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ABSTRACT Green vehicle routing problem (GVRP) aims to consider greenhouse gas emissions reduction,
while routing the vehicles. It can be either through adopting Alternative Fuel Vehicles (AFVs) or with
existing conventional fossil fuel vehicles in fleets. GVRP also takes into account environmental sustainability
in transportation and logistics. We critically review several variations and specializations of GVRP to
address issues related to charging, pick-up, delivery, and energy consumption. Starting with the concepts and
definitions of GVRP, we summarize the key elements and contributors to GVRP publications. Afterward,
the issues regarding each category of green vehicle routing are reviewed, based on which key future research
directions and challenges are suggested. It was observed that the main focus of previous publications is on
the operational level routing decision and not the supply chain issues. The majority of publications used
metaheuristic methods, while overlooking the emerging machine learning methods. We envision that in
addition to machine learning, reinforcement learning, distributed systems, internet of vehicles (IoV), and
new fuel technologies have a strong role in developing the GVRP research further.

INDEX TERMS Alternative fuel VRP, green vehicle routing problem, literature review, vehicle routing

problem.

I. INTRODUCTION

The Vehicle Routing Problem (VRP) is used to design opti-
mal routes for a fleet of vehicles to service a set of customers,
considering a certain set of constraints. VRP was first intro-
duced by Dantzig and Ramser [1] in their seminal work on
truck dispatching. In that study, the first algorithmic approach
was proposed and applied to optimize fuel deliveries. Accord-
ing to the study, VRP aims to find optimal routes for a fleet of
delivery trucks, each with limited capacity, so as to minimize
the total distance travelled. There can be one or more depots
and customer nodes in a vehicle routing network.

Green Vehicle Routing Problem (GVRP) is a branch
of green logistics, which refers to vehicle routing prob-
lems where externalities of using vehicles, such as carbon
dioxide-equivalents emissions, are to be reduced. In this way,
although research in this field has a long history, Erdogan and
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Miller-Hooks [2] formally introduced the term GVRP for the
first time. GVRP incorporates the environmental aspects of
transportation into VRP, which is one of the most interesting
problems in the field of logistics and transportation. The
goal of this problem is to earn economic benefits, while
also taking into account environmental considerations. In its
most general form, GVRP aims to minimize Green House
Gas (GHG) emissions with solely conventional gasoline and
diesel vehicles (GDVs) or with Alternative Fuel Vehicles
(AFVs) in the fleets. It also takes into account the environ-
mental sustainability in freight transportation.

The aim of this study is to provide a systematic state of
the art and outline new insights and perspectives into GVRP,
based on a wide range of relevant searches by answering the
main review questions below:

1) Which variants of GVRP has been developed in con-
ventional vehicles and alternative fuel vehicles?

2) What is the difference between the solution methodolo-
gies used in VRP and GVRP?
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FIGURE 1. Procedure of applied literature analysis.

3) What are the new perspectives and future trends in
GVRP?

For the existing literature on GVRP, the availability of
extensive resources from reputed journals, books, techni-
cal reports, surveys and conference proceedings helped the
present study. Specifically, we collected the relevant reser-
ach articles from academic databases, including Google
Scholar, Scopus, Springer, Taylor & Francis Elsevier, Sci-
enceDirect, Wiley, and IEEEXplore. To conduct the search,
we identified keywords such as green vehicle routing,
green logistics, electric vehicle routing,alternative fuel vehi-
cle routing, and charging-discharging scheduling of electric
vehicles.

The overall structure of the study is as follows: next section
presents GVRP research background, Section 3 presents
GVRP Algorithms, Section 4 presents GVRP classification,
Section 5 presents new insights into GVRP, and the final
section presents a detailed conclusion and future research
direction.
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Il. SCIENTOMETRIC ANALYSIS OF GVRP LITERATURE
The aim of this study is to provide a systematic literature
review based on a wide range of relevant searches. The
flowchart in Figure 1 refers to the review methodology
applied in this article. The structure in the figure illustrates
the current study in several steps. First, we determined the
basis for the review work; retrieving and refining the selected
papers and organizing the outline of the review paper. In the
next step, we provided descriptive analysis using quantitative
figures. Then, we used software and apply scientometric
analysis on the refined papers to visualize the clustering of
keywords used in the literature. In the next step, we focused
on the fundamental aspects of GVRP, extracting various types
of trends and the gap existing in the current GVRP research.
In the end, the conclusion is described, as well as providing
opportunities for future research on GVRP.

Considering the importance of mitigating GHG emission,
many studies have looked into green vehicle routing dur-
ing the last decades using different terms such as Pollution
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FIGURE 2. The number of GVRP publications by year.

Routing Problem (PRP), Eco-Routing and GVRP. Thus,
it would be complicated to pinpoint a particular period in time
when publications of green vehicle routing officially started.
The earliest publications of this domain, as recorded by the
web of science, date back to 2012 [2]. Since then, publications
of GVRP have constantly been the center of attention with an
overall number of more than 450 publications over the years.
During the last five years leading to the time of the current
publication, more than 400 publications on GVRP have been
indexed each year, 100 items of which associated with 2019.
In other words, the size of this literature has risen sharply
within the last five years. See Figure 2 for a visualisation of
this trend in GVRP literature.

A significant number of studies are associated with sci-
entific articles published in transportation research journals
such as IEEE annual conferences, Sustainability, Sensors,
Transportation Research (Parts: B, C, and E), Journal of
Advanced Transportation, Transportation Research Procedia,
Transportation Science; European Journal of Operational
Research, Cities, etc. Others include Expert Systems with
Applications, Journal of Cleaner Production, Applied Energy,
etc. Figure 3 refers to the network of journal bibliographic
coupling.

Contributing authors in GVRP publications were mainly
from the countries shown in Figure 4. The U.S started inves-
tigating GVRP earlier than any other country as most early
publications are from USA. China, as the first rank, has
improved in GVRP research in recent years. Furthermore,
five major European countries (Germany, England, Spain,
Italy and France) have engaged considerably in the improve-
ment of GVRP field. Iran, Canada and India have a high
rate of publication, playing an influential role in developing
GVRP solutions in the recent years. Probably, the high rate
of publication in China, Europe and the U.S is associated
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with their share of the AFV market. As of December 2020,
China had the largest stock of EVS, with 42% of the global
plug-in passenger EV fleet in use. China also dominates the
plug-in light commercial electric vehicle and electric bus
deployment, with 65% of the global commercial EV fleet [3].
Europe had about 3 million plug-in passenger EVs by the end
of 2020, accounting for 30% of the global stock [4]. It also
has the second-largest electric light commercial vehicle fleet,
with about 31% of the global stock in 2019 [3]. As of
November 2021, the U.S has the third-largest share of the EV
market, after China and Europe [5].

