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ABSTRACT In optimizing the production of a metal mine, either the overall dynamic relations between
technical indicators or the spatial distribution of the ore grade are usually considered, but few studies have
considered both factors together. These two factors in combination have a greater effect on the optimization of
mine production in terms of economic benefit and resource utilization than they do individually.We proposed
an overall dynamic optimization model of technical indicators of metal mine production that considers the
spatial distribution of the ore grade to better optimize the technical indicators and improve sustainable
development of mineral resources. We incorporated an adaptive mutation strategy and adaptive control
parameters into a differential evolution algorithm (AADE) in order to overcome the drawbacks of the
differential evolution algorithm in solving this optimization model. The adaptive mutation strategy and
adaptive control parameters were used to increase the rate of convergence and improve the search for a
global maximum. To assess the performance of AADE, we used a real case and four test functions (the
Sphere, Griewank, Rastrigin and Rosenbrock functions) in tests that compared AADE with a standard
genetic algorithm, a standard differential evolution algorithm and the recently developed adaptive differential
evolution algorithm. The results indicate that the optimization model we created is better aligned with
mine production processes than current optimization models. In optimizing the technical indicators of metal
mine production to maximize economic benefits, AADE performed significantly better than the other three
algorithms tested in terms of convergence rate and global search ability.

18 INDEX TERMS Metal mine, technical indicator, overall dynamic relation, ore grade distribution, AADE.

I. INTRODUCTION19

Metal minerals are an important non-renewable resource and20

are basic to social development and human survival. They are21

essential to national economic development, and maintaining22

the security of such resources has great strategic value. The23

rapid development of China’s economy has resulted in tens24

of thousands of mines having been built, and the quantity of25

solid minerals mined in China is the highest in the world.26

The associate editor coordinating the review of this manuscript and

approving it for publication was Ehab Elsayed Elattar .

However, in a time of product shortages in China, the pur- 27

suit of high quantities of mineral resources and increased 28

development speed have resulted in a wide range of produc- 29

tion methods, low levels of technology use, and insufficient 30

investment in and attention to the sustainable development of 31

mineral resources. Consequently, mineral resources are not 32

fully utilized, and waste is a serious problem. It is therefore 33

essential to develop efficient mining techniques for mineral 34

resources. 35

The term ‘‘mineral resources’’ refers to geological bodies 36

that can be mined and utilized under current technological 37
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and economic conditions, which bring economic benefits to38

