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ABSTRACT In optimizing the production of a metal mine, either the overall dynamic relations between
technical indicators or the spatial distribution of the ore grade are usually considered, but few studies have
considered both factors together. These two factors in combination have a greater effect on the optimization of
mine production in terms of economic benefit and resource utilization than they do individually. We proposed
an overall dynamic optimization model of technical indicators of metal mine production that considers the
spatial distribution of the ore grade to better optimize the technical indicators and improve sustainable
development of mineral resources. We incorporated an adaptive mutation strategy and adaptive control
parameters into a differential evolution algorithm (AADE) in order to overcome the drawbacks of the
differential evolution algorithm in solving this optimization model. The adaptive mutation strategy and
adaptive control parameters were used to increase the rate of convergence and improve the search for a
global maximum. To assess the performance of AADE, we used a real case and four test functions (the
Sphere, Griewank, Rastrigin and Rosenbrock functions) in tests that compared AADE with a standard
genetic algorithm, a standard differential evolution algorithm and the recently developed adaptive differential
evolution algorithm. The results indicate that the optimization model we created is better aligned with
mine production processes than current optimization models. In optimizing the technical indicators of metal
mine production to maximize economic benefits, AADE performed significantly better than the other three
algorithms tested in terms of convergence rate and global search ability.

INDEX TERMS Metal mine, technical indicator, overall dynamic relation, ore grade distribution, AADE.

I. INTRODUCTION

Metal minerals are an important non-renewable resource and
are basic to social development and human survival. They are
essential to national economic development, and maintaining
the security of such resources has great strategic value. The
rapid development of China’s economy has resulted in tens
of thousands of mines having been built, and the quantity of
solid minerals mined in China is the highest in the world.
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However, in a time of product shortages in China, the pur-
suit of high quantities of mineral resources and increased
development speed have resulted in a wide range of produc-
tion methods, low levels of technology use, and insufficient
investment in and attention to the sustainable development of
mineral resources. Consequently, mineral resources are not
fully utilized, and waste is a serious problem. It is therefore
essential to develop efficient mining techniques for mineral
resources.

The term “‘mineral resources’ refers to geological bodies
that can be mined and utilized under current technological
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and economic conditions, which bring economic benefits to
the state and business enterprises after extraction. Mineral
resources are the product of geological action and are char-
acterized by their scarcity and non-renewability. Whether a
geological body can be considered to be a mineral resource
is closely related to the current state of production technol-
ogy and the mineral market. Ongoing changes in production
technology and the volatility of mineral markets mean that
minerals are a dynamic resource. Thus mining metal mineral
resources to create economic and resource benefits is a signif-
icant research topic that many mining researchers have been
investigating.

Optimization of the technology used for metal mine pro-
duction will determine the best production indicators for
optimal economic and resource use benefits. Changes in
the mineral market and advances in production technology
continually change the relevance of technological production
indicators over time, so there is an ongoing need to adjust
and optimize them. Optimization of the technical indicators
of mine production is therefore a prerequisite for efficient
mining of mineral resources.

Researchers have taken two approaches to optimization
of the technical indicators of mine production in recent
decades. The first approach [1], [2], [3], [4], [5] is the over-
all dynamic optimization of the technical indicators. This
approach ignores the spatial distribution of the ore grade.
However, assuming that the grade distribution is constant for
the entire deposit, without considering the high-grade and
low-grade regions in the deposit, leads to the waste of mineral
resources. The second approach is to optimize the technical
indicators of mine production, taking into account the spatial
distribution of the ore grade. Wang et al. [6], [7] used dynamic
programming to optimize the technical indicators of mine
production. They included the mining method, production
capacity and the mining sequence. They also considered
the actual distribution of the ore grade in different zones
of the orebody and created a dynamic programming model
to optimize the technical indicators of mine production and
applied the model to practical cases. However, in creating
the model, they ignored the dynamic relations between the
technical indicators of mine metal production. In other words,
the model they developed did not result in the overall dynamic
optimization of the technical indicators of mine production.
Thus, the optimized, but not optimal, technical indicators led
to inefficient mining of mineral resources.

The preceding studies included optimization of the techni-
cal indicators of mine production, and some of the research
was used practically. However, these studies considered only
one aspect, either the overall dynamic relations between
the technical indicators or the spatial distribution of the ore
grade. Few researchers have considered both factors at the
same time, and this incompleteness has led to inefficient
exploitation of mineral resources. It is therefore necessary to
develop an optimization model and an optimization method
to optimize the technical indicators of mine production in
order to more efficiently exploit metal mineral resources.
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Such an approach must consider two aspects, the overall
dynamic relations between the technical indicators and the
spatial distribution of the ore grade.

The production of metal mines is a multi-factor, multi-
level, multi-constrained, complex dynamic process, so the
optimization of technical indicators is a complex nonlinear
optimization problem. It has been well documented that stan-
dard optimization methods cannot easily solve complex non-
linear optimization problems [8], [9], [10]. Many intelligent
evolutionary methods have been proposed to solve complex
nonlinear optimization problems, such as the genetic algo-
rithm (GA) [11], the particle swarm algorithm (PS) [12], [13]
and the differential evolution algorithm (DE) [14], [15]. DE is
an easy-to-use algorithm that has few control parameters, is
low in computational complexity, and shows good conver-
gence. It is therefore used to solve many complex nonlinear
optimization problems [16], [17], [18]. However, the standard
DE algorithm has two drawbacks when used to optimize the
overall dynamic behavior of technical indicators of metal
mine production, considering the ore grade distribution.

