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ABSTRACT A smart electric vehicle (EV) charging station energy management system (CSMS) based on
blockchain technology, which aims to protect privacy of EV users, ensure fairness of power transactions, and
meet charging demands for large numbers of EVs, is proposed in this study. EV charging pile is designed
as a local blockchain distributed ledger node, which operates synchronously with blockchain system and
blockchain distributed ledger in cloud server. This paper integrates CSMS through smart contracts, providing
EV users that ability to conduct power transactions and perform optimal charging and discharging control
in real-time. The distributed ledger is in charge of recording all the EV charging and discharging data to
maintain fairness of power transactions, protects data from being maliciously tampered, and enables the EV
user to monitor status of the EV participating in power transactions and dispatching. The intelligent CSMS
consists of an artificial intelligence (AI) module, centralized optimal scheduling module, and decentralized
optimal control module. The Al module is responsible for forecasting renewable energy generation and load
consumption. There is a two-layer architecture consisting of centralized and decentralized optimal control
modules; the upper layer performs optimal charging and discharging scheduling of the entire EV charging
station at time 15-min time segments, the bottom layer performs distributed optimal scheduling control in
each EV charging pile at 5 min time interval. Proposed system in this paper can deal with feeder congestion
and real-time power supply and grid demand imbalance, which are caused by high numbers of EVs.

INDEX TERMS Artificial intelligence, blockchain, charging station management system, distributed ledger,
decentralized charging algorithm, electric vehicles, the Internet of Thing, power trading.

I. INTRODUCTION

With the rising awareness of the importance of energy sav-
ing and carbon emission reduction worldwide, application
of renewable energy is bound to increase rapidly for the
foreseeable future. However, due to renewable energy power
generation being intermittent and subject to weather con-
ditions, as its proportion gradually increase in grid, it will
seriously affect stability and power quality of power system.
Photovoltaic (PV) power generation converts solar radiation
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into power by the principle of the photovoltaic effect. PV is
widely installed with the advantages of noiseless, pollution-
free generating, ease of merging into design of buildings,
and life span up to 25 years. Nevertheless, its generation
efficiency is influenced by its geographical location, sea-
sonal changes, cloud coverage, and meteorological changes.
PV power generation quickly increases at sunrise and sud-
denly decreases at sunset. Full output of PV is reached at
noon, resulting in decreasing of total load in grid, such that
the load curve trend is like a duck’s belly. In the evening, due
to sudden drop in output of PV and household load rise, the
total load curve becomes like a duck neck, so it is called a
duck curve.
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The higher the proportion of PV, the bigger the duck’s
belly, which makes it more difficult for scheduling of tra-
ditional fossil fuel generators, which in turn affects power
quality, causes regional power rationing or power outages.
In the meantime, when proportion of intermittent power
resources increases in power grid, in order to stabilize power
supply, huge challenge in operation scheduling of traditional
base load power plant is started, which causes lots of bur-
den to traditional generator units. Therefore, in areas with
high penetration of renewable energy, energy storage sys-
tems (ESSs) are usually applied to support load regulation.
To enhance operation efficiency of an ESS, by combining
with an energy management system (EMS) to perform charg-
ing and discharging scheduling. Moreover, if power genera-
tion of renewable energy at a certain period can be predicted
in advance, power dispatching and load curve control will be
more accurate and effective.

As the manufacturing technology of electronic vehicles
(EVs) become mature in recent year, in response to policies
of energy saving and carbon emission reduction worldwide,
governments around the world takes relevant policies to advo-
cate EVs as the main transportation in the future to replace
petroleum-fueled engine vehicles [1], [2], the utilization of
EV will increase greatly in the next few years.

To avoid a huge impact on the power system, appropri-
ate scheduling strategy must be taken between EV charging
demand and power grid supply. For example, a management
mechanism including time of use (ToU) pricing and demand
response (DR) can be adopted on the supply side, while a
demand side management (DSM) [3] method can be adopted
on demand side. With the emergence of bidirectional EV
charging piles, the mode of discharging stored power to grid
is high-profile [4].

With artificial intelligence energy management system
(AI EMS), considering renewable energy power generation
and load consumption, EVs can be used to maintain relia-
bility of grid with regulating effective and reactive power,
and shaving power grid load peak [5], [6], [7]. Most of the
current EV charging mode only consumes power from the
grid. In the future, as the ubiquity of EVs increases, EV users
will transform from consumer to prosumer, with populariza-
tion of bidirectional charging piles, including vehicle-to-grid
(V2G) and grid-to-vehicle (G2V) functions. The participation
of EVs in power market will also require a fair and impartial
trading platform.

Due to development of emerging technologies such as
blockchain and Internet of Things (IoT), many innovative
applications have been introduced in the power industry, and
these technologies can also accelerate realization of decen-
tralized power sharing. Blockchain technology is a decen-
tralized and distributed system which is employed to solve
security and trust problems by using cryptography to encrypt
data and executing decentralized algorithms that require users
to reach consensus without third-party certification.

The remarkable value of blockchain technology includes
inerasability of transaction data: the data cannot be tampered
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once it being chained, which ensures data on the blockchain
is fair, impartial and open. Using the blockchain technology
in green power sharing network can quickly and accurately
record power resource footprints and transaction data. The
blockchain distributed ledger is used to record user’s renew-
able energy power generation and load consumption, then
smart contract is able to perform cash flow settlement based
on this information.

The framework of this paper is as follows. First, related
technologies proposed in the existing literature is analyzed
and discussed in Section II, and then Section III presents the
system architecture and the operation processes proposed in
this paper. The objective functions and constraints of cen-
tralized charging station energy management system (CSMS)
and decentralized EMS is elaborated in Section IV, followed
by the discussion of research results in Section V. Finally, the
conclusion and future prospects are given in Section VI.

In this paper, “charging pile” is used to describe the EV
charging equipment and ‘“‘charging station’ is used to express
the place which has installed plural charging piles.

Il. RELATED WORKS AND OUR CONTRIBUTIONS

The existing papers on optimal charging and discharging
scheduling of EV charging station [8], [9], [10], [11], [12],
(131, [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31] are mainly divided
into centralized and decentralized architectures. The advan-
tage of centralized architectures [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21] is minimization of
operation cost through considering charging demands of EV
users, PV power generation, and building load consumption
for optimal EV charging and discharging scheduling. The
disadvantage of centralized architecture is long computing
time, such that it may not able to satisfy conditions of optimal
control where frequency of scheduling control has increased
or number of EV charging pile has soared.

In addition, many centralized architectures also consider
power transaction, and regard EVs as a decentralized power
resource. The EV charging station operator acts as an aggre-
gator, integrates EVs to participate in DR bidding and ancil-
lary services, and conducts bidirectional charging and dis-
charging power transactions of EVs in charging station. How-
ever, complicated and large-scale power transactions rely on
high-frequency optimal control. In a charging station with a
large quantity of EV charging piles, the optimization calcu-
lation time will exceed the control time segment, which is
unable to satisfy conditions of optimization.

The concept of decentralized architecture [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31] aims to solve the
above-mentioned problems. Each EV charging pile can inde-
pendently perform optimal scheduling control according to
charging demands of EVs. Calculation time can be greatly
reduced, which is the advantage of decentralized architecture,
so the very short-term forecasting results of renewable energy
power generation and load consumption can be applied to
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optimal scheduling in shorter time segments, to diminish the
impact of uncertainty.

