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ABSTRACT Explainable Artificial Intelligence (XAI) aims to introduce transparency and intelligibility
into the decision-making process of Al systems. Most often, its application concentrates on supervised
machine learning problems such as classification and regression. Nevertheless, in the case of unsupervised
algorithms like clustering, XAl can also bring satisfactory results. In most cases, such application is based
on the transformation of an unsupervised clustering task into a supervised one and providing generalised
global explanations or local explanations based on cluster centroids. However, in many cases, the global
explanations are too coarse, while the centroid-based local explanations lose information about cluster
shape and distribution. In this paper, we present a novel approach called CIAMP (Cluster Analysis with
Multidimensional Prototypes) that aids experts in cluster analysis with human-readable rule-based explana-
tions. The developed state-of-the-art explanation mechanism is based on cluster prototypes represented by
multidimensional bounding boxes. This allows representing of arbitrary shaped clusters and combines the
strengths of local explanations with the generality of global ones. We demonstrate and evaluate the use of
our approach in a real-life industrial case study from the domain of steel manufacturing as well as on the
benchmark datasets. The explanations generated with CIAMP were more precise than either centroid-based
or global ones.

INDEX TERMS Data mining, clustering, explainable Al, expert’s knowledge.

I. INTRODUCTION

In recent years, pattern discovery has been dominated by
effective black-box models such as deep neural networks or
boosting trees. However, these methods are not easily under-
standable, which could limit their application in areas where
results of machine learning algorithms need to be combined
or confronted with domain knowledge and experts’ experi-
ence. To deal with this, Explainable Al (XAI) methods are
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being developed to bring transparency to the decision-making
process of Al-based systems [1]. This trend is especially
visible in the area of Industry 4.0, where a large amount
of data is gathered directly from hardware and is used to
discover patterns or anomalies in machinery operation as well
as to provide decision support based on the results. A human
operator is usually involved in the analysis and verification
of the decisions of the system because the control of the
critical system components cannot be left solely to the Al
system. On the other hand, this requires the model to be
understandable by a domain expert, as depicted in Figure 1.
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FIGURE 1. Visualization of the role of XAl in Industry 4.0 data analysis. High-stakes decisions have to be

understandable to be properly justified.

In practical applications, where large amounts of data have
to be analysed, the Al-based (Artificial Intelligence based)
decision support is usually implemented utilising machine
learning algorithms. Three types of learning can be consid-
ered: supervised, semi-supervised, and unsupervised learn-
ing. Supervised learning is an approach that makes use of
labelled datasets. Semi-supervised learning can be applied in
the case of using a training dataset, with both labelled and
unlabelled data. Unsupervised learning uses machine learn-
ing algorithms to analyse unlabelled datasets. In most cases,
XAI methods are considered with respect to a supervised
machine learning task such as classification or regression.
However, in many industrial applications, data comes with
no labelling, making it unfeasible for supervised methods and
XALI algorithms. In such cases, data mining techniques such
as clustering are often used to reveal patterns hidden in the
data. Clustering is defined as unsupervised learning where the
objects are grouped on the basis of some similarity between
them [2]. In such cases, XAl can be used to explain the
differences between unfolded patterns as well as to explain
a single instance assignment to a particular cluster. To apply
state-of-the-art XAl methods, the considered problem should
be reformulated in a manner that fits the supervised task. The
main objective of such a reformulation is to obtain the proper
representation of the cluster that is delivered to the expla-
nation mechanism. An obvious choice of cluster centroids
may not give valid results in the case of clusters that have
complicated shapes or do not have Gaussian distribution.
On the other hand, using global explanations lacks details
which might be crucial for a proper understanding of the
differences between clusters.

In this work, we aimed to formulate an XAI methodology
that would allow balancing a trade-off between granular-
ity of global explanations and complexity of instance-based
explanation for a cluster of arbitrary shape and dimension-
ality. We adopted the developed methodology in a real-life
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industrial case of the hot-rolling process from the steel indus-
try. To achieve this, we attempted to represent clusters with
multidimensional prototypes and utilise these prototypes in
the explanation process. The developed methodology can be
divided into the following stages:

« Execute clustering with an arbitrarily selected method;

o Reformulate the problem to the classification task;

o Generate cluster prototypes in the form of multidimen-
sional bounding boxes and obtain rule-based explana-
tions for them.

« Evaluate generated rules with the use of the HeaRTDroid
inference engine [3] and experts’ knowledge.

This work is carried out in the CHIST-ERA Pacmel project.
The project aims to develop novel methods of process mining,
knowledge modelling, and intelligent sensor data analysis
in Industry 4.0. In the area of rules and inference engines,
we build on our previous works including the XTT2 (for-
malised rule representation) rule-based knowledge represen-
tation and the HeaRTDroid inference engine [3], which were
developed by us using the Semantic Knowledge Engineering
methodology [4].

The reminder of the paper is organised as follows: in
Section II, we describe the works concerning the explain-
able methods. This is the foundation for our motivation and
original contribution described in Section III. In Section IV,
we concentrate on describing the clustering and classification
methods and present a novel approach to building proto-
types for clusters. This section also includes the descrip-
tion of a method for obtaining rule-based explanations for
discovered prototypes. In Section V, we present a func-
tional evaluation of CIAMP in comparison to centroid-based
and global explanations used in state-of-the-art solutions.
In Section VI, we perform human-grounded evaluation on
synthetic datasets with 24 participants involved in the pro-
cess. Finally, in Section VII, we move on to the case study
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and close the evaluation of CIAMP by showing the applica-
tion of our methodology in an industrial setting. At the end,
in Section VIII, we summarise the results of our work.

Il. RELATED WORKS

The process which allows explaining clustering generally
involves a three-step explanation procedure that changes an
unsupervised clustering task into a supervised classification
task [5], [6], [7]. First of all, an optimal quality clustering of
unlabelled data needs to be obtained. Secondly, a classifier
needs to be built that uses discovered cluster labels as values
of the target variable. Finally, the classification task should be
explained with XAI methods [6]. This gives us information
about the differences between clusters, which can help in the
final cluster analysis performed by the expert. There have
been a variety of XAl methods developed over the last decade
which differ in the explanation mechanism used, an explana-
tion granularity, as well as in the form in which they present
explanations. In this section, we provide a review of existing
approaches for the cluster analysis enhanced with XAI algo-
rithms. Furthermore, we present the original contribution in
more detail at the end of the section.

In [8], the authors extend the image prototypes approach
presented in [9] by introducing an interpretable image clas-
sification model with a pool of prototypes shared by the
classes (ProtoPol), which focuses on the crucial image parts.
Based on the image, the model discovers the parts of the
image (prototypes) which could be useful for further analysis.
This allows for a more interpretable model and to discover
similarities between classes.

In [10], the authors provide a novel solution that can be
used to cluster data. They call it the eUD3.5 algorithm,
which relies on inducing a collection of diverse unsupervised
decision trees. The main advantage of their solution is that
the eUD3.5 algorithm does not require any parameters that
control the number of objects in the leaf nodes because
the algorithm automatically stops expanding a branch if the
evaluation is worse than the best evaluation in that branch.
The second important advantage mentioned in [10] is that the
algorithm can provide patterns associated with each cluster
that can be easily understandable by a human. The patterns
describe the whole database with just a few patterns.

The authors in [7] develop the Single Feature Introduction
Test (SFIT) method which is run on the model to recognise
the statistically significant features which characterise each
of the clusters of data. They test their discovered method on
a real wealth management compliance case. The method is
divided into two steps: the clustering step, and the explaining
step. First, data is clustered with the use of a clustering
algorithm such as K-means. The second step is to train the
classifier to learn how to predict the cluster and run the SFIT
procedure on the instances belonging to a considered cluster.
This allows obtaining a set of features that are significantly
characterising this cluster. The procedure is tested on the 2D
and 3D datasets of the Fundamental Clustering Problems Suit
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(FCPS). In both cases, this method is able to correctly uncover
patterns.

In [11], the adopted method concentrates on the centres
of the clusters. Discovered Cluster-based sentence utility
(CBSU, or utility) refers to the degree of relevance (on a scale
from O to 10) of a particular sentence to the general topic of
the entire cluster. However, such methods are very sensitive to
the shape of the clusters and can be executed only in specific
cases.