the state and business enterprises after extraction. Mineral39

resources are the product of geological action and are char-40

acterized by their scarcity and non-renewability. Whether a41

geological body can be considered to be a mineral resource42

is closely related to the current state of production technol-43

ogy and the mineral market. Ongoing changes in production44

technology and the volatility of mineral markets mean that45

minerals are a dynamic resource. Thus mining metal mineral46

resources to create economic and resource benefits is a signif-47

icant research topic that many mining researchers have been48

investigating.49

Optimization of the technology used for metal mine pro-50

duction will determine the best production indicators for51

optimal economic and resource use benefits. Changes in52

the mineral market and advances in production technology53

continually change the relevance of technological production54

indicators over time, so there is an ongoing need to adjust55

and optimize them. Optimization of the technical indicators56

of mine production is therefore a prerequisite for efficient57

mining of mineral resources.58

Researchers have taken two approaches to optimization59

of the technical indicators of mine production in recent60

decades. The first approach [1], [2], [3], [4], [5] is the over-61

all dynamic optimization of the technical indicators. This62

approach ignores the spatial distribution of the ore grade.63

However, assuming that the grade distribution is constant for64

the entire deposit, without considering the high-grade and65

low-grade regions in the deposit, leads to the waste of mineral66

resources. The second approach is to optimize the technical67

indicators of mine production, taking into account the spatial68

distribution of the ore grade.Wang et al. [6], [7] used dynamic69

programming to optimize the technical indicators of mine70

production. They included the mining method, production71

capacity and the mining sequence. They also considered72

the actual distribution of the ore grade in different zones73

of the orebody and created a dynamic programming model74

to optimize the technical indicators of mine production and75

applied the model to practical cases. However, in creating76

the model, they ignored the dynamic relations between the77

technical indicators of minemetal production. In other words,78

themodel they developed did not result in the overall dynamic79

optimization of the technical indicators of mine production.80

Thus, the optimized, but not optimal, technical indicators led81

to inefficient mining of mineral resources.82

The preceding studies included optimization of the techni-83

cal indicators of mine production, and some of the research84

was used practically. However, these studies considered only85

one aspect, either the overall dynamic relations between86

the technical indicators or the spatial distribution of the ore87

grade. Few researchers have considered both factors at the88

same time, and this incompleteness has led to inefficient89

exploitation of mineral resources. It is therefore necessary to90

develop an optimization model and an optimization method91

to optimize the technical indicators of mine production in92

order to more efficiently exploit metal mineral resources.93

Such an approach must consider two aspects, the overall 94

dynamic relations between the technical indicators and the 95

spatial distribution of the ore grade. 96

The production of metal mines is a multi-factor, multi- 97

level, multi-constrained, complex dynamic process, so the 98

optimization of technical indicators is a complex nonlinear 99

optimization problem. It has been well documented that stan- 100

dard optimization methods cannot easily solve complex non- 101

linear optimization problems [8], [9], [10]. Many intelligent 102

evolutionary methods have been proposed to solve complex 103

nonlinear optimization problems, such as the genetic algo- 104

rithm (GA) [11], the particle swarm algorithm (PS) [12], [13] 105

and the differential evolution algorithm (DE) [14], [15]. DE is 106

an easy-to-use algorithm that has few control parameters, is 107

low in computational complexity, and shows good conver- 108

gence. It is therefore used to solve many complex nonlinear 109

optimization problems [16], [17], [18]. However, the standard 110

DE algorithm has two drawbacks when used to optimize the 111

overall dynamic behavior of technical indicators of metal 112

mine production, considering the ore grade distribution. 113

First, the mutation strategy, determination of which is the 114

most important step in this algorithm, has a great effect 115

on the performance of DE. The mutation strategies used in 116

standard DE algorithms are DE/rand/∗ and DE/best/∗ [19]. 117

Many studies have shown that DE/rand/∗ has a global search 118

capability but converges slowly. DE/best/∗, in contrast, con- 119

verges rapidly but has a tendency to fix on a local optimum 120

[20], [21]. 121

Second, DE has two important control parameters that 122

affect its accuracy and its convergence rate: the scale factor 123

F and the crossover rate CR [22], [23]. In the standard DE 124

algorithm, the values of these two control parameters are 125

preset and remain unchanged during evolution [24]. However, 126

researchers have found that the optimal control parameter 127

values are generally different for various problems or even 128

for various evolutionary stages of the same problem [25]. It is 129

therefore difficult to determine the optimal control parameter 130

values to solve the overall dynamic optimization problem 131

for metal mine technical indicators when considering the ore 132

grade distribution. 133

To overcome the preceding drawbacks of the DE, we intro- 134

duced an adaptive mutation strategy and adaptive control 135

parameters into the standard DE algorithm and designed an 136

adaptivemutation operator and adaptive control parameter for 137

DE (AADE) to be incorporated into the algorithm in order to 138

solve the overall dynamic optimization problem. 139

II. OVERALL DYNAMIC OPTIMIZATION MODEL OF 140

METAL MINE TECHNICAL INDICATORS CONSIDERING 141

THE SPATIAL DISTRIBUTION OF THE ORE GRADE 142

A. DYNAMIC RELATIONSHIP MODEL OF METAL MINE 143

TECHNICAL INDICATORS 144

Mine production consists of a geological process, a mining 145

process, and a beneficiation process, each of which has main 146

technical indicators, as shown in Figure 1; the technical 147
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FIGURE 1. Production processes and main technical indicators of metal
mines.

TABLE 1. Detailed definitions of main technical indicators.

