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ABSTRACT In this study, we investigate frequency division duplex (FDD)-based overlay device-to-device
(D2D) communication networks. In overlay D2D networks, D2D communication uses a dedicated radio
resource to eliminate the cross-interference with cellular communication and multiple D2D devices share the
dedicated radio resource to resolve the scarcity of radio spectrum, thereby causing co-channel interference,
one of the challenging problems in D2D communication networks. Various radio resource management
problems for D2D communication networks can’t be solved by conventional optimization methods because
they are modelled by non-convex optimization. Recently, various studies have relied on deep reinforcement
learning (DRL) as an alternative method to maximize the performance of D2D communication networks
overcoming co-channel interference. These studies showed that DRL-based radio resource management
schemes can achieve almost optimal performance, and even outperform the state-of-art schemes based on
non-convex optimization.Most of DRL-based transmission schemes inevitably require feedback information
from D2D receivers to build input states, especially in FDD networks where the channel reciprocity between
uplink and downlink is not valid. However, the effect of feedback overhead has not been well investigated
in previous studies using DRL, and none of the studies reported on reducing the feedback overhead of
DRL-based transmission schemes for FDD-based D2D networks. In this study, we propose a DRL-based
transmission scheme for FDD-based D2D networks where input states are built by using reduced feedback
information, thereby reducing feedback overhead. The proposed DRL-based transmission scheme using
reduced feedback information achieves the same average sum-rates as that using full feedback, while
reducing the feedback overhead significantly.
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I. INTRODUCTION22

Recently, device-to-device (D2D) direct communication has23

been attracting a lot of attention because it can significantly24

improve spectral efficiency in mobile communication net-25

works by spatially reusing the same radio spectra. D2D26

direct communication also plays crucial roles for public27

safety in disaster situations where base stations (BSs) are28

not available by allowing direct communication between two29

devices without traversing BSs or core network [1], [2]. D2D30

The associate editor coordinating the review of this manuscript and

approving it for publication was Donatella Darsena .

communication has already been included to the standards of 31

3rd generation partnership project (3GPP) [3] andwill be able 32

to provide a connectivity for both public safety and various 33

commercial applications such as unmanned aerial vehicles 34

(UAVs) [4], vehicle-to-vehicle (V2V) [5], and Internet-of- 35

things (IoT) [6] without deploying infrastructure. Especially, 36

5G new radio (NR) radio access network (RAN) supports 37

vehicle-to-everything (V2X) sidelink as a key application of 38

D2D communication [7], [8]. 39

Despite its various advantages, the performance of D2D 40

communication can be seriously degraded by co-channel 41

interference [8]. Performance degradation caused by 42
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co-channel interference can be mitigated in the in-coverage43

