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ABSTRACT Delay invariant convolutional network codes (abbreviated DI-CNCs) can guarantee multicast
communication at asymptotically optimal rates in networks with any delay profile. For a cyclic network,
it has been shown that one can associate it with an acyclic network consisting of nodes in five layers,
and the acyclic algorithm of F-linear multicast can be employed to construct a DI-F-CNC, as long as the
field size is larger than the number of sinks in the cyclic network. In this paper, we present a directly
feasible construction algorithm for a DI-F-CNC over a cyclic network. Complexity of code construction
and theoretical guarantees of algorithm implementation are also investigated in detail. The advantage of the
straight construction algorithm is that for an existing code, when some sink nodes and associated edges are
added, our algorithm just modifies the new assigned coding coefficients in an efficient localized manner,
without the necessity to construct again the code in its expanding network.

INDEX TERMS Network coding, cyclic network, delay invariant convolutional network codes, construction
algorithm.

I. INTRODUCTION transmission delay is nonzero along every cycle, then data

Network coding is an efficient paradigm in information trans-
mission, which can improve the capacity achievability for
both wireless and wired networks [1], [2], [3], [4], [5]. Con-
volutional network coding (CNC) was considered in [6], [7],
[81, [9], [10], [11], [12], and [13], it is a form of linear
network coding which deals with a pipeline of messages as a
whole rather than individually. Due to the bidirectional com-
munications, in practical setting, most networks are cyclic.
Over a cyclic network [14], [15], the propagation and encod-
ing of sequential data symbols convolve together, and the
propagation delay becomes an inseparable issue in network
coding. Thus, CNC is naturally adopted to ensure causal data
propagation around cycles. As shown in [7] and [16], if the
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propagation in a causal manner can be assured in the cyclic
network by a CNC. The optimal CNCs are demonstrated to
achieve the maximum transmission rate from the source node
to the set of eligible receiver nodes. For a multicast network,
an optimal CNC can be constructed by the deterministic
algorithm [16] or the random one [17] with respect to a certain
delay pattern.

Delay-sensitive traffic systems (typical systems of this kind
include multimedia services and satellite communications)
have expressed a phenomenal growth in recent years [18],
[19], [20], [21]. One feature of these systems is that infor-
mation bits traversing the network have a strict deadline.
In addition to delay constraints, real-time communication
networks also require achieving the maximum transmission
rate from the source node to its receiver nodes timely. Under
the above delay-sensitive traffic network setting, especially
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over a cyclic network, one can consider deploying delay
invariant CNCs (DI-CNCs) into it. DI-CNCs are firstly intro-
duced by Sun et al. in [22], they are a new class of CNCs for
multicast networks, which are not dependent on the delays of
the network. If a DI-CNC is deployed into the network, any
delay changes incurred by inappropriate synchronization or
other issues have no impact on the multicast capacity of that
network.

Sun et al. in [22] proved the existence of a DI-CNC over
any symbol field, and showed a random coding technique suf-
fices to construct a DI-CNC with high probability. Moreover,
an algorithm was devised to construct a DI-CNC with scalar
coding coefficients as long as the symbol field was no smaller
than the number of receivers. And the algorithm converted a
cyclic network to a responding equivalent acyclic network,
and then the acyclic algorithm of linear multicast [23] can
be employed to construct a DI-CNC with scalar coding
coefficients.

However, if dynamic behavior of the network is consid-
ered, for example, new sinks are added in the network, the
DI-CNC could be re-distributed by the indirect algorithm
in [22]. To address this issue, in this paper, we present a
straight construction algorithm for a F-linear multicast, which
qulifies to be a DI-CNC on cyclic networks. Complexity of
code construction and the theoretical guarantees for algo-
rithm implementation are also provided. The advantage of the
straight construction algorithm is that if we add some sinks
and associated edges in an existing code, our algorithm just
modifies the new assigned coding coefficients in an efficient
localized manner, without the necessity to construct again the
code in its expanding network.

The rest of this paper is organized as follows. In Section II,
some basic definitions and properties about network cod-
ing, convolutional network coding and delay invariant con-
volutional network coding are reviewed. In Section III, the
DI-F-CNC construction algorithm and the analyses of algo-
rithm are provided. The conclusion of this paper is given in
Section I'V.

Il. PRELIMINARIES
We adopt the following convention as in [7], [16], and [22].

A network can be modeled as a finite directed multigraph
N = (V, E), orsimply N, where V is the set of nodes and E is
the set of edges. N contains a unique node with no incoming
edges. This node is called the source, denoted by s. No edge
loops around a node. Every edge represents a transmission
channel of unit capacity.

For the directed edge ¢ = (u, v) from node u to node v,
denote u = tail(e) and v = head(e). For every node v, denote
the sets of its incoming and outgoing edges by In(v) and
Out(v), respectively. An ordered pair (d, e) of edges is called
an adjacent pair when there is a node v such that d € In(v)
and e € Out(v).

Outgoing edges from s are called data-generating edges.
Abbreviate |Out(s)| as w, which represents the (fixed) data
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generating rate from the source. In this paper, we assume that
the ordering on edges of E is led by data-generating edges.

A sink means a non-source node r to which there are w
edge-disjoint paths from s. The set of t sink nodes is denoted
byR=1{r;,r,---,r;}CV.

Let IF be a finite field, which represents the symbol alpha-
bet, and I, the finite field with g elements. Similarly to [22],
let P be a principal ideal domain (PID), which represents the
general ensemble of data units. Definition below describes a
linear network coding where the base field is generalized to
a PID.

Definition 1: A P-linear network coding (P-LNC) on a
network N = (V, E) means the assignment of an element /; ,
in P to every pair (d, ) of edges such that/; , = O when (d, ¢)
is not an adjacent pair. The element /; . is called the coding
coefficient or local encoding kernel (LEK) for the pair (d, e).

Generally, P = [ in conventional network coding, and P =
F(z) in CNC, where F(z) is a rational power series ring, z
is the dummy variable that represents a unit-time delay [24],
[25]. An F-CNC means an F(z)-LNC (I .) with (/g .) € F(z).

