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ABSTRACT A smart electric vehicle (EV) charging station energy management system (CSMS) based on
blockchain technology, which aims to protect privacy of EV users, ensure fairness of power transactions, and
meet charging demands for large numbers of EVs, is proposed in this study. EV charging pile is designed
as a local blockchain distributed ledger node, which operates synchronously with blockchain system and
blockchain distributed ledger in cloud server. This paper integrates CSMS through smart contracts, providing
EV users that ability to conduct power transactions and perform optimal charging and discharging control
in real-time. The distributed ledger is in charge of recording all the EV charging and discharging data to
maintain fairness of power transactions, protects data from being maliciously tampered, and enables the EV
user to monitor status of the EV participating in power transactions and dispatching. The intelligent CSMS
consists of an artificial intelligence (AI) module, centralized optimal scheduling module, and decentralized
optimal control module. The AI module is responsible for forecasting renewable energy generation and load
consumption. There is a two-layer architecture consisting of centralized and decentralized optimal control
modules; the upper layer performs optimal charging and discharging scheduling of the entire EV charging
station at time 15-min time segments, the bottom layer performs distributed optimal scheduling control in
each EV charging pile at 5 min time interval. Proposed system in this paper can deal with feeder congestion
and real-time power supply and grid demand imbalance, which are caused by high numbers of EVs.
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INDEX TERMS Artificial intelligence, blockchain, charging station management system, distributed ledger,
decentralized charging algorithm, electric vehicles, the Internet of Thing, power trading.

I. INTRODUCTION19

With the rising awareness of the importance of energy sav-20

ing and carbon emission reduction worldwide, application21

of renewable energy is bound to increase rapidly for the22

foreseeable future. However, due to renewable energy power23

generation being intermittent and subject to weather con-24

ditions, as its proportion gradually increase in grid, it will25

seriously affect stability and power quality of power system.26

Photovoltaic (PV) power generation converts solar radiation27

The associate editor coordinating the review of this manuscript and

approving it for publication was Peter Palensky .

into power by the principle of the photovoltaic effect. PV is 28

widely installed with the advantages of noiseless, pollution- 29

free generating, ease of merging into design of buildings, 30

and life span up to 25 years. Nevertheless, its generation 31

efficiency is influenced by its geographical location, sea- 32

sonal changes, cloud coverage, and meteorological changes. 33

PV power generation quickly increases at sunrise and sud- 34

denly decreases at sunset. Full output of PV is reached at 35

noon, resulting in decreasing of total load in grid, such that 36

the load curve trend is like a duck’s belly. In the evening, due 37

to sudden drop in output of PV and household load rise, the 38

total load curve becomes like a duck neck, so it is called a 39

duck curve. 40
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The higher the proportion of PV, the bigger the duck’s41

belly, which makes it more difficult for scheduling of tra-42

ditional fossil fuel generators, which in turn affects power43

quality, causes regional power rationing or power outages.44

In the meantime, when proportion of intermittent power45

resources increases in power grid, in order to stabilize power46

supply, huge challenge in operation scheduling of traditional47

base load power plant is started, which causes lots of bur-48

den to traditional generator units. Therefore, in areas with49

high penetration of renewable energy, energy storage sys-50

tems (ESSs) are usually applied to support load regulation.51

To enhance operation efficiency of an ESS, by combining52

with an energy management system (EMS) to perform charg-53

ing and discharging scheduling. Moreover, if power genera-54

tion of renewable energy at a certain period can be predicted55

in advance, power dispatching and load curve control will be56

more accurate and effective.57

As the manufacturing technology of electronic vehicles58

(EVs) become mature in recent year, in response to policies59

of energy saving and carbon emission reduction worldwide,60

governments around theworld takes relevant policies to advo-61

cate EVs as the main transportation in the future to replace62

petroleum-fueled engine vehicles [1], [2], the utilization of63

EV will increase greatly in the next few years.64

To avoid a huge impact on the power system, appropri-65

ate scheduling strategy must be taken between EV charging66

demand and power grid supply. For example, a management67

mechanism including time of use (ToU) pricing and demand68

response (DR) can be adopted on the supply side, while a69

demand side management (DSM) [3] method can be adopted70

on demand side. With the emergence of bidirectional EV71

charging piles, the mode of discharging stored power to grid72

is high-profile [4].73

With artificial intelligence energy management system74

(AI EMS), considering renewable energy power generation75

and load consumption, EVs can be used to maintain relia-76

bility of grid with regulating effective and reactive power,77

and shaving power grid load peak [5], [6], [7]. Most of the78

current EV charging mode only consumes power from the79

grid. In the future, as the ubiquity of EVs increases, EV users80

will transform from consumer to prosumer, with populariza-81

tion of bidirectional charging piles, including vehicle-to-grid82

(V2G) and grid-to-vehicle (G2V) functions. The participation83

of EVs in power market will also require a fair and impartial84

trading platform.85

Due to development of emerging technologies such as86

blockchain and Internet of Things (IoT), many innovative87

applications have been introduced in the power industry, and88

these technologies can also accelerate realization of decen-89

tralized power sharing. Blockchain technology is a decen-90

tralized and distributed system which is employed to solve91

security and trust problems by using cryptography to encrypt92

data and executing decentralized algorithms that require users93

to reach consensus without third-party certification.94

The remarkable value of blockchain technology includes95

inerasability of transaction data: the data cannot be tampered96

once it being chained, which ensures data on the blockchain 97

is fair, impartial and open. Using the blockchain technology 98

in green power sharing network can quickly and accurately 99

record power resource footprints and transaction data. The 100

blockchain distributed ledger is used to record user’s renew- 101

able energy power generation and load consumption, then 102

smart contract is able to perform cash flow settlement based 103

on this information. 104

The framework of this paper is as follows. First, related 105

technologies proposed in the existing literature is analyzed 106

and discussed in Section II, and then Section III presents the 107

system architecture and the operation processes proposed in 108

this paper. The objective functions and constraints of cen- 109

tralized charging station energy management system (CSMS) 110

and decentralized EMS is elaborated in Section IV, followed 111

by the discussion of research results in Section V. Finally, the 112

conclusion and future prospects are given in Section VI. 113

In this paper, ‘‘charging pile’’ is used to describe the EV 114

charging equipment and ‘‘charging station’’ is used to express 115

the place which has installed plural charging piles. 116

II. RELATED WORKS AND OUR CONTRIBUTIONS 117

The existing papers on optimal charging and discharging 118

scheduling of EV charging station [8], [9], [10], [11], [12], 119

[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], 120

[24], [25], [26], [27], [28], [29], [30], [31] are mainly divided 121

into centralized and decentralized architectures. The advan- 122

tage of centralized architectures [8], [9], [10], [11], [12], [13], 123

[14], [15], [16], [17], [18], [19], [20], [21] is minimization of 124

operation cost through considering charging demands of EV 125

users, PV power generation, and building load consumption 126

for optimal EV charging and discharging scheduling. The 127

disadvantage of centralized architecture is long computing 128

time, such that it may not able to satisfy conditions of optimal 129

control where frequency of scheduling control has increased 130

or number of EV charging pile has soared. 131

In addition, many centralized architectures also consider 132

power transaction, and regard EVs as a decentralized power 133

resource. The EV charging station operator acts as an aggre- 134

gator, integrates EVs to participate in DR bidding and ancil- 135

lary services, and conducts bidirectional charging and dis- 136

charging power transactions of EVs in charging station. How- 137

ever, complicated and large-scale power transactions rely on 138

high-frequency optimal control. In a charging station with a 139

large quantity of EV charging piles, the optimization calcu- 140

lation time will exceed the control time segment, which is 141

unable to satisfy conditions of optimization. 142

The concept of decentralized architecture [22], [23], [24], 143

[25], [26], [27], [28], [29], [30], [31] aims to solve the 144

above-mentioned problems. Each EV charging pile can inde- 145

pendently perform optimal scheduling control according to 146

charging demands of EVs. Calculation time can be greatly 147

reduced, which is the advantage of decentralized architecture, 148

so the very short-term forecasting results of renewable energy 149

power generation and load consumption can be applied to 150
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optimal scheduling in shorter time segments, to diminish the151