The terms used in the title, abstract and keyword lists of
the green vehicle routing problem could be useful semantic
lenses through the structure and composition of this litera-
ture and theme and nature of its studies. They could reflect
the methods used in GVRP literature, the range of appli-
cations to which GVRP have been extended over various
periods of time. Here, networks of keyword co-occurrence
are analysed for GVRP publications as well as bursts of
citations to keywords (or more specifically, to the articles
where such keywords have been used). Two terms (which
could be keywords or terms identified in the title or abstract)
are considered co-occurred when they appear in the (key-
word list or title/abstract of) the same publication. A map
of term co-occurrence identifies those that have occurred
most frequently and visualises those that have frequently
co-occurred in closer spatial proximity [6]. Groups of terms
that are highly related (i.e. those with strong co-occurrence
relationship) form clusters of terms that could represent var-
ious sectors of the literature. A map of co-occurrence could
be visualised in various formats including Figure 5, where the
frequency of occurrence is presented with the years they have
been appealing to scholars the most. This map indicates that
the terms green logistics, vehicle routing problem and fuel
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FIGURE 4. GVRP literature contribution by country.

consumption are amongst the recently occurred keywords in
the publications. GA, ALNS, and TS were the most frequent
algorithms in the GVRP literature.

Ill. GVRP ALGORITHMS

In the literature, algorithms have been developed to resolve
variants of Vehicle routing problems. The objective function
of a VRP is defined based on the particular purpose of the
study. Depending on applications, various types of GVRP are
introduced, formulated and solved by exact or approximate
methodologies. The main limitation of GVRP’s proposed
algorithms is generality. Specific heuristic and metaheuristic
methods presented in one paper and one case study do not
guarantee the effectiveness of solving other types of GVRP
problems; Therefore, in order to solve other variant prob-
lems more efficiently, more general methodologies are to be
adopted.

Exact methods are currently applied in order to find an
optimal solution for a few customers with limited capacity
and fixed time windows [7], [8]. Popular exact procedures
include direct tree search, dynamic programming, integer
linear programming, etc. Although simple variants of real
problems can be modelled with graphs naturally, even some
simple variants of vehicle routing problems are considered to
be NP-hard due to the size and frequency of real world VRPs
in networks. So, the size of problems that can be solved, opti-
mally, using mathematical programming or combinatorial
optimization may be limited. Therefore, several recent studies
have turned to approximate algorithms, evaluating their effi-
ciencies in solving vehicle routing problems. Approximate
algorithms can be heuristic, meta-heuristic, hybrid heuristic
or machine learning methods.

Heuristic methods are used to resolve the vehicle routing
problem according to the specific knowledge of the problem,
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which is in most cases suboptimal or close enough to a
reliable solution [9]. In GVRP literature, heuristic methods
can be split into constructive and improvement heuristics.

Constructive heuristics seek to propose an initial solution
by providing either serial or parallel route construction [10].
Such solutions are constructed in a greedy way, which usually
generates solutions slightly far from an optimal solution of
the VRP. In this regard, the modified savings method is
used to provide an initial solution of several types of GVRP,
and especially Electric-VRP with the insertion of charging
stations.

Traditional local search algorithms usually evaluate the
whole neighborhood, but only perform one single move at
each step. However, there are often many neighborhood
moves in the current neighborhood that are independent of
each other and can be simultaneously performed without
interference [11]. The local search stops when no improve-
ment in the solution can be noticed in the neighborhood of
the incumbent solution, also named as local optima.

Metaheuristic methods can be defined as heuristics guid-
ing other heuristics. These methods are either neighborhood-
oriented (local) metaheuristics or population metaheuristics.
Neighborhood-oriented heuristics keep exploring the neigh-
borhood of the optimal solution. Simulated Annealing (SA),
Tabu Search (TS), Variable Neighborhood Search (VNS), and
Adaptive Large Neighborhood Search (ALNS) are among
popular local metaheuristic methods [12]. Population meta-
heuristic methods are based on the natural selection proce-
dure to evolve a population and let the fittest survive. Among
them, Genetic Algorithms (GA), Ant Colony (AC), Artificial
Bee Colony [13] and Particle Swarm Optimization(PSO) are
often used [14].

Hybrid metaheuristic methods take advantage of the
meta-heuristic procedures to keep searching even after
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FIGURE 6. The number of publications per year based on methodology.

reaching the first local optima. In some cases, several meta-
heuristic and heuristic methods are combined and applied to
a vehicle routing problem since using a specific approach
leads to difficulties, such as a low-quality solution, trapping
in local optima in search space, or high computation time.
Therefore, several studies hybridize two or more algorithms
to simultaneously employ strengths. Hybrid methods include
exact-metaheuristic [15], metaheuristic-metaheuristic [16]
and metaheuristic-heuristic [17] algorithms in order to obtain
better results and add to the robustness of the solution.
Moreover, several studies have attempted to solve GVRP
with general exact solvers, such as CPLEX, Lingo and
GAMS [18].

It should be noted that despite the development of exact
methods, very few exact methods have been proposed for the
EVRP and its extensions, which is a branch of GVRP. Exact
methods are found to be inadequate to solve a large-scale
optimization problem [19]. While researchers have used a
population metaheuristic to solve the problem, only a few
studies were able to generate high-quality solutions in a
reasonable computational time. Most importantly, the use of
emerging machine learning and data mining tools has been
overlooked in the literature of GVRP algorithms.

Figure 6 refers to the number of publications per year
using each type of above-mentioned methodologies. This
figure demonstrates the increasing trend in using metaheuris-
tic algorithms and confirms the significance of this type of
methodologies. Overall, the exact methods and metaheuristic
algorithms are the methods most preferred by researchers.
Furthermore, software applications and exact solvers have hit
the bottom as the least popular methods due to their high
computational time and complexity in the first years, while
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heuristic methods have become less popular, taking the place
of exact solvers in the diagram.

IV. GVRP CLASSIFICATION

We can divide GVRP literature into three main categories: (1)
GVRP with conventional vehicles (2) GVRP with alternative
fuel vehicles, and (3) GVRP with mixed fleet of vehicles.
We also identified several variants as subcategories for the
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FIGURE 9. GVRP with CV variants origination.

GVRP with Conventional Vehicles (CV) and Alternative Fuel
Vehicles (AFV). Figures 7 and 8 refer to the illustration of
our proposed problems in GVRP with conventional vehicles
and alternative fuel vehicles, respectively.Figure 7 shows
G-CVRP variants such as connected and automated vehicles,
pickup and delivery, time dependency, heterogeneous fleet,
and refueling locations. Figure 8 shows G-AFVRP variants
such as upstream effect, pickup and delivery, battery swap-
ping, time windows, multi-depot, and charging stations.

