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ABSTRACT Reset control is a kind of hybrid control which is capable of overcoming fundamental
limitations on the performance intrinsic to linear time invariant (LTT) systems. In this work, we develop a
novel control strategy for first order LTI plants with time delay, based on the proportional-integral plus Clegg
integrator (PI+CI) controller, a hybrid extension of the proportional-integral (PI) controller, augmented with
anew mechanism for keeping its state constant during a given interval of time (reset-and-hold strategy). This
strategy is capable of producing an approximation of a flat response which greatly improves the performance
in comparison with non-hybrid linear strategies, extending previous results developed for first order systems
without delay. Well-posedness and closed-loop stability of the resulting control system are analyzed under
the Hybrid Inclusions (HI) framework, and a set of sufficient stability conditions are provided. Furthermore,
a case study is developed that showcases the possibilities of this new approach.

INDEX TERMS Reset control, hybrid control systems, control design, PI control, nonlinear control systems,

time delays.

I. INTRODUCTION

Reset control is a control approach in which controllers come
equipped with mechanisms for resetting some of its states
according to a given triggering event. Reset control sys-
tems constitute an important class of hybrid control systems,
in which time evolution of the states can be both continuous
and discrete. The main interest in reset systems lies in the
fact that they are capable of overcoming fundamental per-
formance limitations inherent to linear time invariant (LTT)
control [1] by means of a simple mechanism.

In its original meaning, reset control involves linear time
invariant controllers endowed with a means to reset their
states to zero. A fundamental example of reset controller, now
called the Clegg integrator (CI), was introduced by Clegg in
his seminal work [2]. In the works of Horowitz and others [3],
[4] another basic example of reset controller was introduced,
the first order reset element (FORE), and design rules for
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the CI and FORE were developed. Since then, the meaning
of reset system in practice has been expanded to encompass
different triggering conditions such as error bands [5], [6]
or periodic reset instants [7], as well as systems that are
nonlinear or in which the resetted states do not necessarily
go to zero.

The field of reset control has proven to be very fruitful,
with a multitude of reset strategies having been successfully
devised and applied in practice. More concretely, reset control
strategies specific to systems with time delay have been
developed and studied e.g. in [8], [9], [10], and [11].

In this work, we consider the problem of reset control for
LTI first order plants with time delay (also called FOPDT
systems), extending previous results pertaining to first order
plants without delay [12]. With the introduction of delay, first
order systems are sufficiently generic to capture the essential
dynamics of many practical processes in industry [1]. Our
approach is based on the proportional-integral plus Clegg
integrator (PI+CI) controller, together with a new reset mech-
anism (reset-and-hold) in which the controller is augmented
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with the ability to hold its output constant for a certain interval
of time. Under this strategy, we are able to develop tuning
rules which result in a much greater performance compared
to that of traditional reset control approaches.

The remainder of this article is structured as follows.
In Section II, we introduce relevant definitions and basic
results of the Hybrid Inclusions (HI) framework for systems
with memory, as well as robust models for the CI and PI+4-CI,
and general reset controller. Section III introduces the reset-
and-hold strategy. Section IV discusses the proposed control
structure, including a full description of the system, and the
properties of well-posedness and closed-loop stability are
analyzed. In Section V, design rules to achieve a flat response
(to a good approximation) are derived, both for reference
tracking and for disturbance rejection. Finally, Section VI
presents a case study showcasing the capabilities of the pro-
posed tuning rules by means of a simulated example.

Notation: Z>o (Z<o) is the set of nonnegative (nonpositive)
integers, and R>o (R<p) nonnegative (nonpositive) real num-
bers set. R” denotes the n-dimensional Euclidean space, and
| - | is the Euclidean norm. The transpose of a matrix A is AT,
and [|A|] is its norm. [ and 0 denote identity and zero matrices.
For a subset X C R", X denotes its closure. The symbol x
denotes Cartesian product and \ denotes set difference. The
convex hull of X is written conv X. Finally, floor(x) is the
greatest integer less than or equal to x.

A continuous function f : [0, 00) — [0, 0co) belongs to
class K (denoted f € Koo) if it is strictly increasing and
unbounded, and f(0) = 0. If the unboundedness condition
is dropped, it is said that f belongs to class K. Similarly,
a continuous function f [0,00) x [0,00) — [0, 00)
belongs to class KL (denoted as f € KL) if it is strictly
increasing with respect to the first variable, decreasing with
respect to the second variable, and satisfies f(0,y) = O for
any y and limy oo f(x,y) = O for any x. For a subset
W of Euclidean space, the distance |x|yy from x to W is
defined as infycyy |x — y|. Furthermore, ||¢|[yy is defined as

SUp(s,k)edom ¢ lpCs, k).
s+k>—A—1

Il. PRELIMINARIES AND PROBLEM SETUP

A. TIME-DELAYED SYSTEMS

A system is said to be time-delayed when its current state
depends on its state at some time in the past. Time-delayed
systems arise very often in practice, due to physical limi-
tations on the speed of transport of matter (e.g. in process
industry) and transmission of information (e.g. in networked
systems).