First, the mutation strategy, determination of which is the
most important step in this algorithm, has a great effect
on the performance of DE. The mutation strategies used in
standard DE algorithms are DE/rand/+ and DE/best/x [19].
Many studies have shown that DE/rand/« has a global search
capability but converges slowly. DE/best/x, in contrast, con-
verges rapidly but has a tendency to fix on a local optimum
[20], [21].

Second, DE has two important control parameters that
affect its accuracy and its convergence rate: the scale factor
F and the crossover rate CR [22], [23]. In the standard DE
algorithm, the values of these two control parameters are
preset and remain unchanged during evolution [24]. However,
researchers have found that the optimal control parameter
values are generally different for various problems or even
for various evolutionary stages of the same problem [25]. It is
therefore difficult to determine the optimal control parameter
values to solve the overall dynamic optimization problem
for metal mine technical indicators when considering the ore
grade distribution.

To overcome the preceding drawbacks of the DE, we intro-
duced an adaptive mutation strategy and adaptive control
parameters into the standard DE algorithm and designed an
adaptive mutation operator and adaptive control parameter for
DE (AADE) to be incorporated into the algorithm in order to
solve the overall dynamic optimization problem.

Il. OVERALL DYNAMIC OPTIMIZATION MODEL OF
METAL MINE TECHNICAL INDICATORS CONSIDERING
THE SPATIAL DISTRIBUTION OF THE ORE GRADE

A. DYNAMIC RELATIONSHIP MODEL OF METAL MINE
TECHNICAL INDICATORS

Mine production consists of a geological process, a mining
process, and a beneficiation process, each of which has main
technical indicators, as shown in Figure 1; the technical
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FIGURE 1. Production processes and main technical indicators of metal
mines.

TABLE 1. Detailed definitions of main technical indicators.

Technical indicator Definition

Boundary grade Distinguish ore and rock.
. The lowest ore grade currently available for
Industrial grade .

mining.

Geological reserves The recoverable reserves of ore.

Ore average grade The average grade of ore.

The ratio of the loss of geological reserves to the
Loss rate . i .
total geological reserves in the mining process.

o The rate at which ore grade decreases in the
Dilution rate .
mining process.

Mining grade Average grade of mining ore.

Mining amount Amount of mining ore.

. . The ratio of the mining amount to the concentrate
Concentration ratio
amount.

Concentrate grade Average grade of concentrate ore.

Concentrate amount Amount of concentrate ore.

indicators are defined or described in detail in Table 1.
We model the three processes in the following sections.

1) GEOLOGICAL PROCESS

The model [2] of the relationship of geologic reserves and
ore average grade with ore boundary grade and ore industrial
grade is:

01 = filp1,p2) = Qo
72 p()g(r)cCr)dx+ [ g(r)e(x)dx

2 p(0gr)ctr)dr+ [, g(x)e(x)dx

o) = (:2%’;‘1)1@1 <x<p2) )
P2 xp(x)c(x)dx + floo xe(x)dx
p3 =fa(p1.p2) = plpz B
[ 9(x)c(x)dx +fpz c(x)dx

where p, and pj, are respectively the original boundary grade
and original industrial grade; Qg is the geological reserve
calculated using mining software with boundary grade and
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industrial grade p, and pp; ¢(x) is the probability function
that the ore with a grade between the boundary grade and
industrial grade is mined; z is a constant value, depending on
the geological properties of the ore; g(x) is a function of ore
weight and grade; and c(x) is the probability density function
of the ore grade distribution.

2) MINING PROCESS

The ore characteristics and mining methods of each mining
area are basically the same for an individual mine. In this case,
there was some correlation between the dilution rate and the
loss rate in the ore production process [1], and the relationship
model is:

c2 =f3(c1) “

The dilution rate is the ratio of the difference between the
ore average grade and the mining grade to the ore average
grade:

c2 = (p3 — pa)/p3 )

Rearranging equation (5), the mining grade can be calcu-
lated by equation (6):

pa=p3(l —c2) (6)

Depending on the amount of metal conserved during min-
ing, it can be calculated that:

Q2 xpy =01 x(1 —cy)xp3 @)

Combining equations (6) and (7), the equation to calculate
the mining amount is:

O =01

L-a ®)
1—c¢
3) BENEFICIATION PROCESS

The concentration ratio is the ratio of the mining amount to
the concentrate amount:

c3=02/03 )

For an individual mine, the characteristics of the min-
ing ore, the processing technology, the equipment, and the
agent can be assumed to be constant. In this case, there
are relationships between ore concentration ratio and mining
grade, between concentrate grade and mining grade, between
concentrate grade and ore concentration ratio, and between
concentrate grade and concentrate selling price [26], [27],
[28], [29], [30]. These relationships are modeled by equations
(10-12):

c3 = fa(ps) (10)
ps = f5(p4, c3) (11)
q = fe(ps) (12)
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B. OVERALL DYNAMIC OPTIMIZATION MODEL OF
TECHNICAL INDICATORS OF METAL MINE PRODUCTION
CONSIDERING ORE GRADE DISTRIBUTION

1) MODELING STRATEGY

Metal mining is conducted as a series of units. To take account
of the lack of ore homogeneity, the deposit to be optimized
is divided into zones that are optimized according to the
ore characteristics. Each optimized zone has its own ore
grade distribution. The ore is mined in sequence according
to the quality of the optimized zone. However, mining each
optimized zone requires decisions to be made regarding the
technical indicators for that zone; zones are not isolated,
so the decision affects subsequent mining decisions for other
zones. Therefore, the dynamic relationships between opti-
mized zones must be considered in optimization.