For linear network coding, any edge e has a global coding
vector associated with it as follows.

Definition 2: A set of coding vectors or global encoding
kernel (GEK) for a P-linear network coding with LEKs
means an assignment of an w—dimensional column vector g,
over P to each edge e such that

(i) g8.= > li.84, where e € Out(v), v is a nonsource
deln(v)
node,

(ii) the vectors g, e € Out(s), forms the standard basis of
the free module P*.

Denote by K the |E|x|E| matrix [l4 ¢]4.cce, Where rows
and columns are indexed according to the ordering of edges.
Then the conditions (i) and (ii) in Definition 2 can be com-
bined into the matrix equation

[ge]eeE = [ge]eeE -K +HS7 (1)

where [g.].cE is the @ x |E| matrix obtained by juxtaposing
the GEKs g, with e € E, Hy an w x |E| matrix formed
by appending |E| — @ columns of zeroes to the w X w
identity matrix /,,. And this can be expressed in the following
equivalent forms:

[gelecE - UjE) — K) = Hj, )
namely,
det(l\g| — K)[gcleer = Hy - (Ijg| — K)*, (3)

where det(/|g| — K), (/|g] — K)* are the discriminant and the
adjugate of the matrix /|g| — K, respectively.

According to (3), if the discriminant det(/|g| — K) is zero,
then for g,, none or multiple solutions exsit.

Definition 3: The discriminant of a P-linear network cod-
ing on a network N = (V, E) is det(/jg; — K). The code
is said to be nonsingular when the discriminant is nonzero.
A nonsingular code is said to be normal when it determines
a unique set of coding vectors.
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Normality of a P-linear network coding is a prerequisite
to the notion of data propagation via the code, a sufficient
condition for normality of a P-linear network coding is that
det(/|g| — K) is a unit in P [6].

Definition 4: A normal P-linear network coding with the
coding vectors g, is called a P-linear multicast when

rankp(span{g, : e¢ € In(r)}) = w for every sink r.  (4)

A linear multicast is an optimal network coding, which
enables every eligible sink node receiving date from source
s at the full rate .

Definition 5: A delay function on the network is a nonneg-
ative integer function t, defined over the set of adjacent pairs
such that, along every cycle, there is at least one pair (d, e)
with t(d, e¢) > 0.

In order to assure causality of data transmission over a
cyclic network, each cycle in the network should contain a
positive delay.

Definition 6: A P-linear network coding is said to be t-
causal if the coding coefficient for every adjacent pair (d, e)
is divisible by z'(-).

The following definition presents a special CNC.

Definition 7: An F-CNC (I;,) is called a delay invariant
F-CNC (DI-F-CNC) if for any delay function t, the code
(ld,ezt(d'e)) is a t-causal F-convolutional multicast.

One of the merits of DI-CNC is that the code design is
independent of delay functions.

It is known that over a cyclic network, there exists an
F-linear multicast with all coding coefficients belonging to
any sufficiently large subset & C I [7]. Also notice that every
F-linear multicast is a DI-F-CNC ( [22], Proposition 5). Thus,
if we can construct an F-linear multicast (/7..) on a cyclic
network, then for any delay function t, the code (ld,ez‘(d @) is
a DI-F-CNC.

Unlike the design scheme of DI-CNC in the associated
acyclic network of the original network N = (V, E) [22],
we consider DI-CNC construction in the directed line graph
of N =(V,E).

The directed line graph of N = (V,E) is defined as
NV, &), or simply N, with vertex set V= E U s U R and
edge set E= {(d,e) € E? : head(d) = tail(e)} U {(s, ¢) :
e € Out(s)} U {(e,ri) : e € In(ry), 1 < i < t}. We denote
nodes of N(V, ) as e € V, and the edges as (d,e) € £.
To be specific, the nodes in A are the edges of N, the source
s, and the sinknodesr; € R,i = 1,2, --- , 7. There is an edge
(d,e)in N'ifin N, (d, e) is an adjacent pair. There is an edge
(s,e) in A if in N, e is an outgoing edge of source node s.
There is an edge (e, r;) in A if in N, e is an incoming edge of
sink node r;. Clearly, the LEK I, ., for the adjacent pair (d, ¢)
in N corresponds to the LEK for the edge (d, e) in NV, and
the associated GEK g, of edge e in N just corresponds to the
associated GEK of node e in V. The graphical representation
of LEKs and GEKs on line graph N can be found in [11].
It is also obviously that if there are w edges disjoint paths
between source s and sink r in N, there are corresponding w
nodes disjoint paths in .
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In our construction, we will employ partial encoding ker-
nels (PEKSs) to maintain the regularity of every basis of sink
node. Before giving the definition of the PEK, we need the
following notation.

A set&; of exactly w edges (nodes) in In(r;), is called a basis
of the sink r; in N (the associated line graph ), if there are
edges (nodes) disjoint paths P; = {P},--- , Pi,---  PL} P}
is the k-th path of P;, k € {1, 2, - - - , w}, starting from imag-
inary edges (nodes) and ending at edges (nodes) in &;, i =
1,2,---, t. We call this set of @ edges (nodes) disjoint paths
Pi={P, - P, Pl k e{l,2- -, ) an associ-
ated flow of basis &;. A basis &; is regular if rank(span{g, :
e € &;}) (the rank of the linear span by all GEKSs in set &;) is
equal to w.

Let O; = {e’i,-u ,e};,n- ,efu} be a set of w-nodes
for associated flow P; = (P, -, Py, - . , P}, where
each node ¢, belongs to a different path P}, in Pi, k€
{1,2, -, w}. Denote A; be the subset of the path P}, which
is consisted of all nodes following the node ¢;, € O; (not
including e}). And define B; be the set of LEKSs of the edges
with tail in A} and head in V" \A; (an illustration of A and
B, can be found in [26, Fig. 1].

Now, we can give the definition of the PEK.

