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ABSTRACT Due to the life expectancy increase, there will be a workforce shortage in elderly care sector
in forthcoming years. Ambient Assisted Living (AAL) systems can cope with this issue. A subset of AAL,
Human activity recognition (HAR) provides an efficient way to tackle this issue. It can help with evaluating
general health and welfare of elderly by automatically tracking their activities. Lifelogging and home diary
applications will reduce the load on physicians and caregivers. On the other hand, complex activities play
a vital role as they have high level semantic characteristics that truly represent daily life of the user. The
main objective is to track these high-level semantic motions with low-cost single sensor systems with
efficientmachine learning frameworks. To achieve this objective, a framework is proposed to predict complex
human activities from a single sensor using a machine learning approach. Time and frequency features are
extracted from PAAL ADL Accelerometry Dataset and fed to Locally Weighted Random Forest (LWRF)
machine learning algorithm. This algorithm is a hybrid structure that utilizes local weighting by introducing
neighboring samples on Random Forest tree building phases. Proposed approach achieved 91% accuracy
for HAR and 91.3% for gender recognition, outperforming other machine learning algorithms and previous
study on the same dataset. This is the first study that utilize a local weighted approach for accelerometer
signal domain. For prospective application, proposed framework can be embedded in lifelogging and home
diary applications in home environments to track mental status of elderlies.
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INDEX TERMS Accelerometers, activity recognition, ambient assisted living, machine learning, wearable
sensors.

I. INTRODUCTION19

In recent years, world life expectancy is increased due to20

advancements on healthcare, this situation results in an ele-21

vation of elderly population in society [1]. With the reduction22

of birth rates all around the world, the ageing population23

gains a larger proportion in living societies. In approximately24

30 years, 16% of all human population will be over 65 years25

of age [1]. This situation can cause a workforce shortage on26

elderly care sector. Workforce shortages can lead to over-27

time work and workload increase of care workers. Also,28

this issue can affect the quality of assistance in healthcare29

facilities. To tackle this problem, Ambient Assisted Living30

(AAL) technologies are introduced [2]. With the introduction31

of assistive technologies, humans can take better care of32

The associate editor coordinating the review of this manuscript and

approving it for publication was Lei Shu .

the elderly. These technologies can help on rehabilitation, 33

monitor chronic diseases, tracking cognitive impairment and 34

mild dementia in older adults [3]. 35

AAL is the combination of several aspects, these are 36

context awareness, internet of things, machine learning and 37

sensor technologies [4]. All of these aspects are combined 38

to provide a better life quality for elderly and enable them 39

to live their life independently. A subset of AAL, Human 40

activity recognition (HAR) is a perfect combination of these 41

aspects. HAR, which involves analyzing data from different 42

sensor sources to identify characteristics related to a person’s 43

activity, is a crucial component of AAL. It can be utilized 44

to promote proactive behavior or even basic cooperation 45

between the person and the environment [2]. 46

Recognition of daily activities via HAR is a good approach 47

for evaluating general health and welfare in elderly people. 48

This evaluation can be done by asking the question ‘‘Is the 49
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user conducting his or her normal activities at the usual50