impact of uncertainty.152

However, the major problem of decentralized architecture153

is overall charging station power optimal dispatching, which154

necessitates coordination of the upper limits of available155

charging power of each EV charging pile at each time seg-156

ment. Otherwise, the total charging power may exceed trans-157

former capacity limit and affect microgrid safety. At present,158

most of the papers adopt game theory to perform optimal159

dispatching of available charging power, by iteration between160

EV charging piles and CSMS until the optimal dispatching161

amount is obtained. However, when bidirectional charging162

and discharging scheduling of EVs is introduced, the max-163

imum charging capacity and power dispatching must be con-164

sidered simultaneously, its iterative process is more compli-165

cated, resulting in significant increase in computing time, the166

advantage of decentralized architecture is offset.167

Regardless of centralized or decentralized architecture, it is168

necessary to collect a large amount of user data, such as169

arrive and departure time of EV, arrive and departure state-170

of-charge (SOC) of EV, user behavior, and power transaction171

information. Nowadays, the user privacy and security of data172

are highly-valued, requiring a fully-functioning information173

security mechanism for defense.174

In [31], [32], [33], [34], [35], and [36], blockchain technol-175

ogy is adopted to encrypt power transaction data, power data,176

and user data. However, most of these papers adopt Ethereum177

technology, which relies onminers to conduct chaining verifi-178

cation, resulting in long waiting time while chaining. Further-179

more, additional commission is required. The EV charging180

pile is used to upload power data to a cloud database through181

a centralized data transmission method and then conducts a182

chaining process, which may risk data tampering or attack183

actions, entailing possibility of system crush.184

In sum, as high-proportion of EVs arises in the future, sub-185

stantial bidirectional charging and discharging transactions of186

EVs will follow by increasing installation of charging piles.187

The existing centralized optimal scheduling method is unable188

to satisfy optimal control conditions of EV charging station.189

A decentralized scheduling architecture with combination of190

an effective upper limit allocation method of charging and191

discharging must be adopted to achieve management of a192

large number of EV charging piles and the goal of maximiz-193

ing power utilization efficiency. However, the minimization194

of operating cost cannot be achieved as centralized algorithm195

does.196

Given the imbalance problem of power supply and demand197

in the grid due to rapid increase in proportion of renewable198

energy and EV, considering popularization of small-scale PV199

generation devices and manufacturing technology of ESS200

becoming mature, this paper attempts to develop a multifunc-201

tional CSMS. It is assumed that the renewable energy power202

generation equipment, ESS device, and charging station have203

been constructed in commercial building. With introduction204

of EMS, a system to effectively improve utilization of renew-205

able energy and grid stability is proposed, thereby fulfilling206

maximization of power utilization efficiency, green power 207

transaction, and peak load shaving of DSM. 208

The concepts of an intelligent CSMS are proposed in this 209

paper by combining the blockchain technology, AI internet 210

of thing (AIoT), optimal distributed EMS, and blockchain 211

power transaction technology. Contributions of this paper are 212

illustrated as follows: 213

• An Innovative intelligent CSMS of an EV charging sta- 214

tion: Based onAIoT, this paper proposes the architecture 215

for the CSMS by combining blockchain technology and 216

double-layer optimal scheduling and control technolo- 217

gies. The centralized optimal scheduling module for the 218

charging station is performed by a cloud server at time 219

segment of 15 mins for the distributed optimal charging 220

and discharging control of EV to be performed by each 221

charging pile at every 5 mins. 222

• Blockchain based power-trading platform of EVs: 223

A power trading platform is developed in this paper 224

based on the blockchain technology to integrate the 225

decentralized power resource data storage, point-to- 226

point (P2P) transaction, consensus mechanism, and 227

encryption algorithm for power trading of EV users in 228

charging stations. 229

• Local blockchain distributed ledger node: With the 230

blockchain distributed ledger, all the power data and 231

transaction data can be shared with each charging pile 232

and charging station server. Safety and avoidance of 233

information asymmetry can be achieved. Also it’s a 234

new scheme proposed to have a blockchain distributed 235

ledger node implemented in an EV charging pile with 236

Raspberry Pi as the computing module. 237

With this double-layer architecture, CSMS is capable of 238

managing large quantities of EV charging piles, achiev- 239

ing maximization of power utilization efficiency, decreas- 240

ing charging cost of EVs, suppressing peak load of grid, 241

smoothing renewable energy power generation output, and 242

maintaining power supply and demand balance, as well as 243

power quality in grid. 244

III. PROPOSED SYSTEM OVERVIEW 245

This study presents a blockchain intelligent CSMS platform 246

of EV charging station combined with AIoT technology, 247

double-layered optimal energy management technology and 248

blockchain technology, its architecture is shown in Fig. 1. 249

It integrates renewable energy power generation equipment, 250

ESS device, a large quantity of EV charging piles, building 251

load, and other distributed power resources, and adopts a cen- 252

tralized and decentralized double-layered optimization algo- 253

rithm architecture to achieve an optimal ESS and EV charging 254

and discharging strategy. The proposed approach employs 255

blockchain technology to develop a power trading platform, 256

which enables charging station operator to effectivelymanage 257

distributed power resources under its governance through 258

scheduling in order to participate in DR bidding and ancil- 259

lary service market of transmission and distribution sys- 260

tem operator and conduct green power trading. The detailed 261
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FIGURE 1. Proposed blockchain-based intelligent CSMS platform structure.

