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ABSTRACT In this study, we investigate frequency division duplex (FDD)-based overlay device-to-device
(D2D) communication networks. In overlay D2D networks, D2D communication uses a dedicated radio
resource to eliminate the cross-interference with cellular communication and multiple D2D devices share the
dedicated radio resource to resolve the scarcity of radio spectrum, thereby causing co-channel interference,
one of the challenging problems in D2D communication networks. Various radio resource management
problems for D2D communication networks can’t be solved by conventional optimization methods because
they are modelled by non-convex optimization. Recently, various studies have relied on deep reinforcement
learning (DRL) as an alternative method to maximize the performance of D2D communication networks
overcoming co-channel interference. These studies showed that DRL-based radio resource management
schemes can achieve almost optimal performance, and even outperform the state-of-art schemes based on
non-convex optimization. Most of DRL-based transmission schemes inevitably require feedback information
from D2D receivers to build input states, especially in FDD networks where the channel reciprocity between
uplink and downlink is not valid. However, the effect of feedback overhead has not been well investigated
in previous studies using DRL, and none of the studies reported on reducing the feedback overhead of
DRL-based transmission schemes for FDD-based D2D networks. In this study, we propose a DRL-based
transmission scheme for FDD-based D2D networks where input states are built by using reduced feedback
information, thereby reducing feedback overhead. The proposed DRL-based transmission scheme using
reduced feedback information achieves the same average sum-rates as that using full feedback, while
reducing the feedback overhead significantly.

INDEX TERMS Autonomous transmission, device-to-device (D2D), deep reinforcement learning (DRL),
transmission scheme, feedback.

I. INTRODUCTION

Recently, device-to-device (D2D) direct communication has
been attracting a lot of attention because it can significantly
improve spectral efficiency in mobile communication net-
works by spatially reusing the same radio spectra. D2D
direct communication also plays crucial roles for public
safety in disaster situations where base stations (BSs) are
not available by allowing direct communication between two
devices without traversing BSs or core network [1], [2]. D2D
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communication has already been included to the standards of
3rd generation partnership project (3GPP) [3] and will be able
to provide a connectivity for both public safety and various
commercial applications such as unmanned aerial vehicles
(UAVs) [4], vehicle-to-vehicle (V2V) [5], and Internet-of-
things (IoT) [6] without deploying infrastructure. Especially,
5G new radio (NR) radio access network (RAN) supports
vehicle-to-everything (V2X) sidelink as a key application of
D2D communication [7], [8].

Despite its various advantages, the performance of D2D
communication can be seriously degraded by co-channel
interference [8]. Performance degradation caused by
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co-channel interference can be mitigated in the in-coverage
scenarios where a cellular network can control D2D commu-
nication. However, such a control is impossible in the out-of-
coverage scenarios where D2D devices are located beyond
the coverage of cellular networks and the efficiency of D2D
communication is thus severely degraded, which is one of
the main reasons that various studies have focused on inves-
tigating interference in D2D networks [9], [10], [11]. Not
only a centralized scheduling algorithm that yields almost
optimal sum-rates with a reduced computational complexity,
but a distributed algorithm was also proposed in [9]. The dis-
tributed scheduling algorithm can select one D2D transmitter
with the greatest channel gain, but results in the the waste of
radio resource because of a considerable amount of signaling.
A game-theoretic framework for optimal mode selection and
spectrum partitioning was proposed for D2D-enabled cellu-
lar networks, where D2D communication uses a dedicated
resource without a cross-interference with cellular commu-
nication [10]. Based on an energy and spectral efficiency
evaluation framework for large-scale D2D-enabled cellu-
lar networks, an optimal mobile traffic offloading scheme
for D2D overlay cellular networks was derived by using
tractable closed-form expressions for energy and spectral
efficiency [11].