indicators are defined or described in detail in Table 1.148

We model the three processes in the following sections.149

1) GEOLOGICAL PROCESS150

The model [2] of the relationship of geologic reserves and151

ore average grade with ore boundary grade and ore industrial152

grade is:153

Q1 = f1(p1, p2) = Q0154

×

∫ p2
p1
ϕ(x)g(x)c(x)dx+

∫ 100
p2

g(x)c(x)dx∫ pb
pa
ϕ(x)g(x)c(x)dx+

∫ 100
pb

g(x)c(x)dx
(1)155

ϕ(x) = (
x − p1
p2 − p1

)z(p1 ≤ x ≤ p2) (2)156

p3 = f2(p1, p2) =

∫ p2
p1
xϕ(x)c(x)dx +

∫ 100
p2

xc(x)dx∫ p2
p1
ϕ(x)c(x)dx +

∫ 100
p2

c(x)dx
(3)157

where pa and pb are respectively the original boundary grade158

and original industrial grade; Q0 is the geological reserve159

calculated using mining software with boundary grade and160

industrial grade pa and pb; ϕ(x) is the probability function 161

that the ore with a grade between the boundary grade and 162

industrial grade is mined; z is a constant value, depending on 163

the geological properties of the ore; g(x) is a function of ore 164

weight and grade; and c(x) is the probability density function 165

of the ore grade distribution. 166

2) MINING PROCESS 167

The ore characteristics and mining methods of each mining 168

area are basically the same for an individualmine. In this case, 169

there was some correlation between the dilution rate and the 170

loss rate in the ore production process [1], and the relationship 171

model is: 172

c2 = f3(c1) (4) 173

The dilution rate is the ratio of the difference between the 174

ore average grade and the mining grade to the ore average 175

grade: 176

c2 = (p3 − p4)/p3 (5) 177

Rearranging equation (5), the mining grade can be calcu- 178

lated by equation (6): 179

p4 = p3(1− c2) (6) 180

Depending on the amount of metal conserved during min- 181

ing, it can be calculated that: 182

Q2 × p4 = Q1 × (1− c1)× p3 (7) 183

Combining equations (6) and (7), the equation to calculate 184

the mining amount is: 185

Q2 = Q1
1− c1
1− c2

(8) 186

3) BENEFICIATION PROCESS 187

The concentration ratio is the ratio of the mining amount to 188

the concentrate amount: 189

c3 = Q2
/
Q3 (9) 190

For an individual mine, the characteristics of the min- 191

ing ore, the processing technology, the equipment, and the 192

agent can be assumed to be constant. In this case, there 193

are relationships between ore concentration ratio and mining 194

grade, between concentrate grade and mining grade, between 195

concentrate grade and ore concentration ratio, and between 196

concentrate grade and concentrate selling price [26], [27], 197

[28], [29], [30]. These relationships are modeled by equations 198

(10–12): 199

c3 = f4(p4) (10) 200

p5 = f5(p4, c3) (11) 201

q = f6(p5) (12) 202
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B. OVERALL DYNAMIC OPTIMIZATION MODEL OF203

TECHNICAL INDICATORS OF METAL MINE PRODUCTION204

CONSIDERING ORE GRADE DISTRIBUTION205

1) MODELING STRATEGY206

Metal mining is conducted as a series of units. To take account207

of the lack of ore homogeneity, the deposit to be optimized208

is divided into zones that are optimized according to the209

ore characteristics. Each optimized zone has its own ore210

grade distribution. The ore is mined in sequence according211

to the quality of the optimized zone. However, mining each212

optimized zone requires decisions to be made regarding the213

technical indicators for that zone; zones are not isolated,214

so the decision affects subsequent mining decisions for other215

zones. Therefore, the dynamic relationships between opti-216

mized zones must be considered in optimization.217

2) OBJECTIVE FUNCTION218

Profit calculations do not usually consider the time value of219

money, so using profits to calculate the return on investment220

of funds is not fruitful. Net present value not only considers221

the time value of a fund, but also facilitates the calculation of222

return on investment. We therefore used net present value as223

the measure of the economic benefit of metal mine produc-224

tion to be optimized. The objective function of the technical225

indicator optimization model of metal mine production based226

on the economic benefit is therefore:227

max θ =
N∑
i=1

θi (13)228

where θ is the total net present value; θi is the net present229

value of optimized zone i; and N is the number of optimized230

zones.231

Since the mining decision of the optimized zone mined232

first affects the starting time of the mining of subsequent233

optimized zones, the net present value is a function of time.234

Therefore, the net present value of each optimization zone is235

not independent but has a dynamic relationship with the net236

present values of other optimized zones. When the starting237

time of mining is 0, the calculation process for the net present238

value of optimized zone i is as follows.239

(1) Calculate the mining time ti of optimized zone i:240

ti =
Q2,i

Qz
(14)241

where Q2,i is the total mining quantity of optimized zone i,242

and Qz is the annual production capacity.243

(2) The mining start time T1,i of optimized zone i is the244

sum of the mining times of each previously optimized zone,245

and is calculated by equation (15):246

T1,i =
j=i−1∑
j=1

tj (15)247

(3) The mining end time T2,i of optimized zone i is: 248

T2,i =
j=i∑
j=1

tj (16) 249

(4) The total profit Gi of optimized zone i is: 250

Gi = Q3,i ∗ qi − Q2,i ∗ h (17) 251

where Q3,i is the concentrate amount in optimized zone i; qi 252

is the selling price of the concentrate in optimized zone i; and 253

h is the total production cost per unit of ore. 254

(5) The average annual profit gi of optimized zone i is: 255

gi =
Gi
ti

(18) 256

(6) Total net present value of optimized zone i is: 257

θi =



g∗i (T2,i−T1,i)