times?’’. This approach can aid elderly in lifelogging and51

home diary applications. By looking at automated activity52

logs, physicians or caregivers can check the validity of activ-53

ities and afterwards detect certain dementia related diseases54

before they begin to manifest [5]. Likewise, users can check55

their activity diaries and see what activities they have done.56

Since there are no available treatment for dementia related57

diseases, an HAR system that collects data for long durations58

in a home setting can help doctors or caregivers to analyze59

progression of mental decline [5].60

There are mainly two ways to conduct HAR, these are61

vision-based and sensor-based approaches. In vision-based62

approach, image and video data are analyzed from optical63

sensors to detect activities. Research area of this approach is64

limited with security related and interactive applications [6].65

There are several negative sides of this approach. First, the66

performance is greatly dependent on external conditions. Bad67

lighting conditions of measurement areas can greatly affect68

the performance of the vision-based system. Also, concerning69

privacy, these systems cannot be installed on private spaces70

like bathrooms and bedrooms [7]. Lastly, users should always71

stay in visual range of optical systems. Because of these72

drawbacks, interest in vision-based approaches is declining73

in literature.74

As vision-based approaches are losing its popularity,75

sensor-based approaches take the lead on HAR research.76

In recent years, sensor-based approaches have gained a vast77

majority in research due to the advancements of microsensor78

technologies [8]. Sensor based approaches mainly consist79

of wearable sensors. These wearable sensors can be Inertial80

Measurement Units (IMU), pressure sensors and global posi-81

tioning system (GPS) sensors [2]. Applications that can be82

done with sensor-based approaches are fitness and motion83

tracking, daily activitymonitoring, virtual reality andmedical84

rehabilitation [9]. Sensor based approaches can be considered85

as two types: Multi sensor based and single sensor-based86

systems. As the name suggests, multi sensor-based systems87

can increase activity recognition performance by combining88

multiple sensor data, however it is not applicable for long89

term use in daily life. The reason behind this issue is that one90

sensor malfunction can cause activity recognition system to91

collapse if the system dependent on frameworks that use sen-92

sor fusion [10]. Also, dealing with multiple sensors increases93

the computational costs due to processing of aggregated data94

from fused sensors. For these aforementioned drawbacks,95

recent studies are mainly focused on single sensor-based96

systems [11]. But single sensor systems are not perfect either.97

Themain drawback with single sensor approaches is the limi-98

tation of available concurrent data [10]. So, studies aremainly99

focused on finding a robust and effective feature extraction100

and machine learning algorithm to overcome this drawback.101

Therefore, it poses a challenge to researchers to do human102

activity recognition analysis using only one sensor.103

Human activities can be considered as a combination104

of simple and complex activities [9]. Simple activities are105

defined by actions that repeats itself and possess a single 106

body pose. Example simple activities are sitting, running, 107

walking. Simple activities lack the capability of reflecting 108

the daily life of users because behaviors of users are made 109

of combination of several activities. Complex activities on 110

the other hand, are the combination of simple activities. For 111

example, eating a meal can be considered as a complex 112

activity because it involves sitting and can contain several 113

different handmotionswhile eating ameal. Example complex 114

activities are cleaning, cooking, writing and eating [9]. These 115

activities usually have high level semantic characteristics 116

that truly represent daily life of the user. In order to create 117

an AAL system for the care of the elderly, it is necessary 118

to examine complex activities instead of focusing on sim- 119

pler ones because complex activities contain more informa- 120

tion about daily life of a user [12]. But to be able to find 121

appropriate features is another challenge in complex HAR 122

tasks [13]. Machine learning approaches can become insuffi- 123

cient to make accurate predictions without a prior knowledge 124

on which features have the most representative power [14]. 125

Ranking of features can provide this insight. With the help 126

of ranking approaches, relevant features can be identified 127

easily for recognition tasks [15]. Another research direction 128

for these complex activities is to find robust machine learning 129

frameworks that can cope with limited sample size. Due to 130

their nature, these activities can have small motion cycles and 131

therefore they have small number of samples. These limited 132

sample size data can have a negative effect on prediction 133

capability of machine learning approaches [5]. 134

To this end, a framework is proposed to predict complex 135

human activities from a single sensor using a local weighted 136

machine learning approach. The main challenge is, instead 137

of using multiple sensor data, use a robust framework that 138

combines single sensor data and machine learning algorithms 139

to predict complex daily living activities. For this purpose, 140

an open access dataset called ’’PAAL ADL Accelerometry 141

dataset’’ is selected for this study. The dataset includes sim- 142

ple movements and complex daily living activities. Also, 143

it has the highest number of daily living activities among 144

accelerometer-based open access datasets so far [5]. Several 145

time and frequency domain features are extracted from a 146

single accelerometer sensor and fed to a hybrid machine 147

learning algorithm called Locally Weighted Random For- 148

est (LWRF) to predict human activities. A further analy- 149

sis is conducted to assess gender recognition capability of 150

proposed approach. In addition, to analyze the importance 151

of individual signal features on prediction tasks, feature 152

ranking is done on extracted accelerometer motion signals. 153

The proposed framework can provide robust solutions in 154

AAL for assessing dementia related disease progression 155

of elder people in home environments by tracking their 156

daily activities. Main contributions of this study are given 157

below: 158

• Proposed framework can reduce dataset variation effects 159

by introducing a combination of local weighting scheme 160

and Random Forest algorithm. 161
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• By utilizing neighboring data points and locally weight-162

ing in prediction phase, this approach can be considered163

for predicting activities with limited number of samples.164

• According to ranking of extracted features, signal mag-165

nitude area (SMA) feature is the most representative166

feature for complex activities and correlation between X167

and Z axis of accelerometer signal feature has the highest168

representative ability for gender recognition tasks.169

• This is the first study that employs local weighted170

machine learning approach on an accelerometer signal171

domain.172

• The proposed framework outperformed previous study173

on the same dataset and other machine learning174

approaches when predicting complex human activities.175

The paper is organized as follows; Section II gives an176

overview of current literature, Section III includes pro-177

posed framework, description of PAAL ADL Accelerome-178

try dataset, several preprocessing phases and features and179

also proposed local weighted approach. Section IV explains180

evaluation metrics and give experimental results. Lastly,181

Section V includes conclusions.182

II. RELATED WORK183

The only related work found on PAAL dataset is published184

in [5]. So, related work section is mainly constructed with185

recent studies that have used single three axis accelerometer186

signals and analyze complex human activities. In literature,187

some studies focus on hand crafted signal features and tradi-188

tional machine learning approaches for activity recognition.189

These hand-crafted features are mainly consisted of statistical190

and time series characteristics of a signal. On the other hand,191

deep learning architectures are proposed for datasets that192

possess large sample sizes. In these deep learning architec-193

tures, instead of using hand crafted features, deep learning194

frameworks extract features automatically and predict human195

activities.196

Climent-Pérez and Florez-Revuelta [5] conducted the prior197

study that analyzed PAAL accelerometer dataset for activ-198

ity recognition. They proposed a multi objective evolution-199

ary algorithm called MaOEA to find appropriate weights200

for extracted features. Aim of this proposed approach is201

to find a method that hide age and gender of a person202

while maintaining human motion characteristics. They used203

PAAL accelerometer dataset which contains 24 activities that204

include simple movements and complex daily living activ-205

ities. A single wrist worn accelerometer is used to capture206

human motions from 52 participants. They extracted time207

and frequency domain features from these motion signals.208

Random Forest algorithm is selected as an inductor classi-209

fier in their proposed approach. The authors reported accu-210

racy of their approach and indicated that MaOEA algorithm211

can preserve motion characteristics while concealing gen-212

der and age information with a tolerable performance loss.213

They also reported the case that every feature had equal214

weights and achieved overall 87.2% accuracy in activity215

recognition task. Tian et al. [7] proposed a robust human216

activity recognition approach from single accelerometer sig- 217

nals. Proposed approach is based on kernel discriminant anal- 218

ysis (KDA) method and particle swarm optimized extreme 219

learning machine (QPSO-KELM). KDA is used to extract 220

meaningful features from motion signals. The authors used 221

their own dataset that includes single accelerometer signals. 222

They benchmarked different feature sets and classifiers with 223

their proposed features and classifier. The authors reported 224

that their approach outperformed other feature sets and clas- 225

sifiers in terms of accuracy. Huan et al. [9] tackle the problem 226

of complex human activity recognition. They proposed a 227

framework to extractmulti-layer features from accelerometer, 228

gyroscope and magnetometer signals. The authors utilized 229

a hybrid deep learning architecture that consists of CNN 230

and RNN architectures. They tested their approach on sev- 231

eral open activity recognition datasets. They compared their 232

method with previous works and outperformed them in all 233

evaluation metrics. The authors also stated that location and 234

time domain features are an important indicator for motion 235

signals. 236

Tian et al. [10] proposed ensemble-based filter feature 237

selection (EFFS) approach to optimize the feature set in 238

human activity recognition task. They extracted wavelet 239

decomposition features and filtered them using EFFS 240

approach on a private dataset that includes single accelerom- 241

eter signals. SVM and kNN are selected as classifiers. They 242

reported that EEFS approach combined with SVM classifier 243

can give high accuracy with less features. Lu and Tong [11] 244

conducted a research on human activity recognition using 245

single three axis accelerometer. In order to reduce the bur- 246

den of heavy preprocessing phase, the authors proposed a 247

modified recurrence plot by converting motion signals to 248

images. After these conversion phase, images go through a 249

tiny residual neural network for classification. They used their 250

own dataset and ADL open access dataset. Several machine 251

learning approaches are benchmarked, and their approach 252

outperformed others in terms of accuracy and computation 253

time. Guney and Erdas [16] studied how deep learning archi- 254

tectures affect human activity prediction rate from single 255

accelerometer signals. They aimed to do feature free classifi- 256

cation using deep Long Short-TermMemory (LSTM) model. 257

They used an open access dataset that has single tri axis 258

accelerometer data. The authors compared their approach 259

with other previous studies and outperformed them in terms 260

of accuracy. Acici et al. [17] constructed a complex human 261

activity dataset with single wrist worn Inertial Measurement 262

Unit (IMU). They extracted time and frequency domain 263

features from motion signals. After feature extraction, they 264

compared traditionalmachine learning approaches on activity 265

prediction and person identification tasks. Random Forest 266

model achieved the highest accuracy in all cases. They also 267

discovered that combination of accelerometer and magne- 268

tometer signals can increase prediction performance on per- 269

son identification and complex activity recognition. 270

Lu et al. [18] provide a different perspective for activ- 271

ity recognition using single accelerometer. The authors 272
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categorize human actions as countable (complex) and273

