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ABSTRACT Here, a chaotic quadratic system is presented. The chaotic attractor of the oscillator is studied.
It has a stable equilibrium point for most of the studied interval of its parameter. So, its chaotic attractor
in that interval is hidden. Bifurcation diagrams of the oscillator are studied by changing two parameters.
Bifurcations with two initiation methods are plotted for each parameter, and their results are investigated
using their corresponding Lyapunov exponents. Studying the bifurcation diagrams reveals the multistability
of the oscillator, which is also discussed using the basin of attractions. The existence of extreme events is
examined for the chaotic dynamic. Implementing the circuit of the oscillator shows the feasibility of its

chaotic dynamics.

INDEX TERMS Bifurcations, multistability, extreme events, circuit.

I. INTRODUCTION

Chaos is a crucial topic in studying nonlinear dynamics [1],
[2]. Chaos in the flows is a mysterious dynamic, and there are
many unknown facts about its generation [3], [4]. In the past,
there was a hypothesis about the relation of chaotic dynamics
and saddle fixed points [5], [6]. From 2011, some works were
proposed that were counterexamples for this hypothesis [7],
[8]. For example, oscillators with a line of equilibria [9] and
without equilibrium [10]. Studying chaotic flows and their
dynamics has attracted much attention. Recently the chaotic
oscillators have been proposed with different equilibrium
points. A chaotic oscillator with various shapes of fixed points
has been investigated in [11]. In [12], a physical memristive
oscillator containing chaotic dynamics was studied. Chaotic
dynamics of extinction in a prey-predator oscillator were dis-

The associate editor coordinating the review of this manuscript and

approving it for publication was Shuai Liu

cussed in [13]. In [14], the chaotic dynamics of the minimal
universal model were investigated. Due to the complexity
of chaotic dynamics, their control is critical [15]. Fractional
order oscillators have been an interesting challenge [16].
The dynamics of a neuron under fractional-order flux were
studied in [17]. Many recently proposed chaotic oscillators in
which the basin of attraction of their chaotic dynamics is not
related to an equilibrium point are categorized as oscillators
with hidden attractors [18]. Hidden attractors and various
dynamics of a passive motion model were investigated in
[19]. Constructing hidden attractors via memristor Coupling
was studied in [20]. Studying the synchronization of chaotic
oscillators is very interesting [21]. Chaotic oscillators have an
important application in image encryption.

Various tools can be used to study dynamical systems,
like bifurcation diagrams, Lyapunov exponents (LEs), and
entropies [22], [23], [24]. The basin of attraction is another
interesting tool for investigating the effect of initial values
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FIGURE 1. Chaotic time series of Oscillator (1) with parameters
p=-0.4,] =0.3 and (xo, yg, Zg) = (0, 0, 0).

[25], [26]. Multistability is a vital feature that can occur in
a dynamic system [27], [28]. In a multistable oscillator, the
dynamics are varied by changing initial values [29]. Multi-
stability in an improved version of the Chua oscillator has
been investigated in [30]. In [31], the asymmetric multista-
bility of a chaotic oscillator was discussed. Extreme events
(EEs) are cases that significant amplitude events occur in
a signal. There are many EEs in real word dynamics, such
as epileptic seizures [32], [33]. Extreme events of coupled
maps were investigated in [34]. They have tried to indicate
the occurrence of these events. Also, deep learning has been
applied to indicate extreme events [35].

Here, a chaotic oscillator is proposed. The chaotic time
series and attractors of the oscillator are investigated in
Section 2. In addition, the equilibrium point and its stability
are analyzed. In Section 3, the behaviors of the oscillator are
investigated. Bifurcation diagrams, LEs, and multistability of
the system are studied. Its basin of attraction is investigated
to show various dynamics by varying initial values. Extreme
events are studied in the signal x of the chaotic dynamic.
In Section 4, the circuit of the chaotic oscillator is imple-
mented. The paper is concluded in Section 5.

Il. THE PRESENTED OSCILLATOR
The oscillator is as follows:

x=y
y=1z
7= —03x — 1.5y 4 0.1z + 0.9y°
—0.822 — 0.3xz 4 pyz + 1 (1
Its chaotic dynamics can be seen in p = —04,] = 0.3.

The parameters of the chaotic dynamics are obtained using
a computer search. Figure 1 presents the chaotic time series
of the oscillator. The 3-dimensional chaotic dynamic and its
2-dimensional projections are plotted in Fig. 2. In Fig. 2, the
3-dimensional attractor is plotted in green. The 2-dimensional
projections of the attractor are presented in blue.