On the other hand, deep reinforcement learning (DRL)
has been widely used as an alternative approach to solve
many mathematically intractable problems in wireless net-
works [12], [13]. Especially, various challenging problems
such as resource allocation and interference mitigation in
D2D networks can’t be solved by conventional optimization
methods because most of them are non-convex [14], and
many studies thus relied to DRL to solve non-convex prob-
lems in D2D networks [15], [16], [17]. A previous study
investigated a joint problem of resource block allocation
and power control and proposed a DRL-based scheme to
solve the joint problem [15]. A joint problem of channel
selection and power control was investigated to maximize
weighted sum-rates of an overlay D2D network where multi-
ple D2D pairs share a single channel simultaneously and net-
work performance is degraded because of severe co-channel
interference [16]. A distributed DRL-based transmission
scheme that allows each D2D pair to make optimal decisions
autonomously was proposed, achieving approximate per-
formance of the state-of-art fractional programming-based
algorithm. A deep learning based transmit power allocation
scheme that can automatically determine the optimal transmit
power levels of co-spectrum cellular users and D2D users
based on a deep neural network was proposed [17].

Even though DRL-based novel approaches can achieve
almost optimal performance or outperform the state-of-art
conventional schemes without using non-convex optimiza-
tion methods, as shown in [15], [16], and [17], they require
agents to collect channel information to build input layers.
Specifically, the input states in [15] consist of instantaneous
signal channel gain and interference channel gains between
D2D transmitter and receiver, and interference channel gains
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between cellular user and D2D receiver. Local channel state
information and outdated non-local channel information are
only used for input states in [16]. The input layer of the
DRL used in [17] is also formed by the channel gain matrix.
In time division duplex (TDD)-based D2D networks, each
D2D transmitter can easily obtain channel information thanks
to the channel reciprocity of uplink and downlink, i.e., each
D2D transmitter can estimate downlink channel information
based on uplink channel information obtained by measur-
ing uplink sounding symbols transmitted by D2D receivers.
In frequency division duplex (FDD)-based D2D networks,
each D2D receiver is required to send downlink channel
information to D2D transmitters to enable them to build input
states because the channel reciprocity of uplink and downlink
is not valid, which inevitably results in tremendous feedback
overhead.

Despite various studies for D2D networks, to the best of
our knowledge, there has been no investigation on feedback
reduction for D2D networks because meaningful researches
to reduce the feedback overhead have been focused on
multi-antenna networks [18], [19]. A method that signifi-
cantly reduces the required feedback load by utilizing a small
number of receive antennas at each mobile was proposed
in [18]. On the other way, a transmit antenna selection scheme
for downlink transmission in massive antenna systems was
proposed to reduce the feedback required by cellular base
stations [19]. These schemes can not be applied to D2D net-
works because of the structural differences between D2D and
cellular networks, despite their superiority. Thus, we investi-
gate feedback reduction schemes for FDD-based D2D com-
munication networks. Each agent builds its input states by
only exploiting local channel information instead of global
channel information to reduce feedback overhead. Further-
more, we also propose two feedback schemes, namely partial
feedback scheme and binary feedback scheme, to reduce the
feedback overhead further. In the partial feedback scheme,
each D2D receiver feeds back its signal channel gain and
interference channel gains that are greater than its signal
channel gain. In the binary feedback scheme, each D2D
receiver feeds back indicators of interference channel gains
that are greater than its signal channel gain, instead of the
real values of channel gains. Our numerical results show that
the partial and binary feedback schemes can both achieve
approximately optimal sum-rates in power or interference
limited environments.

The main contributions of this paper are summarized as
follows. The problem of feedback overhead for D2D net-
works is formulated and two feedback reduction schemes are
proposed to reduce the feedback overhead for D2D networks
based on the formulation. In addition, the proposed feedback
reduction schemes are incorporated with a new transmis-
sion scheme using DRL to prevent performance degradation
caused by the reduced feedback. The proposed feedback
reduction schemes can significantly reduce the feedback
overhead while achieving the same sum-rates, compared to
the full feedback scheme. They also enable each D2D to
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FIGURE 1. An illustrative D2D communication network with K D2D pairs.

determine whether to transmit data in a fully distributed
manner.

The rest of this paper is organized as follows. The D2D
communication network and channel model considered in
this study are described in Sect. II. DRL-based distributed
transmission schemes using reduced feedback are proposed
in Sect. III. Numerical results are shown in Sect. IV and the
conclusions of this paper are finally drawn in Sect. V.