(1+d)
T
−

1,i
T−1,i = T−2,i

g∗i


(T−1,i+1−T1,i)

(1+d)
T
−

1,i
+

1

(1+d)
T
−

1,i+1
+

· · · +
1

(1+d)
T−2,i−1

+
(T2,i−T

−

2,i)

(1+d)
T−2,i

 else
(19) 258

where T−1,i is the integer part of T1,i; d is the annual discount 259

rate; and T−2,i is the integer part of T2,i. 260

3) CONSTRAINTS 261

(1) The boundary grade is not higher than the industrial grade: 262

p1,i ≤ p2,i (20) 263

where p1,i is the boundary grade of optimized zone i, and p2,i 264

is the industrial grade of optimized zone i. 265

(2) The concentrate grade is not less than the minimum 266

smelting grade: 267

p5,i ≥ py (21) 268

where p5,i is the concentrate grade of optimized zone i, and 269

py is the lowest smelting grade. 270

4) OPTIMIZATION MODEL 271

Combining the above objective function and constraints, the 272

technical indicator optimization model for metal mine pro- 273

duction to maximize economic benefit is: 274
max θ =

N∑
i=1
θi

s.t.
p1,i ≤ p2,i
p5,i ≥ py

(22) 275

It is worth noting that the choice of decision variables is 276

associated with the model of the relationships between indi- 277

cators. A relationalmodelmust be identified before a decision 278

variable can be identified. The relationship model is related 279

to the geological conditions of the deposit and the ore char- 280

acteristics, and the mining methods, beneficiation methods 281

and beneficiation equipment of the mine [2]. The decision 282

variable can therefore be determined only after determining 283

the mine characteristics. 284
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FIGURE 2. Flow chart of the AADE for optimizing the proposed model.

C. AADE285

Adaptive differential mutation operators can better balance286

global exploration with local exploitation in DE and can287

improve optimization performance and increase algorithm288

robustness [31]. The use of adaptive control parameters289

improves optimization performance and algorithm robustness290

[32], [33]. The optimization performance of the DE algorithm291

can be improved in solving the overall dynamic optimization292

model without the necessity of estimating the appropriate293

proportion factor F or crossover rate CR.294

We therefore introduced the adaptive mutation operator295

and adaptive parameters into the standard DE algorithm to296

create the AADE, and AADE was then used to solve the297

overall dynamic optimization model. The AADE flow chart298

is shown in Figure 2.299

III. EXAMPLE OF MODEL APPLICATION300

An orebody at −48 to −192 m in the large Yinshan copper301

mine in China is used as an example of the application of302

the AADE. The orebody was divided into five zones for303

optimization based on existing mine production data and the304

current production status of the min. The zones were opti-305

mized for technical indicators using the established model306

and AADE. All algorithms were implemented in Python.307

Calculations were performed on a PC having an Intel Core308

i5-9400 quad-core processor and 8 GB RAM running under309

the 64-bit Microsoft Windows 10 operating system.310

Table 2 shows the ranges of the optimization zones311

and their original geological reserves, which are the geo-312

logical reserves corresponding to the original boundary313

grade (0.15%) and the original industrial grade (0.25%).314

TABLE 2. The range and original geological reserves of the optimized
units of Yinshan copper mine.

FIGURE 3. Scatter plot of orebody weight and copper grade of the
Yinshan copper mine.

The production requirements of the Yinshan copper mine set 315

the boundary grade and the industrial grade of each optimized 316

unit in the range 0.05% to 0.45%. The parameter values for 317

the Yinshan copper mine were as follows. The lower bound 318

and upper bound of the boundary grade and industrial grade 319

were respectively 0.05% and 0.45%; the lower bound of the 320

smelting grade was 16%; the annual production capacity of 321

the mine was 1.5 Mt; the z value in equation (2) was 0.5; 322

the total production cost per unit of ore was 98 CNY/t; the 323

sales price of #1 copper concentrate was 47,739 CNY/t; the 324

discount rate was 6%. 325

A. MODEL OF TECHNICAL INDICATOR RELATIONSHIPS 326

1) RELATIONSHIP BETWEEN OREBODY WEIGHT AND 327

GRADE 328

A scatter plot of the orebody weight and copper grade was 329

plotted from the 204 items of orebody weight and grade 330

data collected from the Yinshan copper mine, as shown in 331

Figure 3. There was no correlation between orebody weight 332

and copper grade. The results show that there was no rela- 333

tionship between orebody weight and copper grade and that 334

orebody weight was not affected by copper grade. We there- 335

fore used the average value of the orebody weight for 336

the ore weight function of the Yinshan copper mine. The 337
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FIGURE 4. Fitting results of copper grade distribution in the Yinshan copper mine (optimized zones 1–5) for comparison.