Many explainability approaches consider the use of
tree-based clustering models. According to [12], the most
popular method is cluster representation with the use of their
centroids. However, in the case of the not compact or non-
isotropic cluster, such a method cannot be executed success-
fully. Another common approach is that of visualisation with
the use of principal component analysis but, in this case,
we lose the relationship between the clusters and the original
variable. In [12], the authors propose an unsupervised learn-
ing algorithm that solves the task using an optimisation lens
while providing the user with more accurate and interpretable
results based on the feature vectors. They use Silhouette
Metrics and Dunn Index, as the objective function. Tests were
executed using datasets from FCPS and real-world examples.

In [5], the authors use methods of supervised machine
learning for cluster interpretation by changing the problem
into a classification case. Particularly, they analyse which fea-
tures are necessary to assign instances to the correct cluster.
This allows recognising the characteristics relevant to specific
cluster structures.

The method presented in [6] aims to explain the out-
come of unsupervised algorithms. Generally, the framework
relies on the expert’s knowledge to, i.a., extract the cor-
rect features (feature selection). When the data is embed-
ded, EXPLAIN-IT uses unsupervised learning techniques
to explore it. In particular, EXPLAIN-IT uses a clustering
technique that plays the role of a meta-learning approach,
which reduces the complexity of the analysis using the idea
of clustering methods — aggregating similar instances.

In [13], the authors outline that there are no effective meth-
ods to apply to security tasks. In their paper, they propose a
dedicated method that generates a small set of interpretable
features to explain how the input sample is classified. The
main idea is to approximate the local area of the deep learning
decision boundary with the use of a simple interpretable
model. The model is specially designed to:

« Handle feature dependency to better work with security
applications;

« Handle non-linear local boundaries to boost explanation
fidelity.

The method concentrates on identifying a small set of features
that are key contributors to the classification of data instances.
The method generates a local approximation of the target
classifier’s decision boundary near a given point. This method
does not assume that the local detection boundary is linear
and the features are independent. Instead, they introduce a
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new approach to approximate the non-linear local boundaries
based on a mixture regression model enhanced by fused lasso.

In [14], the authors present two novel ‘“algorithm-
agnostic” explainability methods: Global permutation per-
cent change (G2PC) and Local permutation percent change
(L2PC). Their methods use a well-known model-agnostic
explainability method that is widely used in the context
of supervised machine learning called permutation feature
importance. L2PC feature importance extends the permuta-
tion to obtain explainability for clustering algorithms. In con-
trast to G2PC, L2PC permutes each of the features for a
single sample-specific time using values that are randomly
selected from the same feature of other samples in the dataset.
After that, it calculates the percentage of time that the sample
changes clusters during the permutations. The permutation
percent change values can be used to obtain the statistical
significance of each feature. As the percent change increases,
the importance of a specific sample increases.

A Boolean decision rules generator [15] is a method that
utilises Boolean rules either in their disjunctive normal form
(DNF) or conjunctive normal form (CNF) to build predictive
models. According to this idea, a low number of rules makes
patterns more easily understood and interpreted by humans.
The authors outline that in the case of large and complex
datasets, the problem with computational time may occur.
To avoid this issue, they propose an approximate column
generation algorithm that uses randomisation to efficiently
search the rule space and learn DNF or CNF classification
rules [16].

The authors in [17] introduce a simple and practical frame-
work called Teaching Explanations for Decisions (TED),
which provides explanations that match the mental model of
the consumer. The idea is based on X (the feature vector),
Y (a label), and E (the explanation for each decision, which
can take any form) making a classifier where the value of
Cartesian product Y and E (YE) is predicted. The next step
is to make decoding to partition a YE prediction into its
components Y and E.

Most of the aforementioned techniques are based on state-
of-the-art model-agnostic XAI algorithms such as LIME,
SHAP, Anchor, and others. In the following paragraphs,
we introduce them briefly. One of the most popular methods
for black-box models is a local interpretable model-agnostic
explanation (LIME). This method is able to generate inter-
pretations for a single instance and can be applied to any
classifier. LIME generates simulated data points around given
instances through random perturbation and provides an expla-
nation by fitting a sparse linear model over the predicted
responses from the perturbed points [18].

The authors in [18] propose an extended version of LIME
called DLIME (Deterministic Local Interpretable Model-
Agnostic Explanations). In comparison to LIME, to find a set
of samples and corresponding predictions instead of random
perturbation, KNN (k-nearest neighbours) is first used to
find the closest neighbours to the instance. Then, the cluster
label for the test instance is assigned based on the majority
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TABLE 1. Summary of related works in the area of explainable clustering.

Paper Explanation | Classification | Clustering | Executable
refer- type model algorithm | explana-
ence tions

[71 global any any no

[10] local fixed fixed yes

[11] global n/a any no

[12] local fixed fixed yes

[5] local any any no

[6] local any any yes

[14] global fixed n/a no

[15] local any any no

[16] local n/a n/a yes

[18] global n/a n/a yes

[19] local n/a any yes

[20] local any any yes

label among the k-nearest neighbours. Finally, the data point
belonging to the class is used to train a linear regression model
which is used to generate an explanation.

In [19], the authors present a novel model-agnostic algo-
rithm called The Anchor. Based on the given instance, the
Anchor algorithm generates a rule that sufficiently decides
the prediction locally. It should be emphasized that changes
to other feature values of the instance do not essentially
affect the prediction value. For each instance, the Anchor
is executed with an empty rule, subsequently, in an iterative
fashion, new rules are generated and the previous is replaced
if the precision is lower.

IIl. MOTIVATION AND ORIGINAL CONTRIBUTION
Most of the methods mentioned in the previous section are
focused on a specific task and tuned to work with particular
clustering algorithms, or with a particular audience. On the
other hand, general frameworks such as [5], [6], [7], and
[10] focus mostly on global explanations, which limits the
details presented to the user and reduces the capabilities of
in-depth cluster analysis. In Table 1, we present a summary of
related works in the area of explainable clustering. One can
observe that there is no solution that will satisfy the hybrid
explanations mechanism that will: 1) allow for a balance
between the expressiveness and granularity of the generated
results, 2) allow the use of an arbitrary selected clustering
algorithm, 3) allow the use of an arbitrary selected classi-
fication method to discover patterns between clusters, or 4)
provide explanations in an executable format that allows for
easier, automated integration with other system components.
In our approach, we aim mainly to provide a method
that will address all of the above four issues. The starting
point of this work was the preliminary results introduced at
the IEEE DSAA 2021 Conference [20]. Here, we present a
fully developed approach, enclosed within a methodological
framework for cluster analysis with multidimensional proto-
types (CIAMP) and evaluated on a real-life industrial case
and benchmark datasets. The most important aspects of our
original contribution include the following:

o We expanded the possibility of cluster represen-
tation. We added another method for discovering
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cluster prototypes. We were interested in how ran-
domly selected points within the cluster influence the
HeaRTDroid results;

o We expanded the number of metrics considered to obtain
more reliable results. In the previous approach, only the
accuracy metric was calculated. In this work, we added
metrics such as precision, recall, and F1-score;

« We added explainability optimization, taking into
account several criteria according to which the user is
able to choose the best result. In cooperation with the
experts, we decided to allow deciding which metric can
be treated as a target parameter;

o We created a pipeline (methodology) which as its input
takes the dataset without labels and is able to gener-
ate explanations and evaluate them with the use of the
HeaRTDroid rule-based inference engine;

o« We provided the final human-readable rules to the
experts for evaluation.

In the following section, more details on the CIAMP
methodology will be provided.

IV. CLUSTER ANALYSIS WITH MULTIDIMENSIONAL
PROTOTYPES

The main goal of our work on CIAMP was to provide a
method for cluster analysis that will be agnostic with respect
to the clustering and classification algorithms and will pro-
vide explanations in the form of executable and human-
readable rules. The CIAMP methodology can be divided into
four stages as depicted in Figure 2.

1) Phase 1: Clustering of unlabelled data with arbitrary
selected clustering algorithm.

2) Phase 2: Reformulation of the clustering problem into
the classification task and building a classifier that is
trained to distinguish labelling discovered in the previ-
ous phase.