This work is focused on the hybrid control of first order
plants with delay, also called First Order Plus Dead Time
(FOPDT) systems. These are linear time invariant systems
where the delay is characterized by a single parameter A,
such that the first order dynamics of the output is dependent
on the input shifted backwards /4 units in time. A first order
plant with delay is represented in the frequency domain by
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the following transfer function:
b efsh
s+a’

with three parameters a, b, h. Despite its simplicity, it is
known that many practical processes in industry can be well
approximated by such a dynamics [1].

P(s) =

B. THE HI FRAMEWORK

The formalism of Hybrid Dynamical Systems, also called
the Hybrid Inclusions (HI) framework, which is developed
in [13], is the mathematical basis upon which the devel-
opments of this work rest. This subsection includes a brief
description of the HI framework for systems with inputs and
for systems with memory.

1) THE HI FRAMEWORK FOR SYSTEMS WITH INPUTS

This section briefly describes the formalism of Hybrid
Dynamical Systems adapted to systems with inputs [14] as
will be used in this work. A hybrid system with inputs ¥ for
a state x € R™ and input w € W for some set W C R™ is
given by

if (x,w)eC,
xT e gx,w), if (x,w)eD.

where f : R"™ = R™ is the flow map, g : R = R is the
jump map (f and g are both set-valued maps in general), and
C,D € R*™ x R™ are the flow and jump sets respectively.
Note that as in [14], we do not regard w as a hybrid signal
(as otherwise its domain must be known in advance, which
is unrealistic in practice); instead, the space of admissible
inputs w(z) will be taken as the set of piecewise continuous
functions from R~ to W. With this reduced set of inputs,
the two concepts of solution considered in [14] coincide, and
the results for existence of solutions and completeness therein
developed easily follow.

X € f(x, W),

ey

2) THE HI FRAMEWORK FOR SYSTEMS WITH MEMORY
This work uses the formalism of Hybrid Dynamical Systems
for systems with memory introduced in [15] and further
generalizes in [16]. The reader is referred to [15] for a detailed
overview of basic definitions and results. A key concept is the
size of the memory A (a kind of generalization of the delay
that may now be continuous or discrete or a combination
of both). Here M” is the set of hybrid memory arcs with
memory of size A. To simplify the notation,! besides the state
x(t,j) at some (¢,j) € dom x consider the distributed state
X[ij] € M2 given by xp;ji(s, k) = {x(s +1,j + k) € R" :
(s, k) € Reg X Z<p, (t +5,j+ k) e domX, s + k > —Ajnr}.
A hybrid system 2 = (C, F, D, G), with memory of size
A, is given by

AL ) X(@,)) € F(Xp ),
X(t,j+ 1) € G(x ),

X[t,j] € C, (2)

X[t,7] eD.

INote that in [15], [16], a shift operator .Aﬁ ] is used; here the notation
X[, = .A[A',_]x is employed.
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where F : M? = R" is the flow map, G : M® = R" is
the jump map, and C, D € M?* are the flow and jump sets
respectively.

When X is well-posed, for example if it satisfies the basic
hybrid conditions [16], its solution sets inherit several good
structural properties: upper-semicontinuous dependence with
respect to initial conditions, robustness against perturbations
like measurement noise, and preservation of asymptotic sta-
bility under small perturbations (which is referred to as robust
stability).

C. RESET CONTROL
A reset controller consists of a LTI controller (the base
controller) and a mechanism to reset some of its states
according to some resetting law [17]. Informally speaking,
the zero-crossing resetting law enables a jump (reset) when
the closed-loop error is zero, while the variable band resetting
law enables a reset when the absolute value of the closed-loop
error reaches a certain threshold.

Following [18], the resetting law will be implemented by
using a discrete state ¢ € {—1, 1}.

1) A GENERIC RESET CONTROLLER
A reset controller R with state (x,,q) € O™, input e € R,
and output u € R is given by

X, = A,Xx, + B,e, if (x,,q,e)eC

] X (A, O X, .
A -2 ) voaaen o

u=C;x+ D,e.

where A, B, C,, D, are constant matrices of the appropriate
dimensions, and A, is a diagonal matrix that sets to zero the
last n,, elements of x,. The flow and jump sets C and D are
given by (3) and (4), respectively, where

C={Xr,q,e) e 0" xR:qgS(e) > 0}, (4a)
D ={X,q,e) e O xR:qgS(e) <0}. (4b)

and S(e) is the output of some (possibly nonlinear) trans-
formation applied to the signal e. The zero-crossing resetting
law corresponds to S(e) = e; the more general variable band
resetting law is obtained for S(e) = e + 0¢, where 0 € Risa
design parameter (note that the zero-crossing resetting law is
recovered for 6 = 0).

2) THE PI+CI CONTROLLER

The PI+CI controller [12] is a particular case of reset con-
troller, where n, = 2,A, = 0,B, = (1,DT,4, = (}9),
Cr = (£ =py). Fpr) and Dy = kp.

The PI+CI controller constitutes a hybrid extension of the
proportional-integral (PI) controller, in which the integral part
isreplaced with a weighted sum of a linear integrator and a CI.
In addition to the proportional gain kp and the integral time
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Ty, it has an extra design parameter p,, called the reset ratio,
which determines the weight of the CI state in the output.
If p, = 0, the linear PI controller’s behavior is recovered.
Despite its simplicity, the PI4+CI controller has been found
useful in several practical applications [17], [19].