Il. A D2D COMMUNICATION NETWORK AND

CHANNEL MODEL

Fig. 1 depicts an overlay D2D communication network
that consists of K D2D transmitters and K D2D receivers.
Each receiver is associated with a transmitter. We assume
that the D2D communication uses a dedicated frequency
spectrum reserved for D2D communication and all D2D
devices share the frequency spectrum. We use frequency
division duplex (FDD) as a duplex scheme, thereby allocating
half of the total frequency to uplink and downlink, respec-
tively. hfj denotes the channel coefficient from transmitter
J to receiver i at a certain transmission interval 7, where
i,j e {1,2,---

is not valid in FDD. h’j’s follow the complex Gaussian

LK} h; + h/’.l. because channel reciprocity

distribution~ CN(0, 1) and |h |>’s are thus exponentially
distributed with unit mean. We also assume that all chan-
nel coefficients are independent and identically distributed
(i.i.d.). They are static for a transmission interval but vary
randomly every transmission interval. All transmitters use
a fixed transmit power P. A binary symbol a§ e {0,1}
determines whether each D2D transmitter i transmits data,
and is the action of transmitter i. Then, the data rate of the
D2D pair i is calculated as

o - Pat|ht|?
¢; = 10g,
' Y[ juei bl 2 + No

yajlh|?
= log, <1 + L , €))
i i vl 41
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where Ny denotes the thermal noise power and y = N y
is referred to as the signal-to-noise ratio (SNR) for notat10nal
simplicity, hereafter. Our goal is to enable each D2D transmit-
ter i to autonomously determine its action a} for maximizing
the sum-rate Zle | ¢t while reducing the feedback overhead.

Ill. PROPOSED DRL-BASED SCHEME USING REDUCED
FEEDBACK

A. DRL-BASED TRANSMISSION SCHEME

We investigate a DRL-based transmission scheme where each
D2D transmitter can determine autonomously whether to
transmit data based on the feedback from its associated D2D
receiver. Fig. 2 illustrates the architecture of the DRL-based
transmission scheme. s§ denotes the input state of D2D trans-
mitter i at time ¢, which consists of signal channel gain and
interference channel gains that the receiver i feeds back. a!
is the output that is the binary action of D2D transmitter i
at time ¢ denoting whether to transmit data. In various envi-
ronments, input states and actions are bilaterally co-related.
Thus, actions are chosen based on input states and the chosen
actions affect the next input states. However, actions and
input states are unilaterally co-related in our case because the
chosen actions don’t change the next input state consisting
of channel gains, even though actions are chosen based on
input states. We, thus, use a dueling deep Q-network (DQN)
as a learning model because it is particularly useful when
actions and input states are unilaterally co-related [20], [21].
As shown in Fig. 2, the dueling DQN comprises of three
main layers; feature layer, state-value layer, and advantage
layer, denoted by 6, «, and 8, respectively. Each main layer
has three fully connected sub-layers and each fully connected
sub-layer is followed by the rectified linear unit (ReLU)
activator. The top stream, which consists of the feature layer
and the state-value layer, yields a scalar output denoted by
V(sf; 0, o) that can estimate the value of input state as a scalar
value. The bottom stream, which consists of the feature layer
and the advantage layer, yields an array output denoted by
A(sf ,a; 0, B) that can estimate the advantage for each action
a. For this study, a € {0, 1} and the output size of the bottom
layer is 2. The top stream and bottom stream are aggregated,
thereby yielding the final state-action values Q, calculated as

Qi(st, a;0,a, B) = V(si; 0, &)

+AGs;, a; 0, B)—EulAGs;, a; 6, B, (2)
where E4[A(s!, a; 6, B)] is the average value of A(s}, a; 6, B)
over a and is included to resolve the lack of identifiability of
Q value [20]. Without Ea[A(s§ ,a; 0, B)], we can’t recover V
and A values uniquely for a given Q value, which leads to poor
performance in practical cases. Then, the D2D transmitter

i chooses its action at time ¢, denoted by a? , which has the
greatest state-action value as

a; = argmax Q!(st, a; 0, &, B). &)
ac{0,1}

If af = 1, the transmitter i transmits data to the receiver i,
which broadcasts the data-rate cﬁ defined in (1). Otherwise,
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FIGURE 2. The architecture of DRL-based distributed transmission scheme using dueling DQN.