Definition 8 [16]: For any node e in the line graph N/,
without loss of generality, assume that e £ e;'c € O;, then
the PEK u,(z) of the node e satisfies the conditions (i) and
(ii) in Definition 2 (with g;(z), g.(z) replaced by u;(z), u.(z),
respectively ) when the LEKSs in B}; are set to zero.

Notice that the difference between GEK g.(z) and PEK
u.(z) is that for g.(z), the LEKs in B}; may not currently be
zero, since they can be determined in previous steps.

For the sake of clarity, we summarize some notations in
Table 1.

lll. DI-F-CNC CONSTRUCTION ALGORITHM
In this section, we will present the DI-F-CNC construction
algorithm, which is shown in Algorithm 1. And our algorithm
assumes that the code designer has full knowledge of the
network. By the definition of F-linear multicast, after the code
construction, we must make sure that

(D the code is normal, namely, det(I — K) is nonzero,

(II) all bases of sink nodes r;, i = 1,2, --- , 7, are regular,
namely, rank(span{g, : e € §;})) = wfori=1,2,--- , 1.

A. STATEMENT OF DI-F-CNC CONSTRUCTION ALGORITHM
We consider the code construction on the line graph

T
N, &) = | N(P;) and process every basis &; of sink node

i=1
ri, i = 1,---, 1, one after another. Initially, all LEKs in

NV, €) are assigned to zeros, thus, det(d — K) = 1 # 0,
during the code construction, we will remain that det(/ —
K) # 0. Note that a basis may have more than one associated
flows, we choose any one of them, only the bases and their
determined associated flows are taken into account in our
algorithm. For any edge in the original network N, which does
not take part in any of the associated flows, we can assign the
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TABLE 1. Notations.

N=(V,E),or N a network modeled as a finite directed multigraph,
where V is the set of nodes and E is the set of edges

K the source node of N = (V, E)

e = (u,v) the directed edge from node u to node v, denote u =
tail(e) and v = head(e)

In(v) (Out(v)) the set of incoming (outgoing) edges to (from) the
nodeveV

adjacent pair (d, ) an ordered pair (d, e) of edges when there exists v € V
with d € In(v) and e € Out(v)

R={r,rp, - ,r;}CV the set of 7 sink nodes

NV, E), or N the directed line graph of N = (V, E) with vertex set
V= EUsUR and edge set &= {(d, e) € E? : head(d) =
tail(e)} U {(s,e) : e € Out(s)} U {(e,r;) : e € In(r;),1 <
i<t}

lge the coding coeflicient or local encoding kernel (LEK)
for the pair (d, e)

K the |E[x|E| local encoding kernel matrix [ljc]qeck,
where rows and columns are indexed according to the
ordering of edges

g, the global encoding kernel (GEK) for e

& the basis of the sink r; in N (N), where &; consists of
exactly w edges in In(r;), and there are w edge (nodes)
disjoint paths starting from imaginary edges (nodes)
and ending at edges (nodes) in &;

P = (Pl Pyee P} the determined associated flow of basis &; in N, each
P; is consisted of w node-disjoint paths in N, where
Pi is the k-th path of P, k € {1,2,--- , w}

0; = {e}, e e} a set of w-nodes for associated ﬂow P;, where each
node ¢ belongs to a different path P in #;

A;{ the subset of the path P;(, it includes _all nodes follow-
ing the node ¢; € O; (not including ¢;)

B, the set of LEKSs of the edges with tail in A} and head
in N \A;

u, the partial encoding kernel (PEK) for e

zero encoding coefficient to it or remove it directly from the
network. According to [1], this will not affect achieving the
optimal rate.

Also notice that U; defines the set of PEKSs of the nodes in
O;, we regard the linear independence for the PEKs of nodes
in NV (V, &), rather than GEKs. The GEKSs do not always work
to make every basis be regular, since their former values can
be updated by the most recently assigned LEKSs over a cyclic
network (a detailed example of a bad code designed only
using GEKs can be found in [16]). For nodes in P;, their
PEKSs may be different from their GEKs, however, in terms
of the definition of PEKs, if we reach the last node in P;, the
GEKSs of &; are exactly the PEKSs of it. Note that at this time,
rank(span{V (&;)}) = w, namely, we ensure that basis &; is full
rank.

We traverse the nodes of O; in topological order of P;.
Initially, the set O; is consisted of w imaginary nodes, and it
will be updated following subsequent processes. Assume that
ek is the first processing node, and ¢ is the next processing
node We update O; and U; by O; = (O; U ek)\ek and

= {PEKs of O; with LEK l } respectively, where

1C. .
e.e)

The transfer function 7, . from node d to node e on line
graph A/ means the sum of all IT;, where IT; is the product of
all LEKs encountered in tracing the jth path starting from d
and ending at e. By convention, T4 , = 0 if there is no path
starting from d and ending at e. We note that in the beginning,

on line graph N/, T, ., = 0 for any node e.

is the current LEK between ek and ek.

102424

Algorithm 1 The DI-F-CNC Algorithm
Input: The original network N
Output: All LEKs of N
1: find the associated flow P; between the source node s and
the sinknode r;,i =1,2,---,1;
2: find the line graph N(P;) for P;, i =1, 2, -
T

/I NW.&) = UNP)

for all edges in N (V. ) do
let the LEKSs of all edges be 0's;

end for

fori=1tot do
0; <—{eﬁ,--- ,e;'(,... 762)};

// initially, O; is the set of @ imaginary nodes in N'(P;)

8: .Ui . <« ' {uel’...’ue;{’...’ueéu} =

{el, - ef - el):
// & is an w-dim column vector, the k-th element is 1,
the others are 0's, u,; is the PEK of node e}c, namely, U;
is initialized by a set of w-dim unit column vectors, and
the cardinality of U; is w

9: isLast<«—false;

10: while isLast = false do

11: traverse the nodes in P; by topologlcal order;

// ek is the first processing node, e, is the next one after

A A

¢
12: 0; < (0; U E;()\e;(;

// € is the next processing node after node ¢,
13: U <« {PEKs of O; with LEK /€ i 5 1

kK
s 02 is the current LEK of (ek, ek)
14: 1f detd — K) = 0, or T€2~ei = 1,

or rank(span{Ul- }) # w, or rank(span{g, : e € §}}) # w
for§,1<j<i—1 then
15: (1< E U, )<—Plck anew LEK;

16: end 1f

17: (Oi? U;, efc) <~ (Oi, i ek)

18: if ¢} is the last processing node of P; then
19: V(&) < Ui

20: isLast<«true;

21: end if

22: end while

23: end for

The main challenge of our construction algorithm lies in
picking eligible LEKs (lines 14 to 16 in Algorithm 1). The
LEK l ¢ 2l should satisfy the following conditions,

(a). det(I —K) #0,

®). T T el # 1, where Tfi e is the total transfer function
from e; to e,

(©). rank(span{ﬁic}) = w,

(d). rank(span{g, : e € §j}) = w forallj < i.