architecture of the system platform is shown in Fig. 2, includ-262

ing a blockchain power transaction platform, an edge AI263

forecasting system, and a double-layered centralized CEMS264

and decentralized EMS of an EV charging station, which is265

elaborated below.266

A. BLOCKCHAIN POWER TRADING PLATFORM267

Fig. 3 shows the architecture of the blockchain power trans-268

action platform, which consists of a blockchain system,269

blockchain distributed ledger, and user interface. The three270

related designs and functions are illustrated in order as271

follows.272

1) BLOCKCHAIN SYSTEM273

The blockchain system as a power trading operating platform274

is a decentralized system in charge of verifying transactions,275

chaining, and employing smart contracts to perform bidding,276

matching, and settlement of power transaction, which con-277

sists of more than three blockchain nodes. The hardware278

required includes three servers (an orderer server and two279

peer servers). The orderer server is responsible for receiving280

transaction requests from the front-end user interface and281

dispatching chaining verifications of transactions and com-282

putation of smart contract tasks into the two peer servers.283

Each peer server can be used to executes bidding, matching,284

and settlement of transaction through built-in smart contract,285

as well as conducting chaining verification of transaction.286

If the orderer node malfunctions, a new orderer node is287

elected by the rest of peer nodes to maintain operation of288

trading platform, which means more power transactions can289

be conducted as system possess more peer nodes, while oper-290

ation of system is further stable.291

In this paper, the Redundant Byzantine Fault Tolerance 292

(RBFT) mechanism [37] is adopted as a consensus method 293

for chaining verification of blockchain. Each peer node is 294

assigned a unique hash certificate and provided with private 295

and public keys. The hash certificate is used to identify the 296

node, and the private and public keys are used for data encryp- 297

tion. The process is responsible for transaction verification 298

computation with a voting mechanism used to determine 299

whether the transaction can be chained or not. If two-thirds 300

of the peer nodes agree, the transaction can be chained. 301

Unlike Bitcoin’s proof-of-work consensus mechanism, the 302

process adopted does not require miners to conduct verifica- 303

tion computation to greatly reduce verification latency, speed 304

up the transaction, and to exempt additional commission. 305

The sequence of the complete power transaction process is 306

as follows: the user initiates a transaction request on front- 307

end user interface, the orderer node is called to receive the 308

transaction event via API, one of the peer nodes which is used 309

to execute smart contract, verification and voting for chaining 310

is then conducted; after reaching consensus, the transaction is 311

uploaded to chain. 312

A smart contract operates on all peer nodes and writes 313

all types of power trading rules on it, and is in charge of 314

executing bidding of transaction, matching of transaction, 315

and settlement of transaction automatically. After the chain- 316

ing process is completed, detailed power transaction infor- 317

mation is stored in distributed ledger, then matching and 318

settlement are finished according to detailed power trans- 319

action information and power data recorded in the ledger. 320

The detailed information in the transaction process is writ- 321

ten into the distributed ledger through the blockchain ledger 322

node located in the cloud server, and is announced syn- 323

chronously on the user interface, including a webpage and 324
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FIGURE 2. Proposed blockchain-based intelligent CSMS platform block diagram.

FIGURE 3. Proposed blockchain trading platform structure.

smart device application program (APP), of the power trading325

platform.326

2) BLOCKCHAIN DISTRIBUTED LEDGER327

A local blockchain distributed ledger node is responsible for328

operating the distributed intelligent EMS of EV charging329

piles and acting as a distributed ledger data node. The dis-330

tributed ledger data node is used to connect the EV charging331

pile through the IoT technology to perform forecasting of332

power generation and load consumption and optimal charging333

and discharging scheduling control with intelligent EMS.334

Compared with centralized power data uploading method,335

in the proposed blockchain distributed ledger system, the336

power data are directly measured by the charging pile and337

then uploaded via the process described above. The mea-338

sured information is can thus be accessed and saved in the339

distributed ledger with the lowest possibility of errors due to340

human intervention or communication, and its correctness is341

highly enhanced. Smart contract is able to precisely settle the342

power trading with the power data from ledger.343

Located in the cloud and local side, the distributed ledger 344

network, consisting of blockchain distributed ledger data 345

nodes, is employed as the database in the proposed system. 346

It receives power data uploaded by each local blockchain 347

ledger-node in everyminute and records detailed power trans- 348

action information, which is sent from the blockchain power 349

trading platform. The data recorded in ledger are then used for 350

the settlement references in the designed smart contract. As it 351

is needed, the data can be also used as the training data needed 352

by the AI forecasting model. Once the settlement/accounting 353

and training purpose is achieved, the power data can be 354

deleted and updated thus without the data storage issue. 355

The steps of data uploading to distributed ledger are shown 356

in Fig. 4. A light-weighted proof-of-work (LWPoW) must 357

be performed first when writing data. In general, proof-of- 358

work (PoW) is regarded as solving a complex mathematical 359

problem, which requires quite a lot computing power, usually 360

handled by a server computer or graphics card computing 361

unit. Raspberry Pi is a cheap and functional embedded device, 362

acts as a local side blockchain ledger node, but has computing 363

101940 VOLUME 10, 2022



Y.-J. Lin et al.: Blockchain-Based Intelligent Charging Station Management System Platform

power far less than the above-mentioned devices, not to speak364

of being used to deal with PoW.365

Due to high-frequency of recording the power data and366

power transaction data, a LWPoW is used in this study,367

which aims to shorten time delay of power data uploading368

and lighten computation load. After finishing calculation of369

LWPoW, the distributed ledger network finds the other two370

blockchain ledger nodes to check the result through directed371

acyclic graph (DAG) algorithm. If the result is correct, the372

data is allowed to be written into distributed ledger and373

stored on all ledger nodes of distributed ledger network syn-374

chronously. Therefore, fairness and impartiality of transac-375

tions can be guaranteed, and the situation of a single ledger376

node data damage resulting in all transactions being stopped377

or affected can be prevented.378

3) USER INTERFACE379

Web page and smart device APP are used as the user interface380

of the blockchain power trading platform in this paper. The381

power transaction process of EV users is shown in Fig. 5.382

When the user arrives at the charging station, he may either383

login to the platform through a webpage or smart device APP,384

enters expected departure time and expected EV departure385

SOC, selects charging service, and then submits the charging386

demand.387

The platform will automatically execute the power trans-388

action through a smart contract, which will not only conduct389

chaining and store the detailed transaction information in the390

distributed ledger, but also perform charging and discharging391

scheduling through double-layered CSMS. All EV charging392

and discharging actions will be recorded in the distributed393

ledger, and users can clearly view transaction process and394

result at any time on the user interface. The corresponding395

service is briefly described as follows.396

• Only charging service: The only charging service397

includes the 30-kW fast charging and the 7-kW slow398

charging. The double-layered CSMS is used to perform399

optimal charging scheduling control on the premise of400

meeting EV charging demand.401

• Green power charging service: The green power charg-402

ing service includes fast charging (30kW) and slow403

charging (7kW). Users need to make a reservation on the404

platform a day ahead, and arrive at the charging station405

at the reservation period. The double-layered CSMS406

is used to performs optimal charging and discharging407

scheduling control on the premise of meeting charging408

demand of EV program control.409

• Smart charging and discharging service: The smart410

charging and discharging service includes fast charging411

(30kW) and slow charging (7kW). EV smart charging412

service is controlled by the optimal scheduling control413

which is conducted double-layered CSMS under con-414

ditions of not affecting existing charging service. The415

EV user receives a certain percentage of reward for dis-416

charging; if participating in DR bidding, the reward will417

FIGURE 4. The process of data uploading to the distributed ledger.

