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ABSTRACT Due to the life expectancy increase, there will be a workforce shortage in elderly care sector
in forthcoming years. Ambient Assisted Living (AAL) systems can cope with this issue. A subset of AAL,
Human activity recognition (HAR) provides an efficient way to tackle this issue. It can help with evaluating
general health and welfare of elderly by automatically tracking their activities. Lifelogging and home diary
applications will reduce the load on physicians and caregivers. On the other hand, complex activities play
a vital role as they have high level semantic characteristics that truly represent daily life of the user. The
main objective is to track these high-level semantic motions with low-cost single sensor systems with
efficient machine learning frameworks. To achieve this objective, a framework is proposed to predict complex
human activities from a single sensor using a machine learning approach. Time and frequency features are
extracted from PAAL ADL Accelerometry Dataset and fed to Locally Weighted Random Forest (LWRF)
machine learning algorithm. This algorithm is a hybrid structure that utilizes local weighting by introducing
neighboring samples on Random Forest tree building phases. Proposed approach achieved 91% accuracy
for HAR and 91.3% for gender recognition, outperforming other machine learning algorithms and previous
study on the same dataset. This is the first study that utilize a local weighted approach for accelerometer
signal domain. For prospective application, proposed framework can be embedded in lifelogging and home
diary applications in home environments to track mental status of elderlies.

INDEX TERMS Accelerometers, activity recognition, ambient assisted living, machine learning, wearable
Sensors.

I. INTRODUCTION

In recent years, world life expectancy is increased due to
advancements on healthcare, this situation results in an ele-
vation of elderly population in society [1]. With the reduction
of birth rates all around the world, the ageing population
gains a larger proportion in living societies. In approximately
30 years, 16% of all human population will be over 65 years
of age [1]. This situation can cause a workforce shortage on
elderly care sector. Workforce shortages can lead to over-
time work and workload increase of care workers. Also,
this issue can affect the quality of assistance in healthcare
facilities. To tackle this problem, Ambient Assisted Living
(AAL) technologies are introduced [2]. With the introduction
of assistive technologies, humans can take better care of
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the elderly. These technologies can help on rehabilitation,
monitor chronic diseases, tracking cognitive impairment and
mild dementia in older adults [3].

AAL is the combination of several aspects, these are
context awareness, internet of things, machine learning and
sensor technologies [4]. All of these aspects are combined
to provide a better life quality for elderly and enable them
to live their life independently. A subset of AAL, Human
activity recognition (HAR) is a perfect combination of these
aspects. HAR, which involves analyzing data from different
sensor sources to identify characteristics related to a person’s
activity, is a crucial component of AAL. It can be utilized
to promote proactive behavior or even basic cooperation
between the person and the environment [2].

Recognition of daily activities via HAR is a good approach
for evaluating general health and welfare in elderly people.
This evaluation can be done by asking the question ““Is the

101207


https://orcid.org/0000-0003-4153-0764
https://orcid.org/0000-0002-6700-9347

IEEE Access

T. Asuroglu: Complex Human Activity Recognition Using a Local Weighted Approach

user conducting his or her normal activities at the usual
times?”’. This approach can aid elderly in lifelogging and
home diary applications. By looking at automated activity
logs, physicians or caregivers can check the validity of activ-
ities and afterwards detect certain dementia related diseases
before they begin to manifest [5]. Likewise, users can check
their activity diaries and see what activities they have done.
Since there are no available treatment for dementia related
diseases, an HAR system that collects data for long durations
in a home setting can help doctors or caregivers to analyze
progression of mental decline [5].

There are mainly two ways to conduct HAR, these are
vision-based and sensor-based approaches. In vision-based
approach, image and video data are analyzed from optical
sensors to detect activities. Research area of this approach is
limited with security related and interactive applications [6].
There are several negative sides of this approach. First, the
performance is greatly dependent on external conditions. Bad
lighting conditions of measurement areas can greatly affect
the performance of the vision-based system. Also, concerning
privacy, these systems cannot be installed on private spaces
like bathrooms and bedrooms [7]. Lastly, users should always
stay in visual range of optical systems. Because of these
drawbacks, interest in vision-based approaches is declining
in literature.

As vision-based approaches are losing its popularity,
sensor-based approaches take the lead on HAR research.
In recent years, sensor-based approaches have gained a vast
majority in research due to the advancements of microsensor
technologies [8]. Sensor based approaches mainly consist
of wearable sensors. These wearable sensors can be Inertial
Measurement Units (IMU), pressure sensors and global posi-
tioning system (GPS) sensors [2]. Applications that can be
done with sensor-based approaches are fitness and motion
tracking, daily activity monitoring, virtual reality and medical
rehabilitation [9]. Sensor based approaches can be considered
as two types: Multi sensor based and single sensor-based
systems. As the name suggests, multi sensor-based systems
can increase activity recognition performance by combining
multiple sensor data, however it is not applicable for long
term use in daily life. The reason behind this issue is that one
sensor malfunction can cause activity recognition system to
collapse if the system dependent on frameworks that use sen-
sor fusion [10]. Also, dealing with multiple sensors increases
the computational costs due to processing of aggregated data
from fused sensors. For these aforementioned drawbacks,
recent studies are mainly focused on single sensor-based
systems [11]. But single sensor systems are not perfect either.
The main drawback with single sensor approaches is the limi-
tation of available concurrent data [ 10]. So, studies are mainly
focused on finding a robust and effective feature extraction
and machine learning algorithm to overcome this drawback.
Therefore, it poses a challenge to researchers to do human
activity recognition analysis using only one sensor.

Human activities can be considered as a combination
of simple and complex activities [9]. Simple activities are
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defined by actions that repeats itself and possess a single
body pose. Example simple activities are sitting, running,
walking. Simple activities lack the capability of reflecting
the daily life of users because behaviors of users are made
of combination of several activities. Complex activities on
the other hand, are the combination of simple activities. For
example, eating a meal can be considered as a complex
activity because it involves sitting and can contain several
different hand motions while eating a meal. Example complex
activities are cleaning, cooking, writing and eating [9]. These
activities usually have high level semantic characteristics
that truly represent daily life of the user. In order to create
an AAL system for the care of the elderly, it is necessary
to examine complex activities instead of focusing on sim-
pler ones because complex activities contain more informa-
tion about daily life of a user [12]. But to be able to find
appropriate features is another challenge in complex HAR
tasks [13]. Machine learning approaches can become insuffi-
cient to make accurate predictions without a prior knowledge
on which features have the most representative power [14].
Ranking of features can provide this insight. With the help
of ranking approaches, relevant features can be identified
easily for recognition tasks [15]. Another research direction
for these complex activities is to find robust machine learning
frameworks that can cope with limited sample size. Due to
their nature, these activities can have small motion cycles and
therefore they have small number of samples. These limited
sample size data can have a negative effect on prediction
capability of machine learning approaches [5].

To this end, a framework is proposed to predict complex
human activities from a single sensor using a local weighted
machine learning approach. The main challenge is, instead
of using multiple sensor data, use a robust framework that
combines single sensor data and machine learning algorithms
to predict complex daily living activities. For this purpose,
an open access dataset called "PAAL ADL Accelerometry
dataset™ is selected for this study. The dataset includes sim-
ple movements and complex daily living activities. Also,
it has the highest number of daily living activities among
accelerometer-based open access datasets so far [5]. Several
time and frequency domain features are extracted from a
single accelerometer sensor and fed to a hybrid machine
learning algorithm called Locally Weighted Random For-
est (LWRF) to predict human activities. A further analy-
sis is conducted to assess gender recognition capability of
proposed approach. In addition, to analyze the importance
of individual signal features on prediction tasks, feature
ranking is done on extracted accelerometer motion signals.
The proposed framework can provide robust solutions in
AAL for assessing dementia related disease progression
of elder people in home environments by tracking their
daily activities. Main contributions of this study are given
below:

« Proposed framework can reduce dataset variation effects

by introducing a combination of local weighting scheme
and Random Forest algorithm.
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« By utilizing neighboring data points and locally weight-
ing in prediction phase, this approach can be considered
for predicting activities with limited number of samples.