Studying fixed points is one of the basic dynamical anal-
yses of a chaotic oscillator. The fixed points of the system
can be obtained by setting zeros the velocities. In p = —0.4,
the system has a fixed pointin (//0.3, 0, 0). The characteristic
equation for the equilibriumis A4 (I — 0.1) A>41.5140.3 =

105196

FIGURE 2. Chaotic dynamics of Oscillator (1) with p = —0.4,/ = 0.3 and
(x05 Y0, 2o) = (0, 0, 0); The 2D projections are shown in dark blue.
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FIGURE 3. Real and imaginary parts of eigenvalues for (0’—3, 0,0); In
I > 0.3, the equilibrium point is stable since the real part of eigenvalues
is negative.

0. The real and imaginary parts of eigenvalues of the fixed
points are presented in Fig. 3. In [ > 0.3, the equilibrium
point is stable since the real part of eigenvalues is negative.
Also, the equilibrium is a spiral.

The oscillator has only one stable fixed point in / > 0.3,
so its chaotic dynamics are hidden in that interval.

Ill. DYNAMICAL PROPERTIES

The chaotic attractor of the proposed system was studied in
the previous section. Also, studying the fixed points of the
equations revealed that the chaotic dynamics are hidden. Here
various dynamical properties of the oscillator are analyzed.
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A. BIFURCATION ANALYSIS AND MULTISTABILITY

Various system dynamics by changing parameters can be
investigated by plotting bifurcation diagrams. Different meth-
ods can be used to compute the bifurcation diagrams from
the viewpoint of initial conditions. Different initial conditions
can lead to different attractors in a system with multistability.
So, by plotting bifurcation diagrams with different initiations,
we hope that the multistable dynamics can be revealed. Here,
different oscillator dynamics are studied by varying /, and
p. Bifurcation of the oscillator by varying [ is presented in
Fig. 4a. Two bifurcation diagrams are shown in this plot. The
green color is the bifurcation by forward initiation method
and the first initial values as (0, 0, 0). The brown color is
the bifurcation plot by constant initial values as (0, 0, 0).
A period-doubling route to chaos is seen in the forward
bifurcation diagram. Comparing the forward bifurcation with
the brown one presents the multistability of the oscillator.
In I = 0.3058, the dynamic jumps from chaotic dynamics
to the stable equilibrium point (//0.3, 0, 0) in initial values
(0,0,0). Lyapunov exponents (LEs) of the oscillator by
forwarding continuation method are plotted in Fig. 4b. The
diagram presents that the oscillator has chaotic dynamics in
!l < 0.31. The LEs by constant initial values are shown
in Fig. 4c. The dynamics jump to the equilibrium point in
I = 0.3058 with three negative LEs. The LEs are computed
using the Wolf algorithm with a run time of 20000.

Another bifurcation is investigated by changing p. The
bifurcations with the forward continuation method (green)
and constant initial values (brown) are shown in Fig. Sa.
The system has chaotic dynamics in p < —0.08; then,
it jumps to the equilibrium points dynamics. However, the
brown diagram shows that the chaotic dynamics coexist with
the equilibrium point in p > —0.08. Also, the LEs with for-
warding continuation method (b) and constant initial values
(c) show the difference of dynamics with these two methods.

B. BASIN OF ATTRACTION

The effect of initial values in the oscillator dynamics can be
investigated by computing the basin of attraction plot. The
parameters p = —0.4 and [ = 0.304 are selected in the region
of chaotic dynamics (Fig. 4). Then, two planes are selected
to investigate the three-dimensional space of initial values.
The first plane is Xo — Zgp space where Yo = 0. Figure 6a
shows the basin of attraction in this plane. Three colors
in this diagram show the three behaviors of the oscillator.
The pink regions are the initial values of unstable dynamics.
So the pink initial conditions result in unbounded orbits.
The green regions result in the stable equilibrium point, and
the blue one shows the initial values of chaotic dynamics.
The second plane is Xo — Yo, where Zg = 0. The same
colors are used to show the three different dynamics. The
chaotic regions are sprinkled in the equilibrium point region
in both planes. To compute the basin, a threshold is defined
for the unbounded regions. So the dynamics are marked as
unstable if the time series crosses the threshold value. The
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FIGURE 4. Bifurcation plot of Oscillator (1) by varying / and its LEs; a)
bifurcation diagram with forwarding initiation method in green and with
constant initial conditions (0, 0, 0) in brown color; b) LEs corresponding
to forward initiation bifurcation diagram; c) LEs corresponding to
constant initiation bifurcation diagram; The difference between the two
bifurcation plots and LEs reveals the multistability of the system.

region of attraction for the stable fixed point is found where
the variation of time series becomes smaller than another
threshold. Finally, the dynamics that are not periodic and not
defined as previous groups are categorized as chaos.