However, the major problem of decentralized architecture
is overall charging station power optimal dispatching, which
necessitates coordination of the upper limits of available
charging power of each EV charging pile at each time seg-
ment. Otherwise, the total charging power may exceed trans-
former capacity limit and affect microgrid safety. At present,
most of the papers adopt game theory to perform optimal
dispatching of available charging power, by iteration between
EV charging piles and CSMS until the optimal dispatching
amount is obtained. However, when bidirectional charging
and discharging scheduling of EVs is introduced, the max-
imum charging capacity and power dispatching must be con-
sidered simultaneously, its iterative process is more compli-
cated, resulting in significant increase in computing time, the
advantage of decentralized architecture is offset.

Regardless of centralized or decentralized architecture, it is
necessary to collect a large amount of user data, such as
arrive and departure time of EV, arrive and departure state-
of-charge (SOC) of EV, user behavior, and power transaction
information. Nowadays, the user privacy and security of data
are highly-valued, requiring a fully-functioning information
security mechanism for defense.

In [31], [32], [33], [34], [35], and [36], blockchain technol-
ogy is adopted to encrypt power transaction data, power data,
and user data. However, most of these papers adopt Ethereum
technology, which relies on miners to conduct chaining verifi-
cation, resulting in long waiting time while chaining. Further-
more, additional commission is required. The EV charging
pile is used to upload power data to a cloud database through
a centralized data transmission method and then conducts a
chaining process, which may risk data tampering or attack
actions, entailing possibility of system crush.

In sum, as high-proportion of EVs arises in the future, sub-
stantial bidirectional charging and discharging transactions of
EVs will follow by increasing installation of charging piles.
The existing centralized optimal scheduling method is unable
to satisfy optimal control conditions of EV charging station.
A decentralized scheduling architecture with combination of
an effective upper limit allocation method of charging and
discharging must be adopted to achieve management of a
large number of EV charging piles and the goal of maximiz-
ing power utilization efficiency. However, the minimization
of operating cost cannot be achieved as centralized algorithm
does.

Given the imbalance problem of power supply and demand
in the grid due to rapid increase in proportion of renewable
energy and EV, considering popularization of small-scale PV
generation devices and manufacturing technology of ESS
becoming mature, this paper attempts to develop a multifunc-
tional CSMS. It is assumed that the renewable energy power
generation equipment, ESS device, and charging station have
been constructed in commercial building. With introduction
of EMS, a system to effectively improve utilization of renew-
able energy and grid stability is proposed, thereby fulfilling
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maximization of power utilization efficiency, green power
transaction, and peak load shaving of DSM.

The concepts of an intelligent CSMS are proposed in this
paper by combining the blockchain technology, Al internet
of thing (AloT), optimal distributed EMS, and blockchain
power transaction technology. Contributions of this paper are
illustrated as follows:

« An Innovative intelligent CSMS of an EV charging sta-
tion: Based on AloT, this paper proposes the architecture
for the CSMS by combining blockchain technology and
double-layer optimal scheduling and control technolo-
gies. The centralized optimal scheduling module for the
charging station is performed by a cloud server at time
segment of 15 mins for the distributed optimal charging
and discharging control of EV to be performed by each
charging pile at every 5 mins.

o Blockchain based power-trading platform of EVs:
A power trading platform is developed in this paper
based on the blockchain technology to integrate the
decentralized power resource data storage, point-to-
point (P2P) transaction, consensus mechanism, and
encryption algorithm for power trading of EV users in
charging stations.

o Local blockchain distributed ledger node: With the
blockchain distributed ledger, all the power data and
transaction data can be shared with each charging pile
and charging station server. Safety and avoidance of
information asymmetry can be achieved. Also it’s a
new scheme proposed to have a blockchain distributed
ledger node implemented in an EV charging pile with
Raspberry Pi as the computing module.

With this double-layer architecture, CSMS is capable of
managing large quantities of EV charging piles, achiev-
ing maximization of power utilization efficiency, decreas-
ing charging cost of EVs, suppressing peak load of grid,
smoothing renewable energy power generation output, and
maintaining power supply and demand balance, as well as
power quality in grid.

Ill. PROPOSED SYSTEM OVERVIEW

This study presents a blockchain intelligent CSMS platform
of EV charging station combined with AloT technology,
double-layered optimal energy management technology and
blockchain technology, its architecture is shown in Fig. 1.
It integrates renewable energy power generation equipment,
ESS device, a large quantity of EV charging piles, building
load, and other distributed power resources, and adopts a cen-
tralized and decentralized double-layered optimization algo-
rithm architecture to achieve an optimal ESS and EV charging
and discharging strategy. The proposed approach employs
blockchain technology to develop a power trading platform,
which enables charging station operator to effectively manage
distributed power resources under its governance through
scheduling in order to participate in DR bidding and ancil-
lary service market of transmission and distribution sys-
tem operator and conduct green power trading. The detailed
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FIGURE 1. Proposed blockchain-based intelligent CSMS platform structure.

architecture of the system platform is shown in Fig. 2, includ-
ing a blockchain power transaction platform, an edge Al
forecasting system, and a double-layered centralized CEMS
and decentralized EMS of an EV charging station, which is
elaborated below.

A. BLOCKCHAIN POWER TRADING PLATFORM

Fig. 3 shows the architecture of the blockchain power trans-
action platform, which consists of a blockchain system,
blockchain distributed ledger, and user interface. The three
related designs and functions are illustrated in order as
follows.

1) BLOCKCHAIN SYSTEM

The blockchain system as a power trading operating platform
is a decentralized system in charge of verifying transactions,
chaining, and employing smart contracts to perform bidding,
matching, and settlement of power transaction, which con-
sists of more than three blockchain nodes. The hardware
required includes three servers (an orderer server and two
peer servers). The orderer server is responsible for receiving
transaction requests from the front-end user interface and
dispatching chaining verifications of transactions and com-
putation of smart contract tasks into the two peer servers.
Each peer server can be used to executes bidding, matching,
and settlement of transaction through built-in smart contract,
as well as conducting chaining verification of transaction.
If the orderer node malfunctions, a new orderer node is
elected by the rest of peer nodes to maintain operation of
trading platform, which means more power transactions can
be conducted as system possess more peer nodes, while oper-
ation of system is further stable.
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In this paper, the Redundant Byzantine Fault Tolerance
(RBFT) mechanism [37] is adopted as a consensus method
for chaining verification of blockchain. Each peer node is
assigned a unique hash certificate and provided with private
and public keys. The hash certificate is used to identify the
node, and the private and public keys are used for data encryp-
tion. The process is responsible for transaction verification
computation with a voting mechanism used to determine
whether the transaction can be chained or not. If two-thirds
of the peer nodes agree, the transaction can be chained.
Unlike Bitcoin’s proof-of-work consensus mechanism, the
process adopted does not require miners to conduct verifica-
tion computation to greatly reduce verification latency, speed
up the transaction, and to exempt additional commission.
The sequence of the complete power transaction process is
as follows: the user initiates a transaction request on front-
end user interface, the orderer node is called to receive the
transaction event via API, one of the peer nodes which is used
to execute smart contract, verification and voting for chaining
is then conducted; after reaching consensus, the transaction is
uploaded to chain.