« According to ranking of extracted features, signal mag-
nitude area (SMA) feature is the most representative
feature for complex activities and correlation between X
and Z axis of accelerometer signal feature has the highest
representative ability for gender recognition tasks.

e This is the first study that employs local weighted
machine learning approach on an accelerometer signal
domain.

o The proposed framework outperformed previous study
on the same dataset and other machine learning
approaches when predicting complex human activities.

The paper is organized as follows; Section I gives an

overview of current literature, Section III includes pro-
posed framework, description of PAAL ADL Accelerome-
try dataset, several preprocessing phases and features and
also proposed local weighted approach. Section IV explains
evaluation metrics and give experimental results. Lastly,
Section V includes conclusions.

Il. RELATED WORK

The only related work found on PAAL dataset is published
in [5]. So, related work section is mainly constructed with
recent studies that have used single three axis accelerometer
signals and analyze complex human activities. In literature,
some studies focus on hand crafted signal features and tradi-
tional machine learning approaches for activity recognition.
These hand-crafted features are mainly consisted of statistical
and time series characteristics of a signal. On the other hand,
deep learning architectures are proposed for datasets that
possess large sample sizes. In these deep learning architec-
tures, instead of using hand crafted features, deep learning
frameworks extract features automatically and predict human
activities.

Climent-Pérez and Florez-Revuelta [5] conducted the prior
study that analyzed PAAL accelerometer dataset for activ-
ity recognition. They proposed a multi objective evolution-
ary algorithm called MaOEA to find appropriate weights
for extracted features. Aim of this proposed approach is
to find a method that hide age and gender of a person
while maintaining human motion characteristics. They used
PAAL accelerometer dataset which contains 24 activities that
include simple movements and complex daily living activ-
ities. A single wrist worn accelerometer is used to capture
human motions from 52 participants. They extracted time
and frequency domain features from these motion signals.
Random Forest algorithm is selected as an inductor classi-
fier in their proposed approach. The authors reported accu-
racy of their approach and indicated that MaOEA algorithm
can preserve motion characteristics while concealing gen-
der and age information with a tolerable performance loss.
They also reported the case that every feature had equal
weights and achieved overall 87.2% accuracy in activity
recognition task. Tian et al. [7] proposed a robust human
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activity recognition approach from single accelerometer sig-
nals. Proposed approach is based on kernel discriminant anal-
ysis (KDA) method and particle swarm optimized extreme
learning machine (QPSO-KELM). KDA is used to extract
meaningful features from motion signals. The authors used
their own dataset that includes single accelerometer signals.
They benchmarked different feature sets and classifiers with
their proposed features and classifier. The authors reported
that their approach outperformed other feature sets and clas-
sifiers in terms of accuracy. Huan et al. [9] tackle the problem
of complex human activity recognition. They proposed a
framework to extract multi-layer features from accelerometer,
gyroscope and magnetometer signals. The authors utilized
a hybrid deep learning architecture that consists of CNN
and RNN architectures. They tested their approach on sev-
eral open activity recognition datasets. They compared their
method with previous works and outperformed them in all
evaluation metrics. The authors also stated that location and
time domain features are an important indicator for motion
signals.

Tian et al. [10] proposed ensemble-based filter feature
selection (EFFS) approach to optimize the feature set in
human activity recognition task. They extracted wavelet
decomposition features and filtered them using EFFS
approach on a private dataset that includes single accelerom-
eter signals. SVM and kNN are selected as classifiers. They
reported that EEFS approach combined with SVM classifier
can give high accuracy with less features. Lu and Tong [11]
conducted a research on human activity recognition using
single three axis accelerometer. In order to reduce the bur-
den of heavy preprocessing phase, the authors proposed a
modified recurrence plot by converting motion signals to
images. After these conversion phase, images go through a
tiny residual neural network for classification. They used their
own dataset and ADL open access dataset. Several machine
learning approaches are benchmarked, and their approach
outperformed others in terms of accuracy and computation
time. Guney and Erdas [16] studied how deep learning archi-
tectures affect human activity prediction rate from single
accelerometer signals. They aimed to do feature free classifi-
cation using deep Long Short-Term Memory (LSTM) model.
They used an open access dataset that has single tri axis
accelerometer data. The authors compared their approach
with other previous studies and outperformed them in terms
of accuracy. Acici et al. [17] constructed a complex human
activity dataset with single wrist worn Inertial Measurement
Unit (IMU). They extracted time and frequency domain
features from motion signals. After feature extraction, they
compared traditional machine learning approaches on activity
prediction and person identification tasks. Random Forest
model achieved the highest accuracy in all cases. They also
discovered that combination of accelerometer and magne-
tometer signals can increase prediction performance on per-
son identification and complex activity recognition.

Lu et al. [18] provide a different perspective for activ-
ity recognition using single accelerometer. The authors
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categorize human actions as countable (complex) and
uncountable (still) actions and stated that they should have
dealt with different feature sets. Therefore, they extracted
global and local features from motion signals. Evaluation
of their approach is done with several open access datasets.
Based on their findings, the authors reported that local fea-
tures have a bigger impact on countable activities rather than
uncountable ones.

Lv et al. [19] aim to characterize complex human activ-
ities by proposing an end-to-end deep learning model that
consists of convolutional neural networks (CNN) and recur-
rent neural networks (RNN). The authors extracted deep
features from multi modal time series data using CNN
and fed these features to a RNN model. They tested their
approach on two human activity recognition datasets called
PAMARP2 and self-collected dataset (SCD). They compared
their method with other deep learning architectures and
they outperformed others in terms of accuracy in both
datasets. Mekruksavanich et al. [20] proposed a hybrid RNN
based model and investigated it‘s efficiency on complex
human activity recognition tasks. The authors compared their
approach with other deep learning models and previous works
on several open access datasets. The results showed that their
approach is better than other classifier models in terms of
accuracy, precision, recall and F1 score.

Qin et al. [21] used machine learning approaches to track
swimming activities. Their objectives are to predict swim-
ming style, count swimming time and predict number of
strokes. They analyzed wrist worn accelerometer signals of
a swimming team. The authors extracted statistical and time
series features from raw accelerometer signals. The authors
also proposed a new time counting function based on window
slicing. They compared several traditional machine learning
approaches on swimming style prediction and found out that
SVM outperformed all others in all evaluation terms.

Ill. MATERIALS & METHODS

A. GENERAL FRAMEWORK

Proposed machine learning approach takes single accelerom-
eter sensor signal with three channels, extract time and fre-
quency domain features from these channels and then feed
these extracted representative features to LWRF algorithm.
Aim of this machine learning approach is to exploit local
patterns in complex human motions by utilizing local weights
and Random Forest algorithm. A traditional learning pro-
cess with training and testing is employed. This process has
several phases. First, data acquisition is applied to extract
raw sensor data from a single wrist worn accelerometer.
Second, a preprocessing phase is applied to reduce noise
of accelerometer signal and increase sample size by sliding
window approach. After that, time and frequency domain
features are extracted from each channel of signal to represent
complex human motions. For third stage, training and test
data are generated with 10-fold Cross Validation. For fourth
stage, classifiers are trained with signal features.
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Each observation in the dataset has an activity and a gender
label. Trained classifier uses available trained observations to
predict the class label of a test observation. At the last stage,
classifier performance is evaluated using various metrics.
General overview of proposed machine learning approach is
given in Fig. 1.