the transmit { doesn’t transmit data. The reward that the

transmitter i can achieve by taking the action a! is defined

as the sum-rate of K D2D pairs and can be calculated as

23 0)

1

K
t
T

J

by using the broadcast information from receivers. rl.”s are
all the same for all i’s and the subscript i can be omitted.
Then, the tuple (s, a}, r') is saved in the replay memory for
experience replay. Using randomly chosen samples from the
replay memory, all the parameters «, f, and 6 are gradu-
ally updated by Adam optimizer to minimize the difference
between the action-state value for the selected action a§ ,
Ql(si, al; 0!, af, B), and the target Q value, Qi . The target
Q value is calculated by

> 1
O = r' +nmax Qi(s;*, d; 6}, o, B)), &)
a

where 1 denotes a discount rate for future rewards. Contrary
to typical environments, the environment in this study is uni-
lateral and the actions don’t affect the subsequent input states
and 7 is thus set to 0 as in [22] and [21]. The optimizer grad-
ually trains ¢, 8, and 6 by using the gradient descent method
to minimize the mean square error [10L(s}, at; 6}, el , BI) —
o 12 as follows:

0 «—0—vVl, o <~ a—vVa, < B—VvVE, (6)

where v denotes a learning rate.

B. NEW FEEDBACK SCHEMES

All transmitters broadcasts reference symbols, by which all
D2D receivers can estimate channel gains. Each D2D receiver
i can estimate N channel gains consisting of one signal chan-
nel gain from D2D transmitter i and (N — 1) interference
channel gains from other transmitters by measuring the ref-
erence symbols transmitted by N D2D transmitters with no
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exchange of information with other devices. This assumption
can be supported by the channel state information reference
signal (CSI-RS) and sidelink communication procedure spec-
ified by 3rd generation partnership project (3GPP) [23]. In a
conventional full feedback scheme, each D2D receiver i feeds
back N channel gains as follows:

Frai =l 21 <j =k}, (7

where j denotes the identifier of D2D transmitter j. To reduce
the amount of feedback information given in (7), we propose
two feedback schemes: partial feedback scheme and binary
feedback scheme. In the partial feedback scheme, each D2D
receiver i feeds back the channel gains that are equal to or
greater than its signal channel gain |h;;|%. Thus, the feedback
information of receiver i can be described by

; 2
féarlial,iz {[J’ |h:]| ]

je{k||h§klzzlh§,~|2, l<k< K”
3

In the binary feedback scheme, each D2D receiver i only
feeds back identifiers of D2D transmitters whose channel
gains are equal to or greater than the signal channel gain
|hii|* as follows:

ll;inary,i = {[J]

The feedback information in the binary feedback scheme con-
sists of the same number of elements as the partial feedback
scheme, however, the binary feedback scheme can further
reduce the feedback overhead compared to the partial feed-
back scheme because the identifiers of channel gains are only
fed back without real-valued channel gains. After transmit-
ting data, D2D transmitter i receives the feedback information
.7-",-’ transmitted by the receiver i, and builds the next input

t+1 : t t t t t
state s, using JF;, where F; € {]-"fuu,i, ]:partial,i’ ‘Fbinary,i}’

114

e [kling? = 2 <k < K}} ©)
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If F! = Ff, »s:is formulated as

st = [P P Wiy P Wiy P g P
(10)
If F; ! — ‘F[t)artial ;» the D2D receiver i feeds back only |h§j|2 Vj

that are greater than or equal to |h{i|2. Thus, the input state is

L
described as

St ilk]if sy [k > |RG1?

S;artial,i[k]z { 0 1 <k<K,

otherwise,

(11)
[k] and si'ull ;[k] denote the k-th elements of
! ! . T t
S partial, i and Sfulli» respectively. If F} = fbmary’ i the D2D
receiver i feeds back only identifiers of transmitters j’s satis-

fying |h§j|2 > |h.|?|. Thus, the input state can be described
as

s
where Spartial,

1 if sy [k > |hG]?