C. EXTREME EVENT

Here, EEs are extracted using a threshold as 7Th =
mean (peaks (x)) + 8 X Opeaks(x) [36], [37]. peaks (x) are the
peak values of signal x, and opeqaks(x)is their standard devia-
tion. For the x signal of Oscillator (1) inp = —0.4,1 = 0.3,
and initial values (0, 0, 0), the threshold is computed as Th =
5.1681. The oscillator has only one EE at t = 182.5, and also,
the signal approaches the threshold at + = 1160.5 but cannot
cross the threshold.

IV. CIRCUIT IMPLEMENTATION

The circuit of the proposed oscillator is designed to show its
feasibility. At first, the oscillator is scaled to have a smaller
amplitude, preventing the electronic devices from saturation.
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FIGURE 5. Bifurcation plot of Oscillator (1) by varying p and its LEs; a)
bifurcation diagram with forwarding initiation method in green and with
constant initial conditions (0, 0, 0) in brown color; b) LEs corresponding
to forward initiation bifurcation diagram; c) LEs corresponding to
constant initiation bifurcation diagram; The variation of dynamics from
chaos to equilibrium can be seen in this plot.
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FIGURE 6. Basin of attraction a) in Xy —Z plane with Yy = 0; b) in Xy — Y,
plane with Z, = 0; the pink regions are the initial values of unstable
dynamics. The green regions result in the stable equilibrium point, and
the blue one shows the initial values of chaotic dynamics. The chaotic
regions are sprinkled in the equilibrium point region in both planes.

The changes of variables X = x/2,Y = y/2,andZ = z/2 are
used. So Eq. (1) is transformed to:

X=Y
Y =2
7 =—03X —15Y +0.1Z + 0.9 x 2Y? — 0.8 xZ>
—0.3 x 2XZ — 0.4 x 2YZ + 0.3 )
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FIGURE 7. The chaotic time series of the oscillator in blue, and the
threshold for detecting extreme events in black; The oscillator has only
one EE at t = 182.5, and also, the signal approaches the threshold at

t = 1160.5 but cannot cross the threshold.
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FIGURE 9. The dynamics of the proposed oscillator’s circuit; a) time
series; projection of attractorin b) X — Y; ¢) Z — X; d) Z - Y; the attractor
is matched with the attractor of Fig. 2.

Then the circuit of the scaled chaotic oscillator is realized by
OrCAD-PSpice. The following equations are used to imple-
ment the circuit of the oscillator.

1 t
X () = _mfo —Y (¢t)dt
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1 t
Yt) = ——— —Z () dt
RCr Jy (
1 ! 1 !
Z(t) = — / Xt dt — —— | Y@)at
R3C3 Jo R4C3 Jo
1 t
e —Z (t)dt
RsC3 Jo

1 t
—_ —Y (¢ Y (t)dt
10R6C3/0 (1) x Y (1)

1 t
- Z(t Z (t)dt
10R7C3/0 () x Z (1)

1 t
- X (t) x Z (t)dt
10R8C3/0 (1) xZ (1)

1
" 10RyC;

1 t
_— 1) dt 3
+10Rmc3/0V"() 3)

The initial values are considered as (0, 0, 0). The resistors
and capacitors are considered as Ry = Ry = 7T2kQ,R3 =
240kR2,Ry = 48KkQ,R5 = T20kQ,R¢g = 4kQ,R7 =
4.5kQ.,Rg = 12kQ,Rg9g = 9k ,R19 = 3600kL2, and
C1 = C2 = C3 = 10nF. The implemented circuit is shown
in Fig. 8. The circuit dynamics are shown in Fig. 9, which are
matched with the attractor of Fig. 2.

t
/ Y (@) xZ@)dt
0

V. CONCLUSION

A novel chaotic system with a stable fixed point was proposed
here. The chaotic attractor was studied. Various dynamics
of the oscillator were investigated. Bifurcation diagrams of
the oscillator showed its various dynamics by changing two
parameters. The bifurcations by different initiation methods
showed the existence of multistability. Also, the multistable
dynamics were studied with the help of the LE spectrum.
The basin of attraction of the dynamics was investigated. The
basin of chaotic dynamics was sprinkled in the equilibrium
point’s basin of attraction. The existence of extreme events
was investigated in the chaotic time series of the oscillator.
In other words, the oscillator had a chaotic attractor with
extreme events in its time series. Also, the system showed
multistability in some intervals. The chaotic circuit for the
proposed system was implemented to examine the feasibility
of the dynamics.
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