scenarios where a cellular network can control D2D commu-44

nication. However, such a control is impossible in the out-of-45

coverage scenarios where D2D devices are located beyond46

the coverage of cellular networks and the efficiency of D2D47

communication is thus severely degraded, which is one of48

the main reasons that various studies have focused on inves-49

tigating interference in D2D networks [9], [10], [11]. Not50

only a centralized scheduling algorithm that yields almost51

optimal sum-rates with a reduced computational complexity,52

but a distributed algorithm was also proposed in [9]. The dis-53

tributed scheduling algorithm can select one D2D transmitter54

with the greatest channel gain, but results in the the waste of55

radio resource because of a considerable amount of signaling.56

A game-theoretic framework for optimal mode selection and57

spectrum partitioning was proposed for D2D-enabled cellu-58

lar networks, where D2D communication uses a dedicated59

resource without a cross-interference with cellular commu-60

nication [10]. Based on an energy and spectral efficiency61

evaluation framework for large-scale D2D-enabled cellu-62

lar networks, an optimal mobile traffic offloading scheme63

for D2D overlay cellular networks was derived by using64

tractable closed-form expressions for energy and spectral65

efficiency [11].66

On the other hand, deep reinforcement learning (DRL)67

has been widely used as an alternative approach to solve68

many mathematically intractable problems in wireless net-69

works [12], [13]. Especially, various challenging problems70

such as resource allocation and interference mitigation in71

D2D networks can’t be solved by conventional optimization72

methods because most of them are non-convex [14], and73

many studies thus relied to DRL to solve non-convex prob-74

lems in D2D networks [15], [16], [17]. A previous study75

investigated a joint problem of resource block allocation76

and power control and proposed a DRL-based scheme to77

solve the joint problem [15]. A joint problem of channel78

selection and power control was investigated to maximize79

weighted sum-rates of an overlay D2D network where multi-80

ple D2D pairs share a single channel simultaneously and net-81

work performance is degraded because of severe co-channel82

interference [16]. A distributed DRL-based transmission83

scheme that allows each D2D pair to make optimal decisions84

autonomously was proposed, achieving approximate per-85

formance of the state-of-art fractional programming-based86

algorithm. A deep learning based transmit power allocation87

scheme that can automatically determine the optimal transmit88

power levels of co-spectrum cellular users and D2D users89

based on a deep neural network was proposed [17].90

Even though DRL-based novel approaches can achieve91

almost optimal performance or outperform the state-of-art92

conventional schemes without using non-convex optimiza-93

tion methods, as shown in [15], [16], and [17], they require94

agents to collect channel information to build input layers.95

Specifically, the input states in [15] consist of instantaneous96

signal channel gain and interference channel gains between97

D2D transmitter and receiver, and interference channel gains98

between cellular user and D2D receiver. Local channel state 99

information and outdated non-local channel information are 100

only used for input states in [16]. The input layer of the 101

DRL used in [17] is also formed by the channel gain matrix. 102

In time division duplex (TDD)-based D2D networks, each 103

D2D transmitter can easily obtain channel information thanks 104

to the channel reciprocity of uplink and downlink, i.e., each 105

D2D transmitter can estimate downlink channel information 106

based on uplink channel information obtained by measur- 107

ing uplink sounding symbols transmitted by D2D receivers. 108

In frequency division duplex (FDD)-based D2D networks, 109

each D2D receiver is required to send downlink channel 110

information to D2D transmitters to enable them to build input 111

states because the channel reciprocity of uplink and downlink 112

is not valid, which inevitably results in tremendous feedback 113

overhead. 114

Despite various studies for D2D networks, to the best of 115

our knowledge, there has been no investigation on feedback 116

reduction for D2D networks because meaningful researches 117

to reduce the feedback overhead have been focused on 118

multi-antenna networks [18], [19]. A method that signifi- 119

cantly reduces the required feedback load by utilizing a small 120

number of receive antennas at each mobile was proposed 121

in [18]. On the other way, a transmit antenna selection scheme 122

for downlink transmission in massive antenna systems was 123

proposed to reduce the feedback required by cellular base 124

stations [19]. These schemes can not be applied to D2D net- 125

works because of the structural differences between D2D and 126

cellular networks, despite their superiority. Thus, we investi- 127

gate feedback reduction schemes for FDD-based D2D com- 128

munication networks. Each agent builds its input states by 129

only exploiting local channel information instead of global 130

channel information to reduce feedback overhead. Further- 131

more, we also propose two feedback schemes, namely partial 132

feedback scheme and binary feedback scheme, to reduce the 133

feedback overhead further. In the partial feedback scheme, 134

each D2D receiver feeds back its signal channel gain and 135

interference channel gains that are greater than its signal 136

channel gain. In the binary feedback scheme, each D2D 137

receiver feeds back indicators of interference channel gains 138

that are greater than its signal channel gain, instead of the 139

real values of channel gains. Our numerical results show that 140

the partial and binary feedback schemes can both achieve 141

approximately optimal sum-rates in power or interference 142

limited environments. 143

The main contributions of this paper are summarized as 144

follows. The problem of feedback overhead for D2D net- 145

works is formulated and two feedback reduction schemes are 146

proposed to reduce the feedback overhead for D2D networks 147

based on the formulation. In addition, the proposed feedback 148

reduction schemes are incorporated with a new transmis- 149

sion scheme using DRL to prevent performance degradation 150

caused by the reduced feedback. The proposed feedback 151

reduction schemes can significantly reduce the feedback 152

overhead while achieving the same sum-rates, compared to 153

the full feedback scheme. They also enable each D2D to 154
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FIGURE 1. An illustrative D2D communication network with K D2D pairs.