be given depending on DR bidding price after deducting 418

commission. 419

• Smart green power charging and discharging service: 420

The smart green power charging and discharging ser- 421

vice includes the 30-kW fast charging and the 7-kW 422

slow charging. Users need to make a reservation on 423

the platform one day ahead, and arrive at the charging 424

station at the reservation period. The EV smart green 425

charging service is controlled by the optimal scheduling 426

control which is conducted double-layered CSMS under 427

conditions of not affecting existing charging service. 428

The EV user receives a certain percentage of reward for 429

green power discharging; if participating in DR bidding, 430

reward will be given depends on DR bidding price after 431

deducting commission. 432

In sum, when the number of blockchain nodes and 433

blockchain distributed ledger nodes increases, the power 434

transaction processing capability of the blockchain power 435

trading platform is increased, since more nodes join in com- 436

puting. In addition, system stability and data storage are also 437

improved with more nodes built. When a large quantity of 438

bidirectional EV charging piles are introduced into the grid 439

in future, the blockchain system design in this paper will be 440

more efficient when processing high-frequency power trading 441

and power data recorded by a large number of distributed 442

power resources. 443

B. INTELLIGENT CHARGING STATION 444

MANAGEMENT SYSTEM 445

Apart from the current AI model training method, a cen- 446

tralized architecture is usually adopted to collect and store 447

data. To protect privacy of user behavior, although there 448

is de-identification design of current architecture, in the 449

centralized data collection process, user privacy would be 450
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FIGURE 5. The process of power trading for EV user.

FIGURE 6. Proposed blockchain-based AI training block diagram.

harmed if data leaking or attacking actions took place. The451

proposed method adopts distributed ledger technology of452

blockchain to protect user privacy.453

The consensus mechanism of blockchain, collecting power 454

and environment data of each user in an anonymous and 455

secure way, and the training of renewable energy generation 456
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FIGURE 7. Structure of the proposed two-stage LSTM model.

and load consumption forecasting models in the proposed457

blockchain-based AI training approach, as shown in Fig. 6.458

Thus, it not only can solve concerns about user privacy, but459

also can ensure correctness of data resource and the security460

of data storage.461

1) RENEWABLE ENERGY POWER GENERATION FORECAST462

Regarding PV power generation forecasting, this paper463

designs a lightweight forecasting method adopting a two-464

stage long short-term memory (LSTM) model, considering465

computing power of edge devices. Its architecture is shown466

in Fig. 7.467

Three types of weather data, including global tilted irra-468

diance (GTI) Fixed Tilt, GTI Tracking and global horizontal469

irradiance (GHI), are used as input features of the first-stage470

LSTMmodel, the first forecasting result is yielded as output,471

and then become input features of the second-stage LSTM472

model, combined with two types of weather data, including473

horizontal irradiance (EBH) and direct normal irradiance474

(DNI), to conduct final PV power generation forecasting475

at intervals of 15 min and 5 min. This paper divides the476

historical PV power generation data and historical weather477

forecasting data of 2019 into training and testing data in the478

ratio of 1:1. The results show good performance, as discussed479

in Section V.480

2) LOAD CONSUMPTION FORECAST481

Fig. 8 shows the proposed load forecasting framework, which482

is based on ExtraTrees regression combining Ridge regres-483

sion method. With weather data and historical load con-484

sumption as input features, including GHI, EBH, Air Temp,485

DNI, DHI, Zenith, Azimuth, Cloud Opacity, Dewpoint,486

Wind Speed, Wind Direction, Relative Humidity, Precip-487

itable Water, Surface Pressure, GTI Tracking, GTI Fixed Tilt,488

Albedo, etc., multiple decision trees are generated through the489

ExtraTrees regression method.490

The classification feature of each decision tree is randomly491

selected, and training load prediction data and training load492

target data of each decision tree are then fitting into theweight493

FIGURE 8. Structure of the proposed combining ExtraTrees regression
and ridge regression model.

matrix of Ridge regression method. The prediction of load 494

consumption is conducted at intervals of 15 min and 5 min, 495

and long-term and short-term power consumption forecasts 496

are carried out. This thesis divides the actual field historical 497

load power consumption data and historical weather forecast 498

data for the whole year of 2021 into training and test data at 499

a ratio of 8:2. The test results show excellent performance, 500

which will be discussed in Section V. 501

3) AI EDGE COMPUTING 502

At present, AI technology has been widely used in various 503

systems. This paper considers the computing power of each 504

EV charging pile used to conduct blockchain distributed 505

ledger data node and distributed EMS is finite. Therefore, 506

this paper adopts the method of model training in the cloud 507

and updates trained model coefficients to a local forecasting 508

model to perform real-time edge computation of predictions. 509

C. DOUBLE-LAYERED CENTRALIZED CSMS AND 510

DECENTRALIZED EMS OF EV CHARGING STATION 511

A double-layered optimization architecture is proposed here 512

to realize the goal of management for large numbers of EV 513

charging piles and maximization power utilization efficiency 514

of EV charging stations. 515

The upper layer performs optimal charging and discharg- 516

ing scheduling of entire EV charging station at time interval 517

of 15 min, the bottom layer performs optimal charging and 518

discharging scheduling control with a distributed architecture 519

developed in each EV charging pile at a 5-min interval. The 520

architecture is described below and is shown in Fig. 9. 521

1) UPPER-LAYERED CENTRALIZED CSMS OF 522

EV CHARGING STATION 523

The upper layer considers all the distributed power resources 524

of the entire charging station, including each EV charging 525

pile, PV power generation equipment, ESS devices, and 526

building load to realize the goal of maximization of power 527

utilization efficiency. The scheduling result is written into 528
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FIGURE 9. Structure of double-layered centralized CSMS and decentralized EMS.

