 19.01* 25.12%* | 10.95* 18.62* 24.78*
% % % %* %
TABLE 3. Influence of integration modes on performance.
Scenario Dataset Transformer+1 Transformer+2 Transformer+3
GEN-NEWS 35.24+0.29 35.21+0.22 35.52+0.18
. (27.14+£0.42) (27.13+0.21) (27.42£0.21)
In'f";ngm and GEN-EDU 34,410 32 34.68+0.23 34.9140.17
ou ;geha(;?olam (25.2140.34) (26.58+0.22) (26.65+0.24)
GEN-LAW 34.54+0.34 34.93+0.17 34.88+0.24
(26.88+0.40) (26.62+0.16) (26.88+0.19)
NEWS-EDU 36.12+0.29 36.24+0.24 36.12+0.26
(33.89+0.32) (34.42+0.17) (34.59+0.24)
Specific-domain NEWS-LAW 36.09+0.38 36.38+0.27 36.41+0.28
scenario (33.82+0.29) (34.64+0.24) (34.25+0.27)
EDU-LAW 33.28+0.40 34.24+0.21 34.18+0.18
(33.17£0.31) (34.25+0.18) (34.15+0.24)
NEWS-50 11.62+0.33 12.18+0.21 12.17+0.24
NEWS-100 18.98+0.32 19.24+0.28 19.21+0.32
NEWS-300 25.17+0.34 25.2140.26 25.34+0.17
L EDU-50 11.42+0.41 11.67+0.19 11.87+0.16
ow-resource EDU-100 18.83+0.32 19.09+0.18 19.01+0.21
scenario EDU-300 24.78+0.35 25.25+0.13 25.1240.22
LAW-50 10.62+0.34 10.65+0.32 10.95+0.21
LAW-100 17.82+0.40 18.74+0.12 18.62+0.24
LAW-300 24.08+0.29 24.64+0.28 24.78+0.19

to those in the resource-rich scenarios. The best performance
can be observed for the news data and when comparing vari-
ous domains, the performance of the corpus increases signifi-
cantly for the news data (which demonstrates the particularity
of low-resource scenarios). When comparing low-resource
(Table 2) and resource-rich methods (Table 1), the perfor-
mance of low-resource methods is much worse. It should
be highlighted that the performance of the hybrid corpus
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(IN4-OUT) is significantly worse than that of the in-domain
corpus (IN). One possible reason is that the noise in the hybrid
corpus has a greater influence in the low-resource scenario.

C. INFLUENCE OF THE SELF-ENSEMBLE MODE

Table 3 presents the effects of different self-ensemble meth-
ods on performance. The maximum, average, and weighted
strategies are represented by symbols +1, 42, and +3,
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TABLE 4. Ablation experiments with different characteristics.

In-domain and out-of-domain scenario | Specific-domain scenario | Low-resource scenario
Model
GEN-NEWS NEWS-EDU NEWS-100
Base 32.84 (24.17) 33.21 (31.28) 14.81
Traditional data features
SenLen 33.02 (24.82) 33.62 (31.81) 15.21
n-gram 33.24 (25.01) 33.74 (32.07) 1542
Uncertainty 33.62 (25.41) 33.99 (32.43) 15.82
Traditional model features
Logp | 33.81 (25.62) | 3424 (33.12) | 16.71
Deep data features
SenEmb ‘ 34.62 (26.58) | 35.15 (33.99) ‘ 18.03
Deep model features
ModelEmb | 35.52 (27.42) | 3612 (3459) | 19.21
35 36 36
e [ 32
31 NEWS 32 EDU “ LA
29 ===GEN 30 e GEN e GEN
28 28
27
26 26 o
23 22 22
0123456728910 01 2345678910 01 2345678910
(a) GEN-NEWS (b) GEN-EDU (c) GEN-LAW
FIGURE 6. Effect of iterations in the in-domain and out-of-domain scenario.
37 37 37
36 36 & 36
35 35 35
34 34 — — 34
33 33 33
32 —NEWS 32 —_—ERS 39 —DU
31 e DU 31 ==\ 31 | AW
30 30 30

0123456728910 01
(a)NEWS-EDU

FIGURE 7. Effect of iterations in the specific-domain scenario.

respectively. The performances of different self-ensemble
methods are approximately the same. One possible reason
is that as model transfer proceeds, the knowledge obtained
by distillation tends to be maximized. The boldface font
indicates the best average performance and smallest variation
range. Compared to the maximum strategy, the average and
weighted strategies exhibit better robustness.
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2345678910
(b) NEWS-LAW

012345678910
(c) EDU-LAW

D. INFLUENCE OF STATE FEATURES

In Table 4, representative datasets for three scenarios are
highlighted to present the results of our experiments. The
other datasets yielded similar conclusions. Base is the result
of learning without using curriculum scheduling. SenLen,
n-gram, Uncertainty, Logp, SenEmb, and ModelEmb are
the results of using the source and target sentence length,
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25
25 23
23 21
21 19
19 1
17 e NEWS—50 r
15 NEWS-100
13 NEWS-300 13
11 — — 11
9 9

01 23456 7 8 910 0 1

(a)NEWS-50,100,300

FIGURE 8. Effect of iterations in the low-resource scenario.

source/target n-gram sparsity, uncertainty, log-likelihood,
sentence embedding and model embedding features, respec-
tively. Compared with the baseline model, the performance
improved significantly for the proposed model, particularly
in the low-resource scenarios (one possible reason is that
the data distribution is sparse and sensitive to the data). The
deep features exhibit better performance than the traditional
features and reflect the overall context of the target sentences.

E. ITERATION NUMBER SENSITIVITY

The number of alternative iterative training is a key fac-
tor affecting the effectiveness of information transmission
between domains. In the framework of inter-domain transfer,
the iteration number k is a key hyperparameter that directly
determines the number of translated knowledge transfers.
We varied k from 0 to 10 in steps of 1. When k = 0, the
framework degenerated to a single-domain model.

In the in-domain and out-of-domain (Figures 6(a) to 6(c)),
specific-domain (Figures 7(a) to 7(c)), and low-resource
(Figures 8(a) to 8(c)) scenarios, DMGM exhibited perfor-
mance near the top in the sixth, fourth, and seventh iterations,
respectively, which could be attributed to the special data
distributions in the general and small-data domains. When
comparing Figures 6 and 7, one can observe that the two
domains converged together in the in-domain and out-of-
domain scenario as well as in the specific-domain scenario,
indicating that the two domains were able to learn from each
other until they were trained well. In each graph (e.g., when
comparing Figures 6(a) to 6(c)), the convergence times of
different domains were largely similar, indicating that the
framework was not particularly sensitive to the domains.
Naturally, this framework can also be applied to other domain
transfer tasks.

VIl. CONCLUSION

This paper explores the application of transfer learning in
classical neural translation model. It proposes an effective
translation transfer method that mainly includes: (1) the
framework of alternative training out of and in domain,
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so that the in-domain and out-of-domain knowledge can be
transferred to each other; (2) in the in-domain, the previous
knowledge can be used to guide the training of the current
model through self-ensemble and distillation; (3) the diffi-
culty of data will also be considered in the current model
training. The classical transformer model was used to analyze
the experiment results in three typical experimental scenar-
ios, thereby, showing the effectiveness and robustness of the
proposed model.

From the commercial point of view, this framework is only
on the training stage and has no impact on the decoding stage.
It is suitable for offline training and deployment to online
system. In the future, we hope to develop a transfer training
framework suitable for more domains and further reduce the
training cost. In addition to cross-domain, we hope that this
method can also be applied to other similar tasks, such as
cross-lingually etc.
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