Ill. THE RESET-AND-HOLD CONTROLLER
A new hybrid controller, referred to as reset-and-hold,
inspired by the distributed state resetting approach of [10],
will be shown to be specially useful for systems with time
delays. The main motivation has been to overcome the per-
formance of reset controllers for systems with time delays.
This is based on the fact that the performance improvement
due to resetting crucially depends on a balance between the
after-reset states of both plant and controller. However, the
presence of delay in the feedback path destroys that balance,
typically producing an undesired undershooting, which limits
the potential performance improvement. To avoid this prob-
lem, besides resetting the basic idea is to hold the control
signal after a jump, for some time interval.

The reset-and-hold controller Ry, with state (X,, g, m, T) €
OfF .= 0™ x {0, 1} x R>0, and input e € R, is defined as a
hybrid system with inputs, given by:

X A B
(Xr> = (m ,x,:—m ,e>’ (Xr, g, m, T,€) € Cy
T

Ry : X, ApX,
+ 1-2
q+ = [ mEma | (Xr.q.m, 7, e) € Dy
m 1 —m
Tt 0

&)

where the output is u = C,X, + mD;e, the flow setis Cy =
Ch, U CH,, where

Chy = {(X,,q,m, T, €) € O xR:m=0,7 < g}, (6a)
Cr, = (X, q,m, 7,e)eO” x R:m=1,qS(e) > 0}, (6b)

and the jump set is Dy = Dp, U Dy, , being

Duy = {(Xr,q,m, t,¢) € O xR:m=0,7> gy}, (7a)
Du, = {xr,q,m, 7, e)EOH xR:m=1,qS(e) > 0}. (7b)

Note that, in comparison with the reset controller (3), Ry
includes a extra discrete state m € {0, 1}, that will be used
to switch between two operating modes, and a timer t that
will be in charge of regulating the time interval in which
the controller output is held constant after every jump due
to reset. The two operating modes are:

e m = 1 (resetting mode). The controller output
corresponds to that of the base linear controller
(Ay, By, Cy, D,). Jumps are enabled only when the reset-
ting law g S(e) < 0 is triggered: a crossing is detected
and thus the sign of ¢ is changed, x; is reset, the timer is
reset to zero, and m switches to 0 (holding mode).
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FIGURE 1. Reset-and-hold controller state and output response for a
given input e (with a zero-crossing resetting law in the resetting mode).

e m = 0 (holding mode). The state x, is kept constant
(note that x, = 0 from (5)), and thus, since u = C,Xx, +
mD,e = C;X,, then the control output is also constant
in this mode. On the other hand, the timer 7 is activated,
and when it reaches the value T = ty ajump is triggered.
After jumping, m switches to 1 (resetting mode), the
timer 7 is initialized to zero, and the rest of states are
kept identical.

Fig. 1 depicts an example of a state/output response for a
given controller input, where the two modes are represented.
Moreover, note that the reset controller R, as given by (3), can
be obtained from (5) simply by making ty = 0.

Note that the basic idea behind the reset-and-hold strategy
is to temporarily disable the feedback path during the inter-
vals of time [#;, t; + Ty ] after jumps at time #;, until the effect
of reset is able to properly reach a plant with time delay. This
strategy is especially useful in cases where resetting actions
aim to drive this plant to a stationary state where ¢ — 0,
as will be seen in further sections.

A. CONTROL OF SYSTEMS WITH TIME-DELAYS
Consider a linear time-invariant system P with time delay A,
defined by the delay-differential equation

®)

P X,(1) = ApX,(t) + Byv(t — h)
¥y = CpXp(1).

with state x € R™, input v € R and output v € R,
and the feedback connection between P and a reset-and-hold
controller Ry, given by e = r — y, where r € R is a
reference signal, and v = u 4 d, being u the controller output
and d € R a disturbance signal. The closed-loop state is
z e O :=R" x O and is partitioned as z = (x, s), where
X = (Xp,X;), and s = (g, m, t). From (5)—(7) and (8), the
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closed loop system (without exogenous inputs) is given by

X Ap(m)x + Ap(m)x(t — h)
g _ 0
m| 0 ’
T 1
(z(t), z(t — h)) € Cy
xt ARX
g" | _ | 1 —2m)yq
mt | 1—m ’
Tt 0
(z(1), z(t — h)) € Dy 9

where the flow and jump sets are given by

Co={(z1,22) € O* :my =0, 71 < Ty}
U{(z1,22) € 0% :my =1,
qC(( 4+ 0Ap)x1 + 0Apx2)) = 0} (10)

and

Do = {(z1,22) € O :my =0, 11 > T4}
U{(z1,22) € 0% :my =1,
gC(( + 6Ap)x1 + 0A,x7)) < 0} (11)

respectively, and

— AP 0
Ao(m) = (—mBGC mAr> ’

A(m) = (_’”B'(’)D "G BPOC’) , (12)

I 0
AR=<O Ap), c=(-C 0). (13

IV. A HYBRID CONTROL SYSTEM WITH MEMORY

Now, let z = (x, g, m, t) be a hybrid arc and z; | € M2 a
hybrid memory arc. One way of interpreting the closed-loop
hybrid system (9)—(13) as a hybrid dynamical system with
memory A = (C,F,D, Q) is to use the following data
(some similar cases are described in [15] and [16]):