2) OBJECTIVE FUNCTION

Profit calculations do not usually consider the time value of
money, so using profits to calculate the return on investment
of funds is not fruitful. Net present value not only considers
the time value of a fund, but also facilitates the calculation of
return on investment. We therefore used net present value as
the measure of the economic benefit of metal mine produc-
tion to be optimized. The objective function of the technical
indicator optimization model of metal mine production based
on the economic benefit is therefore:

N
max 6 = ZOi (13)
i=1

where 6 is the total net present value; 6; is the net present
value of optimized zone i; and N is the number of optimized
zones.

Since the mining decision of the optimized zone mined
first affects the starting time of the mining of subsequent
optimized zones, the net present value is a function of time.
Therefore, the net present value of each optimization zone is
not independent but has a dynamic relationship with the net
present values of other optimized zones. When the starting
time of mining is 0, the calculation process for the net present
value of optimized zone i is as follows.

(1) Calculate the mining time #; of optimized zone i:

_ Qi
-

ti (14)

where O, ; is the total mining quantity of optimized zone i,
and Q¢ is the annual production capacity.

(2) The mining start time 77 ; of optimized zone i is the
sum of the mining times of each previously optimized zone,
and is calculated by equation (15):

j=i—1

Tii= Y (15)
j=1
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(3) The mining end time 73 ; of optimized zone i is:

J=i
Thi= Y 1 (16)
j=1
(4) The total profit G; of optimized zone i is:
Gi=03ixqi—Q2ixh (17)

where Q3 ; is the concentrate amount in optimized zone i; g;
is the selling price of the concentrate in optimized zone #; and
h is the total production cost per unit of ore.

(5) The average annual profit g; of optimized zone i is:

G.
gi=— (18)
t;
(6) Total net present value of optimized zone i is:
& (T,i=T1i) — _ —
— =1y,
(I4d) L
(T +1-T1,) 1
0i = T + T 41 + (19)
g (1+d) i (14d) 1 else
! 1 (T2,i—T5 )
-+ = T =
(1+d) 2 (1+d) 2i

where T is the integer part of T ;; d is the annual discount
rate; and T, is the integer part of 77 ;.

3) CONSTRAINTS
(1) The boundary grade is not higher than the industrial grade:

D1, < D2 (20)

where p ; is the boundary grade of optimized zone i, and p; ;
is the industrial grade of optimized zone i.

(2) The concentrate grade is not less than the minimum
smelting grade:

P5,i = Dy 21

where ps ; is the concentrate grade of optimized zone i, and
Dy is the lowest smelting grade.

4) OPTIMIZATION MODEL

Combining the above objective function and constraints, the
technical indicator optimization model for metal mine pro-
duction to maximize economic benefit is:

N
max6 = Y 6;
i=1
22
Pl,i = P2 @2)
S.t.
Ps,i = Dy

It is worth noting that the choice of decision variables is
associated with the model of the relationships between indi-
cators. A relational model must be identified before a decision
variable can be identified. The relationship model is related
to the geological conditions of the deposit and the ore char-
acteristics, and the mining methods, beneficiation methods
and beneficiation equipment of the mine [2]. The decision
variable can therefore be determined only after determining
the mine characteristics.
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FIGURE 2. Flow chart of the AADE for optimizing the proposed model.

C. AADE

Adaptive differential mutation operators can better balance
global exploration with local exploitation in DE and can
improve optimization performance and increase algorithm
robustness [31]. The use of adaptive control parameters
improves optimization performance and algorithm robustness
[32], [33]. The optimization performance of the DE algorithm
can be improved in solving the overall dynamic optimization
model without the necessity of estimating the appropriate
proportion factor F or crossover rate CR.

We therefore introduced the adaptive mutation operator
and adaptive parameters into the standard DE algorithm to
create the AADE, and AADE was then used to solve the
overall dynamic optimization model. The AADE flow chart
is shown in Figure 2.

Ill. EXAMPLE OF MODEL APPLICATION

An orebody at —48 to —192 m in the large Yinshan copper
mine in China is used as an example of the application of
the AADE. The orebody was divided into five zones for
optimization based on existing mine production data and the
current production status of the min. The zones were opti-
mized for technical indicators using the established model
and AADE. All algorithms were implemented in Python.
Calculations were performed on a PC having an Intel Core
15-9400 quad-core processor and 8 GB RAM running under
the 64-bit Microsoft Windows 10 operating system.

Table 2 shows the ranges of the optimization zones
and their original geological reserves, which are the geo-
logical reserves corresponding to the original boundary
grade (0.15%) and the original industrial grade (0.25%).
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TABLE 2. The range and original geological reserves of the optimized
units of Yinshan copper mine.