determine whether to transmit data in a fully distributed155

manner.156

The rest of this paper is organized as follows. The D2D157

communication network and channel model considered in158

this study are described in Sect. II. DRL-based distributed159

transmission schemes using reduced feedback are proposed160

in Sect. III. Numerical results are shown in Sect. IV and the161

conclusions of this paper are finally drawn in Sect. V.162

II. A D2D COMMUNICATION NETWORK AND163

CHANNEL MODEL164

Fig. 1 depicts an overlay D2D communication network165

that consists of K D2D transmitters and K D2D receivers.166

Each receiver is associated with a transmitter. We assume167

that the D2D communication uses a dedicated frequency168

spectrum reserved for D2D communication and all D2D169

devices share the frequency spectrum. We use frequency170

division duplex (FDD) as a duplex scheme, thereby allocating171

half of the total frequency to uplink and downlink, respec-172

tively. htij denotes the channel coefficient from transmitter173

j to receiver i at a certain transmission interval t , where174

i, j ∈ {1, 2, · · · ,K }. htij 6= htji because channel reciprocity175

is not valid in FDD. htij’s follow the complex Gaussian176

distribution∼ CN (0, 1) and |htij|
2’s are thus exponentially177

distributed with unit mean. We also assume that all chan-178

nel coefficients are independent and identically distributed179

(i.i.d.). They are static for a transmission interval but vary180

randomly every transmission interval. All transmitters use181

a fixed transmit power P. A binary symbol ati ∈ {0, 1}182

determines whether each D2D transmitter i transmits data,183

and is the action of transmitter i. Then, the data rate of the184

D2D pair i is calculated as185

cti = log2

(
1+

Pati |h
t
ii|
2∑K

j=1,j 6=i Pa
t
j |h

t
ij|
2 + N0

)
186

= log2

(
1+

γ ati |h
t
ii|
2∑K

j=1,j 6=i γ a
t
j |h

t
ij|
2 + 1

)
, (1)187

where N0 denotes the thermal noise power and γ = P
N0
. γ 188

is referred to as the signal-to-noise ratio (SNR) for notational 189

simplicity, hereafter. Our goal is to enable eachD2D transmit- 190

ter i to autonomously determine its action ati for maximizing 191

the sum-rate
∑K

i=1 c
t
i while reducing the feedback overhead. 192

III. PROPOSED DRL-BASED SCHEME USING REDUCED 193

FEEDBACK 194

A. DRL-BASED TRANSMISSION SCHEME 195

We investigate a DRL-based transmission schemewhere each 196

D2D transmitter can determine autonomously whether to 197

transmit data based on the feedback from its associated D2D 198

receiver. Fig. 2 illustrates the architecture of the DRL-based 199

transmission scheme. sti denotes the input state of D2D trans- 200

mitter i at time t , which consists of signal channel gain and 201

interference channel gains that the receiver i feeds back. ati 202

is the output that is the binary action of D2D transmitter i 203

at time t denoting whether to transmit data. In various envi- 204

ronments, input states and actions are bilaterally co-related. 205

Thus, actions are chosen based on input states and the chosen 206

actions affect the next input states. However, actions and 207

input states are unilaterally co-related in our case because the 208

chosen actions don’t change the next input state consisting 209

of channel gains, even though actions are chosen based on 210

input states. We, thus, use a dueling deep Q-network (DQN) 211

as a learning model because it is particularly useful when 212

actions and input states are unilaterally co-related [20], [21]. 213

As shown in Fig. 2, the dueling DQN comprises of three 214

main layers; feature layer, state-value layer, and advantage 215

layer, denoted by θ , α, and β, respectively. Each main layer 216

has three fully connected sub-layers and each fully connected 217

sub-layer is followed by the rectified linear unit (ReLU) 218

activator. The top stream, which consists of the feature layer 219

and the state-value layer, yields a scalar output denoted by 220

V (sti ; θ, α) that can estimate the value of input state as a scalar 221

value. The bottom stream, which consists of the feature layer 222

and the advantage layer, yields an array output denoted by 223

A(sti , a; θ, β) that can estimate the advantage for each action 224

a. For this study, a ∈ {0, 1} and the output size of the bottom 225

layer is 2. The top stream and bottom stream are aggregated, 226

thereby yielding the final state-action values Q, calculated as 227

Qti (s
t
i , a; θ, α, β) = V (sti ; θ, α) 228

+A(sti , a; θ, β)−Ea[A(s
t
i , a; θ, β)], (2) 229

where Ea[A(sti , a; θ, β)] is the average value of A(s
t
i , a; θ, β) 230

over a and is included to resolve the lack of identifiability of 231

Q value [20]. Without Ea[A(sti , a; θ, β)], we can’t recover V 232

andA values uniquely for a givenQ value, which leads to poor 233

performance in practical cases. Then, the D2D transmitter 234

i chooses its action at time t , denoted by ati , which has the 235

greatest state-action value as 236

ati = argmax
a∈{0,1}

Qti (s
t
i , a; θ, α, β). (3) 237

If ati = 1, the transmitter i transmits data to the receiver i, 238

which broadcasts the data-rate cti defined in (1). Otherwise, 239

102318 VOLUME 10, 2022



T.-W. Ban: Deep Learning-Based Transmission Scheme Using Reduced Feedback for D2D Networks

FIGURE 2. The architecture of DRL-based distributed transmission scheme using dueling DQN.