A. CONVENTIONAL FOSSIL FUEL-POWERED

VEHICLES ROUTING

The CO2 and NOx emissions problem has negative impact
on the environment as well as on human health. In CVRP,
any type of emission is considered in the objective function,
with the main focus on minimizing the routing cost and
polluting emissions. Several variants of GVRP with conven-
tional vehicles have been explored by scholars in recent years.
Figure 9 is associated with different GVRP with CV variants
and their origination year in the literature. The figure reveals
that while issues such as time dependency, refueling location
and eco-driving have been investigated since the beginning
of last decade, emerging issues like multi-objective, connec-
tivity and especially automation has been overlooked and
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only in the last 2-3 years have the researchers found interest
in examining GVRP considering connected and automated
vehicles.

1) MULTI-OBJECTIVE CONVENTIONAL GVRP

In this type of CVRP, more than 1 objective is taken into
account. First introduced by Demir et al. [9], this variant aims
to minimize both route cost and fuel consumption or vehicle
kilometers travelled (VKT), or travel time or speed. In their
study, they solved a bi-objective pollution routing problem
(PRP), minimizing two conflicting factors: fuel consumption
and driver time. Several scholars have recently developed
Demir’s methodology for solving PRP such as [20] and [21].
Poonthalir and Nadarajan [20] resolved a multi-objective
problem with varying speed constraints. Their model was
able to minimize both route cost and fuel consumption, using
particle swarm optimization with a new mutation operator
called greedy mutation operator. Rauniyar et al. [21] devel-
oped a reliable solution methodology based on genetic algo-
rithm to solve a bi-objective C-GVRP defined by Demir et
al. Some studies have investigated multi-objectives like min-
imizing marginal cost and fuel consumption, VKT and travel
time, combined with other variants. Alfaseeh ef al. [22] and
Djavadian et al. [23] incorporated connectivity and automa-
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tion to their multi-objective Eco-routing study considering
two different routing strategies as myopic and anticipatory
routing. They showed that the anticipatory routing strategies
outperform myopic ones due to the consideration of future
traffic state in their routing calculations. In a recent publica-
tion, Niu et al. [24] proposed a a membrane-inspired multi-
objective algorithm for green vehicle routing problem aiming
to minimize total cost and customer dissatisfaction.

In terms of multi-objective GVRP, the existing literature
is rich in the concepts of travel time and energy efficiency
considerations in both conventional and electric vehicles.
However, most of the previous studies solved GVRP prob-
lem by converting the two objectives into a single objective
problem through the weighted sum method. In this way, the
proposed method lacks clarity as obtaining proper weights
for objectives is still questionable. In addition, the models
presented in most of the previous papers assume that the
vehicles always travel on flat surfaces, which is not the case
in real-world problems. In other words, the energy consump-
tion and travel time is different for uphills and downhills.
Also, the majority of the existing literature has used either
energy-optimized routing or time-efficient routing to address
the limited fuel capacity which is not always the case in
reality.

2) REFUELING LOCATIONS

In several papers such as Yietal [25], constraints like
road conditions, congestion, topography, vehicle load and
their impact on route cost and fuel consumption have been
included. Rezaei et al. [26] examined green vehicle routing
problem with time windows constraint considering a het-
erogeneous fleet of vehicles and fuel stations. A genetic
algorithm and population-based simulated annealing are used
to find exact solutions for large-scale problems.The study’s
most important contribution is considering these features,
making the problem more realistic. However, their method-
ology can be only applied to products with hard delivery
time windows such as milk, meat, and newspaper. Moreover,
most of the studies considering fuel stations also considered
other variants of GVRP which were more prominent in their
methodology and contribution, and are referred to in other
sections based on their main contribution.

3) HETEROGENEOUS FLEET

This variant is associated with a fleet of vehicles with differ-
ent capacities and costs, available for distribution activities.
The problem is also known as the Mixed Fleet VRP or as
the Heterogeneous Fleet VRP. Koc et al. [27] first modelled
and solved a GVRP variant with a heterogeneous fleet. They
applied a hybrid evolutionary metaheuristic method to solve
the problem and concluded that in an urban area, the advan-
tages of having a heterogeneous fleet outweigh those of a
homogeneous one. They also defined algorithmic features
such as heterogeneous adaptive large neighborhood search
procedure, a split algorithm with speed optimization algo-
rithm and a new solution education procedure. They applied
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the methodology to clarify the trade-offs between different
performance indicators, quantifying the advantages of con-
sidering a heterogeneous fleet over a homogeneous one. They
figured out that a heterogeneous fleet with fixed speeds is
more cost efficient than a homogeneous fleet with optimized
speeds. In another study, Ene et al. [28] investigated GVRP
with a heterogeneous fleet considering vehicle capacity and
time-windows constraints. Their objective was to reduce fuel
consumption and to minimize CO2 emissions using a hybrid
metaheuristic. They solved this problem and showed the
effect of a heterogeneous fleet on these two variants of GVRP.
However, their energy consumption rate was constant and
simplified.

4) TIME DEPENDENCY

Sometimes, GHG emission varies over time. Thus, emission
can be a function of time because of travel speed variability
creating time dependency in GVRP. This variant deals with
the difficulties brought by the various factors of travel speed
variability, such as the travel speed, congestion, and land use
affecting CO2 emissions [29]. Also, VRP with Time Win-
dows (VRPTW) is to deliver the goods with time constraints
and limited capacity of the vehicle fleet. This variant includes
both soft/hard Time Windows and a combination of both.
The complexity is that there are various uncertainties in this
variant due to unexpected occurrences. Also, the algorithms
used in the previous studies, were mostly applied to products
that hard time windows are suitable for them such as meat,
and newspaper. Franceschetti et al. [30] directly considered
the effect of traffic congestion into conventional GVRP with
hard time windows. Jabali er al. [31] investigated the two
phases of free-flow traffic and congestion. They minimized
the emissions per kilometer as a function of speed, devel-
oping a relationship between the reduction of emissions
and marginal costs. Mirmohammadi et al. [32] presented a
periodic Green-VRP with time-dependent urban traffic con-
gestion and time window to minimize GHG emission and
outcomes of early and late deliveries. It should be noted that to
the best of our knowledge, none of the proposed approaches
in the existing literature can be directly applied to solve the
time dependent GVRP, as they do not capture the real traffic
congestion and ignore the drop in vehicle speed at peak hours
which is not practical in a congested network with hard time
windows at the delivery locations.

5) PICKUP AND DELIVERY

This is a more general issue in green logistics. The aim of
this variant is to minimize operational delivery costs and the
environmental impacts at the same time. In such cases, there
are several issues to be considered. Some of them are: locating
depots where vehicle with limited capacity is sent to deliver
orders, minimizing emissions by scheduling customers.
Tajik ef al. [33] showed that considering fixed cost, the vehi-
cle routes would better be composed of large vehicles, despite
their higher emissions. Also, Kunnapapdeelert et al. [34]
investigated the difference between usual pickup and delivery
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and green pickup and delivery problem using a differential
evolution algorithm. They showed that optimizing routes by
minimizing GHG results in a more eco-friendly design than
planning routes with the single objective of minimizing total
cost. While it should be noted that most of the publications
which considered pickup and delivery had other objectives
and are classified in this study based on their main contribu-
tion, the main gap in the existing literature is the uncertainty
in pickup and delivery GVRP which needs to be addressed in
the future as the uncertain parameters may have a substantial
effect on GVRP solution quality.