A smart contract operates on all peer nodes and writes
all types of power trading rules on it, and is in charge of
executing bidding of transaction, matching of transaction,
and settlement of transaction automatically. After the chain-
ing process is completed, detailed power transaction infor-
mation is stored in distributed ledger, then matching and
settlement are finished according to detailed power trans-
action information and power data recorded in the ledger.
The detailed information in the transaction process is writ-
ten into the distributed ledger through the blockchain ledger
node located in the cloud server, and is announced syn-
chronously on the user interface, including a webpage and
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Proposed blockchain-based intelligent CSMS platform block diagram.
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FIGURE 3. Proposed blockchain trading platform structure.

smart device application program (APP), of the power trading
platform.

2) BLOCKCHAIN DISTRIBUTED LEDGER
A local blockchain distributed ledger node is responsible for
operating the distributed intelligent EMS of EV charging
piles and acting as a distributed ledger data node. The dis-
tributed ledger data node is used to connect the EV charging
pile through the IoT technology to perform forecasting of
power generation and load consumption and optimal charging
and discharging scheduling control with intelligent EMS.
Compared with centralized power data uploading method,
in the proposed blockchain distributed ledger system, the
power data are directly measured by the charging pile and
then uploaded via the process described above. The mea-
sured information is can thus be accessed and saved in the
distributed ledger with the lowest possibility of errors due to
human intervention or communication, and its correctness is
highly enhanced. Smart contract is able to precisely settle the
power trading with the power data from ledger.
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Located in the cloud and local side, the distributed ledger
network, consisting of blockchain distributed ledger data
nodes, is employed as the database in the proposed system.
It receives power data uploaded by each local blockchain
ledger-node in every minute and records detailed power trans-
action information, which is sent from the blockchain power
trading platform. The data recorded in ledger are then used for
the settlement references in the designed smart contract. As it
is needed, the data can be also used as the training data needed
by the Al forecasting model. Once the settlement/accounting
and training purpose is achieved, the power data can be
deleted and updated thus without the data storage issue.

The steps of data uploading to distributed ledger are shown
in Fig. 4. A light-weighted proof-of-work (LWPoW) must
be performed first when writing data. In general, proof-of-
work (PoW) is regarded as solving a complex mathematical
problem, which requires quite a lot computing power, usually
handled by a server computer or graphics card computing
unit. Raspberry Pi is a cheap and functional embedded device,
acts as a local side blockchain ledger node, but has computing
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power far less than the above-mentioned devices, not to speak
of being used to deal with PoW.

Due to high-frequency of recording the power data and
power transaction data, a LWPoW is used in this study,
which aims to shorten time delay of power data uploading
and lighten computation load. After finishing calculation of
LWPoW, the distributed ledger network finds the other two
blockchain ledger nodes to check the result through directed
acyclic graph (DAG) algorithm. If the result is correct, the
data is allowed to be written into distributed ledger and
stored on all ledger nodes of distributed ledger network syn-
chronously. Therefore, fairness and impartiality of transac-
tions can be guaranteed, and the situation of a single ledger
node data damage resulting in all transactions being stopped
or affected can be prevented.

3) USER INTERFACE

Web page and smart device APP are used as the user interface
of the blockchain power trading platform in this paper. The
power transaction process of EV users is shown in Fig. 5.
When the user arrives at the charging station, he may either
login to the platform through a webpage or smart device APP,
enters expected departure time and expected EV departure
SOC, selects charging service, and then submits the charging
demand.

The platform will automatically execute the power trans-
action through a smart contract, which will not only conduct
chaining and store the detailed transaction information in the
distributed ledger, but also perform charging and discharging
scheduling through double-layered CSMS. All EV charging
and discharging actions will be recorded in the distributed
ledger, and users can clearly view transaction process and
result at any time on the user interface. The corresponding
service is briefly described as follows.

e Only charging service: The only charging service
includes the 30-kW fast charging and the 7-kW slow
charging. The double-layered CSMS is used to perform
optimal charging scheduling control on the premise of
meeting EV charging demand.

o Green power charging service: The green power charg-
ing service includes fast charging (30kW) and slow
charging (7kW). Users need to make a reservation on the
platform a day ahead, and arrive at the charging station
at the reservation period. The double-layered CSMS
is used to performs optimal charging and discharging
scheduling control on the premise of meeting charging
demand of EV program control.

o Smart charging and discharging service: The smart
charging and discharging service includes fast charging
(30kW) and slow charging (7kW). EV smart charging
service is controlled by the optimal scheduling control
which is conducted double-layered CSMS under con-
ditions of not affecting existing charging service. The
EV user receives a certain percentage of reward for dis-
charging; if participating in DR bidding, the reward will
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FIGURE 4. The process of data uploading to the distributed ledger.

be given depending on DR bidding price after deducting
commission.

o Smart green power charging and discharging service:
The smart green power charging and discharging ser-
vice includes the 30-kW fast charging and the 7-kW
slow charging. Users need to make a reservation on
the platform one day ahead, and arrive at the charging
station at the reservation period. The EV smart green
charging service is controlled by the optimal scheduling
control which is conducted double-layered CSMS under
conditions of not affecting existing charging service.
The EV user receives a certain percentage of reward for
green power discharging; if participating in DR bidding,
reward will be given depends on DR bidding price after
deducting commission.

In sum, when the number of blockchain nodes and
blockchain distributed ledger nodes increases, the power
transaction processing capability of the blockchain power
trading platform is increased, since more nodes join in com-
puting. In addition, system stability and data storage are also
improved with more nodes built. When a large quantity of
bidirectional EV charging piles are introduced into the grid
in future, the blockchain system design in this paper will be
more efficient when processing high-frequency power trading
and power data recorded by a large number of distributed
power resources.

B. INTELLIGENT CHARGING STATION

MANAGEMENT SYSTEM

Apart from the current AI model training method, a cen-
tralized architecture is usually adopted to collect and store
data. To protect privacy of user behavior, although there
is de-identification design of current architecture, in the
centralized data collection process, user privacy would be
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harmed if data leaking or attacking actions took place. The The consensus mechanism of blockchain, collecting power
proposed method adopts distributed ledger technology of and environment data of each user in an anonymous and
blockchain to protect user privacy. secure way, and the training of renewable energy generation
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and load consumption forecasting models in the proposed
blockchain-based Al training approach, as shown in Fig. 6.
Thus, it not only can solve concerns about user privacy, but
also can ensure correctness of data resource and the security
of data storage.

1) RENEWABLE ENERGY POWER GENERATION FORECAST
Regarding PV power generation forecasting, this paper
designs a lightweight forecasting method adopting a two-
stage long short-term memory (LSTM) model, considering
computing power of edge devices. Its architecture is shown
in Fig. 7.

Three types of weather data, including global tilted irra-
diance (GTI) Fixed Tilt, GTI Tracking and global horizontal
irradiance (GHI), are used as input features of the first-stage
LSTM model, the first forecasting result is yielded as output,
and then become input features of the second-stage LSTM
model, combined with two types of weather data, including
horizontal irradiance (EBH) and direct normal irradiance
(DNI), to conduct final PV power generation forecasting
at intervals of 15 min and 5 min. This paper divides the
historical PV power generation data and historical weather
forecasting data of 2019 into training and testing data in the
ratio of 1:1. The results show good performance, as discussed
in Section V.