the transmit i doesn’t transmit data. The reward that the240

transmitter i can achieve by taking the action ati is defined241

as the sum-rate of K D2D pairs and can be calculated as242

r ti ,
K∑
j=1

ctj (4)243

by using the broadcast information from receivers. r ti ’s are244

all the same for all i’s and the subscript i can be omitted.245

Then, the tuple (sti , a
t
i , r

t ) is saved in the replay memory for246

experience replay. Using randomly chosen samples from the247

replay memory, all the parameters α, β, and θ are gradu-248

ally updated by Adam optimizer to minimize the difference249

between the action-state value for the selected action ati ,250

Qti (s
t
i , a

t
i ; θ

t
i , α

t
i , β

t
i ), and the target Q value, Q̂ti . The target251

Q value is calculated by252

Q̂ti = r t + ηmax
a′

Qti (s
t+1
i , a′; θ ti , α

t
i , β

t
i ), (5)253

where η denotes a discount rate for future rewards. Contrary254

to typical environments, the environment in this study is uni-255

lateral and the actions don’t affect the subsequent input states256

and η is thus set to 0 as in [22] and [21]. The optimizer grad-257

ually trains α, β, and θ by using the gradient descent method258

to minimize the mean square error ||Qti (s
t
i , a

t
i ; θ

t
i , α

t
i , β

t
i ) −259

Q̂ti ||
2 as follows:260

θ ← θ − ν∇θ, α← α − ν∇α, β ← β − ν∇β, (6)261

where ν denotes a learning rate.262

B. NEW FEEDBACK SCHEMES263

All transmitters broadcasts reference symbols, by which all264

D2D receivers can estimate channel gains. EachD2D receiver265

i can estimate N channel gains consisting of one signal chan-266

nel gain from D2D transmitter i and (N − 1) interference267

channel gains from other transmitters by measuring the ref-268

erence symbols transmitted by N D2D transmitters with no269

exchange of information with other devices. This assumption 270

can be supported by the channel state information reference 271

signal (CSI-RS) and sidelink communication procedure spec- 272

ified by 3rd generation partnership project (3GPP) [23]. In a 273

conventional full feedback scheme, each D2D receiver i feeds 274

back N channel gains as follows: 275

F t
full,i =

{[
j, |htij|

2], 1 ≤ j ≤ K} , (7) 276

where j denotes the identifier of D2D transmitter j. To reduce 277

the amount of feedback information given in (7), we propose 278

two feedback schemes: partial feedback scheme and binary 279

feedback scheme. In the partial feedback scheme, each D2D 280

receiver i feeds back the channel gains that are equal to or 281

greater than its signal channel gain |hii|2. Thus, the feedback 282

information of receiver i can be described by 283

F t
partial,i=

{[
j, |htij|

2]∣∣∣∣j∈{k∣∣|htik |2≥|htii|2, 1 ≤ k ≤ K}} . 284

(8) 285

In the binary feedback scheme, each D2D receiver i only 286

feeds back identifiers of D2D transmitters whose channel 287

gains are equal to or greater than the signal channel gain 288

|hii|2 as follows: 289

F t
binary,i =

{[
j
]∣∣∣∣j ∈ {k∣∣|htik |2 ≥ |htii|2, 1 ≤ k ≤ K}} . (9) 290

The feedback information in the binary feedback scheme con- 291

sists of the same number of elements as the partial feedback 292

scheme, however, the binary feedback scheme can further 293

reduce the feedback overhead compared to the partial feed- 294

back scheme because the identifiers of channel gains are only 295

fed back without real-valued channel gains. After transmit- 296

ting data, D2D transmitter i receives the feedback information 297

F t
i transmitted by the receiver i, and builds the next input 298

state st+1i using F t
i , where F

t
i ∈ {F

t
full,i,F

t
partial,i,F

t
binary,i}. 299

VOLUME 10, 2022 102319



T.-W. Ban: Deep Learning-Based Transmission Scheme Using Reduced Feedback for D2D Networks