And Theorems 1-4 (in subsection III-D) guarantee that
choosing LEKs in finite field F is sufficient to maintain the
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DI-F-CNC conditions, where |F| > 1 4+ 3, and 7 is the total
number of all sink nodes.

B. COMPLEXITY OF THE CODE CONSTRUCTION

Firstly, we find the associated flow P; between the source

node s and the sink node r;, i = 1,2,---, t. By Ford and

Fulkerson algorithm [27], the total complexity of this step is

O(7|E|w), where w is equal to the size of the minimal individ-

ual min-cut between s and the sink node r;, i =1,2,--- , .
Note that for the line graph N (V, £) the |E| x |E| matrix

K is given by
K — ld,e,
0’

We can label the line graph, and initialize the LEKs /; .,
where (d, e) € £ in total complexity O(|E|?).

In the for-loop steps (lines 6-23 in Algorithm 1), for the
ith for-loop step, i € {1,2,---, 7}, we have the following
results.

(1) The complexity of initializing O; and U; is O(w?).

(2) For node e;'( in line graph N, the complexity of com-
puting u,i is O(|In(e})|w) (generally, |In(e})| < |E]).

(3) If we employ the linear independent test vector method
given in [23, Lemma 5] or in [28], the complexities of check-
ing the singularity of matrix / — K and the full-rank condition
of set U,-C are O(|E|) and O(w), respectively.

(4) The transfer function T, e from node ej; to itself is
required to be computed. To do this, as in [16], we can
substitute the relevant values of LEKs in matrix K, and it
can be finished with complexity O(|E|*logr). Similar to [16]
or [23], for brevity, we neglect the logarithmic factor, then the
complexity is O(|E |2).

(5) In terms of [23, Lemma 7], determining the regularity
of the relevant basis &;, 1 < j <i— 1, can be implemented in
complexity O(|E|tw?).

Notice that in the for-loop steps (lines 6-23 in Algorithm 1),
we should successively process the nodes on the associated
flow P; in line graph N. Thus, there are |E|t iterations at
most. Consequently, based on the above complexity analyses,
the DI-F-CNC construction in Algorithm 1 can be finished in
expected complexity O(max{ |E|*z, |E|*t?w? }). In compar-
ison, the indirect algorithm in [22] has complexity O(|E |3r)
to construct a DI-F-CNC. Therefore, if T0? < |E|, the
two algorithms possess the same complexities. However, the
overhead of network converting by the indirect algorithm
in [22] is avoided by our direct construction.

(d,e) €&,
otherwise.

C. AN EXAMPLE NETWORK TO ILLUSTRATE DI-F-CNC
CONSTRUCTION ALGORITHM

We will illustrate DI-F-CNC by means of a simple example
network. We depict it in Fig.1, our target is to assign appropri-
ate LEKSs such that the network is a F-linear multicast. The
associated line graph of Fig.1 is given in Fig.2(a). For sim-
plicity, below we discuss the simplified line graph N'(V, £)
in Fig.3, that is, we omit the nodes which have a single input
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(b)

FIGURE 2. (a) The associated line graph of Fig.1. (b) The associated line
graph of Fig.1, which sign the LEKs to construct a DI-F-CNC in Fig.1.

FIGURE 3. The simplified line graph of Fig.2(a).

and a single output, since these nodes would simply receive
and forward the same symbol. The bases of sinks rq, r, are
& = {e1,e9} and & = {ey, eg}, respectively. Note that
in Fig.1, the data generating rate from source s is @ = 2.
For convenience, source s in original network N(V, E) is
split into w source s;, i = 1,---, w, in the associated line
graph N(V, £) of N(V, E). Thus, the associated flow of &; is
Pi= {Pl, Pé}: {s1 = e1, 55 = ex — ec — e9}. And the
associated flow of & is Po= {P}, P3}= {s; — ez, s1 —
el — e9 — e} (lines 1-2). At the beginning, all LEKSs in
N are set to zeros (line 3-5). Assume that we go through
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the nodes s1, 52, €1, €2, €6, €9 in P in topological order, the
nodes s1, 52, €1, €2, €9, €5 in P, in topological order.
Initially, O = {s;,s2)}, Ui = {1 07,0 DT}
(lines 7-8), where the superscript T represents the transposed
symbol. The next processing node should be e; with the
current LEK coefficient I;, ., = 0. Thus, we have O =
{e1, 52} and Uf ={00)", (0 1)"} (lines 11-13). Note that
when we process the nodes in P, the matrix / — K is upper
triangular and on its diagonal all elements are equal to 1, then
det(/ — K) = 1 # 0. Also note that there are no cycle in Py,
and & is the first processing basis, we do not need to check
the regularities of other bases. Thus, we just need to compute
rank(span{UC}) Since UIC is not full rank, we should pick
a new LEK for (s1, el) (lines 14-15). By Theorem 3, any
non-zero value in F (|F| > 5, assume that |IF| =5) will work,

and assume that we select /€ . ¢; = 1. Now, we can obtain that

U1 ={(10)7,(01)"}, which is full rank.

We update the sets O1, Uy by O1 = {e1, 52}, Ul =
{ue,, vy, }= {(1 0)", (0 1)T}, respectively (line 17). The next
processing node in Py is ez, with the LEK lSC e, = 0 (return
to line 11). After a similar discussion to e;, we can obtain the
updated values ZSC e = 1,01 ={er, e2}, Uy = {ug), u,,}=
{(ao’,onr.

