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ABSTRACT Computation offloading has proven to be an effective method for facilitating resource-
intensive tasks on IoT mobile edge nodes with limited processing capabilities. Additionally, in the context
of Mobile Edge Computing (MEC) systems, edge nodes can offload its computation-intensive tasks to a
suitable edge server. Hence, they can reduce energy cost and speed up processing. Despite the numerous
accomplished efforts in task offloading problems on the Internet of Things (IoT), this problem remains a
research gap mainly because of its NP-hardness in addition to the unrealistic assumptions in many proposed
solutions. In order to accurately extract information from raw sensor data from IoT devices deployed in
complicated contexts, Deep Learning (DL) is a potential method. Therefore, in this paper, an approach
based on Deep Reinforcement Learning (DRL) will be presented to optimize the offloading process for
IoT in MEC environments. This approach can achieve the optimal offloading decision. A Markov Decision
Problem (MDP) is used to formulate the offloading problem. Delay time and consumed energy are the main
optimization targets in this work. The proposed approach has been verified using extensive simulations.
Simulation results demonstrate that the proposed model can effectively improve the MEC system latency,
energy consumption, and significantly outperforms the Deep Q Networks (DQNs) and Actor Critic (AC)
approaches.
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INDEX TERMS Deep learning, deep reinforcement learning, Internet of Things, mobile edge computing,
task offloading.

I. INTRODUCTION18

The 5G era networks has been realized based on networking19

technologies, innovations, and the new computing and com-20

munication paradigms [1].Mobile EdgeComputing (MEC) is21

one of the key technologies for computation distribution that22

boosts the performance of 5G cellular networks [2]. The main23

role of MEC is the minimization of communication latency24

between the user and the server. This behavior has a great25

importance for Internet of Things (IoT) environments. IoT26

has become an important area of research due to its rapid27

use in our daily lives and in industry. Therefore, It faces28

numerous challenges, including latency reduction, storage29

management, energy consumption, task offloading, etc [3].30

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Pau .

Increasing the number of end devices in IoT environments 31

leads to a corresponding increase in the number of possible 32

actions. Consequently, it is crucial to enhance the availability 33

and the terminal-to-terminal delay [4]. 34

By offloading IoT tasks to resource-rich terminals in 35

cooperative edge servers or clouds, mobile end devices can 36

release intensive computation and storage. The end-to-end 37

performance of IoT applications is nevertheless significantly 38

impacted by the various service architectures and offloading 39

techniques. Indeed, computing needs have a greater impact on 40

the performance of IoT applications as compared with con- 41

nectivity requirements. However, communication bandwidth 42

represents the most important resource as the system expands 43

to support more IoT devices. As a result, it becomes the pri- 44

mary component that directly affects performance as a whole 45

[5]. Building an orchestral IoT architecture is thus a must 46
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to include optimum solutions under various limitations for47