B. PAAL ADL ACCELEROMETRY DATASET

For this study, a publicly accessible human activity recogni-
tion dataset called “PAAL ADL Accelerometry dataset” is
used [22], [23]. The dataset consists of accelerometer mea-
surements of 52 healthy participants. Participant gender dis-
tributions are 26 men and 26 women. The age of participants
ranges between 18 and 77 years. The dataset has 24 daily
living activities that include simple movements and complex
daily living activities. Activities in the dataset are divided
into 6 broad categories (Eating and Drinking, Hygiene,
Dressing/Undressing, Miscellaneous and Communication,
Basic health indicators, House cleaning). Although these
24 activities sometimes have similar movements, accelerom-
eter signals can capture subtle motion differences in these
similar activities on all axes. These daily living activities are
given in Table 1. Data capture is done with a single wrist
worn accelerometer. The measurements are recorded at 15Hz.
In order to capture true nature of activities, participants are
asked to wear this wrist worn accelerometer at home or office
setting instead of a laboratory environment [22]. Participants
did repetitions for every activity at average 5 times. This
approach leads to 6072 recording files in total.

TABLE 1. Available activities in the dataset.

Activity Category Activity Name
Eating and Drinking drink water, eat meal, open a bottle, open a box
Hygiene brush teeth, brush hair

Dressing/Undressing take off a jacket, put on a jacket, put on a shoe,
take off a shoe, put on glasses, take off glasses
sit down, stand up, writing, phone call, type on a

keyboard, salute (wave hand)

Miscellaneous and
Communication
Basic health
indicators
House cleaning

sneeze or cough, blow nose, washing hands

dusting, ironing, washing dishes

C. DATA PREPROCESSING & FEATURE EXTRACTION

Feeding proposed classification framework with raw
accelerometer signal values is not feasible [24], [25]. It is
based on several reasons. Firstly, majority of machine learn-
ing classifiers need equal input in order to process data, this
is not the case for accelerometer signals since they have
different signal lengths [17]. The other reason is that these
signals are not in the same time dimension even though
they sometimes possess identical signal lengths. This issue
makes it hard for machine learning algorithms to exploit local
patterns in signal data. Another reason is that the temporal
signal measurements sometimes make it harder for machine
learning algorithms to predict behavior of motion since
these raw measurements sometimes do not reflect motion
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FIGURE 1. General framework for proposed approach.

characteristics. In order to overcome these aforementioned
issues, a typical approach is to build a representative feature
set from raw accelerometer signals [17], [8]. Preprocessing
and feature extraction scheme from previous work on the
same dataset [5] is employed to set up the same baseline for
prediction tasks.

In order to reduce noise in signal and achieve a robust
machine learning model, a two-step preprocessing approach
is applied in this study [5]. First, to eliminate high frequency
noises while keeping motion characteristics intact, a fourth
order Butterworth low pass filter with 15Hz cut off frequency
is applied to raw signal. Secondly, in order to eliminate outlier
values in time series signal, median filter with third order
parameter is applied [5].

To acquire samples from the dataset, data are divided
into windowed sections [5]. Feature extraction processes are
carried on by 5 second sliding window approach. In this
approach, time series signals are divided into multiple win-
dows so that they have 20% overlap between neighboring
windows. This sliding window approach outputs 28642 sam-
ples. Sample distributions of each activity can be seen in
Table 2.

In the previous study, authors extracted several time and
frequency domain features from raw accelerometer signals.
Time and frequency domain features capture vital charac-
teristics of motions in time series data [5], [8], [17], [26],
[27], [28]. In this study, same features that are used in the
previous study are extracted. Extracted time and frequency
domain features from accelerometer signals are given in
Table 3. Features are extracted from each channel (x, y, z)
of accelerometer and signal magnitude vector of each obser-
vation. At the final stage, these features are concatenated to
form a final representative feature vector.

VOLUME 10, 2022

Time and Frequency

Training and
Testing/Evaluation

/ Classification

Data Generation

o

10-Fold Cross Validation Models
AN
® @O
(X X X J

Training
Data

Test
Results
Compare
Results

TABLE 2. Number of samples for each activity.

Activity Number Activity Name Number Of Samples
1 Blow nose 313
2 Brush hair 273
3 Brush teeth 261
4 Drink water 270
5 Dusting 2344
6 Eat meal 1950
7 Take off glasses 499
8 Put on glasses 1088
9 Ironing 1240
10 Take off jacket 424
11 Put on jacket 259
12 Type on keyboard 260
13 Open bottle 315
14 Open a box 261
15 Phone call 3967
16 Salute 277
17 Take off a shoe 3520
18 Put on a shoe 258
19 Sit down 254

20 Sneeze/cough 278
21 Stand up 2672
22 Washing dishes 1678
23 Washing hands 2729
24 Writing 3252

D. LOCAL WEIGHTED APPROACH

For classification of complex human activities, a hybrid
machine learning model called Locally Weighted Random
Forest (LWREF) is utilized in this study. This model is first
used with multi-channel gait signals to predict the severity
of Parkinson’s Disease [26]. With the contribution of both
Random Forest and local weighting schemes, it outperformed
other machine learning approaches in multi-channel gait
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TABLE 3. Extracted features from raw accelerometer signals.

Features

o, mean, percentiles (25" 50" 75"), centroid,
energy, entropy

o, mean, median, minimum, maximum, range,
correlation between axes, signal magnitude area
(SMA), Median absolute deviation (MAD), root
Time mean square (RMS), energy, autocorrelation,
Interquartile range (IQR), number of signal peaks,
peak to peak amplitude, percentiles (20™, 50%, 80,
90™), kurtosis, skewness, coefficient of variation

Feature Domain

Frequency

signal problem domain. Inspired with this succession on
multi-channel signals, LWRF model is adapted and used with
three channel axis accelerometer signals aiming to provide
accurate estimation of human motions.

LWREF algorithm is created to overcome a disadvantage
of Random Forest algorithm. This disadvantage is, adjusting
the parameters in the learning phase according to all trained
samples assuming that all samples are equal [26]. This global
approach can sometimes lead to weak parameters that can-
not represent all samples in the dataset. When there is high
variability in the dataset, it could be hard to find a suitable
representation. This situation can happen often in human
activity recognition tasks since there are multiple subjects
participating in data collection phase. [29], [30]. Dataset
variability in human activity recognition can occur due to age,
gender and experience of subjects when performing activ-
ities [31]. These variabilities in HAR data limit the ability
of classifier algorithm to find a global fit model. A possible
solution to reduce the variation effect is to create local models
that are established on neighbors of the test sample instead
of considering every sample as equal on the global model.
This can be done via giving weight to each sample in training
process and create a local prediction model. Weighting of
training samples increases the chance of machine learning
algorithm to pay attention to similar available data points.
In HAR scenario, weights help to construct a local model for
a specific activity by striking out variation effects.

LWRF machine learning model consists of two parts,
Random Forest and local weighting [26]. Random Forest is
a decision tree algorithm that is based on ensemble learn-
ing [32]. It can be used either as a classifier or a regressor
according to the problem domain. In this algorithm many
decision trees are formed using a bootstrap sample. Ran-
dom Forest employs ensemble learning strategy by Bootstrap
aggression or Bagging process. In this process every tree is
constructed separately by using the bootstrap sample. These
trees are called random trees. Random Forest uses a random
variable selection when creating a branch. Other decision tree
approaches aim to find the best branch in all available vari-
ables. Reason for this randomness is to minimize correlations
between candidate decision trees [33]. This randomness cri-
teria become its advantage when making predictions because
if the correlation between these trees becomes high, then it
can affect prediction process and thus increase error. In the
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final process, outputs of these trees are combined to achieve
a final output [34]. Majority voting of all tree outputs is done
for classification tasks and averaging of all tree output values
for regression tasks.