. l<k=<K. (12)
0 otherwise,

stbinary,i[k] = {
We mathematically analyze the feedback overhead of three
different feedback schemes to evaluate how much the pro-
posed feedback schemes can reduce the feedback overhead,
compared the full feedback scheme. We have K D2D pairs
in our system model, as depicted in Fi.g 1. Thus, [log, K]
bits and F bits are required to identify one D2D transmitter
and digitize one real-valued channel gain, respectively. The
number of channel gains that each D2D receiver feeds back
to its transmitter is not fixed in the partial and binary feedback
schemes, as opposed to the full feedback scheme where it is
always K. Let E[T] be the average number of channel gains
that each D2D receiver feeds back to its transmitter in the
proposed feedback schemes. Then, the total bits required for
three feedback schemes can be calculated as

O = ([logy K1+ F) x K,
Opartial = (|—10g2 K1+ F) x E[T],
Obinary = [log, K x E[T]. (13)
In the partial and binary feedback schemes, |/; 2 is used as a
reference value when each D2D receiver i determines which
channel gains to feed back. Thus, 1 < E[T] < K. If we let

p be the probability that the receiver i feeds back Ihfjlz, then

the p is always constant regardless of i and j(j # i) because
we consider i.i.d. channels in this paper. E[T] can be thus
calculated by

K—-1 K —1
E[T]=Z(k+1)< L )p"(l—p)K—l‘k
k=0

K—1 k
_ K—1 14
=1 -pF IZ(kH)( L )(—)

k=0 I=p

K—1 k
== 2 () (75)
(I-p) ]; r >

102320

K—1 k
K -1 )4
2 e
Pt k 1—p
The overhead ratios of the partial and binary feedback

schemes compared to the full feedback scheme can be cal-
culated as

Opartial _ E[T]

N
jal = = —, 15
Ppartial Ot % (15)
Ohi [log, K

A inary 2
inary 2 = w. (16
Pbinary Ot Mog, K + F1 Ppartial (16)

respectively.

Theorem 1: ppariar converges to % as K asymptotically

increases.
Proof: 1f we use the following binomial expansion [24]

n

I+ =3 <I:>x’ (17)

i=0

k
S ) (E) in (14) can be simplified to

BT () (02
L) = 1+—) . (18)
kz:(:)( k l-p 1—p

By taking the derivative of (17) over x, we can obtain

n

n(l+x)"' = E <r_l)ixi_1 =% E (I?)ixi, (19)
i i
i=0

i=0

which can be rewritten as
n n _
§ (,)ix’ = nx(14+x)"" . (20)
i
i=0

k
By using (20), YK k(57 (q) in (14) can be sim-
plified to

K—1 k
OGS =e-n(E)
k P ) k-
() () = (3L
K-2
x<1+L) . @D
l—p

Then, (14) can be simplified as

K-2
E[T] = (1 —p)“[(K -1 <L> (1 + L)
1—p 1—p
p K—1
+(1+_) ]
I—p

1 K-1
= (1-p¥-! (S) [p(K — 1)+ 1]

=pK—-1)+1 (22)

by using (18) and (21).
If D2D nodes are uniformly distributed, they have different
path losses but the same distribution [25]. For two channel
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gains with the same distributions, p = % by using Lemma 1.
Then, (22) can be more simplified as

K+1
E[T]= 1~ (23)
2
Then, ppartial can be calculated as
E[T] K+1 1 1
pl=—=—==|1+=), 24
Ppartial X 2K ) < + K) (24
and the proof of Theorem 1 is completed by
. 1
Kll—r>noo Ppartial = 5 (25)
d

Lemma 1: For two independent random variables X and
Y with the same pdf fx(x) = fy(y), Pr{X > Y} = 1.
Proof:

Pr{X > Y} = / / Sfx. v (x, y)dxdy

{(x,y):x>y}

+00 +00
= /0 Jx ()fy (y)dxdy (26)
y

+00
- /0 Fr0) (1= Fx() dy

= [ o) - rF o)