the best offloading location. Even though MEC has several48

benefits, it is still constrained by the positions of fixed towers.49

Consequently, it is difficult to deployMEC servers at any time50

or location. Furthermore, there is a good chance that natural51

disasters could occasionally destroy the infrastructure. Addi-52

tionally, mounting infrastructure in remote locations such as53

hotspots and mountains is nearly challenging. The IoT nodes54

are unable to completely service their users in the aforemen-55

tioned conditions. Unmanned Aerial Vehicles (UAVs) with56

MEC servers installed on board can be used to support MEC57

systems by taking advantage of their flexibility and ease of58

deployment. This support is necessary for tasks that mobile59

users in hotspot locations or in emergent scenarios have60

been temporarily offloaded. In order to provide computing61

servers for mobile user’s terminals in adaptable positions,62

UAV-aided MEC [6] is introduced. By adding additional63

compute resources to MEC servers, UAV-aided MEC speeds64

up calculations and increases the operating lifetime of mobile65

devices [7].66

Deep Learning (DL) [8] has been widely used to learn67

and optimize a variety of issues for UAV-aided MEC [9].68

However, most DL approaches require labelled historical69

data. Meanwhile, labelling the training data requires a signif-70

icant amount of human effort. By engaging with MEC sur-71

roundings, Reinforcement Learning (RL) [10] can learn and72

improve UAV-assistedMECwithout training data. Therefore,73

to reduce overall energy consumption, Deep Reinforcement74

Learning (DRL) [11] approaches can be used to provide75

effective task offloading, resource allocation, and UAV con-76

trol. DRL uses RL and Deep Neural Networks (DNNs) for77

collecting the complicated states of MEC with UAV78

assistance.79

When developing distributed decision-making solu-80

tions for wireless task offloading problems, conventional81

approaches such as convex optimization [12] and mixed-82

integer programming [13] are not always appropriate. Mostly83

because such models become more complicated for systems84

with numerous agents. This work essentially devises Markov85

Decision Problem (MDP) [14] to model task offloading86

according to real knowledge and tries to solve this problem87

using a DRL algorithm. Hence, this paper aims to develop88

a DRL model to solve task offloading problem for multi-89

UAV-aided MEC systems. The proposed approach avoids90

unrealistic assumptions such as ignoring user’s device mobil-91

ity. Hence, the transmitting channel noise is taken into con-92

sideration in addition to the coordination of mobile users93

and UAVs. This model seeks to maximize the stability of94

the entire system while minimizing the time and energy it95

uses. Maximizing stability means balancing the computation96

power of the system workload, extending operation time, and97

maximizing the total number of completed tasks.98

The remainder of the paper is organized as follows:99

Section II presents an overview of MEC and 5G networks100

followed by Section III that surveys the different methods for101

using DRL to solve task offloading optimization problem.102

Section IV presents the related work followed by Section V 103

which provides the details of the system model and problem 104

formulation. Then, simulation results are presented in 105

section VI. Finally, Section VII, concludes the paper. 106

II. MOBILE EDGE COMPUTING AND 5G NETWORKS 107

Cloud computing and IoT infrastructure are combined by 108

the aid of MEC. By enabling the edge network to assure 109

Quality of Experience (QoE), it puts storage, computing, 110

and management closer to the end user. Because of this, 111

it maximizes resource usage and brings in money for network 112

operators [15]. To decrease latency and traffic in the backbone 113

network, end users can get data from nearby base stations 114

rather than from the huge regional data centers. 115

MEC is a modern communication paradigm that has been 116

utilized for bringing the energy resources and computing 117

capability to the edge of the radio access network. Hence, 118

computation capabilities can be distributed over the network 119

instead of being centralized [16]. Thus, MEC has proven to 120

be crucial to the rollout of 5G. It is necessary to reconsider 121

network and information delivery strategies in order to meet 122

the Internet continually shifting demand. To maximize the 123

potential of MEC systems, integration with upcoming 5G 124

technologies is required. This integration can be shown in 125

different aspects such as Internet Service Providers (ISPs), 126

Software-Defined Networking (SDN), Network Function 127

Virtualization (NFV), and UAVs communication. SDN and 128

NFV support agility and flexibility in multi-tenant MEC 129

environments[17]. Moreover, a combination of 5G networks 130

and MEC enables ISPs to meet consumer demands [18]. 131

By utilizing cloud computing infrastructure, 5G networks can 132

be able to meet the higher bandwidth, availability, and lower 133

latency demands of the new Internet services and applica- 134

tions. The development of services that support multi-service 135

andmulti-tenant infrastructure is accelerated by cloud service 136

providers using SDN and NFV [19]. NFV along with SDN 137

enables network operators to achieve a high degree of flexi- 138

bility and cost-saving, resulting in simplified and extensible 139

placement and management. Additionally, efficient utiliza- 140

tion of network functions and more reduction in power usage 141

can be achieved [20], [21]. MEC builds a virtualized infras- 142

tructure that can be installed near the edge of the network. 143

MEC architecture has a lot in common with NFV, which 144

enables seamless and effective application operation over 145

multi-access networks [22]. MEC has attracted interest as a 146

viable alternative to provide computation networks close to 147

consumers. It extends the cloud capabilities to a decentralized 148

cloud utilizing the same SDN andNFV concepts as the bigger 149

5G networks. 150

UAV-assisted wireless communication is a promising 151

essential component of MEC ecosystem and 5G cellular 152

system because of the advantages of the large coverage and 153

capacity enhancement. UAVs can be used as airborne edge 154

servers to carry out complex calculations that have been 155

transferred from users on the ground. On the other hand, 156
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UAVs have the ability to function as airborne users and can157