uncountable (still) actions and stated that they should have274

dealt with different feature sets. Therefore, they extracted275

global and local features from motion signals. Evaluation276

of their approach is done with several open access datasets.277

Based on their findings, the authors reported that local fea-278

tures have a bigger impact on countable activities rather than279

uncountable ones.280

Lv et al. [19] aim to characterize complex human activ-281

ities by proposing an end-to-end deep learning model that282

consists of convolutional neural networks (CNN) and recur-283

rent neural networks (RNN). The authors extracted deep284

features from multi modal time series data using CNN285

and fed these features to a RNN model. They tested their286

approach on two human activity recognition datasets called287

PAMAP2 and self-collected dataset (SCD). They compared288

their method with other deep learning architectures and289

they outperformed others in terms of accuracy in both290

datasets. Mekruksavanich et al. [20] proposed a hybrid RNN291

based model and investigated it‘s efficiency on complex292

human activity recognition tasks. The authors compared their293

approachwith other deep learningmodels and previousworks294

on several open access datasets. The results showed that their295

approach is better than other classifier models in terms of296

accuracy, precision, recall and F1 score.297

Qin et al. [21] used machine learning approaches to track298

swimming activities. Their objectives are to predict swim-299

ming style, count swimming time and predict number of300

strokes. They analyzed wrist worn accelerometer signals of301

a swimming team. The authors extracted statistical and time302

series features from raw accelerometer signals. The authors303

also proposed a new time counting function based on window304

slicing. They compared several traditional machine learning305

approaches on swimming style prediction and found out that306

SVM outperformed all others in all evaluation terms.307

III. MATERIALS & METHODS308

A. GENERAL FRAMEWORK309

Proposed machine learning approach takes single accelerom-310

eter sensor signal with three channels, extract time and fre-311

quency domain features from these channels and then feed312

these extracted representative features to LWRF algorithm.313

Aim of this machine learning approach is to exploit local314

patterns in complex humanmotions by utilizing local weights315

and Random Forest algorithm. A traditional learning pro-316

cess with training and testing is employed. This process has317

several phases. First, data acquisition is applied to extract318

raw sensor data from a single wrist worn accelerometer.319

Second, a preprocessing phase is applied to reduce noise320

of accelerometer signal and increase sample size by sliding321

window approach. After that, time and frequency domain322

features are extracted from each channel of signal to represent323

complex human motions. For third stage, training and test324

data are generated with 10-fold Cross Validation. For fourth325

stage, classifiers are trained with signal features.326

Each observation in the dataset has an activity and a gender 327

label. Trained classifier uses available trained observations to 328

predict the class label of a test observation. At the last stage, 329

classifier performance is evaluated using various metrics. 330

General overview of proposed machine learning approach is 331

given in Fig. 1. 332

B. PAAL ADL ACCELEROMETRY DATASET 333

For this study, a publicly accessible human activity recogni- 334

tion dataset called ‘‘PAAL ADL Accelerometry dataset’’ is 335

used [22], [23]. The dataset consists of accelerometer mea- 336

surements of 52 healthy participants. Participant gender dis- 337

tributions are 26 men and 26 women. The age of participants 338

ranges between 18 and 77 years. The dataset has 24 daily 339

living activities that include simple movements and complex 340

daily living activities. Activities in the dataset are divided 341

into 6 broad categories (Eating and Drinking, Hygiene, 342

Dressing/Undressing, Miscellaneous and Communication, 343

Basic health indicators, House cleaning). Although these 344

24 activities sometimes have similar movements, accelerom- 345

eter signals can capture subtle motion differences in these 346

similar activities on all axes. These daily living activities are 347

given in Table 1. Data capture is done with a single wrist 348

worn accelerometer. Themeasurements are recorded at 15Hz. 349

In order to capture true nature of activities, participants are 350

asked to wear this wrist worn accelerometer at home or office 351

setting instead of a laboratory environment [22]. Participants 352

did repetitions for every activity at average 5 times. This 353

approach leads to 6072 recording files in total. 354

TABLE 1. Available activities in the dataset.

C. DATA PREPROCESSING & FEATURE EXTRACTION 355

Feeding proposed classification framework with raw 356

accelerometer signal values is not feasible [24], [25]. It is 357

based on several reasons. Firstly, majority of machine learn- 358

ing classifiers need equal input in order to process data, this 359

is not the case for accelerometer signals since they have 360

different signal lengths [17]. The other reason is that these 361

signals are not in the same time dimension even though 362

they sometimes possess identical signal lengths. This issue 363

makes it hard for machine learning algorithms to exploit local 364

patterns in signal data. Another reason is that the temporal 365

signal measurements sometimes make it harder for machine 366

learning algorithms to predict behavior of motion since 367

these raw measurements sometimes do not reflect motion 368
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FIGURE 1. General framework for proposed approach.

characteristics. In order to overcome these aforementioned369

issues, a typical approach is to build a representative feature370

set from raw accelerometer signals [17], [8]. Preprocessing371

and feature extraction scheme from previous work on the372

same dataset [5] is employed to set up the same baseline for373

prediction tasks.374

In order to reduce noise in signal and achieve a robust375

machine learning model, a two-step preprocessing approach376

is applied in this study [5]. First, to eliminate high frequency377

noises while keeping motion characteristics intact, a fourth378

order Butterworth low pass filter with 15Hz cut off frequency379

is applied to raw signal. Secondly, in order to eliminate outlier380

values in time series signal, median filter with third order381

parameter is applied [5].382

To acquire samples from the dataset, data are divided383

into windowed sections [5]. Feature extraction processes are384

carried on by 5 second sliding window approach. In this385

approach, time series signals are divided into multiple win-386

dows so that they have 20% overlap between neighboring387

windows. This sliding window approach outputs 28642 sam-388

ples. Sample distributions of each activity can be seen in389

Table 2.390

In the previous study, authors extracted several time and391

frequency domain features from raw accelerometer signals.392

Time and frequency domain features capture vital charac-393

teristics of motions in time series data [5], [8], [17], [26],394

[27], [28]. In this study, same features that are used in the395

previous study are extracted. Extracted time and frequency396

domain features from accelerometer signals are given in397

Table 3. Features are extracted from each channel (x, y, z)398

of accelerometer and signal magnitude vector of each obser-399

vation. At the final stage, these features are concatenated to400

form a final representative feature vector.401

TABLE 2. Number of samples for each activity.