Original geological

Optimization zone reserves (10° 1)

Horizontal range (m)

1 ~48 to ~72 384.6
2 ~72 to 96 3194
3 ~96 to 120 258.1
4 ~120 to 144 178.4
5 ~144 to —192 118.1
295
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FIGURE 3. Scatter plot of orebody weight and copper grade of the
Yinshan copper mine.

The production requirements of the Yinshan copper mine set
the boundary grade and the industrial grade of each optimized
unit in the range 0.05% to 0.45%. The parameter values for
the Yinshan copper mine were as follows. The lower bound
and upper bound of the boundary grade and industrial grade
were respectively 0.05% and 0.45%; the lower bound of the
smelting grade was 16%; the annual production capacity of
the mine was 1.5 Mt; the z value in equation (2) was 0.5;
the total production cost per unit of ore was 98 CNY/t; the
sales price of #1 copper concentrate was 47,739 CNY/t; the
discount rate was 6%.

A. MODEL OF TECHNICAL INDICATOR RELATIONSHIPS

1) RELATIONSHIP BETWEEN OREBODY WEIGHT AND
GRADE

A scatter plot of the orebody weight and copper grade was
plotted from the 204 items of orebody weight and grade
data collected from the Yinshan copper mine, as shown in
Figure 3. There was no correlation between orebody weight
and copper grade. The results show that there was no rela-
tionship between orebody weight and copper grade and that
orebody weight was not affected by copper grade. We there-
fore used the average value of the orebody weight for
the ore weight function of the Yinshan copper mine. The
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FIGURE 4. Fitting results of copper grade distribution in the Yinshan copper mine (optimized zones 1-5) for comparison.

mathematical function is:
g1(x) =2.85 (23)

2) PROBABILITY DENSITY FUNCTION OF THE COPPER
GRADE DISTRIBUTION

The copper grade distribution was fitted using kernel density
estimation based on the characteristics and attributes of the
data without any prior knowledge. This method provided
better fitting of the probability density function than param-
eter estimation. Kernel density estimation was used to fit the
probability density distribution of the Yinshan copper mine
ore grade. Fitting did not result in a particular function or
mathematical expression. Figure 4 shows that kernel density
estimation well fitted the ore grade distribution.
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3) RELATIONSHIP BETWEEN LOSS RATE AND DILUTION
RATE

Aiming for an ore body of —48 to —192 m in the Yinshan
copper mine, open-pit mining was used. The copper dilution
and loss rates were collected for 64 items of open-pit mining
data. Scatter plots of the copper dilution rate and loss rate
were plotted, as shown in Figure 5. It can be seen from
Figure 5 that there was no correlation between copper dilution
rate and loss rate. The correlation coefficient between copper
dilution rate and loss rate was —0.0771, and the F-test was
significant at a level of 0.5449, which was >0.05. There was
therefore no relationship between copper dilution rate and
loss rate. In the subsequent optimization, the values used for
both dilution rate (2%) and loss rate (9%) were the planned
values.
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FIGURE 5. Scatter plot of the copper loss rate and dilution rate of the
Yinshan copper mine.
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FIGURE 6. Exponential function fitting the relationship between mining
grade and concentration ratio for the Yinshan copper mine.

4) RELATIONSHIP BETWEEN MINING GRADE AND
CONCENTRATE RATIO

The scatter plot for 630 items of ore dressing data, mining
grade and concentrate ratio, that were collected from the
Yinshan copper mine is shown in Figure 6. It can be seen from
the figure that mining grade is exponentially related to con-
centrate ratio. The exponential function was used for regres-
sion fitting, and the correlation coefficient was —0.8445. The
F test was significant at the level 1.89 x 10772, Since the
significance level was much less than 0.05, the regression
was significant and the regression model can be applied.
The exponential function used to fit the relationship between
mining grade and concentrate ratio is equation (24):

c3=136% e 2214 (24)

5) CONCENTRATE GRADE

A BP neural network [34], [35], [36], [37] was used to
determine the relationships between copper mining grade
and concentrate grade and between concentrate ratio and
concentrate grade in the Yinshan copper mine. A total of
630 data items were collected; the training sample consisted
of the first 530 data items, and the test sample was the
remaining 100 items; mining grade and concentrate ratio
were used as inputs, and the copper ore concentrate grade
was the output. There were two nodes in both the input and
hidden layers and one node in the output layer. The transfer
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FIGURE 7. Fitting results of the copper ore concentrate grade of the
Yinshan copper mine using BP neural network.

TABLE 3. Compensation prices and price adjustment coefficients of
different copper concentrate grades.

Price adjustment Compensation price

Grade (%) coefficient (CNY -t
[23,1] 0.86 330
[22.00,22.99] 0.85 220
[21.00,21.99] 0.84 110
[20.00,20.99] 0.83 0
[19.00,19.99] 0.81 -110
[18.00,18.99] 0.80 220
[17.00,17.99] 0.78 -330
[16.00,16.99] 0.77 -440

functions used in the training function, input layer and output
layer were respectively traingdm, tansig and purelin. The
learning rate was 0.1, training error accuracy was 0.001, and
the maximum number of iterations was 2500. The fitting
diagram of copper concentrate grade produced by the BP
neural network is shown in Figure 7.