C
= {p € M* : (9(0,0), p(—h, —kn)) € Co},

Fze )
conv U {Aox(t,j) + Apx(t — h,j — k)}
(—h,—k)edom X[z.,j1
= 0 ,
0
1
D
= {p € M* : (9(0,0), p(—h, —k)) € Do},
G(z: j)
ARX(t, j)
(4 =2m(, g, )
- 1 —m(t,)) ’ (14
0

VOLUME 10, 2022



J. F. Séez et al.: Reset-and-Hold Control of Systems With Time Delay

IEEE Access

where k;,, = max{k : (—h, k) € dom ¢}. Note that having the
time delay 4 means that the change by flow of x at (¢, ) €
dom x depends on both x; ;;(0, 0) = x(z, j) and the value of
X[z j1(—=h, —k) = X(¢ — h, j — k), and that due to possibility of
multiple instantaneous jumps at ¢ — A, there can be more than
one k satisfying (—h, —k) € dom x(; ;1. The choice to take the
convex hull of all those points is related to the fulfilment of
regularity conditions to obtain robustness to small variations
in the size of the delay [15]. In addition, jumps also depend on
my; (0, 0) = m(z, j) and g, 71(0, 0) = ¢(z, j). Moreover, the
matrices Ag and A, implicitly depend on my, (0, 0) = m(z, j)
as shown in (12).

A. WELL-POSEDNESS
In this section, the well-posedness of the closed-loop system
¥4, as given by (14), is analyzed. Firstly, since there may be
at most two instantaneous consecutive jumps when jumping
from m = 1 to m = 0, when the system immediately jumps
again to m = 0 and then it is forced to flow during at least
Ty time units, then any hybrid arc which is a solution to £2
has at most 2i/7y jumps in any time interval [t — h, t], for
any t € R-0. Thus, =2 has a finite memory with size A =
h+2h/tyg + 1.

Recall that a hybrid system with memory X% =
(C, F,D,G) is well-posed if it satisfies the basic hybrid
conditions,? that is, for any b, A € R.p:

H Cn MbA’A and D N Mﬁk are closed subsets of M2,

2) F is outer semicontinuous relative to C N M ﬁ 5.» locally
bounded relative to C N M2, and F(¢) is nonempty
and convex foreach ¢ € C N Mﬁ e

3) G is outer semicontinuous relative to DN M ,ﬁ 5.» locally

bounded relative to DN.M ﬁ, and G(¢) is nonempty for
eachp e DN Mﬁx.

From their definition in (14) and (10)—(11), it is clear that
C and D are closed sets, and thus the hybrid basic condition
#1 easily follows. Regarding condition #2, it directly follows
from (14) that that F(¢) is convex and nonempty.

Also local boundedness of F is straightforward, since
hybrid memory arcs ¢ € C N M,]A’)L are upper bounded
by b and thus | F(@)I> < [Ao@)e + An(@)el* + 1 <
(max{[[ 40> + 44017, IAo(DII* + [An(DIPHE* + 1.
Moreover, outer semicontinuity of F is strongly based on the
choice of the convex hull in its definition (a formal proof
would involve analyzing graphical convergence of hybrid
memory arcs and it is not given here). Finally, condition
#3 easily follows, for example since 1G@I? < IARIl@l>+
(I +4lelDlel* + 1+ lel?) < (1ArI* 42+ 4b%)b* + 1,
then local boundedness is assured. On the other hand, outer
semicontinuity of G directly follows since G is single-valued

2Here Mﬁ 5 1s a subspace of MA with better compactness properties;
informally speaking it consists of hybrid memory arcs whose norm at every
point in the domain is upper bounded by b € R.(, and are Lipschitz
continuous in the r-domain with Lipschitz constant A € R (see [16] for
technical details).
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and continuous. As a result, it follows that the proposed
hybrid control system SA=(C,F,D,G)is well-posed.

B. STABILITY

In this section, stability of the closed loop hybrid system T2,
given by (14), in investigated. More specifically, a closed
set W is asymptotically stable for the hybrid system %4
if there exists a candidate Lyapunov-Krasovskii functional
VM~ R>o, a1, 22 € K and a continuous positive
definite function p such that the three following conditions
are satisfied:

a1(1¢(0, 0)lw) < V(¢) < aa(|ldllw)
Yo e CUDUGT(D), (15a)

V(¢) < —p(1$(0, 0)lyw) V¢ €C, (15b)

V(@) — V@) < —p(160,0)lyy) V¢ €D,y € G9),
(15¢)

where V denotes the upper right hand derivative of the func-
tional V, and ¢)‘f is the new hybrid arc obtained after a single
jump to the value y; the set of all possible ¢>;r is denoted
GT(D) (the reader is referred to [15] for precise definitions
and technical details).

Here, the stability of W = {0} x {0, 1} x {—1, 1} x R>o,
which corresponds to the set of all the points z = (x, g, m, T)
such that x = O, is considered. In the following, delay-
dependent stability conditions are obtained. The approach is
based on postulating a quadratic Lyapunov-Krasovskii func-
tional and deriving sufficient conditions for stability in the
form of linear matrix inequalities. Recall that Ay, Ay, as given
by (12), depend on the discrete state m € {0, 1}.