—1- 0+oofy(y)Fy(y)dy @7)
_i- /0 YoMy ) (28)
R

where (26) is valid because the locations of D2D nodes are
uncorrelated to each other and (27) is valid because D2D
nodes are distributed based on the same distribution. (28) is
valid because fy (x) = £X& [26], O

IV. NUMERICAL RESULTS
We analyze the performance of the DRL-based distributed
transmission scheme for D2D networks with three different
feedback schemes in terms of average sum-rates and feed-
back overhead. All samples for training the dueling DQN
are generated by simulations according to the channel model
described in Sect. II. The network parameters of the duel-
ing DQN for the three feedback schemes are first trained
by Adam optimizer, with 500,000 samples, and the average
sum-rates are then derived from the dueling DQN with the
trained parameters using 100,000 samples different from the
samples used for training. The mini-batch size, the learning
rate v, and the size of hidden layers for the dueling DQN
are set to 10, 10~%, and 1024, respectively. The parameters
required for the dueling DQN are summarized in Table 1.
Fig. 3 shows average sum-rates of the DRL-based dis-
tributed transmission scheme with three feedback schemes
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FIGURE 3. Average sum rates.

for various values of y when K = 10, 20, or 50. The average
sum-rates of Opportunistic and No Control schemes are also
presented as references for evaluating the performance of
the DRL-based transmission schemes. In the No Control
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FIGURE 4. Average rewards of DRL-based transmission schemes obtained
during training. Each epoch consists of 5,000 episodes. K = 50.

scheme, all D2D transmitters always transmit data using their
peak transmit power. On the other hand, in the Opportunistic
scheme, a centralized node gathers all the signal channel
gains and allows only one D2D transmitter with the highest
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signal channel gain to transmit data. The No Control scheme
is optimal in power-limited environments while the Oppor-
tunistic scheme is optimal in interference-limited environ-
ments [27]. As shown in Fig. 3-(a), with K = 10, the
No Control scheme outperforms the Opportunistic scheme
for y < —3dB because the interference level is low. The
DRL-based transmission schemes achieve the same average
sum-rates as the No Control scheme for y < —14 dB and
outperforms the No Control scheme for —14dB< y < —3dB,
regardless of the feedback schemes. For y > —3dB, the
Opportunistic scheme outperforms the No Control scheme
because the co-channel interference among D2D transmitters
becomes significant. For —3dB< y < 5dB, the DRL-based
transmission schemes outperform the Opportunistic scheme.
For y > 5dB, the Opportunistic scheme outperforms the
DRL-based transmission schemes. However, if we consider
that the Opportunistic scheme requires an extra centralized
node to gather all signal channels and to select one D2D trans-
mitter to transmit data, the difference in the average sum-rates
is marginal. In addition, the partial feedback scheme and
the binary feedback scheme can achieve the same average
sum-rates as the full feedback scheme for all y values, despite
the reduced amount of feedback overhead. Figs. 3-(a) and (b)
show that as K increases from 10 to 50, the range of y
where the No Control scheme outperforms the Opportunistic
scheme is reduced and the difference of two schemes’ aver-
age sum-rates increases because the co-channel interference
among D2D transmitters becomes more significant as K
increases. In addition, the DRL-based transmission schemes
are superior to the No Control and Opportunistic schemes
in a wider range of y values. Specifically, the DRL-based
transmission schemes can achieve average sum-rates equal
to or greater than what the No Control scheme or the Oppor-
tunistic scheme can achieve when y < 5dB for K = 10,
while they outperform the No Control and Opportunistic
schemes when y < 4dB for K = 50. In addition, the
partial and binary feedback schemes can achieve the same
average sum-rates as the full feedback scheme even though K
increases.
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TABLE 1. Simulation parameters.