In the next steps, we will deal with nodes e, eg, succes-
sively. After similar discussions, we can assign IS o = L,
I, = Land getu, = (0 DT, up, = (0 1T, At this
time, 01 = & = {ey1, e9}, so we have processed the last
node in P;, and we obtain {g.,, 8.,} = Ui = {u,, 0} =
(1o, 0nT}, namely, rank(span{g, : e € £1}) = w = 2.

We recall that the associated flow of & = {es, eg} is
P = {Pz, P%}: {s — ey, 51 > €1 — e9 — eg}.
We process the nodes s1, s2, €1, €2, €9, €6 in P> in topological
order. Accordingly, we deal with sets O> = {s1, s2}, 0> =

2

{s1,e2}, O = {e1,e2}, O2 = {eg, €2}, O2 = {es, €2},
successively.
For & = {en, e¢}, it is easy to see that we can maintain the

values oflC =1, lC = 1, and the current O, = {ey, e},

U, = {uel,uez} = {(1 0)T (0 1)T}. Now, following the
topological order of nodes in P,, we process O> = {eg, e2}.
The current value of le1 ey 18 0, then U; = {ug,u,} =
{(0 )T, (0 1)T}, which is not full rank. Thus, by Theorem 3,
we can assign le1 e = 1. Now, U2C = {u,, 0.} =
{(0 DT, (1 1T}, which is full rank. Note that at this time,
detd —K) =1 # 0, T, ., = 0 # Ll Also notice that
changing the value of l ¢, may affect the regularity of basis
&1, in which the GEK ge9 has been determined with lecl o = 0.
We can compute g., = (1, )T with new LEK ley,eo =1, and
it does not change the regularity of basis &;.

Now we process the last node e¢ in P, in topological

order. At present, 0> = {e2, eg}, leg s = 0, and ﬁzc =
{u,, u,} = {(01)T, (0 1)7}, which is not full rank. Thus
by Theorem 3, we can assign leg’e6 = 1. Now, U2 =

{u,,,u,} = {(0 )T, (1 1)}, which is full rank. However,

— C —
T,. = 1withl, = 1 By Theorem 2, we need to
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FIGURE 4. The expanding networks of Fig.1.

assign a new value of lc9 ¢~ Assume that we set lcc9 s = 25

2 € F(Fl =5 Now, T, , = 2, and det(/ — K) =

3 # 0. By Eq.(2) or Eq.(3), it is also easy to compute that

T3 = {Uep ) = {0 DT, (=2 — DT} = {ge,. g}, and
(81 8eo) = {1O)T, (=1 = DT}

Thus, by setting LEKS Iy, ¢, Ls; ey lej,e95 les,eqr leg,eq O 1,
and /gy ¢ to 2, we can successfully construct a DI-F-CNC in
Fig.3, so do Fig.2 and Fig.1 (we sign the LEKSs of the original
network N(V, E) in Fig.2(b)).

When we add some non-source nodes and associated edges
in the original network, they can produce newly additional
bases &; and associated flows P; (j > 7). Assume that the
already processed node prior to the new one follows the
topological orders of associated flows P; (j > 7). Then
constructing a DI-F-CNC on the expanding network just
corresponds to adding some new for-loop steps (lines 6-19)
in Algorithm 1, namely, our algorithm can modify the already
assigned LEKSs in a localized manner.

For example, we add a sink r3 in Fig.4 (the gray node in
Fig.4), and connect it with the original network by directed
edges ej3, e14. The associated line graph of the extending
network is depicted in Fig.5(a) (the added edges are also
marked by gray dashed arrows). The associated flow for the
new basis & = {e13, e14} of sink r3is P3 = {P3, P3} = {51 —
e — e4 — €13,8) —> ex —> e7 —> eg —> €14).

In Fig.5(a), we prefer the topological order for the
nodes in P; following the rule that the already processed
nodes in original line graph are prior to the new nodes
in the extending line graph. Thus, we process the nodes
S1, 82, €1, €2, e4, €7, €13, €6, €14 in P3 in topological order.
Accordingly, we deal with sets O3 = {s1, 52}, O3 = {e1, 52},
03 ={e1, e2}, 03 = {e4, 2}, 03 = {e4, €7}, 03 = {e13, €7},
03 = {e13, e6}, O3 = {e13, e1a}, successively. As the cases
of i = 1 or 2 in the for-loop steps (lines 6-19), a similar
analysis can be applied on the case i = 3. We conclude that a
DI-F-CNC can be constructed on the extending network in
Fig.4, with all already assigned LEKs in Fig.2(b) remain
unchanged and new LEKS o, ¢1; = leg ey = 1, les,e3 = 0
(see Fig.5(b)).

Therefore, by the above example, using our construction
algorithm, constructing a DI-F-CNC on the expanding net-
work just corresponds to adding some new for-loop steps
(lines 6-19) in Algorithm 1. And the number of LEKSs need-
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FIGURE 5. (a) The associated line graph of the expanding network in
Fig.4. (b) The associated line graph of the expanding network in Fig.4,
which sign the LEKSs to construct a DI-F-CNC in Fig.4.

ing to be changed or assigned in a practical extending net-
work is generally small. If we use the existing DI-F-CNC
construction algorithm in [22] on the expanding network,
one firstly should convert the cyclic extending network to
a new corresponding equivalent acyclic one, and then apply
the acyclic algorithm of linear multicast in [23] on the new
acyclic network, so the entire code may be reconstructed.

D. THE THEORETICAL GUARANTEE FOR ALGORITHM
IMPLEMENTATION

This subsection provides the theoretical guarantees for
Algorithm 1.

As we have mentioned in Algorithm 1, when det(l — K) =
0 with the current LEK /, we need to replace it with a new
value. Theorem 1 ensure that if det(/ — K) = 0 with LEK /,
then det(I — K) # 0 with LEK I/, where I’ # [.