blockchain ledger and provided to each EV charging pile as529

reference to perform optimal control.530

The process is shown in Fig. 10 and the algorithm is531

shown in Fig. 11. In the first step, CSMS reads existing532

scheduling information of all EV charging piles and ESS533

devices, and calculates the current time window t. The sec-534

ond step is to update the time window t = t + 1, then535

read the forecasting results of 15-min power generation and536

15-min load consumption predicted by AI prediction model,537

and detailed power transaction information in the distributed538

ledger.539

The third step is to update the system information after540

altering, such as real-time price, system parameters in micro-541

grid, real-time SOC of each EV, and dynamic window end-542

time of EV and start the optimal scheduling. In a centralized543

architecture, under consideration of real-time state of power544

supply and demand, its end condition is reaching the global545

optimal solution. This is so to achieve balance of power of546

renewable energy power generation, power of EV charging547

and discharging, power of ESS device, overall load consump-548

tion, and to perform optimal scheduling by adopting a mixed-549

integer linear programming (MILP) algorithm. Finally, in the550

fourth step, the output of optimization amount of EV charging551

and discharging per 15 min is yielded.552

2) BOTTOM-LAYER CENTRALIZED EMS OF553

EV CHARGING STATION554

All EV charging piles in a charging station operate respective555

bottom-layer distributed EV charging pile EMSs; the process556

is shown as Fig. 12 and the algorithm is shown in Fig. 13.557

In the first step, EMS reads EV power transaction data of558

blockchain distributed ledger, 15 min upper-layer optimiza-559

tion amount of EV charging and discharging, existing EV560

charging and discharging scheduling information, to calculate 561

the current time window, t. 562

The second step is to update the time window t = t + 1, 563

then EMS reads the forecasting results of 5-min renewable 564

energy power generation and 5-min load consumption pre- 565

dicted by AI prediction model, then the EV charging power 566

upper bound and discharging power lower bound will be 567

calculated with the priority of EV charging and discharging. 568

The third step is to update the system information after 569

altering, such as real-time price, EV charging power upper 570

bound and discharging power lower bound and dynamic 571

window end-time of EV, and start the optimal scheduling. 572

In a decentralized architecture, optimal control of each EV 573

charging pile is performed by adopting the MILP algorithm, 574

in case of satisfying conditions of objective functions and 575

constraints. Finally, in the fourth step, the output of EV 576

charging pile control command is yielded. 577

IV. CENTRALIZED CSMS, DISTRIBUTED EMS, AND 578

OPTIMIZATION ALGORITHM 579

When a battery is repeatedly charged and discharged, its life 580

span decreases, depending on its type and chemical composi- 581

tion. This paper assumes that both EV and ESS use lithium- 582

iron phosphate (LFP) batteries, and considers the effect of 583

total number of cycles on battery capacity. Fig. 14 illustrates 584

the relationship between the number of cycles of LFP battery 585

and battery capacity. 586

The points in the figure are actual data provided by bat- 587

tery manufacturer, the right-side vertical axis presents the 588

assumed battery life. As shown in Fig. 14, it assumes that 589

when battery capacity drops below 65%, the battery is no 590

longer used, which means its life has ended.When the battery 591

capacity on left side y-axis drops to 65%, the battery life on 592
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FIGURE 10. The process of upper-layered centralized CSMS.

FIGURE 11. The algorithm of centralized CSMS operation.

right side y-axis down to 0%, and the battery degradation is593

represented in (1).594

Cdeg
=

∣∣∣ m1

100

∣∣∣ P ·1t
Bcap

Cbat (1)595

A. UPPER-LAYER CENTRALIZED EMS OF596

EV CHARGING STATION597

All parameters and variables of the optimization problem598

are described and organized in Table 1. The objective func-599

tion is to minimize operating cost of EV charging station,600

as shown in Eq. (2), which includes purchasing power cost601

FIGURE 12. The process of bottom-layer decentralized EMS.

FIGURE 13. The algorithm of decentralized EMS operation.

FIGURE 14. Cycle-life performance of a Nanophosphate R© Li-ion battery
for charging and discharging rates.

from microgrid, battery degradation cost caused by charging 602

and discharging scheduling of ESS, reward for EV users 603

participating in smart charging and discharging, profits from 604

participating in DR bidding of the power company, penalty 605

cost for not meeting charging demand of EV users, and 606

penalty cost for exceeding contract capacity. 607

Eq. (3) defines power purchased from themicrogrid, taking 608

into account building load consumption, PV power gener- 609

ation, total power of EV, and ESS charging and discharg- 610

ing. Eq. (4) calculates the purchasing power cost from the 611

microgrid of the EV charging station. Eq. (5) represents cost 612

calculation of battery degradation that caused by charging 613

and discharging scheduling of ESS. Eq. (6) is a battery 614
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degradation coefficient of ESS.615

min
∑T

t=t ′

(
C15min
net,t + C

15min
ESSdeg,t + C

15min
EV feedback ,t616

+C15min
exceedcontract ,t + I

15min
DR,t

)
617

+

N∑
n

C15min
EV deficiency,n (2)618

P15minnet,t = P15minload,t + P
15min
PV ,t +

N∑
n

Pch15minEV n,t619

−

N∑
n

Pdis15minEV n,t + Pch
15min
ESS,t − Pdis

15min
ESS,t (3)620

C15min
net,t = P15minnet,t · CToU ,t ·1t

15min (4)621

C15min
ESSdeg,t = Pch15minESS,t · γ

ch
ESS ·1t

15min
622

+Pdis15minESS,t · γ
dis
ESS ·1t

15min (5)623

where624 
γ ch =

∣∣∣ m1

100

∣∣∣ 1

BcapESS
Cbat
ESSη

ch
ESS

γ dis =
∣∣∣ m1

100

∣∣∣ 1

BcapESS
Cbat
ESS

1

ηdisESS

(6)625

The cost of reward given to EV users for participating626

in smart charging and discharging transactions is calculated627

by (7). Eq. (8) represents penalty cost for exceeding contract628

capacity more or less than 10%. Eq. (9) represents the penalty629

item for exceeding contract capacity less than 10%.630

Eq. (10) indicates the penalty item for exceeding contract631

capacity by more than 10%. Eq. (11), as shown at the bottom632

of the next page, represents profits which are obtained by633

CPO participating in DR. Eq. (12), as shown at the bottom of634

the next page, represents the penalty item for not satisfying635

the charging demand of the EV user.636

C15min
EV feedback ,t637

=

N∑
n

Pdis15minEV n,t · Cfeedback ·1t
15min (7)638

C15min
exceedcontract ,t639

= C15min,lower10%
exceedcontract ,t + C

15min,upper10%
exceedcontract ,t (8)640 C15min,lower10%

exceedcontract ,t ≥ (P15minnet,t − Pcontract ) · 2 · C
penalty
contract

C15min,lower10%
exceedcontract ,t ≥ 0

(9)641 C15min,upper10%
exceedcontract ,t ≥ (P15minnet,t − 1.1 · Pcontract )·C

penalty
contract

C15min,upper10%
exceedcontract ,t ≥ 0

(10)642

The overall EV charging station transformer constraint is643

as (13), and optimal scheduling problem of centralized EV644

must satisfy the constraints (14) to (20). Eqs. (14) and (15)645

are the charging and discharging power limitation of EVs.646

TABLE 1. Nomenclature of parameters.
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TABLE 1. (Continued.) Nomenclature of parameters.