(Delay-dependent stability conditions) Consider the reset-
and-hold control system L2 given by (14). The set W is
asymptotically stable for £ if there exist matrices P > 0,
0 >0X = X", Y and Z > 0O such that the following
conditions are satisfied:

1)
C(m,m) < —el, (17)
for all combinations of m,m’ € {0, 1} and for some
& > 0, where T'(m, m') is given by (16), as shown at the
bottom of the next page, and
2)
X Y
(YT Z) >0, (1)
Y(Ar —1) =0, (19)
ARPAR—P < 0. (20)

The proof is based on stability results in [20] and [15], and
is only sketched here for the sake of brevity. For a solution
¢ = (Xp,S4) to 2, consider the Lyapunov-Krasovskii
functional
0

V(g) = x40, 0) " Px4(0, 0) + / Xp(t, 1) QXp(t, up)dt
h
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FIGURE 2. Example of a closed-loop flat step response y under a
reference change: (thin line) LTI control system, (thick line) reset control
system.

0 r0
+/h/ F@YA) Zf (@)Hd'dr,  (21)
—hJt

where u, is the value maximizing the norm [x4(z, j)| among
the j such that (¢, j) € dom ¢ (this choice is related to the defi-
nition of upper right hand derivative), and for any ¢ € (—#h, 0)
we define the functional f(¢)(t) = Ao(my(t, us))Xe(t, us) +
Ap(mg(t — h, u;—p))Xp(t — h, u;—p) (note the difference with
F(@)).

Note that (15a) easily follows from the fact that V, as given
by (21), is positive definite and radially unbounded. Comput-
ing the upper right hand derivative of V and using Leibniz’s
rule, one obtains an expression consisting of a term depending
on the states x4(0, 0) and x4(—h, u_p) plus an integral term.
Following [20], Lemma 1 of [21] is applied to replace this
integral with another expression in terms of x4(0,0) and
X¢(—h, u_p). This step introduces new matrices X, Y satisfy-
ing (18), (19) in the stability conditions. Imposing condition
(15b) results in the inequalities (17)—(19), by considering
all four possible values for m(0, 0) and m(—h, u_p). Finally,
a straightforward application of (15¢) results in the final
condition (20).

V. DESIGN OF RESET-AND HOLD PI+Cl CONTROLLERS
FOR FOPDT SYSTEMS

Here, the design of reset-and-hold controllers for FOPDT
(first order plus dead time) systems is investigated. A FOPDT
system with state x,, is given by (8), where

Apy=—a, By=b, C,=1. (22)

The focus will be on controllers based on the PI+CI (see
section I1.B.2), and the development of tuning rules, with the
aim of obtaining, besides a well-posed and stable closed-loop
hybrid system, an improved performance (flat response) with
respect to LTI control. Both tracking of step references and
rejection of step disturbances are considered. The term ““‘flat
response’’ means that the error signal is ideally zeroed out
(becomes identically zero) after the first reset instant (Fig. 2).
It is known that a PI4-CI controller is able to produce a flat
response for first order systems without delay [17]; this result

was recently extended to MISO plants in [22]. It will be
shown that a flat response can also be attained for FOPDT
systems (to a very good approximation) using a well-tuned
reset-and-hold controller.

The reset-and-hold PI+CI controller with state (x7, x¢y, ¢,
m, T) is given by (5), with the controller parameters given in
section II.B.2. Note that the design parameters are kp and 7;
(corresponding to the base PI controller), and p,, ty, and 6
corresponding to the reset-and-hold strategy. It is assumed
that the base PI controller, that is, the parameters kp and
Ty, are designed to produce a fast oscillatory response (note
that an oscillatory response occurs whenever the base linear
control system has a pair of complex poles in the frequency
domain; in terms of the parameters of the plant and controller,
this happens whenever the inequality T; < 4bkp/(bkp+a)? is
satisfied. The base controller can be designed in the usual
way using any common tuning method, taking into account
this constraint). The role of the reset-and-hold strategy will be
to reduce the overshoot as much as possible to obtain a flat
response without decreasing the initial speed of the response.
In the following, the tuning strategy for the parameters p,, Ty,
and 6 is detailed.

A. REFERENCE TRACKING

Consider a step reference change r of amplitude wyg, and
assume that the error signal crosses zero at the instant t = ¢,
and the first reset action is produced at r = #;. By direct
substitution in (14), the value of x, (¢, j) for (¢, j) € [0, 7.) x{0}
is simply obtained from

Xp(t,))

= —ax,(t.j) + bkp (e(t ~ h.j)
+ %((1 — px(t — . )+ prrci(t — h,j))> (23)
and
x1(t.j) = xea(t.j) = /0 i =, 4

The first design choice is to use a reset band equal to the
delay, that is to make 6 = h. In this way, the reset action
will occur at t; =~ t. — h, where a first order approximation
e(t+86,)) ~ e(t,j)+68é(t, j), fort € [t. —h, t.] has been used.
As aresult, it is obtained that x;(¢1, 1) = x;(t, —h, 1) = x;(t1)
and xcy(t1, 1) = 0, and directly from (23)—(24) that

k
e, 1) = —axy(te, 1) + b%’(l —pxi(t).  (25)

Here, note that the proportional part is zeroed out after a
jump under the reset-and-hold strategy.