Theorem 1: In the line graph N of a given network N,
assume that (e, e) is any adjacent pair with the LEK /, 7, K is
the current LEKs matrix and det(/ — K) # 0. We change [, ¢
to a new LEK / 2,2’ and define the associated LEKs matrix by
K'.If det(/ — K') = 0, then any other new LEK [ Z - will make
its associated LEKs matrix K holding that det(/ — K”') # 0.

Proof: Expand det(/ — K) in terms of the row (or
column) that the element /, 7 lies in. Then we can get

det(l — K) = lo A%, + B, 5)

where A: 2 18 the cofactor of element /, z, and B is the sum of
the cofactor expansions of other elements in the same row (or
column) with /, 5.
In a similar way, we have
detI —K') =1, ;A% + B, (6)

e.e‘ e,
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det — K") =1/ A% + B. @)

e,e‘tee
By assumption, det(/ — K) # 0. If det(/ — K') = 0, we say
that det(/ — K”") # 0. Otherwise, assume to the contrary that

det(I — K') =det( —K") =0, 8)

substituting it into (6) and (7), we can obtain that

A:‘;E =0, B=0. ©)]
After substituting (9) into (5), we have det(/ — K) = 0, which
contradicts to our assumption. Thus, Theorem 1 holds. O

The following Theorem shows that we can always pick an
eligible LEK to maintain the transfer function condition.
Theorem 2: Let e be any node in the line graph A of the
original network N, and S(e) be the set of all successors of the
node e. Assume that e € S(e) is a successor of the node e, Te,
is the the total transfer function from e to e with the LEK [, z,
and T,, # 1. We change /., 7 to a new LEK l;yz , and define
the associated transfer function by 7,. If 7,, = 1, then any
other new LEK lé’ ; Will make its associated transfer function
T,, holding that 7)), # 1.
Proof: Let T1 be the transfer function from e to e, which
traces S(e)\e. And [, ;7> represents the transfer function from

e to e, which traces e. Then we have
Tee =T + le,ET2- (10)

Similarly, we obtain that

Te/e =T+ lé’ETz, an
Té; =T+ lg’ETz. (12)

By assumption, T, # 1. If T), = 1, we say that T, # 1.
Otherwise, assume to the contrary that

T, =T, =1, (13)
substituting it into (11) and (12), we can obtain that
Ti=1, T, =0. (14)

After substituting (14) into (10), we have T,, = 1, which
contradicts to our assumption. This completes the proof. [

In order to derive the the regularity condition of the set of
PEKSs in Algorithm 1, we need the following Lemma.

Lemma 1: In the line graph N of a given network N,
assume that £ = {ey,---,e;, - ,e,} is a set of nodes
in N, and W = {w(ey), - ,w(e), - ,w(ey,)} is the set
of GEKSs (or PEKSs) of the associated nodes in E. Suppose
that for a picked index i, T,,; # 1 with the current LEKs,
where T, is the transfer function from node e; to e;. Let
W = {W(ey), -+, W(ej), -+ , W(ew)} be the set of GEKs (or
PEKSs) of the associated nodes in E, in which /,, . = O for any
node e € N. Then the vectors w(e;), i = 1,2,--- ,w,in W
have the same linearly independence as the vectors W(e;),
i=1,2,---,0,in W.

Proof: By the constraint relation (i) in Definition 1, it is

not difficult to get the following expressions,

w(e;) = W(e;) + Tpe,W(ep), 15)
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w(ej) = W(ej) + Tee;Wiei), (16)
where i # j, i,j € {1,2,---,w}, and Tel.ej is the transfer
function from e; to e;. Rearranging (15) and (16), we have

W(e)) = (1 = Tpep)W(ey), (17)

W(ej) = W(ej) — Tee;W(ei), (13)

where i # j, i,j € {1,2,---, w}. The matrix form of the
above expressions (17) and (18) is as follows

w(ep) 1 0o .- —Teie, 0
w(ez) o 1 - —Teier 0
We) |70 0 - 1-Tp - 0
W(gw) 0 0 A _Teiew e 1
w(ep)
w(e)
weep | 1Y
w(e,)
Therefore, the vectors w(e;), i = 1,2,---,w, have

the same linearly independence as the vectors W(e;), i =
1,2, ---, w, since the determinant of the w X w matrix in the
right hand of (19) is equal to 1 — T,,.; # 0. ]

Let the symbols be the same as before, we can get the
following Theorem about the regularity condition of the set
of PEKs.

Theorem 3: In a line graph N, let E = {ey,--- ,ej, -,
eo) and E = {eg, - ,e, -, ey} be two sets of @ nodes,
where ¢; is a successor of e;. Suppose that rank(span{U C}) =
w and rank(span{ﬁ }) # o, where U C,U" are the set of
PEKSs of the associated w nodes in E and E, with the current
LEK lg,z,-’ respectively. And the transfer function from e; to
e; with the current LEK leci)a, holding that Te?e,- # 1. Then
after changing lg,é,- to a new LEK lé\; = such that Te]Ye,- # 1,
we have rank(span{UN}) = o, where T), and T are the
transfer function from e; to ¢;, and the PEKs of the associated
w nodes in E, with the new LEK lg’ @ respectively.

Proof: By the definition of PEK, we denote U cU
and U as follows,

C

U€ = (u€e), -+ ,ue), - ,uC(ey)}, with the LEK
1€, and B =0,
U = @ ), ,aCG@), -, (e,)), with the LEK

IE 5 and B% =0,

T = @), -, @@), -, 0" (e,)), with the LEK
lé\;],a and B% = 0.

By the conditions in Theorem 3, we know that the PEKs
in set UC are linearly independent, and the PEKSs in set Uc
are linearly dependent. And we need to prove that the PEKs

in set UN are linearly independent. Let
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UC = (@), - ,0%@), - - ,uC(e,)}, with the LEK

1€, and B =0,
ON = @), -+ .8 @). . W(e,)}, with the LEK
1Y, and B4 = 0.

By Lemma 1, the PEKSs in set UC are linearly dependent
just like the PEKSs in set U € and the PEKSs in set UV have

the same linear dependence with the PEKs in set 7.