6) AUTOMATION AND CONNECTIVITY

These variants are quite novel in the literature of GVRP.
Issues regarding connectivity and Automation were only dis-
cussed by very few scholars such as [22] and [23]. They
aimed to minimize travel time, GHG and NOXx emissions
with different costing approaches and routing strategies. They
asserted that as vehicular ad hoc network (VANET) impact on
eco-routing is under the direct influence of ITS application,
its sensitivity to the availability, robustness, accuracy, and
temporal and spatial distribution of the network data should
be further investigated. Furthermore, the authors believed that
routing based on GHG as the objective offers a considerable
reduction in average TT, average VKT, total GHG, and total
NOx compared to the alternative where TT is the main
objective. The existing literature in this variant consists of
theoretical simulations, based on real urban networks (such
as Toronto), and microsimulations on different terrains; with
field experiment for fuel consumption. Previous papers have
the advantage of considering real road network and parame-
ters such as real time emissions, traffic state, traffic demand,
delays, velocity, direction and type of terrain as well as
routing strategy. However, to the best of our knowledge, there
is not any paper about the mixed fleet of conventional vehicles
and alternative fuel vehicles in the context of connected and
automated vehicles GVRP.

7) ROUTING STRATEGY

Routing strategy can be an influential factor in optimization
purposes. Inventory Routing allows suppliers to deliver their
products to a given set of customers while optimizing inven-
tory management, vehicle routing, and delivery schedule all
at the same time. This is mostly applicable when delivering
goods are subject to various constraints. It is assumed that
emissions are associated with routing decisions, whereas
waste is more linked to inventory decisions. Soysal et al. [35]
presented a review on the inventory routing problem (IRP),
with respect to sustainable measures.Their study compares
the IRP studies with sustainability concerns and shows that
existing literature concentrates on some key performance
indicators of sustainability. They also claimed that current
studies on sustainable IRPs focus on GHG emission reduction
and waste management and reduction. In the IRP variant,
the transportation emission estimation calculations are clear
and thorough in terms of considering various decisive factors,
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however, such explicit estimations for perishability have not
been found in the existing literature on IRP. Also, as for
future research direction, the multi-product distribution, and
non-deterministic consumption rates are among the features
that have to be explored in order to minimize both the total
cost of distribution and emission.

8) ECO-DRIVING

Eco-driving is defined as driving in such a way that minimizes
emission by considering the dynamics of the traffic flow and
safety measures. Zhou et al. [36] investigated fuel consump-
tion models to evaluate eco-driving and eco-routing. They
proposed that drivers often have more difficulty in applying
eco-driving techniques on roads with high congestion. When
traffic conditions are stable, eco-driving is more successful
compared with facilities with lower speed limits and sev-
eral roundabouts and ramps. Also, on higher speed limit
roads, free-flow conditions can cause an increase in cruising
speed, which lead to higher instant fuel consumption and
consequently higher emission. While eco-driving has been
investigated with the aim of GHG emission reduction, solely;
it has not been included in GVRP studies with other variants
to refine the estimations of GHG emission. Such studies in
the future can enrich the existing literature of GVRP with this
variant.

B. ALTERNATIVE FUEL VEHICLE ROUTING

The main goal of Alternative Fuel Vehicle Routing Prob-
lem (AFVRP) is to provide optimal routes with minimum
energy consumption, time or cost for a fleet of alternative
fuel vehicles, while considering their operation limitations
such as limited driving distance and capacity. The number of
publications on AFVRP is illustrated in Figure 10. There are
more than 300 publications on AFVRP according to Scopus.

Alternative Fuel Vehicle Routing Problem (AFVRP) can
be divided into six categories based on their fuel type, as illus-
trated by Figure 11. Figure 12 displays the frequency publi-
cations on AFVRP per year divided into 3 main categories of
EVs, Hybrid EVs, and other alternative fuel types. Figure 12
illustrates the share of each type of fuel in AFVRP literature
on the whole. Although there is a wide range of fuels asso-
ciated with this type of GVRP, only a small fraction of the
literature is focused on non-electric AFVRP.

Figure 13 shows the frequency of occurrence for various
keywords, their co-occurrence, and the year they were most
attractive to the researchers. This map indicates that the terms
optimization, liquefied natural gas, refueling strategies, and
time windows are amongst the most occurred keywords in the
AFVRP publications. The term adaptive behavior is departed
from the whole graph being used only once in the literature
back in 2014.

Figure 14 is associated with different GVRP with AFV
variants and their origination year in literature. The figure
reveals that while issues related to refueling location have
been investigated since the beginning of the last decade,
emerging issues like partial recharging have only gained
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interest in recent years with the advancement of new charging
technologies and battery swapping.

1) TIME WINDOWS
This variant was considered earlier than other EVRPs, while
itis more complex than the classical VRP with time windows.
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In this variant, a set of EVs deliver goods to customers,
considering a given time window. Not visiting in pre-specified
intervals decreases customers’ satisfaction or may lead to
infeasible solutions in practice. In one of the most recent
papers associated with this variant, Keskin et al. [37] consid-
ered stochastic waiting times at recharging stations with time
windows. In another study, Schneider et al. [38] proposed
a hybrid heuristic, which is a combination of a variable
neighborhood search algorithm with a tabu search heuristic,
considering limited vehicle freight capacities as well as
customer time wWe assume that the vehicle is always charged
to full capacity every time a vehicle reaches a recharging
station. While this can be partly defended by the fact that
in reality drivers will prefer to do this rather than to leave
with a partially charged vehicle, it would be interesting to
relax this limiting assumption. Furthermore, like most of
the vehicle routing literature we assume that the resource
(energy) consumption rate is constant and does not depend on
the carrying load of the vehicles. A more realistic modeling of
this aspect e.g. in the sense of the pollution-routing problem
(Bektas & Laporte, 2011) will be one of the subjects of
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FIGURE 14. GVRP with AFVRP variants origination.

future work focusing on extending and applying our model
to real world cases.indows. Also, in a similar case study,
Ding et al. [39] developed a heuristic method, according to
variable neighborhood search and tabu search, by applying
simple charging time adjustment processes to provide a
more efficient solution. Moreover, Mao et al. [40] used an
improved ant colony optimization (ACO) algorithm and
hybridized it with insertion heuristic and enhanced local
search to provide a solution for this problem, with respect
to partial recharging and battery swapping. In addition, they
proposed a new probabilistic selection model in ACO by
considering the impact of both distances and time windows.
In addition, Keskin and Catay [41] conducted more practical
research by applying the full recharge restriction and allowing
partial recharging (EVRPTW-PR). They defined this problem
as a 0-1 mixed-integer linear program and proposed an
Adaptive Large Neighborhood Search (ALNS) algorithm to
solve it efficiently. While the existing literature on GVRP
with time windows is rich in terms of solution methodology,
they assume that the vehicle is always charged to full capacity
when it reaches a recharging station. This assumption as
well as considering constant energy consumption rate are not
always true in real-world scenarios and need to be addressed
in the future with more realistic modeling.