C(m, m') = (
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Ao(m)P + PAo(m)" +Y + YT + hAog(m) " ZAo(m) + Q  PAR(m')" =Y + hAo(m) " ZAp(m') (16)
Ap(m)TP = YT + hAu(m') T ZAo(m)

—Q + hAw(m') T ZAy(m')
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The second design choice is to make ty = h. This choice
prevents the controller from reacting to spurious input values
e(t, 1), for t € [#,1t.], by forcing the controller output to
hold its value until the plant has reacted to the effect of
resetting. It is then clear that a flat response will be achieved
if ,(tc, 1) = 0, since in that way the system reaches a steady
state (as the time derivatives x;(¢, 1) = x¢y(¢, 1) = e(t, 1) =
0fort > t.).

Finally, the parameter p, is tuned by making x,(., 1) =
0 in (25); the result is

aTiwio

- 26
bkpxy(t) (26)

Pr =

where the fact that x,(z., 1) = wio has been used. At first
glance, this tuning rule is formally identical to the corre-
sponding tuning rule for first order systems without time
delay [17]. However, the underlying approach is very differ-
ent, since a flat response with traditional resetting is in general
unobtainable in the presence of delays.

In summary, the resulting tuning rules for the reference
tracking case are

alywio

rae»f )2(1_—5
v " bkpx;(t1)

h, h). Q27)

B. DISTURBANCE REJECTION

Now consider a step disturbance of amplitude wyg. In this
case, using a similar reasoning to the above section it is
obtained that

Xp(t,j) = —axy(t, j) + bkp <6(t —h,j)
1 . .
+ E((l —pr)x(t — h, j) + prxci(t — hJ)))
+bd(t — h, j). (28)
Again, we take & = ty = h. Thus, after the controller jump
att =1t =~ t. — h, we have x;(t1, 1) = x;(t. — h, 0) = x;(t1)
and x¢y(t1, 1) = 0, and these values will be kept constant

during an interval of Ty units of time. Right after the holding
time interval, the flow equation reduces to

. k
iplte, 1) = —axy(te, 1) + b;’l’a — poxi(t) + bwo.  (29)

Imposing again x,(zc, 1) = 0, the result is now

Tywoo
kpxi(t)’

pr=1+ (30)
where the fact that x,(t; + h,1) = 0 in the disturbance
rejection case has been used. In summary, the obtained tuning
rules for the disturbance rejection case are

Trwyo

rs 97 T ) = (1 + ’
® " kpxy(t1)

h, h). 3D
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C. GUIDELINES FOR PARAMETER TUNING

Note that although in (26) and (30) the amplitudes wig and
wyo appear explicitly, these values are cancelled since they
are also a factor of x;(f;) due to the linearity of the base
system. As a result, the proposed values for p, are constant
and intrinsic to the hybrid control system, that is, they depend
only on the plant and the base PI controller. However, since
an explicit computation is x;(¢1) is hard to obtain, in practice
the value of p, may be simply computed by using the value
of the integrator state at the first reset instant.

The reset-and-hold strategy is also applicable in cases
where the delay / is not known precisely, but has some
associated degree of uncertainty. If it is known that & €
[Amin, Amax], then a simple conservative approach is to take
Tty = 6 = hpin (and the same reset ratios than in (26)
or (30)); this maximizes the time the controller spends in
flowing mode, producing a flat response only in the best case,
but improving the performance in all cases with respect to
more standard reset approaches.

On the other hand, the proposed reset-and-hold strategy
may not be suitable in those cases in which the appearance of
several disturbances or reference changes in a short time span,
lower than the delay &, is expected. This is because the con-
troller outputs are held constant during a fixed time interval,
so they will not be able to reject any incoming disturbances
until after this interval has passed. In such cases, an additional
supervisory mechanism is needed so that holding can be
disabled whenever a new disturbance or reference change is
detected.

V1. CASE STUDY: CONTROL OF A HEAT EXCHANGER

To demonstrate the capabilities of the proposed tuning rule,
a simulated example, consisting of a delayed first-order pro-
cess model of a heat exchanger in an experimental food
processing pilot plant, is considered (see Section 6.1 of [17]
for a detailed description). For a given operation point, the
plant is given by the transfer function

—139s

1+ 106s’

In the following, a PI+CI reset-and-hold controller (as
given by (5) with the data of Section II.B.2) will be designed.
The base PI controller parameters have been tuned to produce
an oscillatory base closed-loop response. The chosen param-
eters are

P(s) = 0.49 (32)

kp=13, T;=118. (33)

Well-posedness of the closed-loop hybrid control system
directly follows (see Section IV.A). Two design cases are
considered: tracking step references, and rejecting step distur-
bances. Both sections V.A and V.B will be closely followed.