The power of EVs is limited to charging and discharging647

state and maximum charging and discharging power of EVs;648

Pch15minEV n,t means charging and Pdis15minEV n,t means discharging.649

Eq. (16) is corresponding maximum discharging power650

limitation according to types of EV charging pile. The charg-651

ing power is zero while EV is not in the charging station652

which is as Eq. (17). Eq. (18) indicates upper and lower653

limitation of SOC of EV at any time. Eq. (19) calculates654

volume change of EV battery SOC.655

The optimal scheduling of ESS device must satisfy the656

constraints in Eqs. (20) to (24). Eqs. (20) and (21) represent657

charging and discharging power limitation of ESS, where the658

power of ESS is limited to charging and discharging states659

and maximum charging and discharging powers of ESS,660

Pch15minESS,t means charging, and Pdis15minESS,t means discharging.661

Eq. (22) indicates that charging and discharging state of662

ESSwould not occur simultaneously. Eq. (23) indicates upper663

and lower limitations of SOC of ESS at any time. Eq. (24)664

calculates change volume of ESS SOC. Eq. (25), as shown665

at the bottom of the next page, represents that there are666

corresponding charging and discharging state to different EV667

power transactions.668 ∣∣∣P15minnet,t

∣∣∣ ≤ Pmaxtr , ∀t ∈ T (13)669

0 ≤ Pch15minEV n,t ≤ Uch
15min
EV n,t · P

max
EV ,n,670

∀n ∈ N , t ∈ T (14)671

0 ≤ Pdis15minEV n,t ≤ Udis
15min
EV n,t · P

max
EV ,n,672

∀n ∈ N , t ∈ T (15) 673

PmaxEV ,n = PmaxEV ,fast ,

if EV
ChargingType
n = fast charging

PmaxEV ,n = PmaxEV ,slow,

else if EV
ChargingType
n = low charging,

(16) 674

∀n ∈ N 675

Uch15minEV n,t = 0, Udis15minEV n,t = 0, (17) 676

if t < t in,n or t > tout,n, ∀n ∈ N , t ∈ T 677

SOCmin
EV ≤ SOCEV

n,t ≤ SOC
max
EV , ∀n ∈ N , t ∈ T 678

(18) 679

SOCEV
n,t+1 = SOCEV

n,t + Pch
15min
EV n,t ·

ηchEV ·1t
15min

BcapEV ,n
680

−Pdis15minEV n,t
1t15min

BcapEV ,n · η
dis
EV

(19) 681

0 ≤ Pch15minESS,t ≤ Uch
15min
ESS,t · P

max
ESS (20) 682

0 ≤ Pdis15minESS,t ≤ Udis
15min
ESS,t · P

max
ESS (21) 683

Uch15minESS,t + Udis
15min
ESS,t = 1 (22) 684

SOCmin
ESS ≤ SOCESS,t ≤ SOCmax

ESS (23) 685

SOCESS,t+1 = SOCESS,t + Pch15minESS,t ·
ηchESS ·1t

15min

BcapESS
686

−Pdis15minESS,t ·
1t15min

BcapESS · η
dis
ESS

(24) 687

B. BOTTOM-LAYER DECENTRALIZED EMS OF 688

EV CHARGING PILES 689

Before optimizing scheduling of distributed EV charging 690

piles, it is necessary to calculate allocation of charging and 691

discharging. In Eq. (26), as shown at the bottom of the next 692

page, prichn,t means the charging priority of the nth EV in 693

the time window t, based on comparison between renewable 694

energy power generation and load consumption forecasting 695

data per 5 min and 15 min. If there is surplus power, it will be 696

allocated to EVs for charging. Instead, ESS would discharge 697

to meet the charging demand of EVs. In Eqs. (27) and (28), 698

as shown at the bottom of the next page, pchmaxEV ,n,t means 699

maximum charging power of EVs at time window t, whereas 700

pdisminEV ,n,t means minimum discharging power of EVs at time 701

I15minDR,t =

(∑N

n
Pch15minEV n,t −

∑N

n
Pdis15minEV n,t + Pch

15min
ESS,t − Pdis

15min
ESS,t

)
· CDR,t ·1t15min (11)


Cdeficiency
EV ,n ≥ Cpenalty

EV ·

(
EEVn −

(∑T

t=t ′
PchEVn,t · η

ch
EV ·1t −

∑T

t=t ′
PdisEVn,t ·

1

ηdisEV
·1t

))
, if EEVn > 0

Cdeficiency
EV ,n ≥ Cpenalty

EV ·

(
−EEVn −

(∑T

t=t ′
PdisEVn,t ·

1

ηdisEV
·1t −

∑T

t=t ′
PchEVn,t · η

ch
EV ·1t

))
, otherwise

Cdeficiency
EV ,n ≥ 0

(12)
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window t, as well as P5minESS,t means charging and discharging702

power of ESS at time window t in Eq. (29), as shown at the703

bottom of the page.704

Distributed optimization conducts scheduling for a single705

EV, using optimization scheduling data of 15-min EV charg-706

ing and discharging, and conducts power limitation guid-707

ing for each EV through charging and discharging priority.708

Finally, optimal charging and discharging power control of709

EV per 5 min is generated. The objective function is to min-710

imize the EV charging cost, as in (30), shown at the bottom711

of the next page, which includes charging cost of EV, reward712

for EV users participating in smart charging and discharg-713

ing dispatching, and penalty cost for not meeting charging714

demand of EV users. Eq. (31), as shown at the bottom of the715

next page, calculates charging cost of EV, Eq. (32), as shown716

at the bottom of the next page, calculates reward for EV users717

participating in smart charging and discharging of charging718

station, and Eq. (33), as shown at the bottom of the next page,719

presents calculation of penalty cost for not meeting charging720

demand of EV users.721

Eq. (34), as shown at the bottom of the next page, repre-722

sents that there are corresponding charging and discharging723

state to different EV power transactions. The optimal schedul-724

ing problem of decentralized EVs must satisfy the constraints725

in Eqs. (35) to (43). Eqs. (35) and (36) are the charging and 726

discharging power limitations of EVs. The power of EVs 727

are limited to charging and discharging state and maximum 728

charging and discharging power of EVs, Pch5minEV n,t means 729

charging and Pdis5minEV n,t means discharging. 730

Eq. (37) is corresponding maximum discharging power 731

limitation according to types of EV charging pile. Eq. (38) 732

and (39) indicate maximum charging and minimum discharg- 733

ing power limitation of EV according to allocation of priority. 734

The charging power is zero when the EV is not in the charging 735

station, which is as per Eq. (40). Eq. (41) indicates upper and 736

lower limitation of SOC of EV at any time. Eq. (42) calculates 737

change volume of battery SOC. 738

0 ≤ Pch5minEV n,t ≤ Uch
5min
EV n,t · P

max
EV ,n (35) 739

0 ≤ Pdis5minEV n,t ≤ Udis
5min
EV n,t · P

max
EV ,n (36) 740

where 741
PmaxEV ,n = PmaxEV ,fast , if EV

ChargingType
n

= fast charging

PmaxEV ,n = PmaxEV ,slow, else if EV
ChargingType
n

= low charging,

742

∀n ∈ N (37) 743



Uch15minEV n,t + Udis
15min
EV n,t = 1,

if EV
TradingType
n = Auto Controlling Service

Uch15minEV n,t = 1, Udis15minEV n,t = 0,

else if EV
TradingType
n = Only Charging Service

Uch15minEV n,t + Udis
15min
EV n,t = 1,

else if EV
TradingType
n = Green bidirection Chargig Service

Uch15minEV n,t = 1, Udis15minEV n,t = 0,

else if EV
TradingType
n = Green Power Charging Service,

∀n ∈ N (25)

prichn,t =
EEVn(

tout,n − t ′ + 1
)
×1t5min × PmaxEV ,n

, ∀n ∈ N , t ∈ T (26)

pchmaxEV ,n,t =

(
N∑
n

Pch15minEV n,t − (P5minload,t + P
5min
PV ,t )+ (P15minload,t + P

15min
PV ,t )

)
·

pricht,n∑N
n pri

ch
t,n

,

if P5minload,t + P
5min
PV ,t < P15minload,t + P

15min
PV ,t

pchmaxEV ,n,t =

N∑
n

Pch15minEV n,t ·
pricht,n∑N
n pri

ch
t,n

, otherwise,

∀n ∈ N , t ∈ T (27)

pdisminEV ,n,t = Pdis15minEV n,t ,∀n ∈ N , t ∈ T (28)
P5minESS,t = Pch15minESS,t − Pdis