Parameters Values ‘
Batch size 10
Learning rate 1077

Feature layer(6)

(Linear, ReLLU, Linear, ReLLU, Linear, ReLU)

Neurons of feature layer

(1024, 1024, 1024)

State-value and advantage layers

(Linear, ReLLU, Linear, ReLLU, Linear)

Neurons of state-value and advantage layers

(1024, 1024, 1024)

Size of replay memory 500,000
Training samples 500,000
Testing samples 100,000

Fig. 4 shows the average rewards that the dueling DQN
can achieve for three feedback schemes while learning is in
progress when K = 50. When y is low, it is optimal for
all transmitters to transmit data and there is no difference
among three feedback schemes in terms of learning speed
and stability. As y increases, the proposed feedback schemes
can train the dueling DQN more quickly and more stably,
compared to the full feedback scheme. This implies that
the proposed feedback schemes can accelerate the training
of the dueling DQN by reducing the amount of feedback
information included input states, while not corrupting the
core context in the feedback information, thereby achieving
the same performance as the full feedback scheme.

Fig. 5 shows the overhead ratios of the partial feedback
scheme and binary feedback scheme to the full feedback
scheme, defined in (15) and (16), respectively. F is set to
32 bits/channel gain according to the single-precision binary
floating-point format in IEEE 754 [28]. As K increases,
Opartial decreases and converges to 0.5 as in Theorem 1.
Pbinary Slightly increases but is still lower than ppartial. More
specifically, ppartial & 0.5 and ppinary ~ 0.1 when K = 100,
indicating that the partial and binary feedback schemes can
reduce the amount of feedback overhead by 50% and 90%,
compared to the full feedback scheme, respectively, achiev-
ing the same average sum-rates. Fig. 5 also shows that the
proposed scheme can achieve the same feedback reduction
effect for non-i.i.d. channels as for i.i.d. channels. Non-i.i.d.
channels are generated by assuming that all D2D nodes are
uniformly distributed in a square with a side length of 10 m
and the path loss for a separation distance d is calculated
by d 3.

V. CONCLUSION
We investigated DRL-based transmission schemes where

each D2D transmitter can autonomously train its neural net-
work to determine whether to transmit data to maximize
the sum-rates of D2D communication networks using FDD
as a duplex scheme. DRL-based transmission schemes for
D2D communication networks are preferred to conventional
centralized schemes using non-convex optimization because
they can be easily implemented in distributed ways and can
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yield better performance in various environments. In various
DRL-based transmission schemes, each D2D transmitter gen-
erates input states based on the channel gains perceived at its
receiver. In TDD systems, each transmitter can build input
states without the feedback from a receiver by using channel
reciprocity. However, each transmitter needs the feedback
from its receiver to obtain the channel gains in FDD systems
where channel reciprocity is not valid. Thus, we proposed the
partial and binary feedback schemes to reduce the amount
of feedback overhead for FDD-based D2D communication
networks, while enjoying the advantages of DRL-based trans-
mission schemes. In the conventional full feedback scheme,
each D2D receiver measures all channel gains from surround-
ing D2D transmitters including signal channel gain and inter-
ference channel gains, and feed them back to a transmitter.
The channel gains that are equal to or greater than its signal
channel gain are only fed back to a transmitter in the partial
feedback scheme, while the identifiers of the channel gains
are only fed back without real-valued channel gains in the
binary feedback scheme. Our numerical results showed that
the DRL-based transmission schemes can achieve optimal
average sum-rates in power-limited environments with low y
values, and outperforms both No Control and Opportunistic
schemes in moderate y values. For high y values, the average
sum-rates of the DRL-based transmission schemes are lower
than those of Opportunistic scheme. However, the gap in
average sum-rates between two schemes becomes marginal
as K increases. Contrary to the Opportunistic scheme that
is a centralized scheme and requires a centralized control
node, the DRL-based schemes enable each D2D transmitter
to determine its action autonomously. In addition, the partial
and binary feedback schemes for DRL can both achieve the
same average sum-rates as the full feedback scheme in all
the environments considered in our simulations, while signif-
icantly reducing feedback overhead. The feedback overhead
of the partial feedback scheme converges to 50%, compared
to that of the full feedback scheme, as K asymptotically
increases. More specifically, when K = 50, the partial and
binary feedback schemes reduce the feedback overhead by
approximately 49% and 92%, respectively, compared to the
full feedback scheme.
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