A. REFERENCE TRACKING

A step reference change of amplitude w9 = 2 starting
at time ¢t = 30 is considered. The tuning rule (26) has
then been used to determine the reset ratio. Both the instant
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FIGURE 3. Closed-loop step response output y and controller output u
for different controllers: (solid/blue) base PI controller; (dashed/green)
P1+Cl reset controller with p, = —0.107; (dotted/red) PI+Cl reset
controller with p, = 0.350; (solid/orange) PI+Cl reset-and-hold controller.

t1 = 199.14 and the corresponding integrator state xy(1)
have been obtained by simulating the step response of the
closed-loop base control system. The resulting PI4-CI reset-
and-hold controller parameters are

pr=—0.107, 0 =1y = 130. (34)

Note that a negative value for p, indicates that the controller
output will increase its magnitude after a reset action. Closed-
loop stability is analyzed by checking (17)—-(20) for the
designed p, value (34) (see Section IV.B), and a solution has
been found for the matrices (P, Q, X, Y, Z). As a result, the
set W is asymptotically stable for the hybrid control system.

Fig. 3a shows the step response of the closed-loop hybrid
system, together with the response of the base linear system.
The controller output of the controller is shown in Fig. 3b.
For the purposes of comparison, a PI4+CI reset controller is
also considered; two different cases will be compared: (i) a
case with the same parameters p, and 6 of the reset-and-hold
controller, as given by (27), and (ii) a case with value p, =
0.350 (and 6 = 139).

As can be observed, in the first PI+CI reset controller case,
the response is actually worse than the base linear control
system response. This fact is not surprising, since the base
linear controller has been specifically designed for a good
performance of the reset-and hold controller. The second
PI4-CI reset controller case corresponds to a better design,
and has been obtained by properly tuning the parameter p,;
note that some balance between the overshoot and undershoot
of the step response must be attained, due to the fact that
some improvement in the overshoot is necessarily paired to an
increase in the undershoot, and vice versa. Finally, the PI+CI
reset-and-hold controller breaks that overshoot/undershoot
balance, by both zeroing out the proportional part and forcing

101810

705: \\\\\ | | Loy I | | Loy I | | ]
0 100 200 300 400 500 600 700 800 900 1,000 1,100

t
(a) Closed-loop outputs

u(t)

Il Il Il Il Il Il Il Il

0 100 200 300 400 500 600 700 800 900 1,000 1,100
t

(b) Controller outputs

,47 \\\\\ o b b b b b b

FIGURE 4. Closed-loop output y and controller output u under a step
disturbance: (blue) base PI controller; (orange) P1+Cl reset-and-hold
controller.

the controller to hold its output constant during a time interval
equal to the plant delay. The result is an (almost) flat response
as desired.

B. DISTURBANCE REJECTION
The PI4+CI reset-and-hold controller is designed for rejecting
a step disturbance of amplitude wog = 3, also starting at time
t = 30. The base PI controller parameters (33) are used.
Here, the tuning rule (30) is used to determine the controller’s
parameter p,, while both the reset band 8 and the time interval
Ty are also set to the plant delay value. As a result,
pr=—0.094, 0 =1ty =139. (35)
Note that the designed controller parameters are only
slightly different to the reference tracking parameters given
by (34). Closed-loop stability has been again checked by
solving (17)—(20) for some matrices (P, Q, X, Y, Z) and the
parameters (31). Fig. 4a shows the closed-loop response with
the designed PI4CI reset-and-hold controller, and the with
the base linear controller. The corresponding controller out-
puts are shown in Fig. 4b. As expected, the reset-and-hold
controller produces an (almost) flat response after rejecting
the step disturbance (note that the step disturbance has an
amplitude woo = 3).

C. ROBUSTNESS ANALYSIS
In this Section, the robustness of the proposed hybrid control
system approach with respect to noise and parameter vari-
ations is analyzed; two simulations are performed where a
combined case of reference tracking and disturbance rejec-
tion is considered, and with

o three different values of the delay: h_ = 130, by =
139 and A4 = 150 (Fig. 5).
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FIGURE 5. Robustness against delay uncertainty: (orange) nominal delay
ho = 139, (blue) h_ = 130, and (green) h,. = 150.
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FIGURE 6. Robustness against sensor noise: (orange) noiseless case,
(blue) noisy case.

« apseudo-random sensor noise of amplitude 0.05, and the
nominal value by = 139 (Fig. 6).

In both cases, the step reference starts at time = 130 and
the step disturbance at + = 1360. The amplitudes and con-
troller parameters are the same as in both previous analyses,
with the reset ratio p, being changed from (34) to (35) at time
t = 1230.

Fig. 5a and Fig. 6a clearly show that the performance of
the response is not degraded too much in any case, revealing
that the designed closed-loop hybrid system with the PI4-CI
reset-and-hold controller is robust both to small variations in
the delay and to sensor noise.

D. COMPARISON WITH OTHER STRATEGIES

Note that the base PI controller underlying a PI+Cl is not nec-
essarily well-tuned, since overshoot is neglected in its design.
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FIGURE 7. Closed-loop output y and controller output v under a
combined reference change and step disturbance: (blue) PI controller
tuned using SIMC; (green) Pl controller tuned using AMIGO; (orange)
PI+Cl reset-and-hold controller.
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FIGURE 8. Closed-loop step response output y for Example 1 in
Kumar et al. [25]: (orange) P1+Cl reset and hold controller; (blue) control
strategy in [25].