3) Phase 3: Generation of cluster prototypes as multi-
dimensional bounding boxes on top of the clustering
performed in the first phase.

4) Phase 4: Generation of explainable rules for the cluster
prototypes generated in phase 3.

In the following sections, these main phases will be
described in detail.

A. PHASE 1: CLUSTERING OF UNLABELLED DATA

Good quality of clusters is crucial in obtaining good quality
explanations for them. The choice of the clustering algo-
rithms is highly dependent on the characteristics of the dataset
and the shape of the clusters. This is why, in our methodol-
ogy, we assume that this step should be independent of the
explanation mechanism.

There are various different clustering algorithms that can
be applied to different kinds of data. One of the advan-
tages of the CIAMP methodology is the possibility of apply-
ing different clustering methods, leaving the opportunity to
choose the one which gives the best results. In this work,

101560

we tested the following clustering methods to assign labels to
the analysed datasets: Gaussian Mixture, BIRCH (balanced
iterative reducing and clustering using hierarchies), and the
Deep temporal clustering algorithm. The first two methods
described above are implemented in scikit-learn [21]. The
third method is presented in [22]. The algorithm utilises
an autoencoder for temporal dimensionality reduction and a
novel temporal clustering layer for cluster assignment. Then,
the clustering and dimensionality reduction objectives are
optimised. To detect the optimal number of clusters, we used
silhouette score; however, the choice of the metric used for
selecting the number of clusters is not limited.

It is worth noting that this stage is independent of the whole
methodology. In fact, one can also apply our approach to
the dataset which originally contained labels, or where labels
were obtained using expert knowledge instead of a clustering
algorithm. This could be particularly useful in cases where
the cluster analysis is performed mainly for conformance
checking with existing domain knowledge [23].

B. PHASE 2: REFORMULATION OF THE CLUSTERING
PROBLEM INTO THE CLASSIFICATION TASK
To reformulate the clustering problem into the classification
task it is necessary to find a classifier that reproduces labels
obtained during the clustering stage in the best possible way.
In our work, we chose XGBoost (Gradient Boosting
framework) classifier [24] as the classification algorithm,
an optimised distributed gradient boosting open-source pack-
age designed to be highly efficient, flexible, and portable.
It implements machine learning algorithms under the Gra-
dient Boosting framework. XGBoost provides parallel tree
boosting that solves many data science problems in a fast
and accurate way. Results demonstrated in [24] show that
the XGBoost classifier can be used for a wide range of prob-
lems. Classifiers have great potential and allow the obtaining
of good results; however, they have a lot of hyperparam-
eters that directly affect these results. To account for this,
hyperparameter tuning should be done during the algorithm
performance [25]. There is a possibility to do it manually,
but in such a case, the user can not be sure that the best
parameter settings have been determined. To do it auto-
matically, a simple GridSearch algorithm can be applied
that allows checking each combination of parameter values
defined in their domains (ranges) determined by the user.
In our case, we applied a RandomizedSearchCV (Random-
izedSearch Cross-Validation) available in scikit-learn [21],
because this optimiser allows obtaining satisfying results
by trying only a fixed number of parameter settings. Ran-
dom search is actually more practical than grid search [25],
as it does not test all parameters but executes the search
at random. For the automatic hyperparameter tuning, other
optimization methods can also be applied, e.g., the Sequen-
tial Model-Based Optimization (SMBO) implemented in the
model-based optimisation package (mlrMBO) [25], [26].
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FIGURE 2. CIAMP methodology diagram.

To validate the effectiveness of the classification methods
built on top of cluster labels, several metrics can be used.
In our case, we used recall, precision, F1-score, and accuracy.

C. PHASE 3: MULTIDIMENSIONAL BOUNDING BOXES AS
CLUSTER PROTOTYPES

The classifier that allows the correct assignment of instances
to the previously discovered clusters is the main requirement
for phase 3 of the CTAMP methodology. This classifier will
be used later to generate explanations for a particular cluster,
based on the instances that form a (potentially multidimen-
sional) bounding box around it. The selection of the bounding
box points that form the cluster representation (prototype)
is the main objective of this phase of the CIAMP method-
ology. The idea of such an approach is presented on the
two-dimensional dataset in Figure 3.

In the case of a real dataset with many features, the shape
of the cluster may be unimaginable and the selection of a
method determining the proper description points can be dif-
ficult. That is why, in the proposed methodology, we treat the
method for discovering cluster prototypes as a tuning param-
eter that can be adjusted to the specific case. Three different
methods for discovering cluster prototypes are considered in
this paper: Random selection, K-D tree (k-dimensional tree),
and Isolation forest; all are described next.
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FIGURE 3. The idea behind determining a bounding box. Relatively outer
(bounding) points can give more information about the boundary of each
cluster than choosing the centroids of each cluster.

It is worth noting that for clusters of different shapes,
different bounding boxes may be suitable for different clus-
ters. Therefore, in CIAMP, we optimise the selection of the
method for each of the clusters separately. The selection of
CLAMP hyper-parameters can be done automatically with
any optimisation algorithm and with respect to the target
metric we want to optimise (for instance, the accuracy of the
explanations obtained). Selection of a metric and optimisa-
tion algorithm depends on the task we want to solve and the
data we use (e.g., balanced, imbalanced, etc.) and, therefore,
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is considered outside the scope of this work, which focuses
on the CIAMP methodology itself, not on particular domain-
dependent applications.

1) RANDOM SELECTION APPROACH

The random selection method considered in this paper gen-
erates a randomly selected set of points belonging to each
cluster. The number of points to be selected from each cluster
is treated as a hyperparameter which should be optimised.
To choose points, the “sample” function, built in the Pandas
library in Python, was used. To obtain randomly selected
points, only the number of items was passed and other param-
eters were used with their default values.

Exemplary points determined by the random selection
approach are presented in Figure 4, further divided into 4 sep-
arate charts denoting different runs of the random selection
procedure. As can be seen for each of the charts, the deter-
mined points which are used for rule generation are different.
Therefore, for evaluation purposes, several runs are used and
averaged to obtain reliable results.

2) K-D TREE APPROACH

The K-D Tree algorithm addresses the computational ineffi-
ciencies of the brute-force approach. This algorithm allows
a general reduction of the required number of distance cal-
culations with the use of encoding aggregate distance infor-
mation for the sample. In particular, if point “A” is very
far from point “B”’, and point “B” is much closer to point
“C” than to point “A” then the algorithm knows that points
“A” and “C” are very distant. The main advantage of such
a conception is obtaining information about the distance
between points “A and “C”” without calculating the distance
between them.” The K-D tree is a binary tree structure that
recursively divides the parameters space along the data axes,
dividing it into nested orthotropic regions into which data
points are filled. Dividing is executed only along the data
axes and no D-dimensional distances need to be computed,
that is why the K-D tree is very fast. It should be outlined
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that this method is fast in relatively low-dimensional cases
D < 20 and becomes inefficient when D grows above the
mentioned value [21], [27].

Implementation of the K-D tree algorithm requires tuning
of some of the hyperparameters like leaf size and metric.
According to the documentation, the “leaf size” parameter
does not affect the results of the algorithm, so the default
value was used. For the “metric” parameter, two possible
values were considered in this paper: “minkowski” and
“manhattan”. Because the bounding box we are looking
for consists of the outremost points, we added one more
hyperparameter which is the percentage of the farthest points
from the centre of each cluster. Exemplary points determined
by the K-D tree approach are presented in Figure 5. As can
be seen, for each of the clusters, the KD-tree algorithm found
the outermost points (boundaries of each cluster), which was
one of the goals of our developed methodology.

3) ISOLATION FOREST APPROACH
The isolation forest method is one of the ways to execute
outlier detection in high-dimensional datasets. The princi-
ple of operation is to ‘““isolate” observations by randomly
selecting a feature and then randomly selecting a split value
between the maximum and minimum values of the selected
feature [21], [28]. In the algorithm, the recursive partitioning
can be represented by a tree structure, while the number of
splittings required to isolate each sample is equivalent to the
path length from the root node to the terminating node. The
length of the path mentioned above is the measure of nor-
mality and our decision function, and this length is averaged
over a forest of random trees. Thanks to random portioning,
shorter paths for anomalies are produced. Hence, when the
random trees collectively produce shorter paths, it is more
probable to assign a sample as an anomaly [29], or bounding
box point.