Figure 7 shows that for the fitting, the coefficient of deter-
mination RZ was 0.939, mean absolute error MAE was 0.258,
and root mean square error RMSE was 0.307. R? was >0.9,
and both MAE and RMSE were <0.5. These results indicate
that the BP neural network well fitted the model of the
relationships of copper mining grade with concentrate grade
and concentrate ratio with concentrate grade in the Yinshan
copper mine.

6) COPPER ORE CONCENTRATE PRICE

The market transaction price of copper ore concentrate is
based mainly on a 20% concentrate grade (#1 grade), and
the price of any other copper ore concentrate grade is a
function of this price. The price adjustment factors and the
compensation prices are shown in Table 3. The copper ore
concentrate price g is calculated by equation (25):

q=1Je(ps) = ki x ps x A+ ka (25)
where kj is the sales price of #1 copper concentrate; X is the

price adjustment coefficient; k> is the compensation price.

B. DECISION VARIABLES AND PARAMETER SETTINGS
1) DECISION VARIABLES

In the model of relationships between the technical indica-
tors of the Yinshan copper mine described in Subsection A,
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Section III, boundary grade, industrial grade, loss rate, and
dilution rate are independent variables and are not affected by
other indicators; geological ore reserves, ore average grade,
mining grade, mining amount, concentration ratio, concen-
trate grade, concentrate amount, and ore mining grade are
dependent variables. When the value of an independent vari-
able has been determined, the value of any variable dependent
on it has also been influenced. Therefore, the independent
variable is the decisive variable in optimization.

The dilution rate and loss rate depend on ore body
characteristics and mining technology, which are basically
unchanged over a short period of time. These two variables
were therefore taken to be constant for each optimization
zone, and the values are the planned values. Dilution rate
was 2% and loss rate was 9%. Boundary grade and industrial
grade of each optimization unit are thus the decision variables
of the optimization model; there are 10 decision variables for
the five optimization zones.

2) SETTING PARAMETERS

The parameters of the AADE algorithm were set as follows.
The dimension D7 of the decision variable was set to 10; the
initialization population size NP was set to 50; the maximum
number of iterations Gpax was set to 100; and the adaptive
control parameters v, ¢, §; and §,, were respectively setto 0.7,
0.1, 0, and 1. Encoding of the related evolutionary algorithms
was real number encoding. The parameters of the Yinshan
copper mine and the AADE algorithm are given in Table 4.

C. OPTIMIZATION RESULTS AND ANALYSIS

The production specifications of the Yinshan copper mine
were optimized using the optimization model and the AADE
algorithm with the parameter settings shown in Table 4. The
iterative process of the optimal net present value calculation
is shown in Figure 8, and the optimization results are given
in Table 5.

Figure 8 shows that the optimal net present value converged
after about 80 iterations, which indicates that AADE con-
verged rapidly to optimize the model of technical indicators
for maximum economic benefit.
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TABLE 4. Parameters of Yinshan copper mine and AADE algorithm.

Parameter Value
Yinshan copper mine

Original boundary grade of each optimization unit p (%) 0.15
Original industrial grade of each optimization unit p, (%) 025
Original geological reserves of optimization unit 1 o | (10%t) 384.6
Original geological reserves of optimization unit2 @, , (10*t) 319.4
Original geological reserve of optimization unit3 (), . (10*1) 258.1
Original geological reserves of optimization unit4 o, ., (10*t) 178.4
Original geological reserves of optimization unit 5 ., ( 10%t) 118.1
Constant 0.5
Total production cost per unitore j (CNY/t) 98
Sales price of 1# copper concentrate f, (CNY/t) 47739

Lower bound of boundary grade of each optimization unit ,, .~ (%) (.05
Upper bound of boundary grade of each optimization unit p = (%) (45
Lower bound of industrial grade of each optimization unit p,, (%) 05

Upper bound of industrial grade of each optimization unit p, = (%) (45

Loss rates ¢ (%) 9
Dilution rate ¢, (%) 2
Lower bound of the smelting grade ¢, (%) 16
Annual production capacity of the mine Q2 (10°t) 15
Discountrate g (%) 6

AADE Algorithm

Dimension of the decision variable D, 10
Initialization population size Np 50
Maximum number of iterations G 100
Adaptive control parameters of scale factor y 0.7
Adaptive control parameters of scale factor ¢ 0.1
Adaptive control parameters of crossover rate  §, 0
Adaptive control parameters of crossover rate 5, 1
Encoding type Real

Table 5 shows that the boundary grades of optimized
zones 1-5 were respectively 0.425 3%, 0.328 8%, 0.235 1%,
0.425 1% and 0.379%; the industrial grades of optimized
zones 1-5 were respectively 0.434%, 0.373 4%, 0.440 7%,
0.438 1% and 0.393 4%. The corresponding values differ
from each other, indicating that the boundary grades and
industrial grades differ between optimized zones. If the spa-
tial distribution of ore grades is not considered and one overall
grade distribution is adopted, the boundary grade and the
industrial grade are both the same. Obviously, if the same
boundary grade and industrial grade are used in high-grade
and low-grade zones, mineral resources will be wasted. Con-
sidering differences in the spatial distribution of grades pro-
duces a model that is more in line with actual production and
is therefore very important.

The optimized scheme was compared with the current
scheme; the technical index values and net present value of
the current scheme are shown in Table 6.
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TABLE 5. Technical indexes and net present values of the optimization scheme.