2) REPLENISHMENT

In this variant, it is usually assumed that a vehicle gets
fully recharged every time it is at the refueling station—
thus, continuing its service as long as its battery can
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support it. While EV battery packs are capable of supporting
travel in the 100-mile range on a single charge, in order to
replenish their batteries, they need to have access to charg-
ing stations. Meng and Ma [42] explored electric vehicle
routing with soft time windows and offered two ways of
power replenishment. The design of mobile charging stations
have been investigated by Huang et al. [43]. In another study,
Wen et al. [44] considered the problem of locating electronic
replenishment stations for electric vehicles on a traffic net-
work with flow-based demand to optimize the network per-
formance. Baouche et al. [45] presented a new approach for
the EV routing problem with recharging stage(s) along the
way on the available charging stations to solve the autonomy
limitation. Yet, issues like compatibility of battery EVs with
chargers in their Charging Station(CS)s, and the impact of
recharging at public or private CSs are still overlooked in the
literature. Moreover, the time spent for recharging or battery
swapping is a critical factor in this variant. A straightforward
assumption usually used in vehicle routing studies is that the
recharging time is constant across the whole network. Service
time and charging time are also traditionally considered fixed.

3) CHARGING TYPE

In most of the existing EVRP papers, the battery charge
level is a linear function of charging time, while in real-
ity, this function is nonlinear. A practical linear charging
estimation may lead to infeasible, unrealistic or expensive
solutions. Therefore, Froger et al. [46] considered a realistic
nonlinear relationship between the time spent on refueling
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and the amount of fuel consumed by the vehicle. Moreover,
Xiao et al. [47] proposed a new model of the electric vehicle
routing problem with respect to a general energy/electricity
consumption function for EVs that factor in energy losses,
nonlinear charging function with the piecewise linearization
technique, efficient visits to charge stations, and continuous
decision variables for speed, payload, travel time, recharg-
ing, etc. Karakatic [48] developed a Two-Layer Genetic
Algorithm (TLGA) to overcome the capacitated Multi-Depot
Vehicle Routing Problem by considering Time Windows
(MDVRPTW) and Electric Vehicles (EV) with partial non-
linear recharging times. Zuo et al. [49] developed a new tech-
nical formulation for vehicle route selection and charging
station visits, which reduces the formulation complexity.
In addition, they proposed a new linearization method that
applies a set of secant lines to surrogate the concave nonlinear
charging function with linear constraints. Although efforts
have been made to address non-linearity in the charging
procedure of alternative fuel vehicles so far, most of the
GVREP literature which considered this variant, assume that
the energy consumption rate is constant and is not dependent
on the carrying load of the vehicles which leads to unrealistic
solutions in practice.

4) PARTIAL RECHARGING

Conrad and Figliozzi [50] first considered the possibility of
partial and overnight recharging for EVs at customer sites,
which brought about one of the operational variants of the
E-VRP. Subsequently, Felipe et al. [S1] modelled and solved
an EVRP with partial recharging for the first time. Since then,
different aspects such as limited number of chargers in charg-
ing stations, various kinds of charging, fuzzy optimization
models, etc. have been looked into. A method of charging is to
establish some stations for swapping their batteries along the
route either via stations or the road infrastructure. However,
the impact of the different elements of this variant such
as vehicle size, geographical configuration of site, recharge
stations, autonomy, and recharging technologies have to be
further checked. As one of the recent studies in this regard,
Kancharla and Ramadurai [52] investigated capacitated and
load-dependent discharging in a partial recharging EVRP.
Also, several other combinations of this variant with time
windows [53] and congestion tolls [54] have been studied
to date. Hiermann et al. [S5] proposed an electric vehicle
routing problem combining conventional, plug-in hybrid, and
electric vehicles. From the analysis perspective, a mixed fleet
of conventional and electric vehicles has not been inspected
yet and also may be more effective in applying real-life data
considering the increasing trend of using EVs. Furthermore,
other realistic features of an electric vehicle battery life such
as the temperature, humidity, and driver’s behavior will lead
to a more realistic extension of the existing models.

5) LOCATION OF CHARGING STATION
The driving range of AFVs is typically limited. Fuel cell
electric vehicles are fueled with pure hydrogen gas stored
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in a tank on the vehicle and have a driving range of over
500 kilometres. Thus, the choice of routing with the focus
on the driving range and long duration of the recharging
process as well as the location of charging stations to utilize
the necessary charging infrastructure is of significance. This
variant accounts for the limited driving range of BEVs, which
directly leads to the more frequent recharging needs at CS.
However, only a few studies have considered the problem
of CS capacity, due to the limited number of BEVs which
can be charged at a CS, simultaneously. Only in recent years,
have scholars started to combine a nonlinear charging process
and CS location problem with distance constraint into the
EVRP models [56]. They have proposed that waiting time
at the charging stations can increase the total cost. Thus,
considering waiting times, battery reservations, and adaptive
routing with uncertainties in CS availability is an integral
part of future EVRP research direction. Zhang et al. [57]
also developed an Improved Whale Optimization Algorithm
(IWOA), presented the locating problem of Electric Vehi-
cle (EV) charging stations model with service risk con-
straints and applied IWOA to solve it. In another study, Bilal
and Rizwan [58] investigated different approaches, objective
functions, constraints and range of optimization techniques
that were addressed by researchers for optimal placement of
CS during recent years.

6) PICKUP AND DELIVERY

BEVs have a shorter driving range (160-240 km) compared
to the driving range of conventional vehicles (480-650km).
Therefore, they are more likely to be used on short distances
or in urban areas where they are more effective than con-
ventional vehicles due to their lower driving speed, lower
noise production, and cost [59]. When the average route
length is short, BEVs can be easily used as recharging can
happen upon their return to the depot. BEVs are already
being used by companies like DHL, and FedEx mostly for
last-mile delivery of light goods as distances are short enough.
Several studies have been conducted to investigate pickup
and delivery effects in AFVs. For instance, Madankumar
and Rajendran [60] presented two Mixed Integer Linear
Programming (MILP) models for solving the Green Vehicle
Routing Problems with Pickups and Deliveries in a Semicon-
ductor Supply Chain. In another research, Ahmadi et al. [61]
also investigated the importance of vehicle dynamics param-
eters in energy models for EV routing, especially in the
Pickup-and-Delivery Problem (PDP). Grandinetti et al. [62]
developed a multi-objective mixed integer linear model for
minimising the total travel distance, the total cost for the
EVs used and the total penalty cost for the unsatisfied time
windows. What has been missing in the existing literature is
the Inventory routing problem in the pickup and delivery of
AFVs. Inventory routing has a significant influence on the
solution as inventory decision directly affects waste reduction
and management while routing strategy affects GHG emis-
sion reduction. Therefore, considering IRP in this variant can
lead to better decisions in terms of waste management.
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7) ENERGY CONSUMPTION RATE/MODEL