D. LOCAL WEIGHTED APPROACH 402

For classification of complex human activities, a hybrid 403

machine learning model called Locally Weighted Random 404

Forest (LWRF) is utilized in this study. This model is first 405

used with multi-channel gait signals to predict the severity 406

of Parkinson’s Disease [26]. With the contribution of both 407

Random Forest and local weighting schemes, it outperformed 408

other machine learning approaches in multi-channel gait 409
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TABLE 3. Extracted features from raw accelerometer signals.

signal problem domain. Inspired with this succession on410

multi-channel signals, LWRFmodel is adapted and used with411

three channel axis accelerometer signals aiming to provide412

accurate estimation of human motions.413

LWRF algorithm is created to overcome a disadvantage414

of Random Forest algorithm. This disadvantage is, adjusting415

the parameters in the learning phase according to all trained416

samples assuming that all samples are equal [26]. This global417

approach can sometimes lead to weak parameters that can-418

not represent all samples in the dataset. When there is high419

variability in the dataset, it could be hard to find a suitable420

representation. This situation can happen often in human421

activity recognition tasks since there are multiple subjects422

participating in data collection phase. [29], [30]. Dataset423

variability in human activity recognition can occur due to age,424

gender and experience of subjects when performing activ-425

ities [31]. These variabilities in HAR data limit the ability426

of classifier algorithm to find a global fit model. A possible427

solution to reduce the variation effect is to create local models428

that are established on neighbors of the test sample instead429

of considering every sample as equal on the global model.430

This can be done via giving weight to each sample in training431

process and create a local prediction model. Weighting of432

training samples increases the chance of machine learning433

algorithm to pay attention to similar available data points.434

In HAR scenario, weights help to construct a local model for435

a specific activity by striking out variation effects.436

LWRF machine learning model consists of two parts,437

Random Forest and local weighting [26]. Random Forest is438

a decision tree algorithm that is based on ensemble learn-439

ing [32]. It can be used either as a classifier or a regressor440

according to the problem domain. In this algorithm many441

decision trees are formed using a bootstrap sample. Ran-442

dom Forest employs ensemble learning strategy by Bootstrap443

aggression or Bagging process. In this process every tree is444

constructed separately by using the bootstrap sample. These445

trees are called random trees. Random Forest uses a random446

variable selection when creating a branch. Other decision tree447

approaches aim to find the best branch in all available vari-448

ables. Reason for this randomness is to minimize correlations449

between candidate decision trees [33]. This randomness cri-450

teria become its advantage when making predictions because451

if the correlation between these trees becomes high, then it452

can affect prediction process and thus increase error. In the453

final process, outputs of these trees are combined to achieve 454

a final output [34]. Majority voting of all tree outputs is done 455

for classification tasks and averaging of all tree output values 456

for regression tasks. 457

The second part of the LWRF algorithm is local weighting. 458

Local weighting considered as a non-parametric learning 459

model that utilize local relations on the dataset [35]. The 460

nearest points to the query sample are used to build the 461

local weighted model, rather than building a global model 462

on all available training data. Number of nearest points are 463

usually user defined same as in k nearest neighbor algorithm. 464

Aweight value is assigned for every neighboring data sample 465

in the dataset. Target value estimation is affected by these 466

weight values [36]. Data points that are closest to the query 467

have greater weight values compared to those that are further 468

from it. From these closest points, estimated k points are used 469

in training phase to finally define the label of a query point. 470

In LWRF algorithm, local weighting scheme is infused with 471

Random Forest when computing split points and selecting 472

samples for bootstrap [26]. The novelty of LWRF algorithm, 473

is that instead of focusing all of the existing data, LWRF 474

algorithm focuses on similar data points which are defined 475

by distances and by adding weights to these similar data 476

points, it incorporates these weighted data points to Random 477

forest decision making processes. By this incorporation Ran- 478

dom Forest selects bootstrap samples among these weighted 479

samples. 480

Algorithm 1 Locally Weighted Random Forest (LWRF)
Inputs: training data points (S), query point (s), neighborhood size (k)
Output: Predicted activity label of s
Begin:

1: Use Euclidian distance to calculate distance between s and
each training data point (S) in the dataset.
2: Estimate (k) nearest neighbors according to distances.
3: for every neighboring data point
4: Calculate weights according to Equation (1).
5: Assign weight values to neighboring data points.
6: end for
7: Build Random Forest trees based on these weighted data points.
8: Use Random Forest algorithm to predict the label of s.
9: Obtain the activity class label of s as a result of

majority voting of random trees.

Return Predicted activity label of s

Working mechanism of LWRF algorithm is explained as 481

follows,Weight calculation for each data point is given in (1): 482

Wx =
1

1+ distance(s,sx)
(1) 483

Wx is the weight of xth neighbor, sx corresponds to xth neigh- 484

bor, s is the query point and distance(s, sx) is the Euclidian 485

distance between query and neighbor point. As can be seen 486

from the equation, data points that are closest to the query 487

will have greater weight and thus greater impact on pre- 488

diction. Architectural overview of LWRF algorithm is given 489

in Fig. 2. 490
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FIGURE 2. Architecture of LWRF algorithm.