2) LOAD CONSUMPTION FORECAST
Fig. 8 shows the proposed load forecasting framework, which
is based on ExtraTrees regression combining Ridge regres-
sion method. With weather data and historical load con-
sumption as input features, including GHI, EBH, Air Temp,
DNI, DHI, Zenith, Azimuth, Cloud Opacity, Dewpoint,
Wind Speed, Wind Direction, Relative Humidity, Precip-
itable Water, Surface Pressure, GTI Tracking, GTI Fixed Tilt,
Albedo, etc., multiple decision trees are generated through the
ExtraTrees regression method.

The classification feature of each decision tree is randomly
selected, and training load prediction data and training load
target data of each decision tree are then fitting into the weight

VOLUME 10, 2022

Forecasting

[ Historical Load | ( HismricalW’ea(hel'( |
‘Weather Data

{ Data / { Data | | i
\ \ IR
+

[ Preprocessing A

[ Load Classification | [ DataMatching |

——

Model Training

Random forest

Bootstrap k&
i

Output Decision trees
Weight value training

Ridge regression |_

el

} Classified Weather Data

§ 14 )

FIGURE 8. Structure of the proposed combining ExtraTrees regression
and ridge regression model.

matrix of Ridge regression method. The prediction of load
consumption is conducted at intervals of 15 min and 5 min,
and long-term and short-term power consumption forecasts
are carried out. This thesis divides the actual field historical
load power consumption data and historical weather forecast
data for the whole year of 2021 into training and test data at
a ratio of 8:2. The test results show excellent performance,
which will be discussed in Section V.

3) Al EDGE COMPUTING

At present, Al technology has been widely used in various
systems. This paper considers the computing power of each
EV charging pile used to conduct blockchain distributed
ledger data node and distributed EMS is finite. Therefore,
this paper adopts the method of model training in the cloud
and updates trained model coefficients to a local forecasting
model to perform real-time edge computation of predictions.

C. DOUBLE-LAYERED CENTRALIZED CSMS AND
DECENTRALIZED EMS OF EV CHARGING STATION

A double-layered optimization architecture is proposed here
to realize the goal of management for large numbers of EV
charging piles and maximization power utilization efficiency
of EV charging stations.

The upper layer performs optimal charging and discharg-
ing scheduling of entire EV charging station at time interval
of 15 min, the bottom layer performs optimal charging and
discharging scheduling control with a distributed architecture
developed in each EV charging pile at a 5-min interval. The
architecture is described below and is shown in Fig. 9.

1) UPPER-LAYERED CENTRALIZED CSMS OF

EV CHARGING STATION

The upper layer considers all the distributed power resources
of the entire charging station, including each EV charging
pile, PV power generation equipment, ESS devices, and
building load to realize the goal of maximization of power
utilization efficiency. The scheduling result is written into
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| Demand Response Event |

| All of the EV Charging Service Type | _—

| 15 mins PV ~ Load Forecasting Data |

| EV - ESS Real Time SOC [

| Single EV Charging Service Type |

| 5 mins PV ~ Load Forecasting Data |

| EV Real Time SOC |

Centralized CSMS

P (€
MILP (15mins)
. Exec.uting
EV&ESS every 15 mins
Dispatching Strategy :
v
N Distributed EMS  |.....
MILP (Smins) e
Exec'uting
every S mins
EV

Control Strategy

FIGURE 9. Structure of double-layered centralized CSMS and decentralized EMS.

blockchain ledger and provided to each EV charging pile as
reference to perform optimal control.

The process is shown in Fig. 10 and the algorithm is
shown in Fig. 11. In the first step, CSMS reads existing
scheduling information of all EV charging piles and ESS
devices, and calculates the current time window t. The sec-
ond step is to update the time window t = t + 1, then
read the forecasting results of 15-min power generation and
15-min load consumption predicted by Al prediction model,
and detailed power transaction information in the distributed
ledger.

The third step is to update the system information after
altering, such as real-time price, system parameters in micro-
grid, real-time SOC of each EV, and dynamic window end-
time of EV and start the optimal scheduling. In a centralized
architecture, under consideration of real-time state of power
supply and demand, its end condition is reaching the global
optimal solution. This is so to achieve balance of power of
renewable energy power generation, power of EV charging
and discharging, power of ESS device, overall load consump-
tion, and to perform optimal scheduling by adopting a mixed-
integer linear programming (MILP) algorithm. Finally, in the
fourth step, the output of optimization amount of EV charging
and discharging per 15 min is yielded.

2) BOTTOM-LAYER CENTRALIZED EMS OF

EV CHARGING STATION

All EV charging piles in a charging station operate respective
bottom-layer distributed EV charging pile EMSs; the process
is shown as Fig. 12 and the algorithm is shown in Fig. 13.
In the first step, EMS reads EV power transaction data of
blockchain distributed ledger, 15 min upper-layer optimiza-
tion amount of EV charging and discharging, existing EV
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charging and discharging scheduling information, to calculate
the current time window, t.

The second step is to update the time window t = t + 1,
then EMS reads the forecasting results of 5-min renewable
energy power generation and 5-min load consumption pre-
dicted by Al prediction model, then the EV charging power
upper bound and discharging power lower bound will be
calculated with the priority of EV charging and discharging.

The third step is to update the system information after
altering, such as real-time price, EV charging power upper
bound and discharging power lower bound and dynamic
window end-time of EV, and start the optimal scheduling.
In a decentralized architecture, optimal control of each EV
charging pile is performed by adopting the MILP algorithm,
in case of satisfying conditions of objective functions and
constraints. Finally, in the fourth step, the output of EV
charging pile control command is yielded.

IV. CENTRALIZED CSMS, DISTRIBUTED EMS, AND
OPTIMIZATION ALGORITHM

When a battery is repeatedly charged and discharged, its life
span decreases, depending on its type and chemical composi-
tion. This paper assumes that both EV and ESS use lithium-
iron phosphate (LFP) batteries, and considers the effect of
total number of cycles on battery capacity. Fig. 14 illustrates
the relationship between the number of cycles of LFP battery
and battery capacity.

The points in the figure are actual data provided by bat-
tery manufacturer, the right-side vertical axis presents the
assumed battery life. As shown in Fig. 14, it assumes that
when battery capacity drops below 65%, the battery is no
longer used, which means its life has ended. When the battery
capacity on left side y-axis drops to 65%, the battery life on
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Load Existing Dispatching Information

Moving Window: t=t+1

15mins Al Forecasting Model
(PV Power & Load Consumption Forecasting)

Yes
Demand Response Event?
No
Updating Updating
System Information System Information
. MILP Algorithm
MILP Algorithm — \yih DR Event Data)

Optimal EV & ESS Dispatching Result

FIGURE 10. The process of upper-layered centralized CSMS.