Implementation of an Isolation Forest requires tuning of
some of the hyperparameters such as:

« the number of base estimators in the ensemble;
« the number of samples to draw from X to train each base
estimator;
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FIGURE 6. Exemplary points determined by Isolation forest.

o the number of contaminations of the dataset, i.e., the
proportion of outliers in the dataset.

and several others. That is why, in this case, hyperparameter
optimisation is necessary.

In the methodology developed in this paper, the Isolation
Forest algorithm is applied to detect the outer points belong-
ing to the specified cluster, which can be used to execute rules.
The set of hyperparameters allows adjusting the algorithm to
detect describing points. In our case, we decided to adjust
only the contamination which is the proportion of outliers in
the dataset to all points in the dataset and it directly affects
the number of describing points obtained. Exemplary points
determined by the Isolation Forest approach are presented in
Figure 6.

D. PHASE 4: GENERATION OF EXPLAINABLE RULES

In this paper, to generate explainable rules, we use the Anchor
explainer. The quality of the rules is evaluated not only by a
human expert but also automatically with the HeaRTDroid
rule-based inference engine [3]. This allows comparing our
method to other approaches with well-known metrics such as
F1, accuracy, precision, and recall.

1) THE ANCHOR EXPLAINER — RULES GENERATOR

Three methods for generating bounding box representations
of clusters are used to provide the input to the explana-
tion algorithm. In this work, we used Anchor, which is
a novel model-agnostic algorithm that is able to explain
the behaviour of complex models with high-precision rules
representing local conditions for prediction. The Anchor
explainer introduces explanations based on “if-then” rules,
called ‘““anchors”. The algorithm generates human-readable
rules which do not depend on the rest of the feature values of
the instance. Furthermore, Anchor’s rules are executed only
if all conditions presented in the rule are satisfied. As the
Anchor algorithm is model-agnostic, it can be applied to any
class model [30]. Contrary to the LIME algorithm [18], which
creates a linear decision boundary that best approximates the
model given a perturbation space, the Anchor explainer is
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TABLE 2. Exemplary rules generated by the Anchor explainer for the
artificial dataset.

No| Cluster | Coverage| Precision Rule
ol 025 0-90 0.562<> }%igia?%g
2 0 0.89 0.89 F %T z.gégeénd
3 0 0.25 1 F% T ;l.iflgzénd
4 1 0.50 1 F% ? >1.é.192énd
5 1 0.50 1 F% ? z.g?,g%nd
6 2 0.25 I F1<-1.36
EN SR T I

able to construct an explanation whose coverage is adapted
to the model’s behaviour, and clearly determine their bound-
ary [30].

Exemplary rules generated by the Anchor explainer are
presented in Table 2. The Cluster column determines the
number of the cluster which is determined by the rule. The
Coverage and Precision columns describe respectively: the
ratio of the number of instances for which the rule holds
in the whole dataset and its precision on this subset of
instances.

The rules obtained with the Anchor algorithm can be
directly analysed by the expert but can also be formalised and
executed. This allows for automatic evaluation of the rules
obtained within the CIAMP methodology as well as easier
integration with other system components. For the purpose of
representation and execution of the rules, we use the HMR+
rule language and HeaRTDroid inference engine described in
the following paragraphs.

2) HeaRTDroid RULE-BASED INFERENCE ENGINE

The HeaRTDroid is a rule-based engine that uses the
rule-based language HMR+-, which allows reasoning and
handling of uncertain and incomplete knowledge. The
HMR+ language used by the HeaRTDroid also allows for
modelling uncertainty with certainty factor algebra [3].

In our methodology, HeaRTDroid is used for executing a
rule-based model consisting of rules, precision and cover-
age parameters, and cluster numbers determined by the rule,
as shown in Table 2. The key idea of using HeaRTDroid is
to evaluate the effectiveness of the rule-based model which is
provided by the Anchor algorithm.

More specifically, the rule-based model with the above-
mentioned parameters and data points without any labels is
treated as an input to the HeaRTDroid interference engine.
Then, the HeaRTDroid is executed and the main task of this
stage is to predict the cluster number based on the given
rule, precision, and coverage parameters, and the point under
test. This action is executed for each point in the tested
dataset. As a result, a cluster number is predicted for each
tested point.
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3) EVALUATION METRICS

The HeaRTDroid allows obtaining the labels created on the
basis of the rule, precision and coverage parameters, and a
given instance. As aresult, we are able to compare the original
labels obtained from clustering with the labels predicted by
the HeaRTDroid. In the developed methodology, we use the
following evaluation metrics: Precision, F1-score, Accuracy,
and Recall with micro average.!

4) RULES EVALUATION BY EXPERTS
Along with the functional evaluation of the expla-
nations’ quality presented in previous paragraphs, the
human-grounded or task-grounded evaluation in cooperation
with experts is also possible in the CIAMP methodology.
We provide rules which consist of the features names, values,
and inequality signs — human-readable form, to the experts.
The task is to check the rules generated by the Anchor
algorithm and evaluate them. An important issue for our
methodology is to obtain rules which would be understand-
able and useful for the experts, which means that after looking
at them, the expert should be able to clearly assign which
rules concern which cluster and determine how well these
rules describe the cluster. Additionally, the expert should
be able to determine whether these rules bring information
that allows separating the clusters and how complicated this
separation is. To do this, the expert should also take into
consideration similarities between the rules. To fully evaluate
our methodology, we want to gain information about the
structure of the rules; if they are short or too long, or whether
the number of rules is not too large. Due to the number of
iterations in the rule generation optimisation process, and the
number of hyperparameters of the stages described above,
only rules with the best scores are delivered to the experts.
By default, in the developed methodology, the optimisation
of the F1-score metric is applied. However, the choice of the
optimisation metric can always be modified depending on
the needs as well as experts’ suggestions. This should allow
obtaining the best scores and rules for a specific example.
To evaluate the developed methodology, we tested it on
three cases. The first case concerns multiple publicly avail-
able benchmark detests, where functional evaluation was
performed to check the quality of explanations in compari-
son to state-of-the-art methods based on centroids or global
explanation. The second case uses human grounded evalua-
tion on synthetic, reproducible datasets. The third case uses
real industrial data from the hot-rolling process in the steel
manufacturing industry. All of the cases are described in the
following sections.

V. EVALUATION ON BENCHMARK DATASETS
In this section, we present results obtained from the evalua-
tion of the CIAMP methodology on the artificial and publicly

IThis is the Recall metric for multi-class classification that aggregates
contributions of true positives, and for all classes and averages them over the
global sum of true positives and false negatives, hence, taking into account
possible class imbalance.
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FIGURE 7. Critical difference for Nemenyi test with « = 0.05.

available datasets. The goal of this section was to confront
the novel CIAMP methods of generating explanations with
state-of-the-art approaches that are based on cluster centroids
or global explanations. This forms a reproducible set of
tests, focused on the functional evaluation (no human factor
involved) that can be used to achieve an unbiased comparison
of our method with other approaches.” The factor that we took
into consideration in this type of evaluation was the quality
of the explanations in terms of accuracy. We wanted to prove
that CIAMP provides more accurate explanations at a similar
level of complexity (e.g., length of the rule, number of rules)
compared to centroid-based and global explanations.

All of the phases of CIAMP (see Figure 2) were fully
automated and optimised with the GridSearch algorithm. The
generated rules were tested against selected quality metrics
(i.e., accuracy, F1, precision and recall) in a 10-fold cross-
validation approach. As a result, we obtained 10 measure-
ments for each of the combinations of dataset and bounding
box selection methods. The summarised results for the F1
metric are presented in Table 3.

Our goal was to show that CIAMP selection methods are
better than centroid-based and global ones. Therefore, we per-
formed a Friedman test followed by a Nemenyi pairwise
post-hot test for multiple comparisons of mean rank sums.