The second part of the LWRF algorithm is local weighting.
Local weighting considered as a non-parametric learning
model that utilize local relations on the dataset [35]. The
nearest points to the query sample are used to build the
local weighted model, rather than building a global model
on all available training data. Number of nearest points are
usually user defined same as in k nearest neighbor algorithm.
A weight value is assigned for every neighboring data sample
in the dataset. Target value estimation is affected by these
weight values [36]. Data points that are closest to the query
have greater weight values compared to those that are further
from it. From these closest points, estimated k points are used
in training phase to finally define the label of a query point.
In LWREF algorithm, local weighting scheme is infused with
Random Forest when computing split points and selecting
samples for bootstrap [26]. The novelty of LWRF algorithm,
is that instead of focusing all of the existing data, LWRF
algorithm focuses on similar data points which are defined
by distances and by adding weights to these similar data
points, it incorporates these weighted data points to Random
forest decision making processes. By this incorporation Ran-
dom Forest selects bootstrap samples among these weighted
samples.

Algorithm 1 Locally Weighted Random Forest (LWRF)

Inputs: training data points (S), query point (s), neighborhood size (k)
Output: Predicted activity label of s
Begin:
1: Use Euclidian distance to calculate distance between s and
each training data point (S) in the dataset.
: Estimate (k) nearest neighbors according to distances.
: for every neighboring data point
: Calculate weights according to Equation (1).
: Assign weight values to neighboring data points.
: end for
: Build Random Forest trees based on these weighted data points.
: Use Random Forest algorithm to predict the label of s.
: Obtain the activity class label of s as a result of
majority voting of random trees.

O 0 NN AW

Return Predicted activity label of s

Working mechanism of LWREF algorithm is explained as
follows, Weight calculation for each data point is given in (1):
1

W, =
7 1 + distance(s,sy)

ey

W, is the weight of x neighbor, s corresponds to x' neigh-
bor, s is the query point and distance(s, sy) is the Euclidian
distance between query and neighbor point. As can be seen
from the equation, data points that are closest to the query
will have greater weight and thus greater impact on pre-
diction. Architectural overview of LWRF algorithm is given
in Fig. 2.

VOLUME 10, 2022



T. Asuroglu: Complex Human Activity Recognition Using a Local Weighted Approach

IEEE Access

Training Data

Estimate k
Calculate Calculate Weighted
. nearest > . T L ™
distances ) weights training data
neighbors

/

_
Test sample

Ensemble of

1
1
oy f e le—

dod e o 0l

)
v
.
.
o
.
e
v

Random Tree N !

Class
output

\ ‘ Majority Voting Decision ‘ /

FIGURE 2. Architecture of LWRF algorithm.

IV. RESULTS

A. EVALUATION

All experiments are done using a k-fold cross validation (CV)
setup. In this setup, the dataset is randomly split into k folds.
Afterwards, each fold is selected for testing phase while
remaining k-1 folds are used for training phase. Stopping
criteria for CV is if all folds are tested. k value is selected as
10 to establish the same experimental setup as previous work
on the PAAL ADL dataset [5].

To evaluate proposed classification framework, several
classifier performance metrics are selected. These metrics
are Accuracy (A), Precision (Positive predictive Value) (P),
Recall (Sensitivity) (R), Specificity (True Negative Rate) (S),
Matthews correlation coefficient (MCC) and F1 Score. For-
mal definitions of Accuracy, Precision, Recall, Specificity,
Matthews correlation coefficient and F1 Score are given

in (2) 3) 4 (5) (6) (7):

Accuracy
_ TP 4+ TN @)
" TP+ FP+TN +FN
Precision
- 3
TP + FP )
Recall
= — 4
TP + FN @)
Specificity
TN
= 5)
N + FP
MCC
_ (TPTN)-(FPFN) ©)
N (TP + FP) (TP 4+ FN) (TN + FP) (TN + FN)
F1 Score
2 Precision Recall
= @)

" Precision + Recall

TP, TN, FP and FN abbreviations stand for number of true
positives, true negatives, false positives and false negatives
respectively.
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B. EMPIRICAL RESULTS
To validate proposed framework’s performance on predic-
tion tasks, several experiments are conducted with other
machine learning algorithms. These machine learning algo-
rithms are J48 Decision Tree (DT) [26], Multilayer Percep-
tron (MLP) [37], k Nearest Neighbor (kNN) [37], Naive
Bayes (NB) [38], Logistic Model Tree (LMT) [39] and Sup-
port Vector Machine (SVM) [40]. Parameter settings for
machine learning algorithms are as follows; NB classifier
with gaussian distribution is selected for experiments. For
DT, confidence factor selected as 0.25, minimum number
of objects selected as 2 and number of folds selected as 3.
For MLP, learning rate selected as 0.3, momentum selected
as 0.2, number of hidden layers selected as 43 for HAR and
32 for gender recognition tasks, number of epochs selected
as 500. For SVM, kernel function selected as radial basis
function with third degree. For LMT, minimum number of
instances selected as 15, fast regression is selected to speed
up the training process and no weight trimming is applied. For
kNN, k is selected as 1. For Random Forest model in LWREF,
number of trees selected as 100 and number of randomly
chosen attributes selected as 7.

Overall prediction results for activity recognition with
a 10-fold CV setting can be seen in Table 4. Proposed
locally weighted framework achieved 91%, 90.9%, 91%,
99.5%,0.91 and 0.91 in terms of Accuracy, Precision, Recall,
Specificity, Matthews correlation coefficient and F1 score
respectively. As can be seen from Table 4. LWRF algorithm
outperformed other classifier algorithms and previous work
by Climent-Pérez and Florez-Revuelta [5]. kNN algorithm
comes as second and previous work [5] comes as third.
Naive Bayes performed worst when predicting activities from
accelerometer signals. A conclusion can be drawn from these
classification results that adding local weights to Random
Forest algorithm can increase accuracy when detecting com-
plex human activities. Confusion matrix of LWRF algorithm
for human activity recognition is given in Fig. 3.

TABLE 4. Overall classification results for activity recognition task (NR:
Not Reported).

Model A%) | P%) | R(%) | S(%) | McC | F1
KNN 88.9 88.7 889 | 993 | 088 | 0.89
NB 47.6 52 476 9 | 044 | 05
DT 71.7 71.7 717 | 981 | 070 | 0.72
MLP 742 74.1 742 | 981 | 072 | 074
SVM 69.2 68.9 692 | 974 | 067 | 0.69
LMT 733 732 733 | 979 | 071 | 073
gfdvy“’[g? 87.2 NR NR NR | NR | NR
LWRF 91 90.9 91 995 | 091 | 0.91

LWRF algorithm uses only number of nearest neigh-
bors (k) parameter to carry out predictions. Further experi-
ments are conducted on effects of k parameter value and as
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FIGURE 3. Confusion matrix for human activity recognition task.

a result k value is selected as 55 in experiments. As can be
seen in Fig 4., accuracy of LWREF classifier achieved highest
when k is selected as 55. After 55 nearest neighbors value,
accuracy begins to drop and stabilizes.
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FIGURE 4. Impact of k value on prediction accuracy.