be connected to ground base stations [23].158

Besides the adaptation of UAVs and SDN/NFV technolo-159

gies within 5G cellular networks, Artificial Intelligence espe-160

cially DL is used with MEC for intelligent decision making.161

It offers the chance to precisely identify and categorize the162

applications on mobile nodes and automate the process of163

creating adaptive network slicing [24]. Also, it can be adapted164

to predict user’s actions and automate the dynamic network165

resource management in 5G networks. In the future, it can166

save operational cost for telecommunication firms while167

enhancing user’s experience.168

III. DRL FOR TASK OFFLOADING INTO MEC169

One of the major unresolved issues in IoT environments is170

how to extract real-world IoT data from complex noisy envi-171

ronment that may confuse traditional approaches of machine172

learning. DL is regarded as the most effective technique to173

resolve this problem. It has been used for a variety of appli-174

cations in IoT nodes with promising early outcomes [25].175

Because of its high efficiency in handling complex data, deep176

learning plays a very important role in future IoT services.177

Traditional approaches such as genetic algorithms require178

prior knowledge of mobile users’ patterns and network179

parameters. These approaches may be preferred in static or180

slowly varying environments. In rapidly and/or randomly181

changing IoT wireless networks, there is a limited to no182

prior knowledge for guiding decision making. As a result,183

approaches based on machine learning should be preferred.184

Furthermore, training over the entire dataset is computation-185

ally impossible in such situations [26]. The small cell stations186

in 5G networks could be used for offloading tasks that have187

too heavy computations or greatly consume battery for the188

majority of users’ mobile devices. This is mainly due to189

their proximity to the users and the projected high number190

of stations.191

DRL is a deep learning technique that replaces Q-table192

in the basic RL algorithm with a deep neural network193

[27]. Involving deep learning in RL allows it to handle194

high-dimensional actions and state spaces. Additionally,195

learning efficiency is highly improved and the limitations of196

reinforcement learning are relaxed to a certain extent.197

There are different DRL techniques that are both accurate198

and effectively tackle problems that are too complex for the199

traditional learning approaches such as Q-learning. DRL uses200

different types of algorithms to perform specific tasks such201

as DNN models that use gradient descent to minimize the202

cost function. Cost functions for 5G networks could include203

operating cost, latency, and downtime. Another example is204

Deep Q-learning Networks (DQN), which use DNN to avoid205

feature engineering while training the policy and setting of206

replay memories to continue using the gained knowledge207

in earlier stages to simulate scenarios with enormous state208

spaces [28]. Although DQN models can solve problems that209

have high-dimensional state spaces, they still cannot deal210

with the continuous action spaces. Hence, the most efficient211

type of DRL models is the Deep Deterministic Policy Gradi- 212

ent (DDPG) approach [29]. DDPG is an off-policy actor-critic 213

model-free algorithm which can learn policies in continuous 214

action spaces. A policy function and a Q-value function com- 215

prise the actor-critic algorithm. The policy function generates 216

actions by acting as an actor. The Q-value function acts as a 217

critic that evaluates the performance of the actor and directs 218

the actor’s subsequent actions. 219

Mobile edge computing can take the advantage of its 220

proximity to the user to address a variety of challenges in 221

5G networks. These challenges often require automated DRL 222

management of a series of increasingly complex tasks. Solu- 223

tions that combine DRL for 5G with efficiency are best when 224

they are made closer to the end-user in MEC rather than the 225

core network. DRL has numerous applications in MEC net- 226

working domain including predicting traffic, mobility mod- 227

elling, responsive resource allocation, effective energy usage, 228

and data privacy [30]. Meanwhile, this paper focuses on 229

adaptive resource allocation and computation offloading. 230

IV. RELATED WORK 231

DRL approaches can autonomously extract features while 232

minimizing human effort and domain expertise required to 233

collect distinguishing characteristics. Hence, they play a key 234

role against the heterogeneity of edge computing environ- 235

ments. Therefore, DRL models can efficiently optimize the 236

task offloading strategy and determines offloading policies. 237

Additionally, online heavy computation iterations can be 238

avoided by offline training. 239

Many research efforts have been conducted in this direc- 240

tion. For cooperative UAV-enabled MEC networks, the study 241

in [31] presents a cooperative offloading strategy based on 242

UAV-to-device interferencemitigation. DRL-based optimiza- 243

tion is investigated to obtain the optimal offloading decisions 244

and resource management policies in order to maximize 245

the long-term system utility. Here, the system utility of the 246

DRL-based model is better than related solutions that use 247

non-cooperative UAV edge computing methods. Meanwhile, 248

the study in [32] introduces the multi-objective ant colony 249

optimization approach based on RL. It has been proposed 250

for accurate resource allocation among end-users depending 251

on the cost of creating Q-tables and optimal allocation in 252

MEC. Additionally, fast responsive task offloading based on 253

Meta-Reinforcement Learning (MRL) is introduced in [33] 254

to overcome the low sample efficiency of the original RL- 255

based algorithm.MRL enables learning and updating policies 256

according to new environments. Additionally, it enables the 257

user’s equipment to run the training process by using its 258

own data with little computing resources.Mobile applications 259

are modeled as directed acyclic graphs and the dynamic 260

offloading process are modeled as multipleMDPs.Moreover, 261

the study in [34] presents the task offloading problem in 262

satellite-terrestrial edge computing networks, where tasks 263

can be offloaded to the visible urban terrestrial cloud via 264

satellite link. DRL-based task offloading is used to accelerate 265

the learning process by dynamically adjusting the number 266
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of candidate locations and the size of action space. The267