From the Friedman test, we obtained statistics equal to
28.0, with a p-value equal to 0.000008. With 6 algorithms
and 14 datasets, we have 5 and 65 degrees of freedom respec-
tively, which allows us to determine that the critical value for
F (5, 65) fora = 0.05 is 2.35. This allows us to reject the null
hypothesis.

After this, we performed a Nemenyi test to observe how the
algorithms differ, and between which algorithms the differ-
ence is statistically significant. The results from the post-hoc
Nemenyi test are presented in Tabel 4 and also visualised in
Figure 7.

It can be observed that the critical distance is 2.015, and we
can prove that CIAMP is significantly better than other meth-
ods in achieving good quality explanations. It is worth noting
that each of the bounding box methods taken separately (i.e.,
Isolation forest, Random selection, K-D tree query) might
not be significantly better than the others; it depends on the
cluster shapes and, thus, the dataset used for clustering. It also
depends on the clustering algorithms used (e.g., K-means
produce similarly shaped clusters, while DBSCAN might
produce arbitrarily shaped groups). Therefore, using CIAMP
in order to optimise the selection of the bounding box is a
reasonable approach.

2The datasets along with the source code of the benchmark were made
publicly available at https://github.com/sbobek/clamp

VOLUME 10, 2022



S. Bobek et al.: Enhancing Cluster Analysis With Explainable Al and Multidimensional Cluster Prototypes

IEEE Access

TABLE 3. Comparison of F1 performance. Column denoted as CIAMP represents the combined approach that integrates all of the bounding box methods,
including Isolation forest, K-D tree query and Random selection optimised against selected quality measures. The values after + denote standard

deviation in 10-fold cross-validation.

[ Dataset [ CLAMP [ Centroid | Global | Tsolation forest [ K-D tree query | Random selection |
balance 0.88 4 0.06 0.70 & 0.16 0.85 +£0.12 0.78 £ 0.12 0.83 £ 0.11 0.79 £ 0.12
breast_tissue 093 £0.11 0.47 +0.21 0.52 £ 0.07 0.64 £ 0.17 0.78 £ 0.14 0.88 = 0.14
bupa 0.79 £ 0.19 0.46 + 0.13 0.72 £ 0.18 0.47 £+ 0.09 0.42 4+ 0.06 0.63 £ 0.09
ecoli 0.81 £ 0.03 0.57 £ 0.07 0.70 £ 0.04 0.71 £ 0.06 0.72 4+ 0.06 0.74 £ 0.04
glass 0.91 £ 0.04 0.66 + 0.14 0.90 £+ 0.03 0.85 £+ 0.06 0.79 4+ 0.07 0.88 £ 0.04
iris 0.97 £+ 0.01 0.81 & 0.04 0.92 +0.02 0.95 £+ 0.03 0.90 4+ 0.04 0.87 £ 0.07
lung_cancer 0.64 £+ 0.01 0.00 &+ 0.00 0.64 £+ 0.01 0.58 +0.12 0.55+0.19 0.08 £ 0.20
lymphography 091 +£0.10 0.76 £ 0.15 0.78 4+ 0.09 0.76 = 0.18 0.81 +0.18 0.81 +0.19
parkinsons 0.86 + 0.04 0.62 + 0.10 0.85 +0.05 0.77 + 0.06 0.80 + 0.05 0.78 + 0.06
primary_tumor 0.90 + 0.10 0.66 + 0.21 0.71 +0.04 0.74 £ 0.14 0.78 £ 0.12 0.84 +0.12
seeds 0.95 + 0.03 0.80 = 0.10 0.92 4+ 0.03 0.93 £+ 0.03 0.90 £+ 0.04 0.87 = 0.04
vote 0.99 £+ 0.03 0.97 + 0.04 0.98 £+ 0.01 0.94 £+ 0.09 0.97 £+ 0.05 0.98 £ 0.03
wdbc 0.95 +0.01 0.78 4+ 0.06 0.95 +0.01 0.92 £+ 0.02 0.93 +0.03 0.94 £+ 0.01
wine 0.95 +0.03 0.68 & 0.11 0.93 4+ 0.03 0.94 £ 0.03 0.90 £ 0.02 0.91 £ 0.03

TABLE 4. Nemeny post-hoc test results.

[ [ CLAMP [ Centroid | Global | Tsolation forest | K-D tree query | Random selection
CLAMP 1.00 0.00 0.04 0.00 0.00 0.01
Centroid 0.00 1.00 0.00 0.07 0.04 0.01
Global 0.04 0.00 1.00 0.81 0.90 0.90
Isolation forest 0.00 0.07 0.81 1.00 0.90 0.90
K-D tree query 0.00 0.04 0.90 0.90 1.00 0.90
Random selection 0.01 0.01 0.90 0.90 0.90 1.00

In the following sections, we evaluate the explanations
with human-grounded evaluations to observe if the quality
of explanations in human perception are also at a satisfying
level.

VI. EVALUATION ON SYNTHETIC DATASETS

A. THE ANALYSED DATASETS

We established four artificially generated data samples: Gaus-
sian blobs in two-dimensional space, Gaussian blobs in
three-dimensional space, values randomly generated in two-
dimensional space, and an Iris dataset. We decided to use such
simple and obvious datasets because they are well known, and
most users should possess skills that allow them to interpret
and evaluate the generated rules based on the knowledge of
the data or visualised charts.

To make this evaluation more reliable, we added noise to
each of the datasets. For both Gaussian blobs datasets values,
we tuned the noise by increasing the standard deviation. In the
case of a randomly generated dataset, we changed the range
of each cluster by the use of rules which change cluster
assignments to another cluster. We did only one exception
concerning the Iris dataset. In this case, we didn’t change
any cluster assignment. The datasets used are presented in
the following figures:

o Gaussian blobs dataset in two-dimensional space is pre-
sented in Figure 8

o Gaussian blobs dataset in three-dimensional space is
presented in Figure 9

« Randomly generated values dataset in two-dimensional
space is presented in Figure 10
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The last step was to provide the dataset to the participants
who were asked to use CIAMP methodology to generate
explanations for discovered clusters by tuning hyperparam-
eters of CIAMP and finally evaluate their quality.

The dataset was randomly chosen for each participant.
After the programming task was completed, the partici-
pants were obliged to fill in a survey containing evaluation
questions.>

The next section presents the obtained results from the
evaluation on synthetic datasets.

B. RULES ANALYSIS BY PARTICIPANTS

In the following section, we present results obtained by the
25 participants who took part in the study. Each participant
was asked to evaluate the clustering results and explana-
tions according to the 4 criteria listed below. Additionally,
we asked the participants several questions concerning each
of the criteria used to obtain the evaluation.

1) Adequacy of granularity level of explanations:

a) Are the rules adequate to explain a given cluster
or more individual instances in the cluster?

b) How many rules (maximum) can each cluster be
described with so that the rules are still under-
standable?

2) Evaluation time in comparison to cluster analysis with-
out explanations:

a) What would be more time-consuming to distin-
guish and describe the clusters: using rules or
using available cluster labels?

3The script  and  evaluation available  at:

https://github.com/sbobek/clamp

survey s
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FIGURE 8. Gaussian blobs in two-dimensional space.

3) Data science or domain knowledge experience required
to properly interpret explanation results:

a) How understandable to you are the rules, i.e.,
do they provide information on the basis of which
you are able to draw dependencies between them?

4) Overall usefulness of the rules:

a) How do the rules help distinguish clusters and
understand how they differ?

b) How does overlap between rules make it difficult
to interpret them?

¢) Have you noticed dependencies in the rules?

d) How do these dependencies help you to under-
stand the rules?

We prepared an online form which was provided to the par-
ticipants to evaluate the rules. The participants’ answers were
collected with a 5-point bipolar scaling method, analogous to
the Likert scale. We additionally asked the participants to put
optional comments related to each of the criteria. These com-
ments were analysed in Section VII-E. All obtained answers
are presented in the following bar and box plots, with a
triangle marked green as a mean value.

1) ADEQUACY OF GRANULARITY LEVEL OF EXPLANATIONS

This criterion was selected to investigate if the method allows
for a good trade-off between the generality of the explanation
and the amount of detail required to properly analyse the
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FIGURE 9. Gaussian blobs dataset in three-dimensional space.

cluster results. To evaluate this, we asked two questions to
the participants.