Algorithm 1 Centralized CSMS Operation Algorithm

1. Initialization: Pchiy™™", Pdisfy™™ , Pchi3%i" and Pdis3%i", vn,t,

t=1o;
2. for tiSmin = to,tg + At'S™in, T do
3 ti= tlSmin
15mi i
4. Input: Ploait, Phoi™, Cpre, Crous
Chargingry, Tradingry,

5. Input: EYY, tinn toun EV,, LV, ol
6. if t = time of DR event
7. then

. . : 15mi i c15mi
8. Solve optimal (2) to obtain Pchgy", Pdisgy),",

Pchi3™™ and Pdist3®™ with DR event data

9. else
Solv 3 & 15mi j g15mi
10. Solve optimal (2) to obtain Pchgy", Pdisgy)"" ,

Pch}3Pi™ and Pdisiamin
11. end if

12.  Output: Pchiy™", Pdisgy™", Pchi3%i" and Pdisi§i"

13.end for

FIGURE 11. The algorithm of centralized CSMS operation.

right side y-axis down to 0%, and the battery degradation is
represented in (1).

ni P' At bat
1001 Beap

cle = | (1)

A. UPPER-LAYER CENTRALIZED EMS OF

EV CHARGING STATION

All parameters and variables of the optimization problem
are described and organized in Table 1. The objective func-
tion is to minimize operating cost of EV charging station,
as shown in Eq. (2), which includes purchasing power cost
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Load
Existing Dispatching Information
Charging Service Information
15 mins Dispatching Strategy
from the Distributed Ledger

Moving Window: t=t+1

Smins Al Forecasting Model
(PV Power & Load Consumption Forecasting)

Calculating Charging & Discharging Power Limit
Boundary with the EV Priority

Updating
System Information

MILP Algorithm

Optimal EV Charging Pile Control Strategy

FIGURE 12. The process of bottom-layer decentralized EMS.

Algorithm 2 Distributed EMS Operation Process

1. Initialization: Pchj™, Pdisgp™ , PRosy, vt

2. for 5™t = ¢t + AfS™In ¢ 4 2 - AtS™MIN do

3 t= tSmin

4. Input: Piafy, Pooi™

5. Input: Pchiy™™, Pdisiy™™, Pchi3®i" and Pdisi3yi"
6. Solve problem (26)~(29) to obtain Py, Py , PELY
¢/ Solve optimal (30) to obtain Pch?;i,"j",PdisE’&'j"

8. Output: Pchg™, Pdisgy™, PR

9. end for

FIGURE 13. The algorithm of decentralized EMS operation.

e 100

= 180 @
g g
=% 160 &
3 g
= *+ data . 5 120 R
23} approximation

s . . . . . 0
800 1600 2400 3200 4000 4800 5600 6400
cycles

FIGURE 14. Cycle-life performance of a Nanophosphate®) Li-ion battery
for charging and discharging rates.

from microgrid, battery degradation cost caused by charging
and discharging scheduling of ESS, reward for EV users
participating in smart charging and discharging, profits from
participating in DR bidding of the power company, penalty
cost for not meeting charging demand of EV users, and
penalty cost for exceeding contract capacity.

Eq. (3) defines power purchased from the microgrid, taking
into account building load consumption, PV power gener-
ation, total power of EV, and ESS charging and discharg-
ing. Eq. (4) calculates the purchasing power cost from the
microgrid of the EV charging station. Eq. (5) represents cost
calculation of battery degradation that caused by charging
and discharging scheduling of ESS. Eq. (6) is a battery
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degradation coefficient of ESS.

. 15min 15min 15min
min Zt (Cnet T CEsS gt TC

Evfeedhack t
15min 15min
+ Cexceedmm,aa t + IDR t )
15min
+ Z CEVdeficiency»" (2)

15min __ plSmin 15mm 15min
Pnet t Ploaa’ t +P PVt + ZPChEV,I,t

N
. 15min 15min . 15min
- Zpdstvm, + Pchie — Pdisgye  (3)

i = PP - Cr - 157 @
CERln = P - - A1
i s At ®
where
bal ch
}100 Cap CEssNEgss
| (6)
‘ bat
100 cap ESS ngl_gss

The cost of reward given to EV users for participating
in smart charging and discharging transactions is calculated
by (7). Eq. (8) represents penalty cost for exceeding contract
capacity more or less than 10%. Eq. (9) represents the penalty
item for exceeding contract capacity less than 10%.

Eq. (10) indicates the penalty item for exceeding contract
capacity by more than 10%. Eq. (11), as shown at the bottom
of the next page, represents profits which are obtained by
CPO participating in DR. Eq. (12), as shown at the bottom of
the next page, represents the penalty item for not satisfying
the charging demand of the EV user.

15min
CE ercdbark ,t
N
_ Pdi 15min C; A 15min 7
= Sgy,.t = Ufeedback t @)
C]Smin

exceed contract »t

— 15min,lower10% + ClSmin,upperlO% (8)

exceed contract »t exceed contract »t

enalt
P contract) -2 Cp .

15min,lower10% 15min
C (P contract

exceed contract »t net ,t

9
15min,lower10% >0 ( )
exceed contract »t -
15min, upperlO% 15min penalty

Cexcead,om,ar,, (Pnel t L.1- Pwmmc't)'ccontract (10)

15min, upperlO%
Cexaﬁd(onuarhl - 20
The overall EV charging station transformer constraint is
as (13), and optimal scheduling problem of centralized EV
must satisfy the constraints (14) to (20). Eqs. (14) and (15)
are the charging and discharging power limitation of EVs.
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. Nomenclature of parameters.

IDENTIFIERS AND BINARY VARIABLES

T
to
AtlSmin

AtSmin

Total time
Initial time
Time interval of 15min
Time interval of 5min

VARIABLES AND CONSTANTS

P Upper limit of transformer
PR Upper limit charging and
discharging
p Upper limit of contract
contract capacity
Pc h15mm 15-min charging power of
EV n at time t
Pdiskmin 15-min dischargipg power of
nt EV n at time t
Pchismin 15-min chargir}g power of
ssit ESS at time t
Pdisismin 15-min discharg‘ing power of
* ESS at time t
pSmin 5-min power purchase from
nett utility at time t
5-min forecasting power
Pl%’gg_} consumption of load at time
t
pSmin 5-min forecasting power
PVt generation of PV at time t
5-min charging and
pErin discharging power of ESS at
time t
Crout Time of use at time t
Cg% Construction cost of ESS
ych Coefficient of ESS charging
degradation
ydis Coefficient of ESS
discharging degradation
Cl}ggyen , 15-min degrade}tion cost of
9 ESS at time t
C Cost of feedback fund for
feedback EV users
cpenalty Penalty of contrgct capacity
contract exceedlng
c Tender awarding price of
DRt DR bidding at time t
(penalty Penalty of Ey charging
EV deficiency

Ccharging price,t

Charging price of EV at time
t

Reward of EV participating

ower dispatching,t dispatching
BEC]‘;I:'[ Battery capacity of EV n
Brey Battery capacity of ESS
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TABLE 1. (Continued.) Nomenclature of parameters.

VARIABLES AND CONSTANTS

Discharging and charging

EEV
n demand of EV n
gy Charging Type Charging speed of EV n
n
gy Trading Type Trading type of EV n

n

Arriving time and departure
time for EV
Slope of the linear
my approximation of the battery
life

tin,n' tout,n

The power of EVs is limited to charging and discharging
state and maximum charging and discharging power of EVs;
Pchlgs‘,’:ii’} means charging and Pdisg,'f‘l’lyl‘ means discharging.

Eq. (16) is corresponding maximum discharging power
limitation according to types of EV charging pile. The charg-
ing power is zero while EV is not in the charging station
which is as Eq. (17). Eq. (18) indicates upper and lower
limitation of SOC of EV at any time. Eq. (19) calculates
volume change of EV battery SOC.