Metrics Optimized unit 1 Optimized unit 2 Optimized unit 3 Optimized unit 4 Optimized unit 5
Boundary grade (%) 0.4253 0.328 8 0.2351 0.425'1 0.379
Industrial grade (%) 0.434 0.373 4 0.440 7 0.438 1 0.393 4
Geological reserves (t) 1628 326 1458 961 1580292 734 353 560 164
Ore average grade (%) 0.683 4 0.528 7 0.529 1 0.713 9 0.695 7
Mining grade (%) 0.6219 04811 0.4815 0.649 7 0.633 1
Mining amount (t) 1753582 1571189 1701 853 790 842 603 254
Concentrate ratio 32.94 45.45 45.40 3091 32.11
Concentrate recovery rate (%) 88.52 86.92 86.92 89.71 88.95
Concentrate grade (%) 18.13 19.00 19.00 18.02 18.08
Concentrate amount (t) 53236 34571 37484 25582 18 786
Concentrate prices (CNY/t) 6 663 7238 7238 6618 6 642
Average annual profit (10* CNY) 15 639.94 9 189.66 9212.14 17 413.41 16 327.62
Duration of mining (y) 1.169 1 1.047 5 1.134 6 0.5272 0.4022
Net present value (10* CNY) 18 134.29 8974.69 9139.13 7708.41 5295.68

TABLE 6. Technical indexes and net present values of the current scheme.

Metrics Optimized unit 1 Optimized unit 2 Optimized unit 3 Optimized unit 4 Optimized unit 5
Boundary grade (%) 0.15 0.15 0.15 0.15 0.15
Industrial grade (%) 0.25 0.25 0.25 0.25 0.25
Geological reserves (t) 3838012 3188784 2595674 1777375 1179 807
Ore average grade (%) 0.447 2 03725 04125 0.454 5 0.466 5
Mining grade (%) 0.407 0.3389 03754 0.413 6 0.424 5
Mining amount (t) 4133244 3434075 2795 341 1914 096 1270 561
Concentrate ratio 53.8336 62.8929 57.866 2 53.028 5 51.7177
Concentrate recovery rate (%) 86.163 6 85.496 85.777 4 86.246 7 86.3815
Concentrate grade (%) 18.8783 18.225 18.6327 189154 18.9659
Concentrate amount (t) 76778 54 602 48 307 36 096 24 567
Concentrate prices (CNY/t) 6 945 6 697 6 852 6959 6978
Average annual profit (10* CNY) 4 650.65 1272.02 3060.54 4984.34 5538.85
Duration of mining (y) 27555 2.289 4 1.8636 1.276 1 0.847
Net present value (10* CNY) 12 165.13 2395.03 4144.39 4213.56 2937.38

By comparing Tables 5 and 6, it is clear that by adjust-
ing the technical indicators for optimized production, the
net present values of optimized zones 1 to 5 respectively
increased by 10* CNY 5969.16, 6 579.66, 4 994.74, 3 494.85
and 2358.3 over the current scheme. The total net present
value reached CNY 49 252.2 x 10% with an increase of
CNY 23 396.71 x 10%, i.e., 90.5%. The adjusted technical
indicators are aligned with the actual situation of the mine
and significantly increase mine profits.

D. ALGORITHM COMPARISON
We compared the AADE algorithm with the standard genetic
algorithm (GA) [38], [39], [40], the standard DE algorithm
(DE) [41], [42], [43] and the adaptive DE algorithm (ADE)
[44], [45], [46] in optimizing the technical indicators. All four
algorithms were used to solve the optimization model.

To ensure we were comparing like with like, the parameters
of the four algorithms were set to be as consistent as far as
possible. The adaptive control parameters ¥, ¢, §; and §,
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of AADE were respectively set to 0.7, 0.1, 0, and 1. The
mutation rate and crossover rate of GA were respectively set
to 0.7 and 0.5. The proportion factor F and crossover rate CR
of DE were respectively set to 0.7 and 0.5. The distribution
function and the adaptive control parameters of ADE were set
to be the same as those of AADE. The population size of all
four algorithms was set to 50, and the maximum number of
iterations was set to 100.

To avoid any random effects in algorithm operation, the
four algorithms were independently run 31 times each, and
the total net present value of each run was recorded. The
results are shown in Table 7.

The maximum total net present value, the average total net
present value, and the minimum total net present value was
calculated for each of each algorithm. The results are shown
in Table 8.

Table 8 shows that the maximum total net present value
(CNY 49 429.32 x 10%), the average total net present value
(CNY 49 316.79 x 10*), and the minimum total net present
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TABLE 7. Total net present values of the four algorithms.