15min
ESS,t

+ (P5minload,t + P
5min
PV ,t )− (P15minload,t + P

15min
PV ,t ), if P5minload,t + P

5min
PV ,t > P15minload,t + P

15min
PV ,t

P5minESS,t = Pch15minESS,t − Pdis
15min
ESS,t , otherwise,

t ∈ T (29)

101948 VOLUME 10, 2022



Y.-J. Lin et al.: Blockchain-Based Intelligent Charging Station Management System Platform

Pch5minEV n,t ≤ p
chmax
EV ,n,t (38)744

pdisminEV ,n,t ≤ Pdis
5min
EV n,t (39)745

Uch5minEV n,t = 0, Udis5minEV n,t = 0,746

if t < t in,nort > tout,n (40)747

SOCmin
EV ≤ SOC

EV
n,t ≤ SOC

max
EV (41)748

SOCEV
n,t+1 = SOCEV

n,t + Pch
5min
EV n,t ·

ηchEV ·1t
5min

BcapEV ,n
749

−Pdis5minEV n,t
1t5min

BcapEV ,n · η
dis
EV

(42)750

V. CASE STUDIES AND DISCUSSIONS751

The case study simulates an EV charging station located in a752

commercial building, which consists of the commercial build-753

ing load itself, EV charging station, PV power generation754

equipment, and ESS. The detailed specifications are shown in755

Table 2. The EV user model of a commercial building [38] is756

employed as the simulation basis. The programs are coded in757

Python to simulate the case study in the time frame of 5 mins.758

The EV user model of a commercial building is employed as a759

simulation. The present section details AI renewable energy760

power generation and load consumption forecasting results,761

optimal scheduling results and analysis, and test results of the762

blockchain system.763

A. AI FORECASTING RESULTS764

The accuracy of renewable energy power generation fore-765

casting is evaluated in terms of mean relative error (MRE)766

as defined in Eq. (43). The historical data for PV power767

generation and the corresponding weather forecasting data768

of 2019 are utilized in a ratio of 1:1 for training and769

TABLE 2. Simulation parameters of microgrid.

testing, respectively. The testing results show the average 770

MRE of 0.67124% is achieved. The comparison of half- 771

month forecasting and actual power generation data in June 772

2019 is shown in Fig.15. Compared with the existing litera- 773

ture [39], [40], [41], the results of the proposed load power 774

consumption forecasting model are suitably accurate for use 775

in the optimization scheduling algorithm. 776

MRE =
1
n

∑n

i=1

∣∣∣∣∣xpredicted [i]− xactual [i]

pCapacityPV

∣∣∣∣∣× 100% (43) 777

where Xpredicted [i] and Xactual[i] are the forecast value and 778

actual value of the PV power output at the ith point, respec- 779

tively. n is the number of prediction points, and pCapacityPV is the 780

nominal power capacity of the PV site. 781

min
∑T

t=t ′
(C5min,n

charging price,t + I
5min,n
power dispatching,t )+ C

5min
EV deficiency,n (30)

C5min,n
charging price,t = Pch5minEV n,t · Ccharging price,t ·1t

5minI5minpower dispatching,t (31)

=

(
Pch5minEV n,t + Pdis

5min
EV n,t

)
· Cpower dispatching,t ·1t5min (32)



C5min
EVdeficiency,n ≥ C

penalty
EV ·

(
EEVn −

(
T∑
t=t ′

Pch5minEV n,t · η
ch
EV ·1t

5min
−

T∑
t=t ′

Pdis5minEV n,t ·
1

ηdisEV
·1t5min

))
,

if EEVn > 0

C5min
EVdeficiency,n ≥ C

penalty
EV ·

(
−EEVn −

(
T∑
t=t ′

Pdis5minEV n,t ·
1

ηdisEV
·1t5min −

T∑
t=t ′

Pch5minEV n,t · η
ch
EV ·1t

5min

))
,

otherwise
C5min
EVdeficiency,n ≥ 0

(33)



Uch5minEV n,t + Udis
5min
EV n,t = 1, if EV Trading Type

n = Auto Controlling Service

Uch5minEV n,t = 1,Udis5minEV n,t = 0, else if EV Trading Type
n = Only Charging Service

Uch5minEV n,t + Udis
5min
EV n,t = 1, else if EV Trading Type

n = Green bidirection Chargig Service

Uch5minEV n,t = 1,Udis5minEV n,t = 0, else if EV Trading Type
n = Green Power Charging Service

(34)
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TABLE 3. Comparison of 15-min and 5-min centralized optimal scheduling computing time.

FIGURE 15. The result of PV forecasting.

The load consumption forecasting accuracy takes the mean782

absolute percentage error (MAPE) as the evaluation index as783

defined in Eq. (44). The historical load power consumption784

data and the corresponding weather forecast data of 2021 are785

utilized with the ratio of 8:2 for training and testing, respec-786

tively. The testing results shows average MAPE of 2.95 %787

is obtained. Compared with the existing literature [41], [42],788

[43], the results of the proposed load power consumption789

forecasting model are suitably accurate. As an example, the790

comparison of forecasting and actual load consumption data791

on July 23th, 2021 is shown in Fig. 16.792

MAPE (%) =
1
N

∑N

t=1

∣∣ypret − ytruet

∣∣
ytruet

× 100 (44)793

where ytruet represents the real value at the time t , ypret is the794

corresponding predicted value, and N is the total cases in the795

test set.796

FIGURE 16. The load consumption forecasting.

B. OPTIMAL SCHEDULING RESULTS 797

If the microgrid is not engaged in any power transactionmode 798

and does not perform optimal scheduling, the EV adopts 799

the method of first come first served upon arrival at the 800

charging station. The overall power of the microgrid is shown 801

in Fig. 17. Because there are commercial buildings in the 802

microgrid, lots of EVs enter buildings after 8:00. If EMS 803

does not perform scheduling control, power congestion of 804

load consumption happens in microgrid, causing instanta- 805

neous power to exceed contract capacity and upper limit 806

of transformer capacity, endangering stability and safety of 807

microgrid. 808

Fig. 18 shows the overall power diagram of centralized 809

optimal EV charging pile control per 15 min of EV charging 810

station. In contrast to Fig. 17, it can be clearly seen that 811

the congestion caused by the arrive of large quantity EVs is 812

solved. Moreover, EV charging station can integrate EVs in 813

its field, participate in DR bidding of power utility, to obtain 814

additional profits, and reward users participating in this power 815

transaction. 816
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FIGURE 17. Overall power of charging station microgrid without optimal scheduling.

FIGURE 18. Overall power of charging station microgrid with 15-min centralized optimal scheduling.