IV. RESULTS491

A. EVALUATION492

All experiments are done using a k-fold cross validation (CV)493

setup. In this setup, the dataset is randomly split into k folds.494

Afterwards, each fold is selected for testing phase while495

remaining k-1 folds are used for training phase. Stopping496

criteria for CV is if all folds are tested. k value is selected as497

10 to establish the same experimental setup as previous work498

on the PAAL ADL dataset [5].499

To evaluate proposed classification framework, several500

classifier performance metrics are selected. These metrics501

are Accuracy (A), Precision (Positive predictive Value) (P),502

Recall (Sensitivity) (R), Specificity (True Negative Rate) (S),503

Matthews correlation coefficient (MCC) and F1 Score. For-504

mal definitions of Accuracy, Precision, Recall, Specificity,505

Matthews correlation coefficient and F1 Score are given506

in (2) (3) (4) (5) (6) (7):507

Accuracy508

=
TP+ TN

TP+ FP+ TN + FN
(2)509

Precision510

=
TP

TP+ FP
(3)511

Recall512

=
TP

TP+ FN
(4)513

Specificity514

=
TN

TN + FP
(5)515

MCC516

=
(TPTN )-(FPFN )

√
(TP+ FP) (TP+ FN ) (TN + FP) (TN + FN )

(6)517

F1 Score518

=
2 Precision Recall
Precision+ Recall

(7)519

TP, TN, FP and FN abbreviations stand for number of true520

positives, true negatives, false positives and false negatives521

respectively.522

B. EMPIRICAL RESULTS 523

To validate proposed framework’s performance on predic- 524

tion tasks, several experiments are conducted with other 525

machine learning algorithms. These machine learning algo- 526

rithms are J48 Decision Tree (DT) [26], Multilayer Percep- 527

tron (MLP) [37], k Nearest Neighbor (kNN) [37], Naïve 528

Bayes (NB) [38], Logistic Model Tree (LMT) [39] and Sup- 529

port Vector Machine (SVM) [40]. Parameter settings for 530

machine learning algorithms are as follows; NB classifier 531

with gaussian distribution is selected for experiments. For 532

DT, confidence factor selected as 0.25, minimum number 533

of objects selected as 2 and number of folds selected as 3. 534

For MLP, learning rate selected as 0.3, momentum selected 535

as 0.2, number of hidden layers selected as 43 for HAR and 536

32 for gender recognition tasks, number of epochs selected 537

as 500. For SVM, kernel function selected as radial basis 538

function with third degree. For LMT, minimum number of 539

instances selected as 15, fast regression is selected to speed 540

up the training process and noweight trimming is applied. For 541

kNN, k is selected as 1. For Random Forest model in LWRF, 542

number of trees selected as 100 and number of randomly 543

chosen attributes selected as 7. 544

Overall prediction results for activity recognition with 545

a 10-fold CV setting can be seen in Table 4. Proposed 546

locally weighted framework achieved 91%, 90.9%, 91%, 547

99.5%, 0.91 and 0.91 in terms of Accuracy, Precision, Recall, 548

Specificity, Matthews correlation coefficient and F1 score 549

respectively. As can be seen from Table 4. LWRF algorithm 550

outperformed other classifier algorithms and previous work 551

by Climent-Pérez and Florez-Revuelta [5]. kNN algorithm 552

comes as second and previous work [5] comes as third. 553

Naïve Bayes performedworst when predicting activities from 554

accelerometer signals. A conclusion can be drawn from these 555

classification results that adding local weights to Random 556

Forest algorithm can increase accuracy when detecting com- 557

plex human activities. Confusion matrix of LWRF algorithm 558

for human activity recognition is given in Fig. 3. 559

TABLE 4. Overall classification results for activity recognition task (NR:
Not Reported).

LWRF algorithm uses only number of nearest neigh- 560

bors (k) parameter to carry out predictions. Further experi- 561

ments are conducted on effects of k parameter value and as 562
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FIGURE 3. Confusion matrix for human activity recognition task.

a result k value is selected as 55 in experiments. As can be563

seen in Fig 4., accuracy of LWRF classifier achieved highest564

when k is selected as 55. After 55 nearest neighbors value,565

accuracy begins to drop and stabilizes.566

FIGURE 4. Impact of k value on prediction accuracy.

Research on gender recognition using sensors has a great567

importance and its widely studied [41], [42], [43], [44].568

By defining the gender of activity performer, systems can569

discover more features that are more personalized [41]. Users570

can get gender-based feedback about their health status and571

recommendations [42], [43]. Since gender has a correla-572

tion with human activity, how the activities are done differ573

between genders [44]. In order to increase the validity of pro-574

posed framework, a further analysis on accelerometer signals575

is conducted. In this analysis, gender recognition capabilities 576

of machine learning algorithms are investigated on the same 577

dataset. Main purpose of this investigation is to validate 578

the capability of the proposed framework when exploiting 579

relationships between human motions and gender charac- 580

teristics. Obtained results can be seen in Table 5. LWRF 581

achieved 91.3%, 91.3%, 91.4%, 91.2%, 0.83 and 0.91 in 582

terms of Accuracy, Precision, Recall, Specificity, Matthews 583

correlation coefficient and F1 score respectively. As can be 584

seen from Table 5. LWRF algorithm outperformed other 585

classifier algorithms and previouswork byCliment-Pérez and 586

Florez-Revuelta [5] when predicting gender characteristics of 587

human motions. kNN algorithm comes as second and previ- 588

ous work [5] comes as third. Naïve Bayes performed worst 589

when predicting gender characteristics from accelerometer 590

signals. Confusion matrix of LWRF algorithm for gender 591

recognition is given in Fig. 5. 592

Experiments are extended to include feature rank analysis. 593

Feature ranking approaches determine which features are 594

important in decision making processes [14], [15]. In this 595

study, feature ranking is done by using a Correlation based 596

feature selection method with ranker approach for both tasks 597

(Human Activity Recognition (HAR) and Gender Recog- 598

nition (GR)) [45]. By analyzing feature ranks, important 599

time and frequency signal features are identified for both 600

tasks in decision making [46]. Top 10 ranked features 601

according to feature rank analysis algorithm are given in 602

Table 6. According to Table 6., signal magnitude features, 603
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RMS and percentile of time domain signal features hold the604

most valuable informationwhen determining complex human605

activities. For GR task, correlation between axes and signal606

magnitude features play an important role for determining607

gender. SMA feature is the most valuable one for both tasks.608

So, we can say that signal magnitude feature of accelerometer609

features has significant contribution in determining complex610

activities and gender.611

FIGURE 5. Confusion matrix for gender recognition task.

TABLE 5. Overall classification results for gender recognition task
(NR: Not reported).

TABLE 6. Top 10 ranked features for both tasks.