Total net present values (10* CNY)

Times
GA DE ADE AADE
1 49 184.36 49 220.23 49 176.92 49 252.20
2 49 273.87 49 177.93 49 24191 49 235.23
3 49 086.83 49 235.05 49 166.49 49 359.06
4 49 204.24 49 158.87 49 221.70 49 289.85
5 49 320.12 49 186.01 49 206.18 49 257.78
6 49 272.84 49 162.13 49 215.25 49 316.98
7 49184.61 49 232.68 49 208.83 49 347.00
8 49 194.39 49 195.08 49 183.03 49 259.09
9 49 302.25 49 195.71 49 180.15 49 378.56
10 49 252.60 49 195.13 49 167.72 49 380.02
11 49 354.63 49 249.13 49 198.80 49 373.83
12 49 354.59 49 147.81 49 207.46 49 328.96
13 49 207.02 49 180.28 49 215.44 49 289.79
14 49 234.70 49 192.14 49 225.94 49 246.40
15 49 300.47 49 222.71 49 224.24 49 313.97
16 49 260.89 49 165.61 49 225.78 49 364.56
17 49 064.62 49 176.73 49 166.78 49 392.34
18 49 215.07 49 333.47 49 209.94 49375.92
19 49 243.46 49 191.69 49 224.23 49 329.26
20 49 243.59 49 158.98 49 162.90 49 339.04
21 49 185.42 49 180.32 49 203.50 49 264.78
22 49 218.17 49 189.78 49 219.60 49 237.72
23 49 139.31 49 159.63 49 240.94 49 251.08
24 49 339.83 49 212.90 49 258.89 49 284.75
25 47791.30 49 208.93 49 236.72 49 322.56
26 49 173.63 49 194.91 49 183.47 49 376.70
27 49 030.36 49 230.96 49 116.00 49 257.51
28 49 247.37 49 238.63 49 184.85 49 372.49
29 48 819.65 49 229.45 49 177.84 49 332.19
30 49 182.05 49 193.89 49 259.66 49 429.32
31 49 331.46 49 211.69 49 204.81 49 261.57

value (CNY 49 235.23 x 10*) given by AADE were all greater
than the corresponding values given by GA, DE and ADE.
Since economic benefit pursues the maximization of net
present value, AADE performs better than GA, DE, and ADE
in terms of optimizing the technical indicators for maximum
economic benefit.

A one-tailed z-test was used for statistical analysis to
determine the significance of the advantage of using AADE
to optimize the technical indicators. AADE was compared
individually with each of the other three algorithms. For the
two algorithms being compared, the ¢-statistic is calculated
by equation (26):

P 11 —
n//n

where 11 is the index mean value of AADE; 13 is the index
mean value of the comparison algorithm (GA, DE or ADE);

(26)
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n is the index standard deviation of AADE; n is the total
number of runs. The significance level was set at 0.05, and
degrees of freedom was the total number of runs (31) minus 1,
which was 30. The ¢ value was obtained from a standard
t-distribution table: 1902530 = 2.042. If |t| > #0.025,30, the
two algorithms were significantly different; if 1 < 19,025 30,
then the two algorithms were not significantly different.

Table 7 shows that the standard deviation of the AADE
solution was 47.31. Using this value and the average total net
present value shown in Table 8, the -statistics for the indi-
vidual comparisons of AADE with the other three algorithms
were calculated using equation (26); the results are shown in
Table 9.

Table 9 shows that the ¢-statistic for AADE when compared
with each of the other three algorithms was in all cases greater
than #9.025,30 = 2.042. This shows that AADE performed
significantly better than GA, DE and ADE in optimizing
the technical production in terms of maximizing economic
benefit. In the light of these results, we conclude that AADE
is more effective and therefore preferable in optimizing the
dynamic technical indicators when considering the spatial
distribution of the ore grade. This advantage of AADE is
mainly due to the adaptive mutation strategy and the use
of control parameters, which improves both the convergence
rate and the global search capability at the same time.

E. ALGORITHM PERFORMANCE TEST

We used four commonly used single-objective continuous
test functions to test the performance of AADE: the Sphere,
Griewank, Rastrigin and Rosenbrock functions. The four test
functions can be divided into three categories: the Sphere
function is a unimodal convex function; the Griewank and
Rastrigin functions are multimodal functions with many local
optimum points, and how to step out from a local optimum
point to find the global optimum point is a major challenge
for any optimization algorithm; and the Rosenbrock function
is a non-convex function for which the global minimum is
in a flat valley, which makes it very difficult to find the
global optimum points. The overall dynamic optimization of
the technical indicators basically falls into one of the three
categories. We therefore chose the four test functions to assess
the performance of AADE.

Each of the four functions was used as the objective func-
tion to be minimized; the equations are shown in Table 10.
In calculating the minimum value, the variable dimension
was 10 dimensions. The three-dimensional graphs of the four
functions are shown in Figure 9.

AADE was tested using each the four single-objective
continuous test functions, as were GA, DE and ADE, and the
results were compared. The parameters of the four algorithms
were set as follows. The maximum number of iterations was
set to 100 (Sphere), 1000 (Griewank), 500 (Rastrigin), and
1000 (Rosenbrock). All other parameter values were the same
as those described in the preceding section. Each algorithm
was independently run 31 times for each test function, and the
worst value, mean value and optimum value of each algorithm
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TABLE 8. Optimal net present values given by the four algorithms for comparison.

Statistical Indicators GA DE ADE AADE

Maximum total net present value (10* CNY) 49 354.63 49 333.47 49 259.66 49 429.32
Average total net present value (10* CNY) 49 168.18 49 200.92 49 203.74 49316.79
Minimum total net present value (10* CNY) 47791.30 49 147.81 49 116.00 4923523

Function: Sphere

Function : Griewank

f(x)

Function: Rosenbrock

FIGURE 9. Three-dimensional graphs of single-objective continuous test functions (Sphere, Griewank, Rastrigin, and Rosenbrock).