If F t
i = F t

full,i, s
t
i is formulated as300

stfull,i=
{
|htii|

2, |hti1|
2, · · · , |hti(i−1)|

2, |hti(i+1)|
2, · · · , |htiK |

2
}
.301

(10)302

If F t
i = F t

partial,i, the D2D receiver i feeds back only |htij|
2
∀j303

that are greater than or equal to |htii|
2. Thus, the input state is304

described as305

stpartial,i[k]=

{
stfull,i[k] if stfull,i[k] ≥ |h

t
ii|
2

0 otherwise,
1 ≤ k≤K ,306

(11)307

where stpartial,i[k] and stfull,i[k] denote the k-th elements of308

stpartial,i and s
t
full,i, respectively. If F

t
i = F t

binary,i, the D2D309

receiver i feeds back only identifiers of transmitters j’s satis-310

fying |htij|
2
≥ |htii|

2
|. Thus, the input state can be described311

as312

stbinary,i[k] =

{
1 if stfull,i[k] ≥ |h

t
ii|
2

0 otherwise,
1 ≤ k ≤ K . (12)313

We mathematically analyze the feedback overhead of three314

different feedback schemes to evaluate how much the pro-315

posed feedback schemes can reduce the feedback overhead,316

compared the full feedback scheme. We have K D2D pairs317

in our system model, as depicted in Fi.g 1. Thus, dlog2 Ke318

bits and F bits are required to identify one D2D transmitter319

and digitize one real-valued channel gain, respectively. The320

number of channel gains that each D2D receiver feeds back321

to its transmitter is not fixed in the partial and binary feedback322

schemes, as opposed to the full feedback scheme where it is323

always K . Let E[T ] be the average number of channel gains324

that each D2D receiver feeds back to its transmitter in the325

proposed feedback schemes. Then, the total bits required for326

three feedback schemes can be calculated as327

Ofull =
(
dlog2 Ke + F

)
× K ,328

Opartial =
(
dlog2 Ke + F

)
× E[T ],329

Obinary = dlog2 Ke × E[T ]. (13)330

In the partial and binary feedback schemes, |htii|
2 is used as a331

reference value when each D2D receiver i determines which332

channel gains to feed back. Thus, 1 ≤ E[T ] ≤ K . If we let333

p be the probability that the receiver i feeds back |htij|
2, then334

the p is always constant regardless of i and j(j 6= i) because335

we consider i.i.d. channels in this paper. E[T ] can be thus336

calculated by337

E[T ] =
K−1∑
k=0

(k + 1)
(
K − 1
k

)
pk (1− p)K−1−k338

= (1− p)K−1
K−1∑