offloading problem is modeled as a mixed-integer program-268

ming problem where the offloading location and bandwidth269

allocation depend only on the current channel state. Further-270

more, a reinforcement learning approach is presented in [35]271

for computational offloading of energy harvesting for IoT272

devices. This approach uses DRL algorithm with a transfer273

learning strategy to compress the state space dimensions,274

accelerate the learning rate, and enhance the offloading sys-275

tem performance and system utility.276

A distributed offloading approach called best response-277

based offloading algorithm has been introduced using game278

theory [36]. In this approach, users’ devices work together to279

reduce energy cost and latency cost. Moreover, the authors in280

[37] investigate UAV-assisted MEC system. In this system,281

the UAV provides a complementary computation resource282

to the terrestrial MEC system. UAV tries to maximize the283

expected long-term computation performance. The study284

investigates a proactive model based on DRL techniques.285

MEC system is established for offline training of the proac-286

tive DRL model. Furthermore, DDPG based computation287

offloading algorithm has been introduced in [38] to find the288

best offloading policy in a dynamic environment for UAV-289

assisted MEC. Also, it can enable a continuous action space290

offloading decision and UAVmobility but with only one UAV291

server and one offloading layer. Hence, in this work, DDPG292

algorithm is investigated for more complex and heteroge-293

neous environment with more than one offloading layer.294

Different from all these studies, this paper concentrates295

on task offloading in heterogeneous 5G networks. Therefore,296

an optimal multi-level offloading system is proposed. The297

first layer contains multiple UAV servers instead of a single298

UAV as in the previous studies. Meanwhile, the next layer299

contains multiple MEC servers. The existence of multiple300

UAV and MEC servers helps in increasing the number of301

available servers for offloading in each layer. Consequently,302

the offloading system can accept a large number of offloading303

requests, which reduces the local computing requirements.304

On the other hand, the last layer is the cloud server layer that is305

used for computation-intensive tasks. UAV servers are closer306

to the end devices than MEC servers to support mobility307

and to provide fast response to users’ offloaded requests.308

The proposedmodel jointly schedules resource allocation and309

computation offloading in multi-UAV aided MEC through a310

DDPG approach.311

V. SYSTEM MODEL AND PROBLEM FORMULATION312

In this section, the task offloading problem is going to be313

illustrated. Then, it is modeled using MDP and the optimal314

offloading decision is computed using a DRL algorithm.315

Additionally, the architecture of the adopted edge computing316

is detailed.317

A. MEC SYSTEM ARCHITECTURE318

The proposed offloading system architecture is illustrated319

in Fig. 1, which is composed of N end-user devices, M320

edge servers, K UAVs, one cloud server, and a Central 321

Offloading Controller (COC). The COC is deployed in MEC 322

layer, hence, it can be a master MEC server with special 323

and higher efficiency storage and computing resources. This 324

COC is a DDPG-based task offloading agent that is mainly 325

responsible for responding to task computing requests of 326

the end user’s devices. It receives offloaded requests from 327

different end devices, then it uses the DDPG algorithm to 328

decide where to offload the user’s task. Moreover, it has a 329

control on resource cooperation and coordination between 330

the access network edge server and the UAV cluster, as well 331

as resource allocation on the cloud server. Agent application 332

can get environment information throughmonitoring devices. 333

These devices are deployed on the user’s device, MEC, and 334

UAV. The environmental information can contain the user’s 335

device status, resource request conditions, and disposable 336

resources on MEC, UAV, and cloud server. MEC and UAV- 337

aided MEC servers bring computing resources to the network 338

edge, which is close to the user’s device. Therefore, it can 339

overcome high network congestion and long transmission 340