mathematical function is:338

g1(x) = 2.85 (23)339

2) PROBABILITY DENSITY FUNCTION OF THE COPPER340

GRADE DISTRIBUTION341

The copper grade distribution was fitted using kernel density342

estimation based on the characteristics and attributes of the343

data without any prior knowledge. This method provided344

better fitting of the probability density function than param-345

eter estimation. Kernel density estimation was used to fit the346

probability density distribution of the Yinshan copper mine347

ore grade. Fitting did not result in a particular function or348

mathematical expression. Figure 4 shows that kernel density349

estimation well fitted the ore grade distribution.350

3) RELATIONSHIP BETWEEN LOSS RATE AND DILUTION 351

RATE 352

Aiming for an ore body of −48 to −192 m in the Yinshan 353

copper mine, open-pit mining was used. The copper dilution 354

and loss rates were collected for 64 items of open-pit mining 355

data. Scatter plots of the copper dilution rate and loss rate 356

were plotted, as shown in Figure 5. It can be seen from 357

Figure 5 that there was no correlation between copper dilution 358

rate and loss rate. The correlation coefficient between copper 359

dilution rate and loss rate was −0.0771, and the F-test was 360

significant at a level of 0.5449, which was >0.05. There was 361

therefore no relationship between copper dilution rate and 362

loss rate. In the subsequent optimization, the values used for 363

both dilution rate (2%) and loss rate (9%) were the planned 364

values. 365
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FIGURE 5. Scatter plot of the copper loss rate and dilution rate of the
Yinshan copper mine.

FIGURE 6. Exponential function fitting the relationship between mining
grade and concentration ratio for the Yinshan copper mine.

4) RELATIONSHIP BETWEEN MINING GRADE AND366

CONCENTRATE RATIO367

The scatter plot for 630 items of ore dressing data, mining368

grade and concentrate ratio, that were collected from the369

Yinshan copper mine is shown in Figure 6. It can be seen from370

the figure that mining grade is exponentially related to con-371

centrate ratio. The exponential function was used for regres-372

sion fitting, and the correlation coefficient was−0.8445. The373

F test was significant at the level 1.89 × 10−172. Since the374

significance level was much less than 0.05, the regression375

was significant and the regression model can be applied.376

The exponential function used to fit the relationship between377

mining grade and concentrate ratio is equation (24):378

c3 = 136 ∗ e−2.29
∗p4 (24)379

5) CONCENTRATE GRADE380

A BP neural network [34], [35], [36], [37] was used to381

determine the relationships between copper mining grade382

and concentrate grade and between concentrate ratio and383

concentrate grade in the Yinshan copper mine. A total of384

630 data items were collected; the training sample consisted385

of the first 530 data items, and the test sample was the386

remaining 100 items; mining grade and concentrate ratio387

were used as inputs, and the copper ore concentrate grade388

was the output. There were two nodes in both the input and389

hidden layers and one node in the output layer. The transfer390

FIGURE 7. Fitting results of the copper ore concentrate grade of the
Yinshan copper mine using BP neural network.

TABLE 3. Compensation prices and price adjustment coefficients of
different copper concentrate grades.