Side by side comparison with previous work on the same612

dataset can be seen in Fig. 6. As can be seen from Fig. 6,613

for activity and gender recognition tasks, LWRF algorithm614

outperformed previous study in terms of accuracy. Previ-615

ous study utilized Random Forest only as a global model.616

Whereas LWRF focuses on local models. By using local617

weighting, dataset variability is minimized and therefore618

accuracy is increased. Weighting of samples in Random 619

Forest processes increases the chance of machine learning 620

algorithm to pay attention to similar available data points 621

whereas previous study only consider global samples for 622

Random Forest processes. 623

The authors that analyzed this dataset mentioned some 624

issues regarding class confusion [5]. They reported that sev- 625

eral activities have similar movements and therefore classifi- 626

cation model is confused when making activity predictions. 627

Similarities came from same position of hands, symmetricity 628

along time axis and lack of movement of wrist when doing 629

activities [5]. Reported most confused activities are ‘‘put 630

on a shoe, take off a shoe, open a bottle, open a box, put 631

on glasses, take off glasses, stand up, sit down, phone call, 632

sneeze or cough and blow nose’’. As a final analysis, pro- 633

posed framework is compared with previous study on most 634

confused activities. As can be seen in Table 7, when using 635

LWRF algorithm, accuracies are increased in most of the 636

confused activities. Previous study failed to detect activities 637

that have small sample sizes (open a bottle, open a box, take 638

off glasses, sneeze/cough and blow nose) whereas proposed 639

approach identified these activities with higher recognition 640

rate. A possible inference from these results is that LWRF 641

algorithm‘s inclusion of local weights in Random Forest 642

decisionmaking process can overcome the need for more data 643

to achieve global machine learning model. This analysis also 644

shows that proposed framework can detect smallest changes 645

in human motions and identify them correctly in many cases. 646

In addition, ROC curve results of LWRF algorithm for all 647

activities is given as supplementary material (Fig. 7, 8, 9). 648

In these figures, X axis refers to FP rate and y axis refers to 649

TP rate. As can be seen from these results, LWRF maintains 650

a good performance in predicting complex activities. 651

1) CRITICAL ANALYSIS AND DISCUSSION 652

According to results presented in ‘‘Empirical Results’’ 653

section, proposed complex human activity recognition frame- 654

work achieved higher performance when compared with 655

other machine learning models and previous sole study on 656

this dataset. A conclusion can be drawn from HAR task 657

classification results that adding local weights to Random 658

Forest algorithm can increase prediction quality when detect- 659

ing complex human activities. LWRF algorithm‘s parameter 660

effect on recognition tasks are also investigated and 55 neigh- 661

bor value is selected as suitable candidate for experiments. 662

Gender recognition capabilities of proposed framework are 663

also investigated and similar results achieved. According to 664

achieved results, proposed framework can be a viable tool for 665

exploiting relationships between human motions and gender 666

characteristics. 667

Feature rank analysis on the extracted features revealed 668

that signal magnitude features, RMS and percentile of time 669

domain signal features hold the most valuable information 670

when determining complex human activities and correlation 671

between axes and signalmagnitude features play an important 672

role for determining gender. SMA feature is themost valuable 673
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one for both tasks. Previous study failed to detect activities674

that have small sample sizes whereas proposed approach675

identified these activities with higher recognition rate. A pos-676

sible inference from these results is that LWRF algorithm‘s677

inclusion of local weights in Random Forest decision making678

process can overcome the need for more data to achieve679

global machine learning model. A final comparison analysis680

with the previous study reveals that previous study utilized681

Random Forest only as a global model. Whereas LWRF682

focuses on local models. By using local weighting, dataset683

variability is minimized and therefore accuracy is increased.684

Weighting of samples in Random Forest processes increases685

the chance of machine learning algorithm to pay attention686

to similar available data points whereas previous study only687

consider global samples for Random Forest processes.688

FIGURE 6. Comparison with previous work on both tasks.

TABLE 7. Comparison of previous and current study on most confused
activities.

V. CONCLUSION & DISCUSSION689

Due to the life expectancy increase, there will be a workforce690

shortage in elderly care sector in forthcoming years. The best691

way to overcome this issue is with the help of AAL systems. 692

A subset of this system, HAR provides an efficient way to 693

tackle this workforce shortage. It can help with evaluating 694

general health and welfare status of elderly by automati- 695

cally tracking their activities. For example, Lifelogging and 696

home diary applications for dementia disease will reduce 697

the load on physicians and caregivers. Complex activities 698

play a vital role in these applications as they have high 699

level semantic characteristics that truly represent daily life 700

of the user. Therefore, instead of focusing simple activities, 701

recent studies pay attention to the activities that have complex 702

motion behavior. Another important thing is to track these 703

high-level semantic motions with low-cost single sensor sys- 704

tems with efficient machine learning frameworks. To address 705

this challenge, a framework is proposed to predict complex 706

human activities from a single sensor using a local weighted 707

machine learning approach. Proposed framework has several 708

contributions. First, it is the first study that utilize local 709

weightedmachine learning approach for accelerometer signal 710

domain. Secondly, proposed model outperformed sole previ- 711

ous study on the same dataset when predicting activities and 712

user gender. Novelty of this approach comes from proposed 713

approach‘s ability to accurately predict complex activities 714

that have a small movement cycle. These low sample size 715

activities can be harder to predict for global models due to 716

lack of data but LWRF algorithm‘s inclusion of local weights 717

in Random Forest decision making process can overcome 718

these problems. On the other hand, related studies focused 719

only complex activities that have limited number of activ- 720

ity categories. Proposed approach investigated a dataset that 721

has the largest number of activity categories. The empirical 722

results indicate that this study can provide robust solutions 723

in AAL for assessing dementia related disease progression 724

of elder people in home environments by tracking their daily 725

activities. 726

A hybrid machine learning algorithm called Locally 727

Weighted Random Forest (LWRF) is used as a classifier in 728

this problem domain. It is the combination of Random Forest 729

classifier with local weighting. Frequency and time domain 730

features are extracted and fed as an input to LWRF algorithm. 731

LWRF algorithm, outperformed other machine learning algo- 732

rithms and the previous work on activity recognition and 733

gender recognition tasks. Obtained results suggest that LWRF 734

algorithm can be able to distinguish complex activities even 735

with a limited number of samples. Another conclusion that 736

can be drawn from the experiments is that proposed frame- 737

work can reduce variation effects in accelerometer signals by 738

introducing local weights in several phases of Random Forest 739

algorithm. In addition, Feature rank analysis on the extracted 740

features revealed that signal magnitude features, RMS and 741

percentile of time domain signal features hold the most valu- 742

able information when determining complex human activities 743

and correlation between axes and signal magnitude features 744

play an important role for determining gender. SMA feature is 745

the most valuable one for both tasks. These high rank features 746

can be beneficial for HAR applications that focus on large 747
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number of complex activities and also differentiating gender748