Several energy consumption models were used by the liter-
ature, but only a few can predict realistic energy consump-
tion at the road segment level, such as [63]. Additionally,
Qi et al. [64] proposed a model to obtain an accurate
link-level energy consumption estimation for EVs, consid-
ering the energy consumption under real-world traffic con-
gestion on two proposed impact factors i.e. positive kinetic
energy (PKE) and negative kinetic energy (NKE). Yi and
Bauer [65] developed an adaptive multiresolution framework
for electric vehicle (EV) energy consumption estimation
with real-time capability. Accordingly, three key parame-
ters, namely powertrain efficiency, wind speed, and rolling
resistance, are adaptively estimated using a two-step non-
linear iterative algorithm. Basso et al. [66] introduced the
Two-stage Electric Vehicle Routing Problem that incorpo-
rates improved energy consumption estimation with respect
to detailed topography and speed profiles. The advantage of
such more realistic energy consumption models instead of
assuming constant emission rate is a more accurate solu-
tion to this problem; however, such estimation is complex
and time consuming, thus, hard to apply especially in large
instances. Also, While fuel consumption models have been
improved significantly for conventional vehicles [67], for
AFVs, models are still not explicit and comprehensive in
terms of considering vehicle characteristics such as the load
it carries.

8) MULTI-DEPOT

This variant arises as a practical and functional issue in
VRP, where vehicles are dispatched from and returned to one
of the multiple depot locations. Therefore, apart from the
routing choice, it is necessary to decide from which depot
the goods are going to be delivered.Only 4% of the publica-
tions have incorporated this variant, including [68]. In this
regard, Zhang et al. [69] used an Ant Colony System-based
metaheuristic to find a solution to A Multi-depot Green Vehi-
cle Routing Problem (MDGVRP). Schneider et al. [70] con-
sidered the Multi-Depot Electric Vehicle Location Routing
Problem with Time Windows (MDVLRP). In a simi-
lar study, Kunnapapdeelert et al. [71] proposed four novel
enhanced differential evolution based algorithms for solv-
ing multi-depot GVRP with multiple pickup and delivery
requests. Publications in this variant still lack methodological
improvements and the algorithms used in the existing papers
are mainly simplistic, leading to impractical solutions. Also,
the number of pickup and delivery requests are limited which
makes the studies inapplicable for large instances.

9) FUEL SWAPPING

This variant is defined to establish some stations for swapping
batteries and other fuel types which correspond to increased
recharging speed and reduced time loss. A battery swapping
operation is faster than recharging operation, by taking only
10 minutes. Also, the used-up batteries can be recharged at
night when electricity is charged at a discount. This vari-
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ant accounts for over 15% of the publications on AFVRP
including [72]. Some scholars have proposed (recharging) or
battery swapping services can be available at all or some of
the customers’ sites as well [73]. In other studies, such as [74],
the authors developed robust optimization models that aid the
planning process for deploying battery-swapping infrastruc-
ture. Also, Wu [75] reviewed the state-of-the-art battery
swapping station (BSS) literature and business models, where
the BSS offers a recharged battery to an incoming EV with a
low state-of-charge. First, four operation modes are presented
i.e., a single BSS, multiple BSSs, an integrated BSS and
battery charging station (BCS), and multiple BSSs and BCSs.
BSS problems in routing are surveyed in different opera-
tional areas including charging schedule, construction and
planning, dispatching and routing optimization, and power
management. Also, a recent study discussing multi-objective
electric vehicle routing problem with battery swap consid-
eration and mixed time windows constraints was proposed
by Zhou et al. [76]. Also, Li et al. [77] introduced a mixed
integer programming model taking into account several con-
straints like EV capacity, battery range and potential battery
swapping stations. Their goal was to optimize the total costs
of vehicle use and fuel consumption when delivering goods.
The body of literature in battery swapping studies emphasizes
the importance of developing advanced battery technologies
due to the serious constraint of EV battery range. However,
a point that is neglected is the en-route recharging of EVs
which has gained attention recently. In this system, EVs can
be charged while driving. The problem that is worth looking
into in future research is how to extend the driving range in
the context of GVRP considering both battery swapping and
en-route recharging modes in a network.

10) UPSTREAM EFFECT

Both the EU and U.S.A boasted about electric vehicles pro-
ducing zero emission. However, unlike conventional vehicles,
a significant proportion of the emissions produced by elec-
tric vehicles occurs ‘upstream’, i.e., when the electricity is
produced at the source. Thus, current regulations, which only
account for exhaust emissions, do not fully capture the GHG
emissions from EVs. Lutsey and Sperling [78] found that if
upstream emission’s effect are considered, an EV powered
from the American electricity grid produced an average of
56% less CO2 emission than a similar brand new petrol
car (62g/km compared with 142g/km). Sen et al. [79] uses a
hybrid life-cycle assessment method to analyze and compare
alternative fuel-powered heavy-duty trucks (HDTs) applying
a Monte Carlo simulation to account for the uncertainty in the
data. If retaining the Og/km rate is an actual goal, it is required
that manufacturers buy carbon credits to compensate for the
Og/km rate or switch to a full life cycle analysis.

V. NEW INSIGHTS AND PERSPECTIVES INTO GVRP

Even considering a pervasive application of alternative fuel
vehicles and their role in emission reduction, a large number
of vehicles remain on the roads, producing congestion and

VOLUME 10, 2022



S. Sabet, B. Farooq: Green Vehicle Routing Problem: State of the Art and Future Directions

IEEE Access

polluting emissions. Hence, to ultimately reduce the emis-
sion, we must consider emerging solutions that can also take
into account the increasing customer demand for vehicles,
while considering environmental aspects.

A. TECHNOLOGICAL CONSIDERATIONS

Several emerging technologies are opening up new research
directions in the context of GVRP. Here we discuss the most
promising ones.