Question asked to the participants: Are the rules ade-
quate to explain a given cluster or more individual instances
in the cluster?

Answer: The answer is presented in Figure 11, where 1
corresponds to the cluster and 5 to the instance. The majority
of the participants decided that the explanations better explain
the whole cluster rather than a single instance. The median
value of the response is equal to 2. Therefore, they assure a
good level of generality.

Question asked to the participants: How many rules
(maximum) can each cluster be described with so that the
rules are still understandable?

Answer: The answer is presented in Figure 12. Most par-
ticipants who provided rather a low number of rules are better
at explaining the cluster. This is the premise for the conclu-
sion that the rules generated by our method are expressive
enough to give a sufficient amount of information (details) to
participants. Two of the participants significantly stand out
from the rest of the results.
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FIGURE 11. Are the rules adequate to explain a given cluster or more
individual instances in the cluster?

I ]

WA UIOI OO W AU 0S

box plot of data
from expert evaluation

FIGURE 12. How many rules (maximum) can each cluster be described
with so that the rules are still understandable?

2) EVALUATION TIME IN COMPARISON TO CLUSTER
ANALYSIS WITHOUT EXPLANATIONS
The goal of this criterion was to determine if the method
decreases the analysis time.

Question asked to the participants: What would be more
time-consuming to distinguish and describe the clusters:
using rules or using available cluster labels?
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FIGURE 13. What would be more time-consuming to distinguish and
describe the clusters: using rules or using available cluster labels?

1

o

n box plot of data
'g from expert evaluation
9
g

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

FIGURE 14. How are the rules understandable to you, i.e., do they
provide information on the basis of which you are able to draw
dependencies between them?

Answer: The answer is presented in Figure 13. Where 1
corresponds to the rules and 5 to the labels. The median value
of the results is equal to 3. This means that the participants
state that in both cases time could be comparable. However,
it could be caused by the fact that we allow considering this
question to relatively easy-to-understand datasets.

3) DATA SCIENCE OR DOMAIN KNOWLEDGE EXPERIENCE
REQUIRED TO PROPERLY INTERPRET EXPLANATION
RESULTS

The goal of this criterion was to determine if the method
can be evaluated by participants who possessed only domain
knowledge and not having any experience connected with
data science.

Question asked to the participants: How are the rules
understandable to you, i.e., do they provide information on
the basis of which you are able to draw dependencies between
them?

Answer: The answer is presented in Figure 14. Where 1
corresponds to non-understandable and 5 to understand-
able. Most of the participants agreed that the generated rules
were understandable for them.

4) OVERALL USEFULNESS OF THE RULES
The goal of this criterion was to evaluate the overall use-
fulness of the rules. In the case of very similar rules, the
challenge is to separate the rules among clusters, and thus
their analysis is complicated. If the rules differ significantly,
it is much easier to assign the rules to a specific cluster and
determine the differences in the clusters.
Question asked to the participants: How do the rules help
distinguish clusters and understand how they differ?
Answer: The answer is presented in Figure 15. Where 1
corresponds to not helpful at all and 5 to very helpful. All
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FIGURE 15. How do the rules help distinguish clusters and understand
how they differ?
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FIGURE 16. How does overlap between rules make it difficult to interpret
them?
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FIGURE 17. Have you noticed dependencies in the rules?

of the participants agreed that the rules are helpful in spotting
the differences between clusters.

Question asked to the participants: How does the
overlap between rules makes it difficult to interpret
them?

Answer: The answer is presented in Figure 16. Where
1 corresponds to does not limit and 5 to limit. Most
of the participants decided that the overlap of rules’
conditions limits interpretability. We discuss these results
in Section VI-C.

Question asked to the participants: Have you noticed
dependencies in the rules? The goal of this question is to
determine if there are some patterns in the rules. For example,
are there rules that contain the same features in their condi-
tional part?

Answer: The answer is presented in Figure 17. Where 1
corresponds to hard to see and 5 to can be seen. Most of
the participants noticed such dependencies which in most
cases were helpful to determine clusters - according to the
following question.

Question asked to the participants: How do these depen-
dencies help you to understand the rules?

Answer: The answer is presented in Figure 18. Where 1
corresponds to not helpful and 5 to very helpful.
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FIGURE 19. In comparison to a benchmark (centroids based) are the
CIAMP results better?

5) OVERALL EVALUATION
To finally evaluate our methodology based on the artificially
generated datasets we decided to ask another question. In the
script, there was a possibility to generate rules not based on
the bounding box prototypes but based on the centroid point
in each of the clusters. As a result, the participants were
able to compare results obtained for each of the methods and
answer the following question.

Question asked to the participants: In comparison to a
benchmark (centroids based) are the CIAMP results better?

Answer: The answer is presented in Figure 19. Almost
80% of the responders answer that the CITAMP methodology
allows obtaining rules that better describe clusters and help
to understand them.

C. DISCUSSION ON THE RESULTS OBTAINED ON THE
ARTIFICIALLY GENERATED DATASETS

The overall evaluation results suggest that our methodology is
useful for participants in cluster analysis. Taking the obtained
results into consideration, we are able to state that the devel-
oped methodology delivers satisfactory results in the case of
application to artificially generated datasets.

Participants agreed that the CIAMP methodology allows
describing better clusters than each of the instances, which
was one of our goals (see Figure 11). Additionally, Figure 12
depicts the answers to the question of how many rules the
participants considered satisfactory to maintain clarity of
the rules. It shows the maximum number of rules that are
satisfactory to understand clusters well. Only three of the par-
ticipants answered that this number could be greater than 10.
This answer is aligned with our observation that interpretable
models are not always explainable due to their complexity.
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What is surprising is there is no clear answer to what is
a more time-consuming cluster description, using the rules
or using instances, see Figure 13. We assume that the use of
rules should be much faster than the use of each instance.
However, we provided relatively uncomplex datasets to the
evaluation and simple analysis of the values concerning each
of the clusters allows understanding of the relations between
clusters. On the other hand, in the case of datasets with more
features, this case could be not so easy to determine, and in
such examples, the CIAMP methodology works significantly
better.

One of the issues observed by both authors and participants
is overlapping rules, which occurs when the generated rules
possess some common parts. This issue limits interpretabil-
ity and causes that participants have to spend more time
to understand rules, see Figure 16. However, once spotted,
they improve the overall understanding. Based on the results
presented in Figures 17 and 18, we assume that participants
noticed some dependencies and in generated rules, which
helped them better understand the whole explanation. This
observation could be an argument for creating explanations
that take advantage of different forms of visual analytics
to help users spot important patterns within the explana-
tions [31].

To sum up, in general, almost 80% of the participants
agreed that the CIAMP methodology is better than that based
on the cluster centroids. This enables us to state that the appli-
cation of our methodology is useful in the case of artificially
generated datasets. In the following section, we consider a
real industrial case and present the results obtained by the
experts.

VII. EVALUATION USING AN INDUSTRIAL CASE STUDY
A. THE HOT-ROLLING PROCESS

The considered real industrial case refers to the Hot Rolling
Mill which is located in Krakow (Poland) as part of the
company ArcelorMittal Poland. The hot-rolling process used
in this case relies on the production of steel coils from flat
slabs. At the beginning of the process, the slabs have a
thickness that has to be reduced in the transverse section.
As aresult, the final thickness of the product is typically 10 to
100 times smaller than the original. The quality of the final
product depends on many factors and is directly connected
with the manufactured material results from material science,
control engineering, mechanical engineering, and knowledge
of production engineering.

The hot rolling process is based on the metal’s ductility at
high temperatures and consists of several steps. Initially, the
raw slab’s thickness is reduced from about 220 mm to about
30 mm, while the temperature of the slab reaches almost
1200° C. Later, the strips are moved to the finishing mill,
where more precise process control is applied. The finishing
mill is composed of six stands. Each of the stands has a lower
distance between the rollers whereby the thickness of the
strips is reduced. At the final stage, the temperature reaches
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FIGURE 20. Simplified hot rolling mill process flow [32].

almost 900° C. Finally, each prepared product is coiled and
transferred to storage [32]. Figure 20 shows a schematic
diagram of the hot rolling process.