motions in accelerometer signals.749

There are some shortcomings exist in this study. First short-750

coming is from selecting the right k value. LWRF machine751

learning algorithm performance relies on selection of k value.752

This dependence comes from locally weighted structure of753

the algorithm. So, in order to achieve good results in predic-754

tion tasks, k value needs to be fine-tuned. Another shortcom-755

ing of this study is from computational complexity of LWRF756

algorithm. Computational complexity of proposed approach757

consists of Random Forest algorithm and local weighting758

scheme that incorporates in random forest algorithm phases.759

Random Forest algorithms can have a high computational760

complexity depending on number of samples and features761

used. With the inclusion of weight calculations and weight762

assignments, computational complexity of LWRF algorithm763

can be high in some cases. So, in order to reduce this pos-764

sible computational load, several solutions exist in literature.765

Firstly, feature selection and Principal Component Analysis766

(PCA)methods can be used to reduce dimensionality and thus767

reduce computational complexity [47]. Another solution is768

to employ Graphics Processor Units (GPU) on an advanced769

centralized computer system to speed up the training process770

of Random Forest algorithm [48]. Parallel processing tech-771

niques can be also considered to overcome this issue [49].772

The other shortcoming of this study is with the sample size773

of the dataset. Unfortunately, the number of samples in the774

activities was low. Number of data points for each activity in775

the dataset can be increased. Especially dataset curators can776

focus on complex activities that have small movement cycles.777

One possible solution for this issue is to increase number of778

repetitions for each complex activity. With the inclusion of779

more samples, more data points can be processed and there-780

fore performance of proposed approach can increase. Another781

solution to overcome the lack of complex activity samples is782

by using resampling methods. Methods like ADASYN [50]783

and SMOTE [50] can be used in training phase to increase784

sample size. Having small number of samples limits proposed785

framework’s ability to utilize deep learning architectures.786

Because deep learning architectures need large amount of787

data to thrive in HAR applications.788

To give an overview of recent studies that investigated789

human activity recognition with single accelerometer or ana-790

lyze complex human activities, a comparative table is given791

in Table 8. As can be seen from the Table 8, the dataset that is792

used in this study has the highest number of activities [5].793

In other studies [9], [17], [18], [19], [20], high variety of794

complex activities can only be handled with inclusion of795

Accelerometer (A.), Magnetometer (M.) and Gyroscope (G.)796

sensors. On the other hand, majority of studies that used797

single accelerometer sensor [7], [10], [11], [16], [21] are798

mainly focused on limited number of activities due to its799

challenging nature. In addition, as can be seen from Table 7,800

studies that investigate high number of complex activities did801

not achieve as much accuracy as other studies that investi-802

gate small number of activities. This result comes from the803

TABLE 8. Recent studies that used single accelerometer Sensor or
analyze complex human activities.

challenging task of predicting complex motions. Whereas in 804

this study by using a single accelerometer sensor, a dataset 805

with highest number of activities among other datasets is 806

investigated with numerous machine learning algorithms. 807

Overview of strengths and limitations of proposed 808

approach are as follows; Main strengths of this study over 809

others can be given as; it is the first study that utilize 810

local weighted machine learning approach for accelerometer 811

signal domain, the proposed framework outperformed pre- 812

vious study on the same dataset and other machine learn- 813

ing approaches when predicting complex human activities, 814

the proposed framework can reduce dataset variation effects 815

by introducing a combination of local weighting scheme 816

and Random Forest algorithm, by utilizing neighboring data 817

points and locally weighting in prediction phase this approach 818

can be considered for predicting activities with limited num- 819

ber of samples. Limitations of the proposed framework com- 820

pared with other studies can be given as; decision of number 821

of neighbors (k value) needs parameter tuning and LWRF can 822

reach a high computational complexity depending on number 823

of samples and features used. Another problem is the lack of 824

sample size to utilize deep learning architectures. 825

For future direction of this study, one aim can be bench- 826

marking proposed framework on other human activity recog- 827

nition open access datasets. Datasets that have different type 828

of sensors can be considered. Fusion of these sensors and 829

their impact on prediction tasks can be investigated. This will 830

increase validity of the proposed approach on different sensor 831
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domains. The location and context of activity could be imple-832

mented in the processing if it was available in PAAL dataset.833

The authors of the PAAL dataset did not include these kind834

of information, but there are several ways to track context835

and location of activity in the literature. One possible way is836

using smart pressure sensors that are installed under the floor837

at home, so when the sensors are activated user location and838

user activity can be recorded at the same time [48]. Another839

solution can be installing motion and door sensors to several840

locations at home. When a sensor is activated, location of841

the user can be known and therefore activity and location842

information can be associated with each other [52], [53].843

Lastly, GPS sensors can be utilized but GPS sensors have844

limited indoor reception capacity so its suitable for detecting845

general location of user, for example at home or at office [54].846

Another future direction can be combining LWRF algorithm847

with location information. Datasets that have location data848

can be investigated to explore proposed approach‘s ability to849

fuse motion signals with location data. Also, feature selection850

methods based on optimization algorithms can be considered851

for future study. Especially, feature selection methods with852

gradient-based optimizer and grey wolf optimizer are proven853

to have a positive impact on prediction performance in HAR854

problems [55]. Also in future studies, LWRF‘s ability to855

deal with dataset class imbalance challenges will be inves-856

tigated in detail. Class imbalance solutions like undersam-857

pling and resampling techniques will be analyzed and can858

be infused with LWRF to overcome class imbalance. Com-859

bining traditional machine learning approaches with deep860

learning architectures can provide good prediction ability in861

HAR problem domain [56], [57]. Therefore, another future862

direction could be combining LWRF approach with other863

deep learning architectures like CNN and LSTM to increase864

prediction performance. These deep features can also utilize865

relationships between different accelerometer channels. Last866

future direction is to investigate how to overcome aforemen-867

tioned possible high computational complexity.868

REFERENCES869

[1] N. Gulati and P. D. Kaur, ‘‘FriendCare-AAL: A robust social IoT based870

alert generation system for ambient assisted living,’’ J. Ambient Intell.871

Humanized Comput., vol. 13, no. 4, pp. 1735–1762, Apr. 2022.872

[2] C.M. Ranieri, S.MacLeod,M.Dragone, P. A. Vargas, andR. A. F. Romero,873

‘‘Activity recognition for ambient assisted living with videos, inertial units874