k=0

(k + 1)
(
K − 1
k

)(
p

1− p

)k
339

= (1− p)K−1
[ K−1∑
k=0

k
(
K − 1
k

)(
p

1− p

)k
340

+

K−1∑
k=0

(
K − 1
k

)(
p

1− p

)k ]
. (14) 341

The overhead ratios of the partial and binary feedback 342

schemes compared to the full feedback scheme can be cal- 343

culated as 344

ρpartial ,
Opartial

Ofull
=

E[T ]
K

, (15) 345

ρbinary ,
Obinary

Ofull
=
dlog2 Ke
dlog2 K + Fe

ρpartial, (16) 346

respectively. 347

Theorem 1: ρpartial converges to 1
2 as K asymptotically 348

increases. 349

Proof: If we use the following binomial expansion [24] 350

(1+ x)n =
n∑
i=0

(
n
i

)
x i, (17) 351

∑K−1
k=0

(K−1
k

) ( p
1−p

)k
in (14) can be simplified to 352

K−1∑
k=0

(
K − 1
k

)(
p

1− p

)k
=

(
1+

p
1− p

)K−1
. (18) 353

By taking the derivative of (17) over x, we can obtain 354

n(1+ x)n−1 =
n∑
i=0

(
n
i

)
ix i−1 =

1
x

n∑
i=0

(
n
i

)
ix i, (19) 355

which can be rewritten as 356

n∑
i=0

(
n
i

)
ix i = nx(1+ x)n−1. (20) 357

By using (20),
∑K−1

k=0 k
(K−1

k

) ( p
1−p

)k
in (14) can be sim- 358

plified to 359

K−1∑
k=0

k
(
K − 1
k

)(
p

1− p

)k
= (K − 1)

(
p

1− p

)
360

×

(
1+

p
1− p

)K−2
. (21) 361

Then, (14) can be simplified as 362

E[T ] = (1− p)K−1
[
(K − 1)

(
p

1− p

)(
1+

p
1− p

)K−2
363

+

(
1+

p
1− p

)K−1 ]
364

= (1− p)K−1
(

1
1− p

)K−1 [
p(K − 1)+ 1

]
365

= p(K − 1)+ 1 (22) 366

by using (18) and (21). 367

If D2D nodes are uniformly distributed, they have different 368

path losses but the same distribution [25]. For two channel 369
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gains with the same distributions, p = 1
2 by using Lemma 1.370

Then, (22) can be more simplified as371

E[T ] =
K + 1

2
. (23)372

Then, ρpartial can be calculated as373

ρpartial =
E[T ]
K
=
K + 1
2K

=
1
2

(
1+

1
K

)
, (24)374

and the proof of Theorem 1 is completed by375

lim
K→∞

ρpartial =
1
2
. (25)376

�377

Lemma 1: For two independent random variables X and378

Y with the same pdf fX (x) = fY (y), Pr{X > Y } = 1
2 .379

Proof:380

Pr{X > Y } =
∫∫

{(x,y):x>y}

fX ,Y (x, y)dxdy381

=

∫
+∞

0

∫
+∞

y
fX (x)fY (y)dxdy (26)382

=

∫
+∞

0
fY (y) (1− FX (y)) dy383

=

∫
+∞

0
(fY (y)− fY (y)FX (y)) dy384

= 1−
∫
+∞

0
fY (y)FY (y)dy (27)385

= 1−
∫ 1

0
FY (y)dFY (y) (28)386

= 1−
[
1
2FY (y)