For the analysis, we took into consideration 10 000 dif-
ferent slabs with four parameters for each of them: width,
profile, tempexit, and tempcoil with calculated average and
standard deviation for each of these parameters. These param-
eters were chosen as key parameters in the case of final
product quality. The choice was made by the experts. Our
assumption was to treat the case as an unsupervised machine
learning problem because such an approach gives opportuni-
ties to discover data patterns that would be imperceptible to
the experts. The industrial problem considered in this paper
is directly connected with the hot-rolling process described in
this section. Based on the obtained parameters, we performed
clustering. As a result, all considered slabs were divided into
three groups to allow us to suppose that in the production
phase, occurring processes affect the final quality of the prod-
uct. In cooperation with the experts, we decided to use the
CIAMP methodology to uncover differences between these
three groups. Such classification and fully understanding the
dependencies between groups may result in better process
management.

As the analysed problem is treated as an unsupervised
problem, we decided to present the results separating them
into two stages, resolved as clustering and classification; rules
creation and evaluation.

B. EVALUATION OF CLUSTERING AND CLASSIFICATION
The initial step in the methodology includes data cluster-
ing for obtaining good quality clusters. We tested three
different methods as mentioned in Section IV-A. We used
three different types of algorithms: temporal (DTC), density-
based (Gaussian mixture), and one from the K-means family
(BIRCH). In the case of the DTC (deep temporal clustering)
clustering method and the BIRCH algorithm, we used the
silhouette score in the Gaussian mixture method and deter-
mined the number of clusters based on the BIC (Bayesian
Information Criteria) and AIC (Akaike’s Information Crite-
ria) metrics [21], [33]. The comparison of obtained results is
presented in Table 5. It is visible that the BIRCH algorithm
performed the best over all the others, hence it was chosen as
the method for further analysis.

After the cluster labels were obtained, we used the
XGBoost classifier with hyperparameter optimisation to
build a model that will be able to distinguish clusters as
accurately as possible. For BIRCH clustering, we obtained
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TABLE 5. Clustering metrics comparison between three different classes
of algorithms.

[ Clustering method | Silhouette score [ Number of clusters |

DTC -0.029 3
Gaussian Mixture 0.079 4
BIRCH 0.560 3

TABLE 6. Average scores for explanation evaluation n 5-fold
cross-validation dataset. Values after + represent standard deviation in
the obtained results.

[ Dataset [ F1 [ Accuracy [ Precision |
CLAMP 0.98 + 0.004 0.98 £+ 0.004 0.98 £+ 0.002
Centroids 0.94 + 0.079 0.93 + 0.105 0.97 + 0.025
Global 0.95 + 0.003 0.97 £ 0.002 0.95 + 0.004
Isolation forest 0.98 + 0.003 0.98 £+ 0.003 0.98 4+ 0.003
K-D tree query 0.98 4+ 0.004 0.98 &+ 0.004 0.98 4+ 0.002
Random selection 0.98 + 0.004 0.98 £+ 0.004 0.98 £+ 0.003

the following classification results: accuracy of 0.99 and an
F1 score equal to 0.96.

In the final step of this stage, we obtained a dataset with
labels split into 3 classes with distribution: 0.43, 0.43,0.14
respectively to classes 0, 1, and 2.

C. CREATION OF RULES AND EVALUATION

After the first stage of the analysis, we moved on to build-
ing bounding boxes, rule generation, and the rule evalua-
tion stage. This stage is fully automated. We applied the
Weights&Biases platform* to optimize the hyperparameters
and save the obtained results for each run. In this phase, all
hyperparameters connected with the bounding box genera-
tion mentioned in section IV-C have been optimised.

At the beginning of this stage, the whole dataset was split
into train and test subsets. The training subset was used for
generating bounding boxes. The points which were treated as
a bounding box for each cluster were passed to the LUX [34]
explainer algorithm to obtain rules in human-readable form.
this is an algorithm similar to Anchor, however, it includes
information about uncertainty of explanations, which allows
better selection of final rules that describe the cluster. This
algorithm, based on the feature values for bounding data
points and cluster labels assigned to these points, produced
rules which were able to describe each cluster. Additionally,
in parallel with the rules, the confidence of each rule was
calculated, which allows determining the initial quality of
the rule. In the next step, a preliminary rule analysis was
performed. The idea of this stage is to reduce the number of
rules by dropping duplicates (the same rules generated for dif-
ferent data points). Among the duplicated rules, only the one
with the highest value of precision and coverage parameters
was left allowing the number of rules and the computation
time during the HeaRTDroid application to be reduced. The
resulting rule set was then translated to XTT2 format which
is executable by HeaRTDroid. Additionally, coverage and
precision parameters were also taken into consideration by
HeaRTDroid but in the form of a product of these two.

4Weights & biases platform: https://wandb.ai/site.
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Therefore, the generated rules, a product of precision and
coverage parameters, and a testing subset were treated as
the input to HeaRTDroid, based on which, HeaRTDroid pre-
dicted the cluster label for each testing point. As a result,
we obtained an array of predicted labels based on the rules
generated for the considered bounding boxes. These labels
were then compared with the labels generated by the cluster-
ing algorithm for the testing subset.

To check the effectiveness of the generated rules, we pro-
posed four metrics particularly described in Section IV-D3.
The final results of the evaluation are presented in Table 6,
which contains the final results of the developed methodology
obtained for each of the considered methods used to define
the bounding box.

As we decided to treat the Fl-score as the target metric,
the best score, equal to 0.98, was obtained for the CIAMP
method, which combines all of the bounding box description
methods, as presented in Table 6.

The quality of rules in terms of classification metrics can
be adjusted by changing the number of points used to form a
bounding box. In general, the more points we create, the more
precise the classification we obtain. As a trade-off, we lose
the interpretability due to the increased number of rules anal-
ysed by the expert. Figure 21 presents charts that show how
classification scores change, with the number of considered
bounding points defined in percentages. Additionally, we are
able to present such dependencies for two different metrics
applied for the KD-tree description method. The number of
points for which we obtained the best F1-score for each of the
considered methods is marked by the red dashed line.

In Figure 21, the highest changes in values occur for the
random selection method and increase monotonically, which
is understandable as it covers more and more points from
the dataset. This increases accuracy but makes the explana-
tion model more complex and thus less useful in practical
applications. For centroid-based methods, the change is not
visible as one point is always used as the “bounding box’.
In comparison with the rest of the charts, using random
selection and isolation forest methods, we can see that the
KD-tree method needs fewer points to obtain comparable
results than the others. Such a presentation, together with the
knowledge of how the presented methods work, may be very
informative for the experts.

D. RULES ANALYSIS BY EXPERTS
With the 26 obtained rules, we performed an evaluation with
three domain experts recruited from ArcelorMittal who were
asked to use CLAMP to obtain explanations for clusters
and later answer the same set of questions as presented in
Sections VI-B2. In Table 7, we present the synthesised results
we obtained both from domain experts in the industrial case,
and from participants involved in the evaluation on artificial
datasets.

For the analysis of the results, one can see that answers are
slightly different depending on the dataset. This is especially
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FIGURE 21. How classification score changes with the number of considered bounding points defined in

percentages.

TABLE 7. Average answers for survey questions with respect to the
dataset.

Question Ql | Q2 | Q3 | Q4| Q5| Q6 | Q7| Q8
Dataset
Industrial 2.0 1833 3.33| 3.33| 3.66| 4.00| 3.66 | 3.33
G ian Blobs 2D 2.00[ 8.00| 3.00| 440| 4.40| 2.80| 440 4.40
G ian Blobs 3D 1.75 5.75| 3.50| 2.50| 3.50 | 3.0 325 275
Iris 240| 3.60| 3.80| 4.00| 3.80| 340 340 3.20
Random values 191 5.09| 290 | 3.18| 3.63| 345| 3.09| 3.27

visible in the case of the number of rules required to under-
stand clusters (Q2), while the other answers are similar.