delay when compared with the case of depending only on 341

cloud computing. Furthermore, COC works as an orches- 342

trator that manipulates numerous user offloading requests 343

and collects information to select the optimal computing 344

terminal. As a result, it avoids high congestion load on MEC 345

terminals compared with the case when COC does not exist. 346

In fact, cloud computing and MEC are mutually benefi- 347

cial. Cloud computing provides a wealth of applications and 348

computing resources. Meanwhile, MEC has short delays, 349

high stability, and adaptability to diverse network environ- 350

ments, making it an excellent choice for delay-sensitive 351

services [39]. 352

To meet the delay constraints, it is necessary to utilize the 353

benefits of cloud computing besides MEC to offload tasks to 354

locations with different computing and communication capa- 355

bilities. As a result, this study attempts to combine hetero- 356

geneous computing resources and construct a collaborative 357

Device-UAV-Edge-Cloud computing environment. A task 358

offloading environment based on DDPG is distributed and 359

linked to the four-tier hierarchy, which includes IoT device 360

layer, UAV server layer, MEC server layer, and cloud server 361

layer. The following subsections describe the main character- 362

istics of each layer. 363

1) IoT LAYER 364

A network of interconnected IoT devices is present at this 365

layer. Through wireless access points, each device can link 366

to UAV, MEC, and cloud servers. The IoT user must make 367

dynamic task offloading decisions for each cycle of offload- 368

ing based on QoS requirements and the state of the network 369

(transmission bandwidth, task size, available resources, etc.). 370

2) UAV LAYER 371

This layer contains lightweightMEC servers on UAVs, which 372

can provide high mobility and flexible deployment. Hence, 373

the processing delay can be reduced since this layer can 374
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FIGURE 1. Multi-layer computational offloading system architecture.

offer computing support for jobs that mobile users offload375

in locations with temporary hotspots. For instance, sports376

stadiums or communities that have been devastated by natural377

disasters.378

3) MEC LAYER379

MEC servers for real-time task processing are present in this380

layer. They can offer lower latency computation services at381

the edge of the network. MEC servers may send complicated382

computational jobs to resource-rich cloud servers. In order to383

guarantee the security of offloading operations, MEC servers384

provide dependable communication with the IoT device layer385

and the cloud server layer.386

4) CLOUD SERVER LAYER387

This layer consists of numerous powerful virtual machines388

with higher storage and computational capacity. It is mostly389

utilized by IoT devices to do complicated computing tasks.390

Each cloud node in this layer is securely connected to MEC391

terminals and IoT nodes and runs in a decentralized safe392

manner.393

B. OFFLOADING DELAY MODEL 394

Offloading delay model assumes that the user devices in 395

the service scope are represented by UDN = UD1,UD2, 396

. . . ,UDn. Each user has V independent tasks that need to be 397

offloaded. Each task donated by the size of its data quantity 398

to be offloaded Qv and the task computation workload Lv 399

(i.e., required CPU execution cycles). When the agent detects 400

user’s offloading request, it begins to develop an offloading 401

strategy with the goal of minimizing task delay duration. 402

The task delay is split into two portions: transmission delay 403

and computation delay. The transmission delay represents the 404

time required to offload the task to MEC, UAV, or cloud. 405

While the computation delay represents the time needed for 406

conducting computation on the server. 407

1) CLOUD COMPUTING OFFLOADING 408

The proposed model ignores the downlink delay. This is 409

mainly because the size of the downloaded result of task 410

execution is very small as compared with the uploaded task 411

data size. The uplink data rate between the user’s terminal 412

and the cloud server through a wireless channel at moment t 413
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is computed by (1).414