Research on gender recognition using sensors has a great
importance and its widely studied [41], [42], [43], [44].
By defining the gender of activity performer, systems can
discover more features that are more personalized [41]. Users
can get gender-based feedback about their health status and
recommendations [42], [43]. Since gender has a correla-
tion with human activity, how the activities are done differ
between genders [44]. In order to increase the validity of pro-
posed framework, a further analysis on accelerometer signals
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is conducted. In this analysis, gender recognition capabilities
of machine learning algorithms are investigated on the same
dataset. Main purpose of this investigation is to validate
the capability of the proposed framework when exploiting
relationships between human motions and gender charac-
teristics. Obtained results can be seen in Table 5. LWRF
achieved 91.3%, 91.3%, 91.4%, 91.2%, 0.83 and 0.91 in
terms of Accuracy, Precision, Recall, Specificity, Matthews
correlation coefficient and F1 score respectively. As can be
seen from Table 5. LWRF algorithm outperformed other
classifier algorithms and previous work by Climent-Pérez and
Florez-Revuelta [5] when predicting gender characteristics of
human motions. kNN algorithm comes as second and previ-
ous work [5] comes as third. Naive Bayes performed worst
when predicting gender characteristics from accelerometer
signals. Confusion matrix of LWRF algorithm for gender
recognition is given in Fig. 5.

Experiments are extended to include feature rank analysis.
Feature ranking approaches determine which features are
important in decision making processes [14], [15]. In this
study, feature ranking is done by using a Correlation based
feature selection method with ranker approach for both tasks
(Human Activity Recognition (HAR) and Gender Recog-
nition (GR)) [45]. By analyzing feature ranks, important
time and frequency signal features are identified for both
tasks in decision making [46]. Top 10 ranked features
according to feature rank analysis algorithm are given in
Table 6. According to Table 6., signal magnitude features,
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RMS and percentile of time domain signal features hold the
most valuable information when determining complex human
activities. For GR task, correlation between axes and signal
magnitude features play an important role for determining
gender. SMA feature is the most valuable one for both tasks.
So, we can say that signal magnitude feature of accelerometer
features has significant contribution in determining complex
activities and gender.

Predicted
woman man
woman | 12458 1239
Actual
man 1262 13683

FIGURE 5. Confusion matrix for gender recognition task.

TABLE 5. Overall classification results for gender recognition task
(NR: Not reported).

Model | A(%) | P(%) | R(%) | S(%) | McC F1
KNN 89.9 89.9 89.9 89.9 079 | 09
NB 54.8 54.6 54.8 533 0.09 | 0.5
DT 73.9 73.9 73.9 73.8 048 | 0.74
MLP 65.7 65.8 65.7 65.7 031 | 0.66
SVM 59.8 59.7 59.8 59.5 0.19 | 06
LMT 75.7 75.7 75.7 75.6 051 | 0.76
;fdvy'“[‘;? 88.9 NR NR NR NR NR
LWRF 91.3 91.3 91.4 91.2 0.83 | 091

TABLE 6. Top 10 ranked features for both tasks.

Task Name Top ranked features

Signal Magnitude Area (SMA), mean of signal
magnitude, Root Mean Square (RMS), 80th
percentile of time domain, standard deviation of
HAR time domain Z axis, 50th percentile of time
domain, median of signal magnitude, range of Z
axis, 90th percentile of time domain and 20th
percentile of time domain

Correlation between X and Z axis, SMA,
correlation between Y and Z axis, maximum of
signal magnitude, maximum value of X axis, Mean
GR Absolute Deviation (MAD) of signal magnitude,
20th percentile of time domain, range of signal
magnitude, standard deviation of frequency domain
Y axis and RMS

Side by side comparison with previous work on the same
dataset can be seen in Fig. 6. As can be seen from Fig. 6,
for activity and gender recognition tasks, LWRF algorithm
outperformed previous study in terms of accuracy. Previ-
ous study utilized Random Forest only as a global model.
Whereas LWRF focuses on local models. By using local
weighting, dataset variability is minimized and therefore
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accuracy is increased. Weighting of samples in Random
Forest processes increases the chance of machine learning
algorithm to pay attention to similar available data points
whereas previous study only consider global samples for
Random Forest processes.

The authors that analyzed this dataset mentioned some
issues regarding class confusion [5]. They reported that sev-
eral activities have similar movements and therefore classifi-
cation model is confused when making activity predictions.
Similarities came from same position of hands, symmetricity
along time axis and lack of movement of wrist when doing
activities [5]. Reported most confused activities are ‘‘put
on a shoe, take off a shoe, open a bottle, open a box, put
on glasses, take off glasses, stand up, sit down, phone call,
sneeze or cough and blow nose”. As a final analysis, pro-
posed framework is compared with previous study on most
confused activities. As can be seen in Table 7, when using
LWREF algorithm, accuracies are increased in most of the
confused activities. Previous study failed to detect activities
that have small sample sizes (open a bottle, open a box, take
off glasses, sneeze/cough and blow nose) whereas proposed
approach identified these activities with higher recognition
rate. A possible inference from these results is that LWRF
algorithm‘s inclusion of local weights in Random Forest
decision making process can overcome the need for more data
to achieve global machine learning model. This analysis also
shows that proposed framework can detect smallest changes
in human motions and identify them correctly in many cases.
In addition, ROC curve results of LWRF algorithm for all
activities is given as supplementary material (Fig. 7, &, 9).
In these figures, X axis refers to FP rate and y axis refers to
TP rate. As can be seen from these results, LWRF maintains
a good performance in predicting complex activities.

1) CRITICAL ANALYSIS AND DISCUSSION

According to results presented in “Empirical Results”
section, proposed complex human activity recognition frame-
work achieved higher performance when compared with
other machine learning models and previous sole study on
this dataset. A conclusion can be drawn from HAR task
classification results that adding local weights to Random
Forest algorithm can increase prediction quality when detect-
ing complex human activities. LWRF algorithm‘s parameter
effect on recognition tasks are also investigated and 55 neigh-
bor value is selected as suitable candidate for experiments.
Gender recognition capabilities of proposed framework are
also investigated and similar results achieved. According to
achieved results, proposed framework can be a viable tool for
exploiting relationships between human motions and gender
characteristics.

Feature rank analysis on the extracted features revealed
that signal magnitude features, RMS and percentile of time
domain signal features hold the most valuable information
when determining complex human activities and correlation
between axes and signal magnitude features play an important
role for determining gender. SMA feature is the most valuable
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one for both tasks. Previous study failed to detect activities
that have small sample sizes whereas proposed approach
identified these activities with higher recognition rate. A pos-
sible inference from these results is that LWRF algorithm‘s
inclusion of local weights in Random Forest decision making
process can overcome the need for more data to achieve
global machine learning model. A final comparison analysis
with the previous study reveals that previous study utilized
Random Forest only as a global model. Whereas LWRF
focuses on local models. By using local weighting, dataset
variability is minimized and therefore accuracy is increased.
Weighting of samples in Random Forest processes increases
the chance of machine learning algorithm to pay attention
to similar available data points whereas previous study only
consider global samples for Random Forest processes.
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revious study [5]
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85
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FIGURE 6. Comparison with previous work on both tasks.

TABLE 7. Comparison of previous and current study on most confused
activities.

Accuracy (%)

Activity name | This study | Previous study [5]
put on a shoe 73 77
take off a shoe 97 55
open a bottle 63 47
open a box 69 41
put on glasses 90 60
take off glasses 88 50
stand up 95 68
sit down 35 58
phone call 98 52
sneeze or cough 57 33
blow nose 90 56

V. CONCLUSION & DISCUSSION
Due to the life expectancy increase, there will be a workforce
shortage in elderly care sector in forthcoming years. The best
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way to overcome this issue is with the help of AAL systems.
A subset of this system, HAR provides an efficient way to
tackle this workforce shortage. It can help with evaluating
general health and welfare status of elderly by automati-
cally tracking their activities. For example, Lifelogging and
home diary applications for dementia disease will reduce
the load on physicians and caregivers. Complex activities
play a vital role in these applications as they have high
level semantic characteristics that truly represent daily life
of the user. Therefore, instead of focusing simple activities,
recent studies pay attention to the activities that have complex
motion behavior. Another important thing is to track these
high-level semantic motions with low-cost single sensor sys-
tems with efficient machine learning frameworks. To address
this challenge, a framework is proposed to predict complex
human activities from a single sensor using a local weighted
machine learning approach. Proposed framework has several
contributions. First, it is the first study that utilize local
weighted machine learning approach for accelerometer signal
domain. Secondly, proposed model outperformed sole previ-
ous study on the same dataset when predicting activities and
user gender. Novelty of this approach comes from proposed
approach‘s ability to accurately predict complex activities
that have a small movement cycle. These low sample size
activities can be harder to predict for global models due to
lack of data but LWRF algorithm‘s inclusion of local weights
in Random Forest decision making process can overcome
these problems. On the other hand, related studies focused
only complex activities that have limited number of activ-
ity categories. Proposed approach investigated a dataset that
has the largest number of activity categories. The empirical
results indicate that this study can provide robust solutions
in AAL for assessing dementia related disease progression
of elder people in home environments by tracking their daily
activities.