E. DISCUSSION OF THE RESULTS

The overall evaluation results suggest that our methodology
is useful for experts in cluster analysis. Most of the crucial
features of our method gained high scores from the experts.
In Section VI-B1, two experts agreed with the statement that
the rules presented in our approach were better for explaining
clusters, not single instances, which was our intention. One of
the experts outlined that such rules could explain an instance
as well. In the case of the number of generated rules, one of
the experts decided to divide the answers into two cases. The
number of rules to comprehend by the human user is heavily
dependent on the way the results are presented.

o After the rules are initially grouped according to com-
mon parts, conclusions can be drawn from > 50 rules.
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o When all rules are presented in tabular form, conclusions
can be drawn from < 10 rules.

In addition, the expert pointed out that the set of rules that
describe limits for a single parameter at once is more intuitive
than the interpretation of one rule describing the relation
between 3 or more features. Rules built on the basis of
2 parameters seem to have the right balance between the
amount of information and the availability of its evaluation.

In comparison to the analysis without explanations
(Section VI-B2), two experts agreed that our method can
strongly decrease the time needed to distinguish and describe
the clusters. One of the experts pointed out that the method
allows adjusting the complexity of the conditions set depend-
ing on the time constraints of the user for which they are
prepared. For fast evaluation, the generated conditions could
be visualised and put in the context of product measurements.
For the purposes of advanced study, the amount of infor-
mation is more important than the time of analysis. In that
case, the computed rules could be an intermediate dataset for
further analysis.

The domain knowledge is as important as the data sci-
ence background in analysing the results of the explana-
tions (Section VI-B3). The data, which were treated as an
input to the CIAMP methodology in the presented use case,
were delivered to the data scientist and based on statistical
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TABLE 8. Rules overlapping example. Rule 1 subsumes rule 2.

No Rule
1 F1>1and F2 < 2.5
2 F1>12and F2 < 2.5

properties such as standard deviations, variance, etc. We also
consulted experts without data science experience about the
results. They pointed out that they prefer rules which would
be generated based on real production parameters, not on the
statistics. One of the experts additionally pointed out that the
complexity of the rule should be correlated with the expected
cognitive abilities of the end-user. The user evaluating the
rules should be experienced and understand the process to
which they relate. In their current form, they can be addressed
to technologists and process specialists. Interpretation of the
conditions by an inexperienced user such as management
staff requires giving context to the rules, e.g., what is the
probability of a defect if the condition will be exceeded.
In general, the rule-based form is friendly to interpretation by
a specialist, however, it is strongly dependent on the selec-
tion of features in the model input dataset. In this case, the
explanations are understandable as the parameters features
like standard deviation or mean are easy to comprehend by
specialists. The use of ‘quadrilles’ or ‘percentiles’ would not
be so clear to the human user.

However, this comment relates to the whole family of XAI
methods that do not consider the type or characteristics of
the user as an important factor in preparing explanations.
We believe that this should be a trigger for extensive research
in the area of XAl and HCI (Human Computer Interaction).
However, it is outside the scope of this work.

In the last Section VI-B4, the experts noted that there are
overlapping rules that make the task challenging because it
is difficult to determine the cluster’s boundaries. There are
several rules which consist of the same feature, with the same
inequality sign but different values. It is hard to define which
of these rules is the best, that is, which rules allow obtaining
the best balance in recognising points that concern a specific
cluster and does not allow too many points to be recognised
that concern a cluster which this rule do not define. An exam-
ple of such is presented in Table 8. In the example, Rule 1 is
more general than Rule 2 (Rule 1 subsumes Rule 2). This,
in some cases, might cause the analysis of the explanations
to be difficult, as the decision regarding which rule is more
appropriate to describe the cluster might not be entirely clear.

VIiil. SUMMARY
In this paper, we presented a novel approach for cluster anal-
ysis with multidimensional prototypes called CIAMP that
aids experts in cluster analysis with human-readable rule-
based explanations. CTAMP methodology is divided into two
stages: clustering and classification and rules creation and
evaluation.

In the first stage, clustering and classification are exe-
cuted. The goal of these two steps is to convert unsupervised
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learning problems into supervised one. In our case, we tested
three different clustering methods. As a classification algo-
rithm, we used XGBoost with hyperparameter optimisation.
In the second stage, we implemented three methods that can
be used to determine the prototypes (bounding boxes) that are
then treated as an input to the explainer algorithm. Thanks to
the application of these methods, the clusters are described
only by the most representative points that allow avoiding the
generation of unnecessary rules which can introduce noise
into the explainability mechanism. Such an approach limits
the computational time needed to generate explanations and
increase explainability transparency. Hence, the proposed
approach increases the effectiveness and efficiency of the
rules generation. The generated bounding boxes are treated as
an input to the Anchor explainers to generate rules for each
cluster. The Anchor explainer is able to generate precision
and coverage parameters as well. Thanks to these, there is
a possibility to determine which rules describe the cluster
better. These parameters are also useful for checking the
effectiveness of the created rules. To do that, we used the
HeaRTDroid rule-based inference engine which allows pre-
dicting labels based on the generated Anchor explainer rules
and parameters returned. It also allows for the integration
of the knowledge discovered using the XAI method with
other system components. As a result, we implemented an
approach that allows delivering human-readable rules to the
experts taking into consideration different clustering meth-
ods, hyperparameter optimisation, and a novel approach to
generating bounding boxes for evaluation.

In comparison to the methods presented in Section II,
we noticed two main differences. Firstly, the developed
methodology allows obtaining a cluster representation in the
form of human-readable rules. It is worth emphasising that
we do not concentrate on explaining particular instances but
rather on the whole group. This gives the opportunity to
deliver to the experts information about the considered groups
and understand the data division into clusters. Secondly, our
methodology can verify the obtained rules with the use of
HeaRTDroid, which allows predicting labels based on the
instances and rules obtained based on the train set.

We demonstrated our approach using two cases. The first
concerns publicly available, artificially generated datasets
that can be considered benchmark cases. The second case
concentrates on the real-life use case scenario with confi-
dential data shared for the purpose of the PACMEL project
from the company ArcelorMittal. Taking into account the
assessment of the rules by experts, the idea of the proposed
methodology proved that it is useful. According to the com-
pleted questionnaire, the experts pointed out that the rules
help them describe the clusters, and such understanding is
less time-consuming than in the case of the labels themselves.
Although participants noticed that descriptions of clusters
usually contain overlapping rules, they were able to identify
the redundant parts and correctly interpret the explanations.
The bottom line is that the generated rules are able to provide
useful information about clustering.
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Furthermore, one of the limitations of the developed
methodology pointed out by the experts is the fact that some
of the generated rules overlap. In future work, we are planning
to find a solution concerning that limitation, based on our
prior works in this area [35]. We also plan to adjust the bound-
ing box generation by selecting the most suitable method for
discovering cluster prototypes, not for the whole data but for
each cluster separately. Taking into account the approach for
Knowledge Augmented Clustering (KnAC) presented in [23],
which is based on the clusters’ centroids, CIAMP will be
considered as an extension of KnAC.

ABBREVIATIONS

TABLE 9. Abbreviations explanation.

No | Abbreviation Explanation
1 AIC Akaike’s Information Criteria
2 BIC Bayesian Information Criteria
3 BIRCH Balance(! iterat.ive rgducing and
clustering using hierarchies
4 CBSU Cluster-based sentence utility
5 CLAMP Cluster Analysis with Multidimensional
Prototypes
6 CNF Conjunctive normal form
Deterministic Local Interpretable
7 DLIME Model-Agnostic Explanations
8 DNF Disjunctive normal form
9 DTC Deep temporal clustering
10 FCPS Fundamental Clustering Problems
11 G2PC Global permutation percent change
12 HCI Human Computer Interaction
13 | HEARTDROID Rule-based inference engine
14 HMR+ Rule-based language
15 K-D tree K-dimensional tree
16 KNAC Knowledge Augmented Clustering
17 KNN K-nearest neighbours
18 L2PC Local permutation percent change
19 LIME Local interpretable rpodel—agnostic
explanation
20 mirMBO Model-based optimization package
21 Randomized RandomizedSearch Cross-Validation
SearchCV
22 SFIT Single Feature Introduction
23 SMBO Sequential Model-Based Optimization
24 TED Teaching Explanations for Decisions
25 XGBoost Gradient Boosting framework
26 XTT2 Formalized rule representation
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