1) DRONES

Unmanned Aerial/Ground Vehicles (UAV/UGV) or drones
are an emerging technology solution to the last-mile delivery
problem. Drones are either controlled by a remote controller
or an on-board intelligence. They have the potential to cut
the pollution caused by trucks on a congested road network
by utilizing the unused airspace. A mixed fleet of drones
and trucks can also be used for delivery as proposed by
Wang et al. [80]. Drone technology is considered more reli-
able and faster since neither are drones affected by road con-
gestion nor traffic accidents on the networks. Several research
directions can be considered. First, the environment that the
UAV/UGYV is operating in should be specified. That is, within
which obstacles and urban air mobility limitations the vehicle
is making its way. To do so, vehicle flight planning and
optimization are required and considered as a path planning
problem. As a result, yet another version of GVRP can be for-
mulated where the drone must optimize the path, while con-
serving the fuel and minimizing emissions. Sarath et al. [81]
discussed several techniques to achieve UAV path detection,
planning and obstacle avoidance for real-time communicative
environments. Alongside obstacle avoidance, there are some
aerial restrictions in the path planning of drones, such as
no-fly zone areas. Feng [82] proposed an improved method
to achieve path planning for UAVs in complex surroundings.
However, the fuel consumption and emissions dimension is
rarely considered in the path planning problem. Secondly,
it is noted that the wind and weather play a critical role
in the flight planning of the drones, especially if they are
small and light. Cheng et al. [83] introduced a distribution-
ally robust optimization model to solve a two-period drone
scheduling problem with uncertain flight times, which can
be implemented in a data-driven framework using histori-
cal weather information. The operation of drones for the
last-mile delivery, where the mobile base-station is a truck,
creates another emerging GVRP, where the integrated truck
and drone operations need to be optimized in a dynamic
environment. As the drone traffic is expected to increase in
the near future, we expect that cities will regulate the airspace
more and may consider extending the existing 2D on-land
road network to 3D land and air road network. This will result
in further potential research directions in GVRP.

2) DISTRIBUTED SYSTEMS
In recent years, distributed ledger technologies, for instance,
blockchain have been used in transportation and logistics
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to manage information. Lopez and Farooq [84] proposed a
blockchain based smart mobility data market (BSMD) that
provides the underlying framework for the use of distributed
ledgers in transportation applications. Eckert ef al. [85]
developed a carbon credit (C2) market for multimodal pas-
senger mobility using BSMD, where individuals could track
and trade C2s based on their mode, trips, and availability of
credits. Such a market has the potential to be used in GVRP
where the emissions are minimized not only based on the cost
objective, but also with cooperation/competition among the
individuals in the market by exchanging carbon credits with
dynamic pricing. Due to the distributed and dynamic char-
acteristics of the Internet of Vehicles (IoV), content-centric
decentralized vehicular named data networking (VNDN) has
become more suitable for content-oriented applications in
IoV [86]. The existing centralized architecture is prone to
the failure of single points, which results in trust problems
in key verification between cross-domain nodes, consuming
more power and reducing the lifetime. Focusing on secure
key management and power-efficient routing, [86] proposed a
blockchain-based key management and green routing scheme
for VNDN. In other recent studies, Aung et al. [87] and [88]
presented a novel dynamic traffic congestion pricing scheme
and EV charging management system for IoV in an urban
smart city environment. However, in both of their studies,
they assumed there is static management of the traffic light
when considering EV charging management systems. A com-
bination of the dynamic traffic lights management system
with the EV charging management system should be applied
for more practical solutions in the future.

Due to advancements in information and communication
technologies, there is a strong focus on developing highly
intelligent intersections in urban areas that can control and
route traffic. Farooq and Djavadian [89] proposed a dis-
tributed traffic management system where the intersections
actively cooperate and exchange information among each
other via Infrastructure to Infrastructure (I2I) communica-
tion technology. These intelligent intersections (I2s) use the
information to predict traffic conditions and proactively route
vehicles from origin to destination via vehicle to infrastruc-
ture (V2I) communication technology. We are of the view
that such distributed and intelligent systems can be used to
develop new solutions to GVRP.

B. FUEL TECHNOLOGIES

Advanced research on lithium-ion batteries done over sev-
eral decades has resulted in high energy density, high cycle
life, and high-efficiency batteries. However, the research
is still ongoing on new electrode materials to enhance the
performance of energy density, power density, cycle life,
safety, and cost. The current generation of anode and cathode
materials are suffering from several issues, including, slow
Li-ion transport, high volume expansion, limited electrical
conductivity, low thermal stability, dissolution or other unfa-
vorable interactions with electrolyte, and mechanical brittle-
ness [90]. Several approaches have been developed to solve
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these problems. A variety of intercalation cathodes have
been available on the market, and conversion material tech-
nology is going to become more common. In terms of
GVREP, lithium-ion battery electrode materials’ technological
advances would result in solutions with less stringent con-
straints in terms of trip lengths and better utilization of the
capacity of the vehicle, especially when the demand is highly
stochastic.

In the view of the Fraunhofer Institute, synthetic fuels
and drive technologies such as hydrogen combined with the
fuel cell has the potential to play a crucial role in the future
of transportation. It is expected that such a role might be
negligible in private vehicles, but significant in long-distance
and heavy-duty vehicles used for goods movement. However,
the drawbacks of hydrogen-based fuel cell technology should
not be overlooked as it is very costly in terms of efficiency
and operating costs. Horvéth et al. [91] study, compares two
types of EVs from the customer’s point of view. In their study
they had a detailed investigation carried out into whether
battery- or hydrogen-powered electric vehicles will become
ubiquitous in the future. The question of which energy storage
system has the best efficiency and is the most cost-effective
one for powering electric vehicles is still unanswered. With
BEVs, only eight percent of the energy is lost upstream, and
another 18 percent is wasted to convert the electrical energy
to drive power. Depending on the model, BEVs’ efficiency is
about 70 to 80 percent. In the case of the hydrogen-powered
EVs, 45 percent of the energy is already lost during the pro-
duction of hydrogen through electrolysis. Of this remaining
original energy, another 55 percent is lost to convert hydro-
gen to electricity. This means that the hydrogen-powered
EVs’ efficiency is about 25 to 35 percent, depending on the
model. The efficiency is even worse with alternative fuels.
The efficiency in this case is only 10 to 20 percent, which
can convey the meaning that the use of Hydrogen would
therefore be a mistake for passenger cars [91]. Therefore,
Horvéth et al. implied that investments should rather focus on
long-distance and heavy duty transportation where ecological
and economic constraints play an important role.

Although alternative fuels may become prevalent in the
long term, yet it is unlikely that they would completely
substitute the fossil fuels in the near future. Given the scarcity
of such resources, alternative fuels should be prioritized for
different transportation sectors to which it is cost-effective.
This is not only because alternative fuels are competitive in
those sectors but also because it is hard to decarbonize them.
On the other hand, handling hydrogen from storage to trans-
portation is difficult as it requires additional infrastructure
such as hydrogen grid, and additional transformation on the
demand side like fuel cells for heavy-duty transportation. All
in all, considering the complexity of the adoption of these
fuel technologies and the scarcity of vehicles that are powered
from such technologies, green vehicle routing problem is less
likely to be affected by studies in AFV areas rather than EVs
and HEVs in the near future. Given that to inspect different
aspects of GVRP with fuel cell vehicles, a sufficient rate of
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them is required on transportation network. To the best of
our knowledge, very few studies have looked into this area of
AFVRP. In addition, since the use of alternative fuel in heavy
duty transportation is preferred to passenger vehicles, it is
observed that scholars tend to investigate AFVRP in urban
transit, logistics and air and rail transportation. Therefore,
AFVRP studies will grow vastly based on the demand and
penetration rates of alternative fuel vehicles.