A hybrid machine learning algorithm called Locally
Weighted Random Forest (LWREF) is used as a classifier in
this problem domain. It is the combination of Random Forest
classifier with local weighting. Frequency and time domain
features are extracted and fed as an input to LWRF algorithm.
LWREF algorithm, outperformed other machine learning algo-
rithms and the previous work on activity recognition and
gender recognition tasks. Obtained results suggest that LWRF
algorithm can be able to distinguish complex activities even
with a limited number of samples. Another conclusion that
can be drawn from the experiments is that proposed frame-
work can reduce variation effects in accelerometer signals by
introducing local weights in several phases of Random Forest
algorithm. In addition, Feature rank analysis on the extracted
features revealed that signal magnitude features, RMS and
percentile of time domain signal features hold the most valu-
able information when determining complex human activities
and correlation between axes and signal magnitude features
play an important role for determining gender. SMA feature is
the most valuable one for both tasks. These high rank features
can be beneficial for HAR applications that focus on large
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number of complex activities and also differentiating gender
motions in accelerometer signals.

There are some shortcomings exist in this study. First short-
coming is from selecting the right k value. LWRF machine
learning algorithm performance relies on selection of k value.
This dependence comes from locally weighted structure of
the algorithm. So, in order to achieve good results in predic-
tion tasks, k value needs to be fine-tuned. Another shortcom-
ing of this study is from computational complexity of LWRF
algorithm. Computational complexity of proposed approach
consists of Random Forest algorithm and local weighting
scheme that incorporates in random forest algorithm phases.
Random Forest algorithms can have a high computational
complexity depending on number of samples and features
used. With the inclusion of weight calculations and weight
assignments, computational complexity of LWRF algorithm
can be high in some cases. So, in order to reduce this pos-
sible computational load, several solutions exist in literature.
Firstly, feature selection and Principal Component Analysis
(PCA) methods can be used to reduce dimensionality and thus
reduce computational complexity [47]. Another solution is
to employ Graphics Processor Units (GPU) on an advanced
centralized computer system to speed up the training process
of Random Forest algorithm [48]. Parallel processing tech-
niques can be also considered to overcome this issue [49].

The other shortcoming of this study is with the sample size
of the dataset. Unfortunately, the number of samples in the
activities was low. Number of data points for each activity in
the dataset can be increased. Especially dataset curators can
focus on complex activities that have small movement cycles.
One possible solution for this issue is to increase number of
repetitions for each complex activity. With the inclusion of
more samples, more data points can be processed and there-
fore performance of proposed approach can increase. Another
solution to overcome the lack of complex activity samples is
by using resampling methods. Methods like ADASYN [50]
and SMOTE [50] can be used in training phase to increase
sample size. Having small number of samples limits proposed
framework’s ability to utilize deep learning architectures.
Because deep learning architectures need large amount of
data to thrive in HAR applications.

To give an overview of recent studies that investigated
human activity recognition with single accelerometer or ana-
lyze complex human activities, a comparative table is given
in Table 8. As can be seen from the Table 8, the dataset that is
used in this study has the highest number of activities [5].
In other studies [9], [17], [18], [19], [20], high variety of
complex activities can only be handled with inclusion of
Accelerometer (A.), Magnetometer (M.) and Gyroscope (G.)
sensors. On the other hand, majority of studies that used
single accelerometer sensor [7], [10], [11], [16], [21] are
mainly focused on limited number of activities due to its
challenging nature. In addition, as can be seen from Table 7,
studies that investigate high number of complex activities did
not achieve as much accuracy as other studies that investi-
gate small number of activities. This result comes from the
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TABLE 8. Recent studies that used single accelerometer Sensor or
analyze complex human activities.

Study Features Sensor ac::v(;:ies Classifier (.,A/(;)
Current Time and
Frequency A. 24 LWRF 91.0
study d .
omain
Time and
[5] Frequency A. 24 MaOEA 87.2
domain
Time and
7 Frequency A 6 QPSO-KELM 96.2
domain
Time, AG
9] Location, oo 13 CNN+LSTM 95.5
Multi-layer )
[10] Wavelet A. 9 SVM 84.4
decomposition
Recurrence
[11] Plot A. 6 CNN 91.3
[16] Raw signal A 7 LSTM 913
Time and
[17] Frequency | 2@ 10 Random 84.4
. Forest
domain
Time and
[18] Frequency A, G. 13 DT 93.0
domain
. A, G.
[19] Raw signal M 12 CNN+LSTM 85.0
. A, G.
[20] Raw signal M 18 CNN+GRU 88.0
Time and
[21] Frequency A. 4 SVM 99.0
domain

challenging task of predicting complex motions. Whereas in
this study by using a single accelerometer sensor, a dataset
with highest number of activities among other datasets is
investigated with numerous machine learning algorithms.

Overview of strengths and limitations of proposed
approach are as follows; Main strengths of this study over
others can be given as; it is the first study that utilize
local weighted machine learning approach for accelerometer
signal domain, the proposed framework outperformed pre-
vious study on the same dataset and other machine learn-
ing approaches when predicting complex human activities,
the proposed framework can reduce dataset variation effects
by introducing a combination of local weighting scheme
and Random Forest algorithm, by utilizing neighboring data
points and locally weighting in prediction phase this approach
can be considered for predicting activities with limited num-
ber of samples. Limitations of the proposed framework com-
pared with other studies can be given as; decision of number
of neighbors (k value) needs parameter tuning and LWRF can
reach a high computational complexity depending on number
of samples and features used. Another problem is the lack of
sample size to utilize deep learning architectures.

For future direction of this study, one aim can be bench-
marking proposed framework on other human activity recog-
nition open access datasets. Datasets that have different type
of sensors can be considered. Fusion of these sensors and
their impact on prediction tasks can be investigated. This will
increase validity of the proposed approach on different sensor
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domains. The location and context of activity could be imple-
mented in the processing if it was available in PAAL dataset.
The authors of the PAAL dataset did not include these kind
of information, but there are several ways to track context
and location of activity in the literature. One possible way is
using smart pressure sensors that are installed under the floor
at home, so when the sensors are activated user location and
user activity can be recorded at the same time [48]. Another
solution can be installing motion and door sensors to several
locations at home. When a sensor is activated, location of
the user can be known and therefore activity and location
information can be associated with each other [52], [53].
Lastly, GPS sensors can be utilized but GPS sensors have
limited indoor reception capacity so its suitable for detecting
general location of user, for example at home or at office [54].
Another future direction can be combining LWRF algorithm
with location information. Datasets that have location data
can be investigated to explore proposed approach‘s ability to
fuse motion signals with location data. Also, feature selection
methods based on optimization algorithms can be considered
for future study. Especially, feature selection methods with
gradient-based optimizer and grey wolf optimizer are proven
to have a positive impact on prediction performance in HAR
problems [55]. Also in future studies, LWRF‘s ability to
deal with dataset class imbalance challenges will be inves-
tigated in detail. Class imbalance solutions like undersam-
pling and resampling techniques will be analyzed and can
be infused with LWRF to overcome class imbalance. Com-
bining traditional machine learning approaches with deep
learning architectures can provide good prediction ability in
HAR problem domain [56], [57]. Therefore, another future
direction could be combining LWRF approach with other
deep learning architectures like CNN and LSTM to increase
prediction performance. These deep features can also utilize
relationships between different accelerometer channels. Last
future direction is to investigate how to overcome aforemen-
tioned possible high computational complexity.