The optimal scheduling of ESS device must satisfy the
constraints in Egs. (20) to (24). Egs. (20) and (21) represent
charging and discharging power limitation of ESS, where the
power of ESS is limited to charging and discharging states
and maximum charging and discharging powers of ESS,
Pch?srgf;’ means charging, and PdisES'gf;’ means discharging.

Eq. (22) indicates that charging and discharging state of
ESS would not occur simultaneously. Eq. (23) indicates upper
and lower limitations of SOC of ESS at any time. Eq. (24)
calculates change volume of ESS SOC. Eq. (25), as shown
at the bottom of the next page, represents that there are
corresponding charging and discharging state to different EV
power transactions.

15min
Pnet,t

<P, NteT (13)

15min 15min max
0 < Pchgy,; = Uchgy, ;- PEy s
VneN,teT (14)
- 15min - 15min nax
0< PdlsEV”’, < UdlSEVnJ -PEV’n,

VaneN,teT (15)
P g\a/),(n =P g\a/xfast’

Chargingrype

if EVy = fast charging
(16)
Pg‘%\jn =P g\%‘fslow’
else if EVy Har8IETe _ 1oy charging,
VneN
Uchgy) = 0. Udisg)'y =0, (17)
ift<tin,nort>t0ut,m VneN, teT
SOCH! < SOCEY < SOCHY, VneN, teT
(13)
) nCh . AplSmin
SOCEY. | = SOCEY + Pch)™ - EVBT
EV.,n
15mi tlSmin
. min
_PdlSEthBcap —dis (19)
EV.n EV
0 < Pehygg™t < Uchigsy - PESS (20)
0 < Pdispg™ < Udispye™ - Ppes Q1)
Uchgss'y + Udisgsgy = 1 (22)
SOCHY < SOCEss,s < SOCP&S (23)
. ndl . Apl5min
SOCEss.i4+1 = SOCEss ;s + Pchpgel - -5
B
. AtlSmin
. 15
— Pdisggg'y - P (24)
ESS " MESs

B. BOTTOM-LAYER DECENTRALIZED EMS OF

EV CHARGING PILES

Before optimizing scheduling of distributed EV charging
piles, it is necessary to calculate allocation of charging and
discharging. In Eq. (26), as shown at the bottom of the next
page, pri,"’fl means the charging priority of the nth EV in
the time window t, based on comparison between renewable
energy power generation and load consumption forecasting
data per 5 min and 15 min. If there is surplus power, it will be
allocated to EVs for charging. Instead, ESS would discharge
to meet the charging demand of EVs. In Egs. (27) and (28),
as shown at the bottom of the next page, pfg‘}"“;t means
maximum charging power of EVs at time window t, whereas

p?‘s,"";:‘t means minimum discharging power of EVs at time

N . N . .
_ 15min . 15min 15min
DRt = <§ , Pchivin = >  PAispy i + Pehgsg,

deficiency
CE V.,n z 0
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deficiency penalty EV T . EV 1 r EV ch .
CEV,n = CEV . (_E” - (Zt:t’ Pdlsn’t . n_S FAr = Zt:t’ PCh”’l “MEy - Al ’ otherwise

EV

- Pdis}%’gfj‘) - Cpg,s - ArPmin (11)

deficiency penalty EV T EV h T . EV 1 . EV
Cryn"™ = Cp ™ (En - (Zt=t/ PchtY - nih, - At — tht, PdistY . T At)), FEEV>o0
EV

(12)
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window t, as well as P%'g‘g”l means charging and discharging
power of ESS at time window t in Eq. (29), as shown at the
bottom of the page.

Distributed optimization conducts scheduling for a single
EV, using optimization scheduling data of 15-min EV charg-
ing and discharging, and conducts power limitation guid-
ing for each EV through charging and discharging priority.
Finally, optimal charging and discharging power control of
EV per 5 min is generated. The objective function is to min-
imize the EV charging cost, as in (30), shown at the bottom
of the next page, which includes charging cost of EV, reward
for EV users participating in smart charging and discharg-
ing dispatching, and penalty cost for not meeting charging
demand of EV users. Eq. (31), as shown at the bottom of the
next page, calculates charging cost of EV, Eq. (32), as shown
at the bottom of the next page, calculates reward for EV users
participating in smart charging and discharging of charging
station, and Eq. (33), as shown at the bottom of the next page,
presents calculation of penalty cost for not meeting charging
demand of EV users.

Eq. (34), as shown at the bottom of the next page, repre-
sents that there are corresponding charging and discharging
state to different EV power transactions. The optimal schedul-
ing problem of decentralized EV's must satisfy the constraints

in Egs. (35) to (43). Egs. (35) and (36) are the charging and
discharging power limitations of EVs. The power of EVs
are limited to charging and discharging state and maximum

charging and discharging power of EVs, Pchi-’g’" , means

charging and Pdis%"’j‘:f , means discharging.

Eq. (37) is corresponding maximum discharging power
limitation according to types of EV charging pile. Eq. (38)
and (39) indicate maximum charging and minimum discharg-
ing power limitation of EV according to allocation of priority.
The charging power is zero when the EV is not in the charging
station, which is as per Eq. (40). Eq. (41) indicates upper and
lower limitation of SOC of EV at any time. Eq. (42) calculates
change volume of battery SOC.

Smin Smin
0< PchEth < UChEV,,t

- Smin - Smin
0< PdlsEV,,,t < UdlsEV",

nax
PEV n

max
PEVn

(35)
(36)

where

prax Chargingype

EV.n — g&ffust’ f EV
= fast charging

prmax Chargingrype

__ pmax
EV.n — * EV slow> else lf EV
= low charging,

VneN (37)

15min — 1

Uchgy'™ + Udis "™

Tradingype

if EV,, = Auto Controlling Service
15min __ . 15min __

UchEV = 1, UdlSEV,,,t =0,

Tradingype

else if EV,

15min . 15min __
Uchi3™ + Udisy™ = 1,

= Only Charging Service
else if EVdelngType
Uchiy =1, Udisgy"™ =0,

Tradingrype

else if EV,

EEV
h
priy, = (

toutn —t' + 1) x A x P%”\‘ixn

Chmax 15min

eV, = (ZP chii —
Smin

lf Pload,t +P

- Y po

Smm Smin

Smin
PVt

pltn

> prich

load ,t

Lhmm’
EV n,t

, VneN,

15min

load t +PPV t) + (Ploadt
15min 15min
<P + Ppy

otherwise,

VneN 25)

Green bidirection Chargig Service

= Green Power Charging Service,

teT

15mm)
PV t

(26)

prigh,
~~N _ch’
2n Prigy,
teT

Vn e N, 27

diSmin

Pevins = VneN,

. 15min
= szsEth teT

Smin __ 15min . 15min
Prss; = Pchgsgy — Pdisggs
+ (PIS(:ZZL Pszr;) _ (PISmm

load,, t
Smin - 15min
P — Pdisggs;

15min
Ess.. = Pchigg
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15m1n
PV t

(28)

teT (29)

Smin

S
), fPl::ll;t—i_Pp\/,

otherwise,

15min 15min
= Pload t +PPV,t
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Chimax

PCh%r\'}mz =PEV.nt (38)
T (39)
Uk, 0. Ui, =0,
lf[ < tin nort > tom n (40)
SOCH < SOCEY < sOoCHs* (41)
ch Smin
EY smin ey - At
SOC,y41 = SOC, | + Pchyy! - B
EV.,n
) ) AtSmin
dls?in\}l:,t cap dis (42)
EV.n " TEV

V. CASE STUDIES AND DISCUSSIONS

The case study simulates an EV charging station located in a
commercial building, which consists of the commercial build-
ing load itself, EV charging station, PV power generation
equipment, and ESS. The detailed specifications are shown in
Table 2. The EV user model of a commercial building [38] is
employed as the simulation basis. The programs are coded in
Python to simulate the case study in the time frame of 5 mins.
The EV user model of a commercial building is employed as a
simulation. The present section details Al renewable energy
power generation and load consumption forecasting results,
optimal scheduling results and analysis, and test results of the
blockchain system.