Note that B¢ = 0 for sets U€, UC and UV Thus, when we
change the LEK of the adjacent pair (e;, ¢;) from lec,-,é,- to ZQI_’ e
it does not alter the PEKs of nodes ey, - - - , €j—1, €i+1, - , €w
in sets UC, UC€ and UV . In other words, we have

US\uC(e) = UN\T (@) = UM\ (@). (20)

By the constraint relation (i) in Definition 1, it is not
difficult to obtain that

iV (e) — @) =),

— 1€ o (e). 21
Since the PEKs in U€ are linearly dependent, we have
€ (@) € span{U\U (@)} = span{U\u(en). (22)

Thus, 1€ (g;) can be linearly represented by uc(el), cee,

uC(ei—1), uC(eit1), - - -, u€(ey), namely,
w
@)=Y aue, (23)
=1

whereag; e F,j=1,---,i—1,i+1,--- 0. If
V(@) € span{UM\U" (&)} = span{U\uC(ep)}, (24)

namely, tV (e;) also can be determined by a linear combi-

nation of u€(ey), -, u€(eiy), uC(e,-+1), <o, u%e,) as
follows,
w
@)= > bue, (25)
=L
where bj € F,j=1,---,i—1,i+1,---, ». Notice that
u€ey), ---, u€(e), ---, u(e,) are linearly independent,

after substituting (23) and (25) into (21), we can get
=il o) I =I1C, . (26)

i e’

aj=bj, je{l,---

which contradicts to the assumption that lg’ &7 lg’a. There-
fore, u" (¢;) ¢ span{(NJ NM\1@" (¢;)}, namely, the PEKs in set oN
are linearly independent, and so do the PEKs in set 7. O

Now, we discuss the regularity condition for the bases of
sink nodes.

Theorem 4. In the line graph N of a given network N,
we denote & = {e, ez, - -, €,} be any regular basis of sink
node, which has been determined before. For any node e in
N, denote e be a successor of the node e. Let the current LEK
between the node e and the node e be ISE and the transfer
function Teg # 1 with the current LEK lgE . We change

leCE into any new value lé\’? such that the associated transfer
function Tej\e’ # 1, then at most one value of the lévé will make

the basis & not be regular.
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Proof: Let S(e) be the set of all successors of the node e,
then e S(e). Thus we have

TS = T + 15Ty, (27)
TV =Ty + 1)1, (28)

where T is the transfer function from e to e, which traces
S(e)\e, and lgETz (IQ{ETQ) represents the associated transfer
function from e to e with LEK lgE (lé\g), which traces e.

Let g€, g be the GEKs of node e with current LEK lgE
and new LEK lfxé respectively. And denote g, be the GEK of
the node e, when [, z = 0 for all e € S(e).

Thus, by the constraint relation (i) in Definition 1, we have

gl =T585 +8 = (T +1,T)gl +8,. (29
and
g =1NgY +8, =T + 1, g) +g.  (30)

Note that Teg # 1 and Tel\e' # 1, rearranging (29) and (30),
we have

- &
1-T —leC:ETz’

g
g =——> 32
¢ 1-T — ZQIETz (32)

g¢ 31)

Again, by the constraint relation (i) in Definition 1, we can
obtain the following expression,

g — g5 = (R + INRog) — (Rui + 1S:R0)gS . (33)

where Ry; is the transfer function from e to ¢; tracing the nodes
in S(e)\e, leCERz,- (léVERzl-) is the transfer function from e to ¢;

with LEK [, (I;) tracing the node &, and i = 1, -+ , .
Substituting (31) and (32) into (33), we can get
g —g& =x0", 1Rz, (34)
where
N —1C.
XN, 16 = . (35
(1 =Ty = IN,To)(1 = Ty — IE,T2)
and
R = Roi + TaRy; — T1Ry;. (36)
By assumption, the current GEKs gecl, cee, geci, cee, gecw of
basis & are linearly independent with LEK lfg. Therefore, g,
can be linearly expressed by gg, i=1,---,w. Thatis,
g =gl + gl + o+ gl 37)

By (34) and (37) (for succinctness, denote X (I, 1€) by X),
we have
g = g +XRE,
= XRia185 ++ -+ + (1 + XRio)gl ++ - - + XRicto 85, ,
(38)
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wherei = 1,2, .-, w. (38) can be written in matrix form as
(gle}’ gZ 7g1;;)T
14+XR1o XRy«; XRay,
= XR;oq 14+XR;o; XR;c,
XR,0 XR,o; 1+XR,
g,
g | (39)
g,
Ifo; =0forallie (1,2, w}, then we have g} = g,
i =1,2,---, . That is, the basis £ is regular with GEKs
N N N
gel’... ’ge,.,... 7gew.
If there exists i € {1, 2, --- , w} such that o; # 0, without

loss of generality, we assume that &y # 0. Denote the w x @
matrix in the right hand of (39) by M. Applying elementary
column operations (replace the jth column by the sum of
that column and —Z—-i multiple of the 1st column, and then
replace the 1st column by the sum of that column and —XR;a
multiple of the jth column, wherej = 2, - - - , @) on matrix M,
we can get an equivalent matrix M of M,

M~M
w
14X > Rio; —ajfog /o
i=1
- 0 1 0
0 0 1
(40)
Thus,
w
det(M) = 14X Z Ric;. (41)

i=1
If det(M) # 0, then rank(M) = rank(M) = w. In this case,
in terms of (38), the GEKs gQ’], cee, gﬁf, e g{XU are linearly
independe~nt just as the GEKs gecl, RN gecl,, ceey gg).
If det(M) = 0, substituting (35) into (41), we can get the
following expression

(1= T1 = LT =Ty = 15T + (I = IR = 0,
(42)
w
where R = ) R;o;. Rearranging (42), we can get
i=1
(=T +(T1 Ty — T2 — RIS+ (T Ta— Ta— R+ THIE )Y,

2%.e

=0. 43)
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We say that T T2—T2—R+TZZIEE # 0. Otherwise, assume
to the contrary that