In simulation considering uncertainty of renewable energy817

power generation and load consumption, Figs. 19 and 20818

illustrates the results of centralized optimal scheduling for819

15min and 5min respectively. It can be observed that central-820

ized optimization per 5 min has better load peak suppression821

performance. However, as shown in Table 3, computing time822

needed for centralized optimization per 5 min has signifi- 823

cantly exceeded its scheduling requirement. 824

In an EV charging station with more than 100 EVs, central- 825

ized optimization architecture for 5 min cannot perform real- 826

time EV charging pile optimal scheduling control. Although 827

centralized optimization architecture for 15 min can meet 828
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FIGURE 19. Overall power of charging station microgrid with 15-min centralized optimal scheduling considering uncertainty.

FIGURE 20. Overall power of charging station microgrid with 5-min centralized optimal scheduling considering uncertainty.

scheduling requirement, its control effect did not conform to829

expectation.830

Fig. 21 is the operation result diagram of the double-831

layer centralized CSMS and decentralized EMS proposed in832

this paper, considering the uncertainty of power generation833

and load consumption. On the premise of meeting limited834

computing time, through taking optimal scheduling guidance835

of centralized EV charging station performed every 15 min836

and in cooperation with real-time optimal control of each837

charging pile executed every 5 min, the goal of peak load838

suppression and shaving, and maximization of power utiliza- 839

tion efficiency can be achieved. 840

Fig. 22(a) and (b) show the results of EV charging and 841

discharging scheduling results diagram, which present ser- 842

vice mode of only charging in low speed or smart charging 843

and discharging in fast speed, respectively, choosing by EV 844

user. In the only charging mode, EMS performs optimal 845

scheduling control according to actual operation situation in 846

the premise of satisfying the EV charging demand. On the 847

other hand, in the smart charging and dischargingmode, EMS 848
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FIGURE 21. Overall power of charging station microgrid with double-layered centralized CSMS and decentralized EMS optimal scheduling
considering uncertainty.

FIGURE 22. EV optimal scheduling result. (a) Only charging service–slow charging, (b) Auto controlling service–fast charging.

FIGURE 23. Impact of 1000 times of transactions on latency, the average
latency is 0.06 sec.

performs optimal scheduling control according to operation849

situation in the reality of meeting the EV charging demand as850

a precondition, and discharges in the DR execution period to851

earn additional profits for EV users.852

Table 4 describes comparisons of 15-min and 5-min cen- 853

tralized architectures, and the architecture proposed in this 854

paper. Although the proposed method cannot realize max- 855

imization of power utilization efficiency as well as 5-min 856

centralized architecture does, it can reduce penalty cost of 857

contract capacity by 58%, increase operating profit by 2.3%, 858

and decrease charging cost of EV users participating in smart 859

bidirectional charging and discharging by about 10%. The 860

15-min centralized type, since its incapability of conducting 861

optimal control in short time, is less able to resist fluctuation 862

uncertainty caused by prediction error. 863

When PV power generation is insufficient, it is neces- 864

sary to purchase additional high-priced power from the grid, 865

increasing power purchase cost compared to the 5-min cen- 866

tralized architecture. However, the double-layer architec- 867

ture proposed in this paper is an optimization architecture. 868

By adopting 5-min optimal control, uncertainty of PV power 869

generation is compensated by EVs and ESS devices. 870

Therefore, PV power generation can be deposited in EVs, 871

and released during DR execution periods. Not only can this 872
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TABLE 4. Comparison of 15-min and 5-min centralized architecture and the architecture proposed in this paper.

TABLE 5. Comparison of simulation results of the proposed scheme with the existing schemes.

earn more income for EV charging station, but also addition-873

ally reward EV users.874

C. BLOCKCHAIN SYSTEM TEST RESULTS875

The blockchain system proposed in this paper operates on876

computer with Intel 4 Core CPU. The blockchain system877

built up in this paper for the experiment has 1 orderer 878

node, two peer nodes and two cloud-ledger nodes on 879

an Intel server, and three local ledger-nodes on Rasp- 880

berry Pi. The blockchain platform is all self-designed. The 881

1000 times consecutive transactions are tested on chaining 882

process, its results are shown in Fig.23. The average latency 883
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is 0.06 secs. A few long latencies may cause by network884

delay.885

Compared with most of the existing papers, which adopt886

the Ethereum blockchain technology, the latency of the887

proposed blockchain system is greatly reduced, making it888

more suitable for power transaction scenarios. Table 5 pro-889

vides detail comparisons between this paper and the exist-890

ing papers. Compared with the latencies of most Ethereum891

blockchain systems, that of the proposed blockchain system892

is greatly reduced, making it more suitable for power trans-893

action scenarios.894

Compared with the execution speed of optimal scheduling895

system for numerous EV charging piles in existing schemes,896

that of the proposed CSMS system is greatly accelerated,897

making it more suitable for future application scenarios.898

VI. CONCLUSION AND FUTURE WORK899

The intelligent CSMS of EV charging station based on900

blockchain technology proposed in this paper, is a relatively901

complete and forward-looking system with larger numbers902

of EV charging piles built in, compared to existing meth-903

ods. This system platform is based on AIoT, combined with904

blockchain and distributed ledger technologies as a platform905

capable of conducting power trading, forecasting analysis,906

performing optimal schedulingmanagement, and dispatching907

of power transaction automatically.908

With the centralized CSMS and distributed EMS to opti-909

mize the scheduling of EVs, which enables EV users to910

participate in green power trading, DR bidding, and a bidi-911

rectional charging and discharging dispatching program in912

charging stations. Not only will EV users obtain extra profits913

to reduce charging costs, but also the microgrid avoids power914

congestion, maximizes utilization of renewable energy for915

power generation, and maintains power supply and demand916

balance, as well as power quality, to achieve maximization of917

power utilization efficiency.918

In order to manage 700 EV charging piles simultaneously,919

a double-layer centralized and decentralized optimization920

algorithm is employed to maximize operating profit of EV921

charging stations, minimize charging cost for EV users, and922

avoid congestion of load consumption in charging stations,923

thereby realizing real-time power supply and demand bal-924

ance, shaving peak load and reducing power loss.925

The innovative design of the proposed system platform926

redresses disadvantages of the existing EV charging and dis-927

charging trading. With the distributed method of the power928

data collection, this system platform can greatly improve the929

privacy and safety concerns than other centralized models in930

existing literature, its data uploading and transaction chaining931

latency is 0.06 seconds, which can, therefore, accommodate932

a large number of EV charging piles.933

In cooperation with the double-layer optimization archi-934

tecture proposed in this paper and optimal charging and935

discharging control of EVs in a decentralized and distributed936

way, the prosed model can reduce charging station penalty937

cost of contract capacity by 58%, increase operating profit938

by 2.3%, decrease charging cost of EV users participating 939

in smart bidirectional charging and discharging by about 940

10%, and hundreds of charging piles can be managed within 941

acceptable execution time. 942

Thus far, the 1,000 charging piles have been simulated 943

for EV charging stations in commercial buildings. Next, the 944

authors plan to implement the platform in a real virtual 945

power plant (VPP) to verify the system platform performance 946

and meet demands for charging and discharging transac- 947

tions, when the number of EVs increases rapidly. Meanwhile, 948

by integrating more distributed power resources in the power 949

grid through the power trading platform, the overall power 950

utilization efficiency can be maximized to assist the energy 951

management of the participants in the VPP. 952
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