functions used in the training function, input layer and output 391

layer were respectively traingdm, tansig and purelin. The 392

learning rate was 0.1, training error accuracy was 0.001, and 393

the maximum number of iterations was 2500. The fitting 394

diagram of copper concentrate grade produced by the BP 395

neural network is shown in Figure 7. 396

Figure 7 shows that for the fitting, the coefficient of deter- 397

mination R2 was 0.939, mean absolute error MAE was 0.258, 398

and root mean square error RMSE was 0.307. R2 was >0.9, 399

and both MAE and RMSE were <0.5. These results indicate 400

that the BP neural network well fitted the model of the 401

relationships of copper mining grade with concentrate grade 402

and concentrate ratio with concentrate grade in the Yinshan 403

copper mine. 404

6) COPPER ORE CONCENTRATE PRICE 405

The market transaction price of copper ore concentrate is 406

based mainly on a 20% concentrate grade (#1 grade), and 407

the price of any other copper ore concentrate grade is a 408

function of this price. The price adjustment factors and the 409

compensation prices are shown in Table 3. The copper ore 410

concentrate price q is calculated by equation (25): 411

q = f6(p5) = k1 × p5 × λ+ k2 (25) 412

where k1 is the sales price of #1 copper concentrate; λ is the 413

price adjustment coefficient; k2 is the compensation price. 414

B. DECISION VARIABLES AND PARAMETER SETTINGS 415

1) DECISION VARIABLES 416

In the model of relationships between the technical indica- 417

tors of the Yinshan copper mine described in Subsection A, 418
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FIGURE 8. Iterative process to calculate the optimal net present value.

Section III, boundary grade, industrial grade, loss rate, and419

dilution rate are independent variables and are not affected by420

other indicators; geological ore reserves, ore average grade,421

mining grade, mining amount, concentration ratio, concen-422

trate grade, concentrate amount, and ore mining grade are423

dependent variables. When the value of an independent vari-424

able has been determined, the value of any variable dependent425

on it has also been influenced. Therefore, the independent426

variable is the decisive variable in optimization.427

The dilution rate and loss rate depend on ore body428

characteristics and mining technology, which are basically429

unchanged over a short period of time. These two variables430

were therefore taken to be constant for each optimization431

zone, and the values are the planned values. Dilution rate432

was 2% and loss rate was 9%. Boundary grade and industrial433

grade of each optimization unit are thus the decision variables434

of the optimization model; there are 10 decision variables for435

the five optimization zones.436

2) SETTING PARAMETERS437

The parameters of the AADE algorithm were set as follows.438

The dimension DT of the decision variable was set to 10; the439

initialization population size NP was set to 50; the maximum440

number of iterations Gmax was set to 100; and the adaptive441

control parametersψ , ϕ, δl and δu were respectively set to 0.7,442

0.1, 0, and 1. Encoding of the related evolutionary algorithms443

was real number encoding. The parameters of the Yinshan444

copper mine and the AADE algorithm are given in Table 4.445

C. OPTIMIZATION RESULTS AND ANALYSIS446

The production specifications of the Yinshan copper mine447

were optimized using the optimization model and the AADE448

algorithm with the parameter settings shown in Table 4. The449

iterative process of the optimal net present value calculation450

is shown in Figure 8, and the optimization results are given451

in Table 5.452

Figure 8 shows that the optimal net present value converged453

after about 80 iterations, which indicates that AADE con-454

verged rapidly to optimize the model of technical indicators455

for maximum economic benefit.456

TABLE 4. Parameters of Yinshan copper mine and AADE algorithm.

Table 5 shows that the boundary grades of optimized 457

zones 1–5 were respectively 0.425 3%, 0.328 8%, 0.235 1%, 458

0.425 1% and 0.379%; the industrial grades of optimized 459

zones 1–5 were respectively 0.434%, 0.373 4%, 0.440 7%, 460

0.438 1% and 0.393 4%. The corresponding values differ 461

from each other, indicating that the boundary grades and 462

industrial grades differ between optimized zones. If the spa- 463

tial distribution of ore grades is not considered and one overall 464

grade distribution is adopted, the boundary grade and the 465

industrial grade are both the same. Obviously, if the same 466

boundary grade and industrial grade are used in high-grade 467

and low-grade zones, mineral resources will be wasted. Con- 468

sidering differences in the spatial distribution of grades pro- 469

duces a model that is more in line with actual production and 470

is therefore very important. 471

The optimized scheme was compared with the current 472

scheme; the technical index values and net present value of 473

the current scheme are shown in Table 6. 474

102926 VOLUME 10, 2022



X. Wang et al.: Overall Dynamic Optimization of Metal Mine Technical Indicators

TABLE 5. Technical indexes and net present values of the optimization scheme.

TABLE 6. Technical indexes and net present values of the current scheme.