and ambient sensors,’’ Sensors, vol. 21, no. 3, p. 768, Jan. 2021.875

[3] S. Wilhelm, ‘‘Activity-monitoring in private households for emergency876

detection: A survey of common methods and existing disaggregable data877

sources,’’ in Proc. 14th Int. Joint Conf. Biomed. Eng. Syst. Technol., 2021,878

pp. 263–272.879

[4] C. Byrne, R. Collier, and G. O’Hare, ‘‘A review and classification of880

assisted living systems,’’ Information, vol. 9, no. 7, p. 182, Jul. 2018.881

[5] P. Climent-Pérez and F. Florez-Revuelta, ‘‘Privacy-preserving human882

action recognition with a many-objective evolutionary algorithm,’’ Sen-883

sors, vol. 22, no. 3, p. 764, Jan. 2022.884

[6] L. M. Dang, K. Min, H. Wang, M. Jalil Piran, C. H. Lee, and H. Moon,885

‘‘Sensor-based and vision-based human activity recognition: A compre-886

hensive survey,’’ Pattern Recognit., vol. 108, Dec. 2020, Art. no. 107561.887

[7] Y. Tain, J. Zhang, L. Chen, Y. Geng, and X. Wang, ‘‘Single wear-888

able accelerometer-based human activity recognition via kernel dis-889

criminant analysis and QPSO-KELM classifier,’’ IEEE Access, vol. 7,890

pp. 109216–109227, 2019.891

[8] B. Erdaş, I. Atasoy, K. Açıcı, and H. Oğul, ‘‘Integrating features for 892

accelerometer-based activity recognition,’’ Proc. Comput. Sci., vol. 98, 893

2016, pp. 522–527. 894

[9] R. Huan, C. Jiang, L. Ge, J. Shu, Z. Zhan, P. Chen, K. Chi, and R. Liang, 895

‘‘Human complex activity recognition with sensor data using multiple 896

features,’’ IEEE Sensors J., vol. 22, no. 1, pp. 757–775, Jan. 2022. 897

[10] Y. Tian, X.Wang, P. Yang, J.Wang, and J. Zhang, ‘‘A single accelerometer- 898

based robust human activity recognition via wavelet features and ensem- 899

ble feature selection,’’ in Proc. 24th Int. Conf. Autom. Comput. (ICAC), 900

Sep. 2018, pp. 1–6. 901

[11] J. Lu and K.-Y. Tong, ‘‘Robust single accelerometer-based activity recog- 902

nition using modified recurrence plot,’’ IEEE Sensors J., vol. 19, no. 15, 903

pp. 6317–6324, Aug. 2019. 904

[12] A. Patel and J. Shah, ‘‘Sensor-based activity recognition in the context 905

of ambient assisted living systems: A review,’’ J. Ambient Intell. Smart 906

Environ., vol. 11, no. 4, pp. 301–322, Jul. 2019. 907

[13] D. Thakur and S. Biswas, ‘‘An integration of feature extraction and 908

guided regularized random forest feature selection for smartphone based 909

human activity recognition,’’ J. Netw. Comput. Appl., vol. 204, Aug. 2022, 910

Art. no. 103417. 911

[14] M. Sharif, M. A. Khan, F. Zahid, J. H. Shah, and T. Akram, ‘‘Human 912

action recognition: A framework of statistical weighted segmentation and 913

rank correlation-based selection,’’ Pattern Anal. Appl., vol. 23, pp. 1–14, 914

Feb. 2019. 915

[15] N. A. Capela, E. D. Lemaire, and N. Baddour, ‘‘Feature selection for 916

wearable smartphone-based human activity recognition with able bodied 917

elderly and stroke patients,’’ PLoS ONE, vol. 10, no. 4, pp. 1–18, 2015. 918

[16] S. Guney and C. B. Erdas, ‘‘A deep LSTM approach for activity recog- 919

nition,’’ in Proc. 42nd Int. Conf. Telecommun. Signal Process. (TSP), 920

Jul. 2019, pp. 294–297. 921
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prediction with deep learning,’’ Data, vol. 4, no. 1, p. 45, Mar. 2019. 1030

[51] C.-H. Lu and L.-C. Fu, ‘‘Robust location-aware activity recognition using 1031

wireless sensor network in an attentive home,’’ IEEE Trans. Autom. Sci. 1032

Eng., vol. 6, no. 4, pp. 598–609, Oct. 2009. 1033

[52] E. Nakagawa, K. Moriya, H. Suwa, M. Fujimoto, Y. Arakawa, and 1034

K.Yasumoto, ‘‘Toward real-time in-home activity recognition using indoor 1035

positioning sensor and power meters,’’ in Proc. IEEE Int. Conf. Per- 1036

vasive Comput. Commun. Workshops (PerCom Workshops), Mar. 2017, 1037

pp. 539–544. 1038

[53] T. Wang and D. J. Cook, ‘‘SMRT: Multi-resident tracking in smart Homes 1039

with sensor vectorization,’’ IEEE Trans. Pattern Anal. Mach. Intell., 1040

vol. 43, no. 8, pp. 2809–2821, Feb. 2020. 1041

[54] M. Straczkiewicz, P. James, and J.-P. Onnela, ‘‘A systematic review 1042

of smartphone-based human activity recognition methods for health 1043

research,’’ NPJ Digit. Med., vol. 4, no. 1, Dec. 2021. 1044

[55] A. M. Helmi, M. A. A. Al-qaness, A. Dahou, R. Damaševičius, 1045

T. Krilavičius, andM. A. Elaziz, ‘‘A novel hybrid gradient-based optimizer 1046

and grey wolf optimizer feature selection method for human activity 1047

recognition using smartphone sensors,’’ Entropy, vol. 23, no. 8, p. 1065, 1048

Aug. 2021. 1049

[56] V. Ghate and C. S. Hemalatha, ‘‘Hybrid deep learning approaches for 1050

smartphone sensor-based human activity recognition,’’ Multimedia Tools 1051

Appl., vol. 80, pp. 1–20, Feb. 2021. 1052

[57] Y. Zou, X. Zhou, and X. Ren, ‘‘Action recognition based on a hybrid deep 1053

network,’’ Social Netw. Comput. Sci., vol. 2, no. 6, pp. 1–11, Nov. 2021. 1054

TUNÇ AŞUROĞLU received the B.S. degree in 1055

computer engineering from the TOBB University 1056

of Economics and Technology, Turkey, in 2013, 1057

and the M.S. and Ph.D. degrees in computer engi- 1058

neering from Baskent University, Turkey, in 2015, 1059

and 2020, respectively. He worked as an Assistant 1060

Professor with the Department of Computer Engi- 1061

neering, Baskent University. He also worked as a 1062

Guest Researcher at the Faculty of Computer Sci- 1063

ences, Østfold University College, Norway. He is 1064

currently a Postdoctoral Research Fellow with the Faculty of Medicine and 1065

Health Technology, Tampere University, Tampere, Finland. His research 1066

interests include applications of computational intelligence in health infor- 1067

matics and wearable sensor systems. 1068

1069

VOLUME 10, 2022 101219