REFERENCES

[11 N. Gulati and P. D. Kaur, “FriendCare-AAL: A robust social IoT based
alert generation system for ambient assisted living,” J. Ambient Intell.
Humanized Comput., vol. 13, no. 4, pp. 1735-1762, Apr. 2022.

[2] C.M.Ranieri, S. MacLeod, M. Dragone, P. A. Vargas, and R. A. F. Romero,
“Activity recognition for ambient assisted living with videos, inertial units
and ambient sensors,” Sensors, vol. 21, no. 3, p. 768, Jan. 2021.

[3] S. Wilhelm, “Activity-monitoring in private households for emergency
detection: A survey of common methods and existing disaggregable data
sources,” in Proc. 14th Int. Joint Conf. Biomed. Eng. Syst. Technol., 2021,
pp. 263-272.

[4] C. Byrne, R. Collier, and G. O’Hare, “A review and classification of
assisted living systems,” Information, vol. 9, no. 7, p. 182, Jul. 2018.

[5] P. Climent-Pérez and F. Florez-Revuelta, “Privacy-preserving human
action recognition with a many-objective evolutionary algorithm,” Sen-
sors, vol. 22, no. 3, p. 764, Jan. 2022.

[6] L. M. Dang, K. Min, H. Wang, M. Jalil Piran, C. H. Lee, and H. Moon,
“Sensor-based and vision-based human activity recognition: A compre-
hensive survey,” Pattern Recognit., vol. 108, Dec. 2020, Art. no. 107561.

[71 Y. Tain, J. Zhang, L. Chen, Y. Geng, and X. Wang, “Single wear-
able accelerometer-based human activity recognition via kernel dis-
criminant analysis and QPSO-KELM classifier,” IEEE Access, vol. 7,
pp. 109216-109227, 2019.

101218

[8]

[9]

(10]

(11]

[12]

(13]

[14]

[15]

(16]

[17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

B. Erdag, I. Atasoy, K. Acici, and H. Ogul, “Integrating features for
accelerometer-based activity recognition,” Proc. Comput. Sci., vol. 98,
2016, pp. 522-527.

R. Huan, C. Jiang, L. Ge, J. Shu, Z. Zhan, P. Chen, K. Chi, and R. Liang,
“Human complex activity recognition with sensor data using multiple
features,” IEEE Sensors J., vol. 22, no. 1, pp. 757-775, Jan. 2022.

Y. Tian, X. Wang, P. Yang, J. Wang, and J. Zhang, ‘A single accelerometer-
based robust human activity recognition via wavelet features and ensem-
ble feature selection,” in Proc. 24th Int. Conf. Autom. Comput. (ICAC),
Sep. 2018, pp. 1-6.

J. Lu and K.-Y. Tong, “Robust single accelerometer-based activity recog-
nition using modified recurrence plot,” IEEE Sensors J., vol. 19, no. 15,
pp. 6317-6324, Aug. 2019.

A. Patel and J. Shah, “Sensor-based activity recognition in the context
of ambient assisted living systems: A review,” J. Ambient Intell. Smart
Environ., vol. 11, no. 4, pp. 301-322, Jul. 2019.

D. Thakur and S. Biswas, “An integration of feature extraction and
guided regularized random forest feature selection for smartphone based
human activity recognition,” J. Netw. Comput. Appl., vol. 204, Aug. 2022,
Art. no. 103417.

M. Sharif, M. A. Khan, F. Zahid, J. H. Shah, and T. Akram, ‘“Human
action recognition: A framework of statistical weighted segmentation and
rank correlation-based selection,” Pattern Anal. Appl., vol. 23, pp. 1-14,
Feb. 2019.

N. A. Capela, E. D. Lemaire, and N. Baddour, “Feature selection for
wearable smartphone-based human activity recognition with able bodied
elderly and stroke patients,” PLoS ONE, vol. 10, no. 4, pp. 1-18, 2015.

S. Guney and C. B. Erdas, “A deep LSTM approach for activity recog-
nition,” in Proc. 42nd Int. Conf. Telecommun. Signal Process. (TSP),
Jul. 2019, pp. 294-297.

K. Agici, B. Erdag, T. Asuroglu, and H. Ogul, “HANDY: A benchmark
dataset for context-awareness via wrist-worn motion sensors,” Data, vol. 3,
no. 3, p. 24, Jun. 2018.

J. Lu, X. Zheng, M. Sheng, J. Jin, and S. Yu, “Efficient human activity
recognition using a single wearable sensor,” IEEE Internet Things J.,
vol. 7, no. 11, pp. 11137-11146, Nov. 2020.

M. Lv, W. Xu, and T. Chen, ““A hybrid deep convolutional and recurrent
neural network for complex activity recognition using multimodal sen-
sors,” Neurocomputing, vol. 362, pp. 33—40, Oct. 2019.

S. Mekruksavanich and A. Jitpattanakul, “Biometric user identification
based on human activity recognition using wearable sensors: An exper-
iment using deep learning models,” Electronics, vol. 10, no. 3, p. 308,
Jan. 2021.

X. Qin, Y. Song, G. Zhang, F. Guo, and W. Zhu, ““Quantifying swimming
activities using accelerometer signal processing and machine learning:
A pilot study,” Biomed. Signal Process. Control, vol. 71, Jan. 2022,
Art. no. 103136.

P. Climent-Pérez, A M. Muiioz-Antén, A. Poli, S. Spinsante, and F. Florez-
Revuelta, “Dataset of acceleration signals recorded while performing
activities of daily living,” Data Brief, vol. 41, Apr. 2022, Art. no. 107896.
PAAL ADL Accelerometry DataSet V2.0. Accessed: Apr. 12, 2022.
[Online]. Available: https://zenodo.org/record/5785955

S. K. Chaurasia and S. R. N. Reddy, “Impact of time domain features
& inertial sensors on activity recognition using randomized selection,”
in Proc. Int. Conf. Comput., Commun., Intell. Syst. (ICCCIS), Feb. 2021,
pp. 744-750.

L. Sanhudo, D. Calvetti, J. P. Martins, N. M. M. Ramos, P. Méda,
M. C. Gongalves, and H. Sousa, “Activity classification using accelerom-
eters and machine learning for complex construction worker activities,”
J. Building Eng., vol. 35, Mar. 2021, Art. no. 102001.

T. Asuroglu, K. A¢ici, C. B. Erdas, M. K. Toprak, H. Erdem, and H. Ogul,
“Parkinson’s disease monitoring from gait analysis via foot-worn sen-
sors,” Biocybernetics Biomed. Eng., vol. 38, no. 3, pp. 722-760, 2018.

S. Fioretti, M. Olivastrelli, A. Poli, S. Spinsante, and A. Strazza, “ADLs
Detection with a wrist-worn accelerometer in uncontrolled conditions,” in
Proc. Int. Conf. Wearables Healthcare, 2021, pp. 197-208.

A. Poli, A. Muiioz-Anton, S. Spinsante, and F. Florez-Revuelta, ““Bal-
ancing activity recognition and privacy preservation with multi-objective
evolutionary algorithm,” in Proc. 7th EAI Int. Conf. Smart Objects Technol.
Social Good, 2021, pp. 3-17.