TABLE 9. T-statistics of total net present values.

Comparison algorithm GA DE ADE

t-statistic value 17.49 13.64 13.30

for each test function were calculated. The results are shown
in Table 11.

Table 11 shows that for the four test functions, the worst
value, average value and optimum value of AADE were all
lower than the corresponding values of GA, DE and ADE.
Since the test function was used to minimize, AADE per-
formed better than GA, DE and ADE in solving complex
single-objective continuous optimization problems.
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One-tailed #-tests were performed for the four test func-
tions to see if the advantage of AADE in solving com-
plex single-objective continuous optimization problems was
significant. The standard deviations of AADE results were
0.000578 (Sphere), 0.053 592 (Griewank), 0.175 768 (Ras-
trigin) and 6.400 64 x 10~10 (Rosenbrock). Using these
standard deviation values and the average values of the algo-
rithms, shown in Table 11, the ¢-statistics for AADE com-
pared with the other three algorithms were calculated using
equation (26); the results are shown in Table 12.

Table 12 shows that for the four test functions, the
t-statistic for AADE compared with GA, DE and ADE, was
always > 19.025.30 = 2.042, which indicates that AADE per-
formed significantly better than GA, DE and ADE in solving
complex single-objective continuous optimization problems.
Comparison of the test results showed that AADE not only
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TABLE 10. Single-objective continuous test functions.

Test function Mathematical expression Dimension Variable value
10
2
Sphere fx)=x 10 x, € [-5.12,5.12]
i=1
nox n X,
Griewank f(x)= ~ —JIcos(—=)+1 10 x, €[-5.12,5.12]
Z 4000 = \fi ‘
Rastrigin f(x)=10n+)"[ x? ~10cos(27rx,)| 10 x, €[-5.12,5.12]
i=l
n-1
2\? 2
Rosenbrock fx)= Z[loo(x,.+1 —x7 ) +(x, 1) J 10 x, € [-5.12,5.12]
i=1
TABLE 11. Test results of the four single-objective continuous test functions.
Test function Global minimum Algorithm Worst value Average value Optimum value
GA 0.025 503 2 0.010 297 9 0.001 2824
DE 0.045 009 4 0.025044 3 0.011273 1
Sphere 0
ADE 0.056 245 8 0.022 029 8 0.007 160 2
AADE 0.002 244 0.000 687 5 0.000 126 8
GA 0.260 763 0.091 229 7 3.366 39E-06
DE 0.364 12 0.249 011 8 0.161 735
Griewank 0
ADE 0.207 001 0.124 289 6 0.039 400 6
AADE 0.203 264 0.050 718 9 1.562 46E-06
GA 3.9814 1.612 988 7 4.767 88E-06
DE 17.969 9 13.594 378 8.594 01
Rastrigin 0
ADE 5.073 24 2.708 707 1 0.214 63
AADE 0.994 96 0.032243 6 4.172 89E-10
GA 7.184 18 4.866 276 7 0.059 404 9
DE 1.600 16 1.2727856 0.988 255
Rosenbrock 0
ADE 0.056 301 4 0.009 891 4 0.000 307 1
AADE 2.584E-09 3.062E-10 4.20991E-14

TABLE 12. T-test results for comparisons of AADE with the four
single-objective continuous test functions.

Test functions vs.GA vs.DE vs.ADE
Sphere 92.579 05 234.634 1 205.594 99
Griewank 4.208 733 20.600 95 7.643 37
Rastrigin 50.072 78 429.603 6 84.781 50
Rosenbrock 4.23E+10 1.11E+10 86 043 359

had advantages in optimizing metal mine technical indicators
in terms of economic benefit, but also had advantages in opti-
mizing other complex single-objective continuous functions.
Therefore, the AADE algorithm has wide applicability.

IV. CONCLUSION
The results presented above support the following conclu-
sions:
1) The proposed model, which considers the overall
dynamic relationships between technical indicators and
the spatial distribution of the ore grade, is better aligned
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2)

3)

4)

with the metal mine production process than the cur-
rently used optimization model.

Optimizing the technical indicators for metal mine
production in terms of economic benefit is a complex
nonlinear single-objective optimization problem that
the AADE algorithm is proposed to solve. AADE uses
adaptive control parameters and a mutation strategy
based on the DE algorithm to improve the optimal
performance of DE.

The total net present value of the optimization scheme
is greater than that of the currently used scheme, and
the optimized technical production indicators are better
aligned with the actual operation of the mine, which
should guide mine production and planning.

AADE performs significantly better than GA, DE and
ADE in optimizing the technical indicators of metal
mine production in terms of economic benefits.

We created an effective optimization model and a method
for optimizing metal mine technical indicators that considers
the overall dynamic relationships between technical indica-
tors and the spatial distribution of the ore grade. There are
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two aspects of the model that can be improved in future
research. (1) The proposed model only optimizes the tech-
nical indicators and does not optimize the mining sequence.
The indicators and the mining sequence are interrelated, and
we intend to devote future research to their simultaneous opti-
mization. (2) It is well known that different algorithms have
different advantages. The method we proposed optimized
the technical indicators of metal mine production with rapid
convergence and a global search capability, but the model
can be improved. We intend to make the AADE model more
widely applicable by increasing the initial population and
by applying our method to optimize production in more real
world metal mines.
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