2
]FY (y)=1
FY (y)=0

=
1
2
, (29)387

where (26) is valid because the locations of D2D nodes are388

uncorrelated to each other and (27) is valid because D2D389

nodes are distributed based on the same distribution. (28) is390

valid because fX (x) =
dFX (x)
dx [26]. �391

IV. NUMERICAL RESULTS392

We analyze the performance of the DRL-based distributed393

transmission scheme for D2D networks with three different394

feedback schemes in terms of average sum-rates and feed-395

back overhead. All samples for training the dueling DQN396

are generated by simulations according to the channel model397

described in Sect. II. The network parameters of the duel-398

ing DQN for the three feedback schemes are first trained399

by Adam optimizer, with 500,000 samples, and the average400

sum-rates are then derived from the dueling DQN with the401

trained parameters using 100,000 samples different from the402

samples used for training. The mini-batch size, the learning403

rate ν, and the size of hidden layers for the dueling DQN404

are set to 10, 10−4, and 1024, respectively. The parameters405

required for the dueling DQN are summarized in Table 1.406

Fig. 3 shows average sum-rates of the DRL-based dis-407

tributed transmission scheme with three feedback schemes408

FIGURE 3. Average sum rates.

for various values of γ when K = 10, 20, or 50. The average 409

sum-rates of Opportunistic and No Control schemes are also 410

presented as references for evaluating the performance of 411

the DRL-based transmission schemes. In the No Control 412
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FIGURE 4. Average rewards of DRL-based transmission schemes obtained
during training. Each epoch consists of 5,000 episodes. K = 50.

scheme, all D2D transmitters always transmit data using their413

peak transmit power. On the other hand, in the Opportunistic414

scheme, a centralized node gathers all the signal channel415

gains and allows only one D2D transmitter with the highest416

FIGURE 5. Overhead ratios of the partial and binary feedback schemes to
the full feedback scheme. F = 32bits/channel gain.

signal channel gain to transmit data. The No Control scheme 417

is optimal in power-limited environments while the Oppor- 418

tunistic scheme is optimal in interference-limited environ- 419

ments [27]. As shown in Fig. 3-(a), with K = 10, the 420

No Control scheme outperforms the Opportunistic scheme 421

for γ ≤ −3dB because the interference level is low. The 422

DRL-based transmission schemes achieve the same average 423

sum-rates as the No Control scheme for γ ≤ −14 dB and 424

outperforms theNoControl scheme for−14dB≤ γ ≤ −3dB, 425

regardless of the feedback schemes. For γ ≥ −3dB, the 426

Opportunistic scheme outperforms the No Control scheme 427

because the co-channel interference among D2D transmitters 428

becomes significant. For −3dB≤ γ ≤ 5dB, the DRL-based 429

transmission schemes outperform the Opportunistic scheme. 430

For γ ≥ 5dB, the Opportunistic scheme outperforms the 431

DRL-based transmission schemes. However, if we consider 432

that the Opportunistic scheme requires an extra centralized 433

node to gather all signal channels and to select one D2D trans- 434

mitter to transmit data, the difference in the average sum-rates 435

is marginal. In addition, the partial feedback scheme and 436

the binary feedback scheme can achieve the same average 437

sum-rates as the full feedback scheme for all γ values, despite 438

the reduced amount of feedback overhead. Figs. 3-(a) and (b) 439

show that as K increases from 10 to 50, the range of γ 440

where the No Control scheme outperforms the Opportunistic 441

scheme is reduced and the difference of two schemes’ aver- 442

age sum-rates increases because the co-channel interference 443

among D2D transmitters becomes more significant as K 444

increases. In addition, the DRL-based transmission schemes 445

are superior to the No Control and Opportunistic schemes 446

in a wider range of γ values. Specifically, the DRL-based 447

transmission schemes can achieve average sum-rates equal 448

to or greater than what the No Control scheme or the Oppor- 449

tunistic scheme can achieve when γ ≤ 5dB for K = 10, 450

while they outperform the No Control and Opportunistic 451

schemes when γ ≤ 4dB for K = 50. In addition, the 452

partial and binary feedback schemes can achieve the same 453

average sum-rates as the full feedback scheme even thoughK 454

increases. 455

102322 VOLUME 10, 2022



T.-W. Ban: Deep Learning-Based Transmission Scheme Using Reduced Feedback for D2D Networks

TABLE 1. Simulation parameters.