C. METHODOLOGICAL CONSIDERATIONS
The application of machine learning methods in green vehicle
routing and optimization has attracted scholars’ attention
in the last few years. While demonstrations using Al in
GVRP are rare, in a recent publication, Guiladi and Eriks-
son [92] referred to the dynamic routing of electric commer-
cial vehicles with a large amount of data considering random
customer requests when predicting the optimal route. This
work introduced artificial intelligence applied to routing and
energy prediction of electric vehicles with a Deep Q-Learning
method proposed to solve the problem. In a similar study,
Chen et al. [93] proposed a Deep Q-Learning method to
assign customers to vehicles and drones for same-day deliv-
ery. Recently, Li et al. [94] used Deep Reinforcement Learn-
ing in solving capacitated vehicle routing problem. Also,
Wu etal. [11] presented a neural network based methodology
to improve heuristics in solving vehicle routing problems.
Although reinforcement learning in GVRP is not commonly
used, it is considered a powerful tool for considering general-
ized GVRP studies considering different variants and applica-
tions of it where specific heuristic and metaheuristic methods
can’t be generalized to another problem. Also, it is a pow-
erful method of dealing with uncertainties in the real world
GVRP problems. In a study by Basso ef al. [95], it has been
shown that the reinforcement learning (RL) method could
save on average 4.8% (up to 12%) energy by planning the
route and charging anticipatively, rather than the determinis-
tic online reoptimization method. The research addresses the
dynamic Stochastic Electric Vehicle Routing Problem (DS-
EVRP) with a safe reinforcement learning method to solve
the problem. In similar studies, a deep reinforcement learning
method is proposed to minimize the total cost of a fleet of
electric-autonomous vehicles for ride hailing services [96],
where the complete system state is approximated using neural
networks. Recently, approaches like chaos theory, quantum
computation, and fuzzy logic have been introduced in GVRP,
which can help deal with uncertainties. From the fuzzy theory
perspective, most studies in this area consider the fuzzy
chance-constrained mixed integer non-linear programming
model ([97], [98]). In terms of stochastic optimizations,
however, only a few studies have shown an application of this
approach in the green freight transportation context [99].
Diversification is another crucial factor to the performance
of the population-based algorithm, but the initial population
in the many methods such as bee colony is generated using
a greedy heuristic, which has insufficient diversification.
Therefore the ways in which the sequential optimization for
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the initial population drives the population toward improved
solutions are examined [100].

D. EMERGING SERVICES AND THEIR REQUIREMENTS
Cars travelling on the roads are not completely exploited
and can be used to deliver goods as well as passen-
gers. Crowd shipping is replacing conventional delivery
companies with occasional drivers using their personal
vehicles to deliver goods. Archetti et al. [101] put forward
the concept of VRP with occasional drivers (VRPOD).
Macrina et al. [102] added time windows, multiple deliveries
for origin-destination pairs, and split and delivery policy in
several publications [103], [104]. It also introduced a VRP
with a mixed fleet of CVs and EVs [102]. This strategy
has proven to positively impact emission and routing costs
reduction as well as offering a higher reliability and cus-
tomer satisfaction level. Although crowd shipping compa-
nies have expanded their business in the last several years.
However, those companies mainly have businesses within
some metropolitan areas. A system may work for the last-mile
delivery, but how it will perform for inter-city delivery is still
to be investigated [105]. Another concern is that a business
model may have differential performance in different con-
texts, possibly due to cultural differences and infrastructure
networks that support CS markets [106]. In that a case, the
promising application areas challenge stakeholders on both
supply and demand sides (e.g., market segments, network
issues), operations and management (e.g., reverse logistics) to
implement CS systems that function collaboratively, dynam-
ically, and sustainably.

VI. CONCLUSION

To the best of our knowledge, no existing study has compre-
hensively considered all GVRP variants and its future direc-
tion. Review studies are crucial for understanding the existing
body of literature and, in this regard, a clear gap exists. Other
operational constraints driven from GVRP variants such as
site-dependent GVRP, and periodic GVRP are to be investi-
gated in the future. Also, if retaining the zero emission rate is
a goal in reality, it is required that manufacturers buy carbon
credits to make up for their emission, or switch to a full life-
cycle analysis. Overall, the main focus of previous literature
is on the operational level routing decision, overlooking other
aspects associated with the supply chain management such as
network design, road tolls, reliability index, etc. While there
is a large body of literature developed on EVRP in recent
years, AFVRP is yet to be further explored — especially in
terms of mixed fleet, connectivity and autonomous vehicles.
The other limitation of AFVRP is that some alternative fuels
are not cost-effective for private vehicles. Thus, the demand
side of AFVRP is yet to be developed based on fuel technolo-
gies. The forecasting methods such as data-driven machine
learning and reinforcement learning methods were rarely
investigated in GVRP. However, metaheuristic methods are
dominant for all variants of GVRP, due to their less time
consumption and reasonable precision. Emerging solution
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methodologies such as the application of Deep Q-Learning
method, quantum computing, chaos theory, reinforcement
learning, etc. are still not popular. Further GVRP research
using such methods is highly recommended due to their
strength and robustness in forecasting different parameters.
In addition, the advancement in information and commu-
nication technologies has given rise to distributed systems
related issues which still need further development in terms of
Internet of Vehicles (IoV) and transportation infrastructures.
Opportunities for considering uncertainties are provided.
In this regard it can be noticed that other non-deterministic
parameters such as uncertain travel time have been neglected.
Sustainability related indices such as social concerns, cus-
tomer willingness, driver pattern, and operational risks are
among the uncertainties of the supply chain network, which
are totally overlooked by the former research. In addition,
to develop a more promising routing system, especially on
a macroscopic scale with plenty of complex and hazardous
areas, a road network should be designed to enhance net-
work reliability and overcome vehicle routing issues. In other
words, the more real-world challenges to be considered, the
more operational routing network will be achieved. Also,
there is rarely a single-objective problem in reality, while
only 20% of the publications have considered multi-objective
problems, which confirms the need for multi-objective opti-
mization problems in the green transportation context. Last
but not least, new opportunities in urban logistics have paved
the way for UAV/UGVs to influence GVRP in the last mile
delivery. Crowd shipping in all the transportation modes has
also been another strategic element of green logistics in recent
years. It is expected that in the near future, GVRP will not
be limited to the land roads networks, but will also involve
virtual air networks.In summary, we envision that in addi-
tion to machine learning, reinforcement learning, distributed
ledgers, IoV, and new fuel technologies play a significant role
in developing the GVRP research further.
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