A. Al FORECASTING RESULTS

The accuracy of renewable energy power generation fore-
casting is evaluated in terms of mean relative error (MRE)
as defined in Eq. (43). The historical data for PV power
generation and the corresponding weather forecasting data
of 2019 are utilized in a ratio of 1:1 for training and

TABLE 2. Simulation parameters of microgrid.

Item VALUE
Transformer Limit 2500 kVA
Contract Capacity 2200 kW

EV Charging pile Amount 500
EV Charging Power 30 kW
Daily EV Arrive Number 700
EV Charging Efficiency 0.9
EV SOC Range 20% - 100%
ESS Capacity 600kWh
ESS Power 200kW
ESS SOC Range 20% - 90%
. Fast: 9 (kWh/NTD) /
EV Charging Fee Slow:3 (kWh/NTD)
EV Discharging Reward 2 (kWh/NTD)

testing, respectively. The testing results show the average
MRE of 0.67124% is achieved. The comparison of half-
month forecasting and actual power generation data in June
2019 is shown in Fig.15. Compared with the existing litera-
ture [39], [40], [41], the results of the proposed load power
consumption forecasting model are suitably accurate for use
in the optimization scheduling algorithm.

1 n
MRE = ~ Zi:l

where Xy, cdicreali] and Xgemai[i] are the forecast value and
actual value of the PV power output at the ith point, respec-
tively. n is the number of prediction points, and pgap “Cly i the

nominal power capacity of the PV site.

Xpredicted [i] — Xactual [i]
Capacity
Ppy

x 100% (43)

Smin,n

. T Smin,n
min Zt:ﬂ (€, + power dispatching, t) +C

charging price,t
Smin,n _ Smin
charging price,t — PChEVnJ ’

Smin - Smin Smin
- (PChEVn,t +P d”EVm) * Cpower dispatching.1 = At

T
Smin PUW[TV EV _ Z Smin
CEVdefclenrv n — C (E” < PChEVnJ

t=t'

if EEV >0
Smin

t=t'

otherwise
Smin
>
Equﬁciency = 0

Smin - Smin  __ . Trading Type
Uchgy,” , + Udisgy ', =1, if EV,

Smin __ . Smin  __
UChEV,,,t =1, UdlsEth =0,

Smin . Smin  __
Uchgy, + Udisgy", = 1,

Smin  __ . Smin  __
Uchgy, =1, Udisgy", =0,
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Smin
Evdeﬂdency s

Smin ySmin
Ccharging price,t * At Ipower dispatching,t

penalty _pEV _ Z Smin
CEVdL/,C,E,,U,n = C ( En ( Pdi SEV g

else if Evl{mdmg Type _

else l-fEVZl'mdmg Type _

(30)
(31)
(32)
5 5 Smi
N, min ZPd Er‘r}mt — At mm)) ,
Ngy

t=t'

T
1 . ,
Smin Smin ch
— - At — E PChEV,,,t Ny
Ngv

t=t’

. AtSmin)) (33)

= Auto Controlling Service

Only Charging Service
(34)

else if EVITading Tipe — Green bidirection Chargig Service

Green Power Charging Service
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TABLE 3. Comparison of 15-min and 5-min centralized optimal scheduling computing time.

Charging Pile Amount 15-MIN CENTRALIZED 5-MIN CENTRALIZED SMINS DECENTRALIZED
100 00:31.3 04:35.5 3sec
200 01:04.1 08:56.9 3sec
300 01:33.0 13:17.1 3sec
400 02:03.4 17:49.2 3sec
500 02:33.7 22:14.4 3sec
600 03:04.4 27:27.4 3sec
700 03:34.9 31:58.9 3sec
800 04:08.4 38:22.0 3sec
900 04:40.8 41:18.4 3sec
1000 05:14.8 46:05.1 3sec
e .'lune PV I?’IRE=0.6'3]26% . i

0 20 40 60 80 100 120 140 160 180
Time(hour)

FIGURE 15. The result of PV forecasting.

The load consumption forecasting accuracy takes the mean
absolute percentage error (MAPE) as the evaluation index as
defined in Eq. (44). The historical load power consumption
data and the corresponding weather forecast data of 2021 are
utilized with the ratio of 8:2 for training and testing, respec-
tively. The testing results shows average MAPE of 2.95 %
is obtained. Compared with the existing literature [41], [42],
[43], the results of the proposed load power consumption
forecasting model are suitably accurate. As an example, the
comparison of forecasting and actual load consumption data
on July 23th, 2021 is shown in Fig. 16.

1 N re _ true
MAPE (%) = < 3 M x 100 (44)

Vi
where y™“ represents the real value at the time ¢, y; * is the

corresponding predicted value, and N is the total cases in the
test set.
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FIGURE 16. The load consumption forecasting.

B. OPTIMAL SCHEDULING RESULTS

If the microgrid is not engaged in any power transaction mode
and does not perform optimal scheduling, the EV adopts
the method of first come first served upon arrival at the
charging station. The overall power of the microgrid is shown
in Fig. 17. Because there are commercial buildings in the
microgrid, lots of EVs enter buildings after 8:00. If EMS
does not perform scheduling control, power congestion of
load consumption happens in microgrid, causing instanta-
neous power to exceed contract capacity and upper limit
of transformer capacity, endangering stability and safety of
microgrid.

Fig. 18 shows the overall power diagram of centralized
optimal EV charging pile control per 15 min of EV charging
station. In contrast to Fig. 17, it can be clearly seen that
the congestion caused by the arrive of large quantity EVs is
solved. Moreover, EV charging station can integrate EVs in
its field, participate in DR bidding of power utility, to obtain
additional profits, and reward users participating in this power
transaction.
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FIGURE 18. Overall power of charging station microgrid with 15-min centralized optimal scheduling.

In simulation considering uncertainty of renewable energy
power generation and load consumption, Figs. 19 and 20
illustrates the results of centralized optimal scheduling for
15 min and 5 min respectively. It can be observed that central-
ized optimization per 5 min has better load peak suppression
performance. However, as shown in Table 3, computing time
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needed for centralized optimization per 5 min has signifi-
cantly exceeded its scheduling requirement.

In an EV charging station with more than 100 EVs, central-
ized optimization architecture for 5 min cannot perform real-
time EV charging pile optimal scheduling control. Although
centralized optimization architecture for 15 min can meet
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FIGURE 20. Overall power of charging station microgrid with 5-min centralized optimal scheduling considering uncertainty.

scheduling requirement, its control effect did not conform to
expectation.