Fig. 4 shows the average rewards that the dueling DQN456

can achieve for three feedback schemes while learning is in457

progress when K = 50. When γ is low, it is optimal for458

all transmitters to transmit data and there is no difference459

among three feedback schemes in terms of learning speed460

and stability. As γ increases, the proposed feedback schemes461

can train the dueling DQN more quickly and more stably,462

compared to the full feedback scheme. This implies that463

the proposed feedback schemes can accelerate the training464

of the dueling DQN by reducing the amount of feedback465

information included input states, while not corrupting the466

core context in the feedback information, thereby achieving467

the same performance as the full feedback scheme.468

Fig. 5 shows the overhead ratios of the partial feedback469

scheme and binary feedback scheme to the full feedback470

scheme, defined in (15) and (16), respectively. F is set to471

32 bits/channel gain according to the single-precision binary472

floating-point format in IEEE 754 [28]. As K increases,473

ρpartial decreases and converges to 0.5 as in Theorem 1.474

ρbinary slightly increases but is still lower than ρpartial. More475

specifically, ρpartial ≈ 0.5 and ρbinary ≈ 0.1 when K = 100,476

indicating that the partial and binary feedback schemes can477

reduce the amount of feedback overhead by 50% and 90%,478

compared to the full feedback scheme, respectively, achiev-479

ing the same average sum-rates. Fig. 5 also shows that the480

proposed scheme can achieve the same feedback reduction481

effect for non-i.i.d. channels as for i.i.d. channels. Non-i.i.d.482

channels are generated by assuming that all D2D nodes are483

uniformly distributed in a square with a side length of 10 m484

and the path loss for a separation distance d is calculated485

by d−3.486

V. CONCLUSION487

We investigated DRL-based transmission schemes where488

each D2D transmitter can autonomously train its neural net-489

work to determine whether to transmit data to maximize490

the sum-rates of D2D communication networks using FDD491

as a duplex scheme. DRL-based transmission schemes for492

D2D communication networks are preferred to conventional493

centralized schemes using non-convex optimization because494

they can be easily implemented in distributed ways and can495

yield better performance in various environments. In various 496

DRL-based transmission schemes, eachD2D transmitter gen- 497

erates input states based on the channel gains perceived at its 498

receiver. In TDD systems, each transmitter can build input 499

states without the feedback from a receiver by using channel 500

reciprocity. However, each transmitter needs the feedback 501

from its receiver to obtain the channel gains in FDD systems 502

where channel reciprocity is not valid. Thus, we proposed the 503

partial and binary feedback schemes to reduce the amount 504

of feedback overhead for FDD-based D2D communication 505

networks, while enjoying the advantages of DRL-based trans- 506

mission schemes. In the conventional full feedback scheme, 507

each D2D receiver measures all channel gains from surround- 508

ing D2D transmitters including signal channel gain and inter- 509

ference channel gains, and feed them back to a transmitter. 510

The channel gains that are equal to or greater than its signal 511

channel gain are only fed back to a transmitter in the partial 512

feedback scheme, while the identifiers of the channel gains 513

are only fed back without real-valued channel gains in the 514

binary feedback scheme. Our numerical results showed that 515

the DRL-based transmission schemes can achieve optimal 516

average sum-rates in power-limited environments with low γ 517

values, and outperforms both No Control and Opportunistic 518

schemes in moderate γ values. For high γ values, the average 519

sum-rates of the DRL-based transmission schemes are lower 520

than those of Opportunistic scheme. However, the gap in 521

average sum-rates between two schemes becomes marginal 522

as K increases. Contrary to the Opportunistic scheme that 523

is a centralized scheme and requires a centralized control 524

node, the DRL-based schemes enable each D2D transmitter 525

to determine its action autonomously. In addition, the partial 526

and binary feedback schemes for DRL can both achieve the 527

same average sum-rates as the full feedback scheme in all 528

the environments considered in our simulations, while signif- 529

icantly reducing feedback overhead. The feedback overhead 530

of the partial feedback scheme converges to 50%, compared 531

to that of the full feedback scheme, as K asymptotically 532

increases. More specifically, when K = 50, the partial and 533

binary feedback schemes reduce the feedback overhead by 534

approximately 49% and 92%, respectively, compared to the 535

full feedback scheme. 536
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