A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activity
recognition using body-worn inertial sensors,” ACM Comput. Surveys,
vol. 46, no. 3, pp. 1-33, Jan. 2014.

VOLUME 10, 2022



T. Asuroglu: Complex Human Activity Recognition Using a Local Weighted Approach

IEEE Access

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

A. Zinnen, C. Wojek, and B. Schiele, “Multi activity recognition based on
bodymodel-derived primitives,” in Proc. 4th Int. Symp. Location Context
Awareness, vol. 5561, 2009, pp. 1-18.

A. Dehghani, O. Sarbishei, T. Glatard, and E. Shihab, ““Quantitative com-
parison of overlapping and non-overlapping sliding Windows for human
activity recognition using inertial sensors,” Sensors, vol. 19, no. 22,
p. 5026, Nov. 2019.

L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
2001.

K. Acici, C. Erdas, T. Asuroglu, M. Toprak, H. Erdem, and
H. Ogul, “A random forest method to detect Parkinson’s disease via
gait analysis,” in Engineering Applications of Neural Networks. Cham,
Switzerland: Springer, 2017, pp. 609-619.

A. Eerdekens, M. Deruyck, J. Fontaine, L. Martens, E. De Poorter, D. Plets,
and W. Joseph, “A framework for energy-efficient equine activity recog-
nition with leg accelerometers,” Comput. Electron. Agricult., vol. 183,
Apr. 2021, Art. no. 106020.

C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted learning,”
in Lazy Learning. Cham, Switzerland: Springer, vol. 1997, pp. 11-73.

H. Sanz, F. Reverter, and C. Valim, “Enhancing SVM for survival data
using local invariances and weighting,” BMC Bioinf., vol. 21, no. 1,
Dec. 2020.

C. B. Erdas, E. Siimer, and S. Kibaroglu, “CNN-based severity prediction
of neurodegenerative diseases using gait data,” Digit. Health, vol. 8,
Jan. 2022, Art. no. 205520762210751.

D. Buzic and J. Dobsa, ““Lyrics classification using Naive Bayes,” in Proc.
41st Int. Conv. Inf. Commun. Technol. Electron. Microelectron. (MIPRO),
2018, pp. 1011-1015.

E. Nazari, M. Aghemiri, A. Avan, A. Mehrabian, and H. Tabesh, “Machine
learning approaches for classification of colorectal cancer with and without
feature selection method on microarray data,” Gene Rep., vol. 25, no. 3,
pp. 1014-1019, 2021.

J.Ryu, J. Seo, H. Jebelli, and S. Lee, “‘Automated action recognition using
an accelerometer-embedded wristband-type activity tracker,” J. Construc-
tion Eng. Manage., vol. 145, no. 1, Jan. 2019, Art. no. 04018114.

J. L. Kroger, P. Raschke, and T. R. Bhuiyan, “Privacy implications of
accelerometer data: A review of possible inferences,” in Proc. 3rd Int.
Conf. Cryptography, Secur. Privacy (ICCSP), 2019, pp. 81-87.

A. Jain and V. Kanhangad, “Gender classification in smartphones using
gait information,” Exp. Syst. Appl., vol. 93, pp. 257-266, Mar. 2018.

A. Jain and V. Kanhangad, “Investigating gender recognition in smart-
phones using accelerometer and gyroscope sensor readings,” in Proc.
Int. Conf. Comput. Techn. Inf. Commun. Technol. (ICCTICT), Mar. 2016,
pp. 597-602.

K. Charlotte, S. Jasper, K. Jacqueline, E. Annette, and T. Jens, “Context-
specific outdoor time and physical activity among school-children across
gender and age: Using accelerometers and GPS to advance methods,”
Frontiers Public Health, vol. 2, p. 20, Mar. 2014.

A. Sharma and P. K. Mishra, “‘Performance analysis of machine learning
based optimized feature selection approaches for breast cancer diagnosis,”
Int. J. Inf. Technol., vol. 14, no. 4, pp. 1-12, 2021.

B. Dhananjay and J. Sivaraman, “‘Analysis and classification of heart rate
using CatBoost feature ranking model,” Biomed. Signal Process. Control,
vol. 68, Jul. 2021, Art. no. 102610.

H. F. Nweke, Y. W. Teh, G. Mujtaba, and M. A. Al-Garadi, “Data fusion
and multiple classifier systems for human activity detection and health
monitoring: Review and open research directions,” Inf. Fusion, vol. 46,
pp. 147-170, Mar. 2019.

VOLUME 10, 2022

(48]

(49]

(50]

(51]

(52]

(53]

(54]

[55]

[56]

(571

Z.Wen, J. Shi, B. He, Q. Li, and J. Chen, ‘“ThunderGBM: Fast GBDTs and
random forests on GPUs,” J. Mach. Learn. Res., vol. 21, pp. 1-5, Jan. 2020.
J. Andreu-Perez, D. R. Leff, H. M. D. Ip, and G.-Z. Yang, “From
wearable sensors to smart implants—Toward pervasive and personalized
healthcare,” IEEE Trans. Biomed. Eng., vol. 62, no. 12, pp. 2750-2762,
Dec. 2015.

K. Agici, T. Asuroglu, B. Erdag, and H. Ogul, “T4SS effector protein
prediction with deep learning,” Data, vol. 4, no. 1, p. 45, Mar. 2019.
C.-H. Lu and L.-C. Fu, “Robust location-aware activity recognition using
wireless sensor network in an attentive home,” IEEE Trans. Autom. Sci.
Eng., vol. 6, no. 4, pp. 598-609, Oct. 2009.

E. Nakagawa, K. Moriya, H. Suwa, M. Fujimoto, Y. Arakawa, and
K. Yasumoto, ‘“Toward real-time in-home activity recognition using indoor
positioning sensor and power meters,” in Proc. IEEE Int. Conf. Per-
vasive Comput. Commun. Workshops (PerCom Workshops), Mar. 2017,
pp. 539-544.

T. Wang and D. J. Cook, “SMRT: Multi-resident tracking in smart Homes
with sensor vectorization,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 43, no. 8, pp. 2809-2821, Feb. 2020.

M. Straczkiewicz, P. James, and J.-P. Onnela, “A systematic review
of smartphone-based human activity recognition methods for health
research,” NPJ Digit. Med., vol. 4, no. 1, Dec. 2021.

A. M. Helmi, M. A. A. Al-qaness, A. Dahou, R. DamasSevicius,
T. Krilavic¢ius, and M. A. Elaziz, ‘A novel hybrid gradient-based optimizer
and grey wolf optimizer feature selection method for human activity
recognition using smartphone sensors,” Entropy, vol. 23, no. 8, p. 1065,
Aug. 2021.

V. Ghate and C. S. Hemalatha, “Hybrid deep learning approaches for
smartphone sensor-based human activity recognition,” Multimedia Tools
Appl., vol. 80, pp. 1-20, Feb. 2021.

Y. Zou, X. Zhou, and X. Ren, “Action recognition based on a hybrid deep
network,” Social Netw. Comput. Sci., vol. 2, no. 6, pp. 1-11, Nov. 2021.

TUNG ASUROGLU received the B.S. degree in
computer engineering from the TOBB University
of Economics and Technology, Turkey, in 2013,
and the M.S. and Ph.D. degrees in computer engi-
neering from Baskent University, Turkey, in 2015,
and 2020, respectively. He worked as an Assistant
Professor with the Department of Computer Engi-
neering, Baskent University. He also worked as a
Guest Researcher at the Faculty of Computer Sci-
ences, @Dstfold University College, Norway. He is

currently a Postdoctoral Research Fellow with the Faculty of Medicine and
Health Technology, Tampere University, Tampere, Finland. His research
interests include applications of computational intelligence in health infor-
matics and wearable sensor systems.

101219