Thus, to demonstrate the effectiveness of the PI+CI reset-
and-hold strategy with respect to linear PI compensation,
a comparison will be made to two common tuning methods
for PI controllers applicable to FOPDT plants: Skogestad
Internal Model Control (SIMC) [23] with the closed loop
time constant T, = &, and Approximate M, Constrained Gain
Optimization (AMIGO) [24].
The combination of a unit step reference change at t =
0 and a negative unit step disturbance at + = 1100 is consid-
ered. Again the amplitudes and controller parameters for the
PI4CI are the same as in the previous cases, with p, being
changed from (34) to (35) at time t = 1090. The SIMC rule
results in the parameters
kp =0.778, T; = 106,
for the PI, while the AMIGO method results in
kp=0.462, T;=94.7.

The results are shown in Figure 7 and Table 1. As expected,
the PI4CI controller achieves better performance indices
than its linear counterparts.
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TABLE 1. Integrated squared error (ISE), integrated absolute error (I1AE),
integrated time absolute error (ITAE), and maximum overshoot
percentage in reference tracking and disturbance rejection for the
comparison example.

SIMC MIGO Reset-&-Hold
TAE (ref) 301.0 416.7 2322
ISE (ref.) 2343 299.8 196.4
ITAE (ref.) 5.498 x10% 11.02 x10% 2.996 x10%
Overshoot 4.0% 0.0% 0.7%
(ref.)
TAE (dist.) 1421 206.0 104.1
ISE (dist.) 4033 57.98 29.42
ITAE (dist.) 4386 x10% 8.369 x10% 2.606 x10%
Overshoot 39.1% 41.5% 38.1%
(dist.)

TABLE 2. Integrated squared error (ISE), integrated absolute error (IAE),
integrated time absolute error (ITAE), and maximum overshoot
percentage in reference tracking and disturbance rejection for the
comparison example.

Kumar et al. Reset-and-Hold

TAE (ref.) 0.886 0.326
ISE (ref.) 0.558 0.280
ITAE (ref.) 0.584 0.070
Overshoot (ref.) 0% 1%

TAE (dist.) 0.298 0.308
ISE (dist.) 0.060 0.097
ITAE (dist.) 0.289 0.244

Overshoot (dist.) 30.5% 43.9%

To further showcase the possibilities of the proposed strat-
egy, a comparison is made with a more advanced control
method appearing in recent literature. Specifically, we focus
on a linear control strategy [25] for plants with delay, based
on a modified Smith predictor.

Note that the control strategy in [25] is designed for unsta-
ble first order plants with delay (UFOPDT). However, the
previous results for the design rules do not make any assump-
tion on the stability of the plant and can be applied in this case,
provided the reset-and-hold strategy is slightly modified so
that resetting and holding is disabled when the error satisfies
le(t,j)| < e for some small ¢. This modification is made
because the output of an unstable plant will in general diverge
when the input is constant (holding mode), implying that the
original strategy would produce a seesaw-like response in the
output instead of converging to the expected value.

Example 1 of [25] is considered (nominal case). The plant’s
transfer function is
6_0'2 s
s—1°

First, the parameters for the base PI controller are manually
chosen to obtain a fast oscillating base closed-loop response:

kp=3.75, T;=1.25.

P(s) =

Next, applying the design rules (26), (30) results in the

values
6 = TH = 0.2, DPr.ref = 2.505, Pr. dist = —0.12.
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The closed loop response to a unit step reference change
att = 0 plus a negative unit step disturbance at t = 10 has
been simulated. The results of the comparison are shown in
Figure 8 and Table 2. As can be seen, the performance in
all metrics is greatly improved in reference tracking without
causing any significant overshoot. In contrast, the overshoot
in disturbance rejection is degraded, but the settling time is
improved, in such a way that most other metrics remain of
similar magnitude. Note that the strategy in [25] deals with
reference tracking and disturbance rejection using a combi-
nation of controllers, where as our proposed setup utilizes
only one controller. It is possible that a similar setup using
combined PI4-CI controllers with the reset-and-hold strategy
would achieve a better handling of disturbances; however, this
is out of the scope of the current work.

VIi. CONCLUSION

A new hybrid controller for systems with time delays is
proposed, consisting of a combination of reset and hold
strategies. This reset-and-hold controller has been analyzed
in detail in the framework of Hybrid Inclusions, equipping
the resulting closed-loop hybrid system with good structural
properties. Besides well-posedness, which has been shown to
be guaranteed for any LTI plant with time delays, stability
conditions have been developed. Moreover, for the specific
case of a PI4CI reset-and-hold controller and a FOPDT
system, a set of design rules have been proposed. An (almost)
closed-loop flat response is obtained both in step tracking
and in rejecting step disturbances, notably improving the
performance of PI4-CI reset controllers.

The developments in this work apply only to FOPDT
systems. A possible idea for extending the current strategy to
deal with more general time-delayed processes, such as sec-
ond order plus dead time (SOPDT) or integrating first order
plus dead time (IFOPDT), is to combine the reset-and-hold
strategy with the on-line PI4CI tuning method for second
order plants from [19]. In this way, the parameters p,(#),
and possibly 6(#), tg(fx), would become functions of the
kth reset instant, computed on-line using a simple quadratic
optimization algorithm. This possibility will be explored in
future work.
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