By comparing Tables 5 and 6, it is clear that by adjust-475

ing the technical indicators for optimized production, the476

net present values of optimized zones 1 to 5 respectively477

increased by 104 CNY 5 969.16, 6 579.66, 4 994.74, 3 494.85478

and 2 358.3 over the current scheme. The total net present479

value reached CNY 49 252.2 × 104, with an increase of480

CNY 23 396.71 × 104, i.e., 90.5%. The adjusted technical481

indicators are aligned with the actual situation of the mine482

and significantly increase mine profits.483

D. ALGORITHM COMPARISON484

We compared the AADE algorithm with the standard genetic485

algorithm (GA) [38], [39], [40], the standard DE algorithm486

(DE) [41], [42], [43] and the adaptive DE algorithm (ADE)487

[44], [45], [46] in optimizing the technical indicators. All four488

algorithms were used to solve the optimization model.489

To ensure wewere comparing like with like, the parameters490

of the four algorithms were set to be as consistent as far as491

possible. The adaptive control parameters ψ , ϕ, δl and δu492

of AADE were respectively set to 0.7, 0.1, 0, and 1. The 493

mutation rate and crossover rate of GA were respectively set 494

to 0.7 and 0.5. The proportion factor F and crossover rate CR 495

of DE were respectively set to 0.7 and 0.5. The distribution 496

function and the adaptive control parameters of ADEwere set 497

to be the same as those of AADE. The population size of all 498

four algorithms was set to 50, and the maximum number of 499

iterations was set to 100. 500

To avoid any random effects in algorithm operation, the 501

four algorithms were independently run 31 times each, and 502

the total net present value of each run was recorded. The 503

results are shown in Table 7. 504

The maximum total net present value, the average total net 505

present value, and the minimum total net present value was 506

calculated for each of each algorithm. The results are shown 507

in Table 8. 508

Table 8 shows that the maximum total net present value 509

(CNY 49 429.32 × 104), the average total net present value 510

(CNY 49 316.79 × 104), and the minimum total net present 511
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TABLE 7. Total net present values of the four algorithms.