Fig. 21 is the operation result diagram of the double-
layer centralized CSMS and decentralized EMS proposed in
this paper, considering the uncertainty of power generation
and load consumption. On the premise of meeting limited
computing time, through taking optimal scheduling guidance
of centralized EV charging station performed every 15 min
and in cooperation with real-time optimal control of each
charging pile executed every 5 min, the goal of peak load
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suppression and shaving, and maximization of power utiliza-
tion efficiency can be achieved.

Fig. 22(a) and (b) show the results of EV charging and
discharging scheduling results diagram, which present ser-
vice mode of only charging in low speed or smart charging
and discharging in fast speed, respectively, choosing by EV
user. In the only charging mode, EMS performs optimal
scheduling control according to actual operation situation in
the premise of satisfying the EV charging demand. On the
other hand, in the smart charging and discharging mode, EMS
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FIGURE 23. Impact of 1000 times of transactions on latency, the average
latency is 0.06 sec.

performs optimal scheduling control according to operation
situation in the reality of meeting the EV charging demand as
a precondition, and discharges in the DR execution period to
earn additional profits for EV users.
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Table 4 describes comparisons of 15-min and 5-min cen-
tralized architectures, and the architecture proposed in this
paper. Although the proposed method cannot realize max-
imization of power utilization efficiency as well as 5-min
centralized architecture does, it can reduce penalty cost of
contract capacity by 58%, increase operating profit by 2.3%,
and decrease charging cost of EV users participating in smart
bidirectional charging and discharging by about 10%. The
15-min centralized type, since its incapability of conducting
optimal control in short time, is less able to resist fluctuation
uncertainty caused by prediction error.

When PV power generation is insufficient, it is neces-
sary to purchase additional high-priced power from the grid,
increasing power purchase cost compared to the 5-min cen-
tralized architecture. However, the double-layer architec-
ture proposed in this paper is an optimization architecture.
By adopting 5-min optimal control, uncertainty of PV power
generation is compensated by EVs and ESS devices.

Therefore, PV power generation can be deposited in EVs,
and released during DR execution periods. Not only can this
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TABLE 4. Comparison of 15-min and 5-min centralized architecture and the architecture proposed in this paper.

5-MIN CENTRALIZED

15-MINCENTRALIZED THIS PAPER PROPOSED

Cost

Contract Capacity Fee

Contract Capacity Penalty

Utility Buying Cost
EV User’s Feedback Fund

Total Cost

Income

EV User’s Charging Fee
DR Event Revenue

Total Income

12,239 (NTD)
950 (NTD)
71,291 (NTD)
9,963 (NTD)
94,443 (NTD)

100,195 (NTD)
68,032 (NTD)
168,227 (NTD)

12,239 (NTD) 12,239 (NTD)
2,262 (NTD) 950 (NTD)

71,963 (NTD) 71,983 (NTD)
9,939 (NTD) 10,032 (NTD)
96,402 (NTD) 95,203 (NTD)

100,195 (NTD)
67,912 (NTD)
168,107 (NTD)

100,195 (NTD)
68,376 (NTD)
168,572 (NTD)

TABLE 5. Comparison of simulation results of the proposed scheme with the existing schemes.

S. Aggarwal

Z.WUET Y. Lietal. G. Sun et al. ctal Y. Lietal. This Paper
AL. [45] [46] [47] ) [49] P
[48]
Power Trading <
Platform
Smart Contract x N4 v
Miner x v v x x
Power Data . . . .
. x Centralized Centralized Centralized  Decentralized
Uploading Way
Ledger Node x Computer Computer Computer Raspberry Pi
Chaining Speed x 1.5s 2.3s-3s Is 0.06s
Centralized
Optimization PSO Centralized < < Centralized +
Method MILP MILP Decentralized
MILP
EMS Execution
Time
in 10 Charging 312.75s 3.02s x x 4.35s 3s
Piles
EMS
Execution time NA NA < < 2135 3
in 700 Charging o o
Piles
DDOS x x x N4 x N4

earn more income for EV charging station, but also addition-
ally reward EV users.

C. BLOCKCHAIN SYSTEM TEST RESULTS

The blockchain system proposed in this paper operates on
computer with Intel 4 Core CPU. The blockchain system
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built up in this paper for the experiment has 1 orderer
node, two peer nodes and two cloud-ledger nodes on
an Intel server, and three local ledger-nodes on Rasp-
berry Pi. The blockchain platform is all self-designed. The
1000 times consecutive transactions are tested on chaining
process, its results are shown in Fig.23. The average latency
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is 0.06 secs. A few long latencies may cause by network
delay.

Compared with most of the existing papers, which adopt
the Ethereum blockchain technology, the latency of the
proposed blockchain system is greatly reduced, making it
more suitable for power transaction scenarios. Table 5 pro-
vides detail comparisons between this paper and the exist-
ing papers. Compared with the latencies of most Ethereum
blockchain systems, that of the proposed blockchain system
is greatly reduced, making it more suitable for power trans-
action scenarios.

Compared with the execution speed of optimal scheduling
system for numerous EV charging piles in existing schemes,
that of the proposed CSMS system is greatly accelerated,
making it more suitable for future application scenarios.

VI. CONCLUSION AND FUTURE WORK

The intelligent CSMS of EV charging station based on
blockchain technology proposed in this paper, is a relatively
complete and forward-looking system with larger numbers
of EV charging piles built in, compared to existing meth-
ods. This system platform is based on AloT, combined with
blockchain and distributed ledger technologies as a platform
capable of conducting power trading, forecasting analysis,
performing optimal scheduling management, and dispatching
of power transaction automatically.

With the centralized CSMS and distributed EMS to opti-
mize the scheduling of EVs, which enables EV users to
participate in green power trading, DR bidding, and a bidi-
rectional charging and discharging dispatching program in
charging stations. Not only will EV users obtain extra profits
to reduce charging costs, but also the microgrid avoids power
congestion, maximizes utilization of renewable energy for
power generation, and maintains power supply and demand
balance, as well as power quality, to achieve maximization of
power utilization efficiency.

In order to manage 700 EV charging piles simultaneously,
a double-layer centralized and decentralized optimization
algorithm is employed to maximize operating profit of EV
charging stations, minimize charging cost for EV users, and
avoid congestion of load consumption in charging stations,
thereby realizing real-time power supply and demand bal-
ance, shaving peak load and reducing power loss.

The innovative design of the proposed system platform
redresses disadvantages of the existing EV charging and dis-
charging trading. With the distributed method of the power
data collection, this system platform can greatly improve the
privacy and safety concerns than other centralized models in
existing literature, its data uploading and transaction chaining
latency is 0.06 seconds, which can, therefore, accommodate
a large number of EV charging piles.

In cooperation with the double-layer optimization archi-
tecture proposed in this paper and optimal charging and
discharging control of EVs in a decentralized and distributed
way, the prosed model can reduce charging station penalty
cost of contract capacity by 58%, increase operating profit
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by 2.3%, decrease charging cost of EV users participating
in smart bidirectional charging and discharging by about
10%, and hundreds of charging piles can be managed within
acceptable execution time.

Thus far, the 1,000 charging piles have been simulated
for EV charging stations in commercial buildings. Next, the
authors plan to implement the platform in a real virtual
power plant (VPP) to verify the system platform performance
and meet demands for charging and discharging transac-
tions, when the number of EVs increases rapidly. Meanwhile,
by integrating more distributed power resources in the power
grid through the power trading platform, the overall power
utilization efficiency can be maximized to assist the energy
management of the participants in the VPP.
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