T\ T,—T)—R+T315; = 0. (44)
It is easy to get the value of R,
R=T,—T\T,—T;I,. (45)
Substituting (45) into (43) and rearranging it, we have
(1—Ty —15T2)* = 0. (46)
Thus,
1 -1, —15,T, =0. 47)

Substituting (47) into (42) we have (ZN — ZC 2R = 0. Since
R # 0 (otherwise, det(M) 1 # 0), we have lN =1°,

e.e’
Wthh contradicts to our assumption. Therefore, T1 T2 -1, —
2;C
R+T5I1 oz # 0.
Now, in terms of (43), we can get

a—nﬂﬂﬂn—n—mﬁz
+T31C,

2%,e

N— =
e T\ T,—T,—

(48)

This demonstrates that there exists at most one lN with the
exact expression (48), such that det(M ) =0, namely, only in
this case, the basis & with the new LEK l?,’z is not regular.
Thus, we finish the proof of this theorem. O
Remark: By the construction algorithm of DI-F-CNC,
we must determine all LEKs such that every basis of the
sink node is regular. As we have mentioned in Algorithm 1,
when (1) det(I — K) = 0, or (2) Te};,ei = 1, or (3)

rank(span{U D # o with [§ we need to replace
ek

the current coefficient [ C, . W1th a new value lA,] i By
Theorems 1-3, we know thatklf |IF| > 4, then we can gelfact an
eligible LEK from F. Also notice that the new picked LEK
may change the regularity of previously determined bases of
sink nodes on cyclic network. Thus, there is a possibility that
we can not find an eligible LEK, such that the choosing pro-
cedures success. However, Theorem 4 can ensure that there
exists at most one bad LEK such that the already determined
basis is not regular. Also note that if we substitute l with

lN

l*l’
(3

l*l’

the bases &; of sink node rj, j = 1,---,i — 1 may
be. effected Thus, the number of bases to be checked is at
most T — 1. Therefore, if we have 4+7 — 1 = 7 + 3
LEKSs coefficients to be selected, in terms of Theorems 1-4,
we can always pick an appropriate LEK for lines 14-16 in
Algorithm 1.

We have theoretically shown that if the size of the symbol
field is no smaller than T + 3, where t is the number of
sink nodes in the network, then we can always construct a
DI-F-CNC over a cyclic network. Intuitively, it is possible
to reduce the required symbol field size for the existence of
DI-F-CNC over a cyclic network with special network topol-
ogy. In what follows, we verify this intuitive conjecture
through numerical results in MATLAB on a class of special
random directed cyclic networks.
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E. NUMERICAL RESULTS

We construct a class of special random directed cyclic net-
works in MATLAB. For a given number of nodes, we number
all nodes, with source as node 1, and sinks as nodes with the
largest numbers. A random adjacency matrix A = (a;) of
the nodes is generated according to the following rules. The
elements in the fist column of A are zeroes, which ensures
source node has no incoming edges. The last few rows are
zeroes which ensures each sink node has no outgoing edges.
All the diagonal elements of A are zeroes, which ensures no
self-loop in the network. Other elements of A are assigned
0 with probability 0.85, and 1 with probability 0.15, such allo-
cations of edge connection ensure that the random directed
network is not so intricate and cycles can exist with positive
probabilities. We throw away instances that the number of
edge-disjoint paths from source to any sink is less than 2 and
the number of outgoing edges from source is greater than
T + 1, so we can focus on the scenarios of data generating
rate 2 < w < t + 1 (7 is the number of sink nodes in the
network).

Figs.6 and 7 depict the mean of the required field size
for the existence of DI-F-CNC in the aforementioned special
random directed cyclic networks (each statistic data is based
on 50 eligible random graphs). Fig.6 shows the case where
the number of sinks is fixed to 2, and the number of nodes
changes from 10 to 20 with network including k circles, k €
{1, 2, 3}. Fig.7 shows the case where the number of circles
is fixed to 1, and the number of intermediate nodes changes
from 8 to 16 with network including k sinks, k € {3, 4, 5}.

28
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Favg 1 cycle
*Favg 2 cycles

~
=)

~&-Favg 3 cycles

~
o

y

mean of the required field size
~
N

10 1" 12 13 14 15 16 17 18 19 20
number of nodes

FIGURE 6. Mean of the required field size for the case where the number
of sinks is fixed to 2, and the number of nodes changes from 10 to
20 with network including k circles, k < {1, 2, 3).

281

~
23

©-Favg 3 sinks

~
=)

Favg 4 sinks
Favg 5 sinks

mean of the required field size
[ S
P S S .

~

9 10 " 12 13 14 15 16
number of intermediate nodes

FIGURE 7. Mean of the required field size for the case where the number
of circles is fixed to 1, and the number of intermediate nodes changes
from 8 to 16 with network including k sinks, k € {3, 4, 5).
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In both cases, the mean of the required field size is less
than 3, and by numerical results, the practical field size for
the existence of DI-F-CNC is 2 or 3. These verify the intuitive
conjecture that based on special network topology structure,
the theoretically required field size v 4 3 (7 is the number of
sink nodes in the network) for the existence of DI-F-CNC
over a cyclic network can be reduced. Since the required
symbol field size is closely related to the implementation
of such coding constriction scheme in terms of computa-
tional complexity and storage requirement, we will investi-
gate an improved lower bound on the required field size of
DI-F-CNC for the future work.

IV. CONCLUSION

In this paper, we investigate a straight construction algorithm
for a field-based linear multicast network coding, which
actually qualifies as a DI-F-CNC over a cyclic network.
We conclude that if the size of the symbol field is no smaller
than t + 3, where 7 is the number of sink nodes in the
network, then we can always construct a DI-F-CNC. This
straight construction algorithm is beneficial to the scenario
that the network is locally dynamic changing.

How to design DI-CNCs over cyclic networks with mul-
tiple sources is an interesting direction for future reasearch.
Another intriguing work would be how to investigate the
design and analysis of DI-CNCs over cyclic networks in the
presence of noise or interception.
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