value (CNY 49 235.23×104) given byAADEwere all greater512

than the corresponding values given by GA, DE and ADE.513

Since economic benefit pursues the maximization of net514

present value, AADE performs better than GA, DE, and ADE515

in terms of optimizing the technical indicators for maximum516

economic benefit.517

A one-tailed t-test was used for statistical analysis to518

determine the significance of the advantage of using AADE519

to optimize the technical indicators. AADE was compared520

individually with each of the other three algorithms. For the521

two algorithms being compared, the t-statistic is calculated522

by equation (26):523

t =
|τ1 − τ2|

η/
√
n

(26)524

where τ1 is the index mean value of AADE; τ2 is the index525

mean value of the comparison algorithm (GA, DE or ADE);526

η is the index standard deviation of AADE; n is the total 527

number of runs. The significance level was set at 0.05, and 528

degrees of freedomwas the total number of runs (31) minus 1, 529

which was 30. The t value was obtained from a standard 530

t-distribution table: t0.025,30 = 2.042. If |t| > t0.025,30, the 531

two algorithms were significantly different; if t ≤ t0.025,30, 532

then the two algorithms were not significantly different. 533

Table 7 shows that the standard deviation of the AADE 534

solution was 47.31. Using this value and the average total net 535

present value shown in Table 8, the t-statistics for the indi- 536

vidual comparisons of AADE with the other three algorithms 537

were calculated using equation (26); the results are shown in 538

Table 9. 539

Table 9 shows that the t-statistic for AADEwhen compared 540

with each of the other three algorithms was in all cases greater 541

than t0.025,30 = 2.042. This shows that AADE performed 542

significantly better than GA, DE and ADE in optimizing 543

the technical production in terms of maximizing economic 544

benefit. In the light of these results, we conclude that AADE 545

is more effective and therefore preferable in optimizing the 546

dynamic technical indicators when considering the spatial 547

distribution of the ore grade. This advantage of AADE is 548

mainly due to the adaptive mutation strategy and the use 549

of control parameters, which improves both the convergence 550

rate and the global search capability at the same time. 551

E. ALGORITHM PERFORMANCE TEST 552

We used four commonly used single-objective continuous 553

test functions to test the performance of AADE: the Sphere, 554

Griewank, Rastrigin and Rosenbrock functions. The four test 555

functions can be divided into three categories: the Sphere 556

function is a unimodal convex function; the Griewank and 557

Rastrigin functions are multimodal functions with many local 558

optimum points, and how to step out from a local optimum 559

point to find the global optimum point is a major challenge 560

for any optimization algorithm; and the Rosenbrock function 561

is a non-convex function for which the global minimum is 562

in a flat valley, which makes it very difficult to find the 563

global optimum points. The overall dynamic optimization of 564

the technical indicators basically falls into one of the three 565

categories.We therefore chose the four test functions to assess 566

the performance of AADE. 567

Each of the four functions was used as the objective func- 568

tion to be minimized; the equations are shown in Table 10. 569

In calculating the minimum value, the variable dimension 570

was 10 dimensions. The three-dimensional graphs of the four 571

functions are shown in Figure 9. 572

AADE was tested using each the four single-objective 573

continuous test functions, as were GA, DE and ADE, and the 574

results were compared. The parameters of the four algorithms 575

were set as follows. The maximum number of iterations was 576

set to 100 (Sphere), 1000 (Griewank), 500 (Rastrigin), and 577

1000 (Rosenbrock). All other parameter values were the same 578

as those described in the preceding section. Each algorithm 579

was independently run 31 times for each test function, and the 580

worst value, mean value and optimum value of each algorithm 581
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TABLE 8. Optimal net present values given by the four algorithms for comparison.

FIGURE 9. Three-dimensional graphs of single-objective continuous test functions (Sphere, Griewank, Rastrigin, and Rosenbrock).

TABLE 9. T -statistics of total net present values.

for each test function were calculated. The results are shown582

in Table 11.583

Table 11 shows that for the four test functions, the worst584

value, average value and optimum value of AADE were all585

lower than the corresponding values of GA, DE and ADE.586

Since the test function was used to minimize, AADE per-587

formed better than GA, DE and ADE in solving complex588

single-objective continuous optimization problems.589

One-tailed t-tests were performed for the four test func- 590

tions to see if the advantage of AADE in solving com- 591

plex single-objective continuous optimization problems was 592

significant. The standard deviations of AADE results were 593

0.000 578 (Sphere), 0.053 592 (Griewank), 0.175 768 (Ras- 594

trigin) and 6.400 64 × 10−10 (Rosenbrock). Using these 595

standard deviation values and the average values of the algo- 596

rithms, shown in Table 11, the t-statistics for AADE com- 597

pared with the other three algorithms were calculated using 598

equation (26); the results are shown in Table 12. 599

Table 12 shows that for the four test functions, the 600

t-statistic for AADE compared with GA, DE and ADE, was 601

always > t0.025,30 = 2.042, which indicates that AADE per- 602

formed significantly better than GA, DE and ADE in solving 603

complex single-objective continuous optimization problems. 604

Comparison of the test results showed that AADE not only 605
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TABLE 10. Single-objective continuous test functions.

TABLE 11. Test results of the four single-objective continuous test functions.

TABLE 12. T -test results for comparisons of AADE with the four
single-objective continuous test functions.

had advantages in optimizing metal mine technical indicators606

in terms of economic benefit, but also had advantages in opti-607

mizing other complex single-objective continuous functions.608

Therefore, the AADE algorithm has wide applicability.609

IV. CONCLUSION610

The results presented above support the following conclu-611

sions:612

1) The proposed model, which considers the overall613

dynamic relationships between technical indicators and614

the spatial distribution of the ore grade, is better aligned615

with the metal mine production process than the cur- 616

rently used optimization model. 617

2) Optimizing the technical indicators for metal mine 618

production in terms of economic benefit is a complex 619

nonlinear single-objective optimization problem that 620

the AADE algorithm is proposed to solve. AADE uses 621

adaptive control parameters and a mutation strategy 622

based on the DE algorithm to improve the optimal 623

performance of DE. 624

3) The total net present value of the optimization scheme 625

is greater than that of the currently used scheme, and 626

the optimized technical production indicators are better 627

aligned with the actual operation of the mine, which 628

should guide mine production and planning. 629

4) AADE performs significantly better than GA, DE and 630

ADE in optimizing the technical indicators of metal 631

mine production in terms of economic benefits. 632

We created an effective optimization model and a method 633

for optimizing metal mine technical indicators that considers 634

the overall dynamic relationships between technical indica- 635

tors and the spatial distribution of the ore grade. There are 636
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two aspects of the model that can be improved in future637

research. (1) The proposed model only optimizes the tech-638

nical indicators and does not optimize the mining sequence.639

The indicators and the mining sequence are interrelated, and640

we intend to devote future research to their simultaneous opti-641

mization. (2) It is well known that different algorithms have642

different advantages. The method we proposed optimized643

the technical indicators of metal mine production with rapid644

convergence and a global search capability, but the model645

can be improved. We intend to make the AADE model more646

widely applicable by increasing the initial population and647

by applying our method to optimize production in more real648

world metal mines.649
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