r tn,cloud = ωc log2 (1+
pngtnc
σ 2 ) (1)415

where ωc represents the user-cloud channel bandwidth, gtnc416

identifies the channel gain loss between the user’s device n417

and the cloud server c, pn represents the transmitting power418

of user’s device UDn, and σ 2 represents the Gaussian noise.419

Therefore, the delay for task data transmission can be com-420

puted by (2).421

T transnv,cloud =
qtnv

r tn,cloud
(2)422

When computing task v is offloaded to a cloud server for423

execution then the time spent can be expressed by (3).424

T execnv,cloud =
lnv
fcloud

(3)425

where fcloud denotes the computation frequency of the cloud426

server (CPU cycles per second).427

2) MEC COMPUTING OFFLOADING428

In MEC layer, MEC servers communicate with IoT devices429

through variouswireless channels amongLANnetworks. The430

uplink data rate between the user’s terminal and the MEC431

server via a wireless channel at moment t can be computed432

by (4).433

r tn,mec = ωm log2(1+
pngtnm
σ 2 ) (4)434

where ωm represents the user-MEC channel bandwidth, gtnm435

represents the channel gain loss between user’s device n and436

MEC terminal m. Consequently, the delay for the task data437

transmission to MEC terminal can be computed by (5).438

T transnv,mec =
qtnv
r tn,mec

(5)439

When task v is offloaded to the MEC server for execution,440

the execution time is represented by (6).441

T execnv,mec =
lnv
fMEC

(6)442

where fMEC represents the computation frequency of the443

MEC server (CPU cycles per second).444

3) UAV COMPUTING OFFLOADING445

UAV servers are lightweight MEC servers flying closely446

to IoT nodes. They communicate with IoT devices through447

wireless channels. The uplink data rate between the user’s448

terminal and theUAV server via a wireless channel at moment449

t can be computed by (7).450

r tn,uav = ωu log2(1+
pngtnk
σ 2 ) (7)451

whereωu represents the user-UAVchannel bandwidth and gtnk 452

is the channel gain loss of the uplink between the UAV and 453

user n, which can be expressed by (8) as in [40]: 454

gtnk =
go

d2n,uav
(8) 455

where go represents the reference channel gain loss at a 456

baseline distance d = 1m and d2n,uav indicates the Euclidean 457

distance between user n and the UAV. 458

The DDPG based controller agent in COC executes the 459

action that decides if a task should be offloaded to the UAV, 460

MEC, or cloud. Then, it drives UAVs to the new location 461

if needed. In the 3D Cartesian coordinate system [41], the 462

trajectory of the UAV can be indicated by the UAV discrete 463

coordinates in each time slot, which is defined as UV k (t) = 464

[xk (t) , yk (t)] ∈ R2×1 at time slot t. Assume that UAV 465

keeps flying at a fixed altitude H, where the UAV has a start 466

coordinate UV k (t), and after it has been selected to execute 467

the task of user’s device UDn, UV k flies to a new coordinate 468

UV k (t + 1) = [xk (t + 1) , yk (t + 1)] ∈ R2×1 with max- 469

imum flight speed ϑmax to be closer to the corresponding 470

user. The coordinate of user’s deviceUDn is UDn (t) = 471

[xn (t) , yn (t)] ∈ R2×1. Thus, d2n,uav will be given by (9). 472

dn,uav =
√
‖UV k (t+1)−UDn (t)‖2 + H2 (9) 473

At time slot t with a speed ϑ (t) and an angleβ ∈ [0, 2π ]. 474

UAV flies from position UV k (t) to the new hover position 475

UV k (t + 1) given by (10). 476

UV k (t + 1) =
[
x (t)+ ϑ (t) tfly cosβ(t), y (t) 477

+ϑ (t) tfly sinβ (t)
]

(10) 478

where tfly donates the fixed UAV flight time. Consequently, 479

the delay for task data transmission to UAV terminal can be 480

computed by (11). 481

T transnv,uav =
qtnv
r tn,uav

(11) 482

When task v is offloaded to the MEC server for execution, 483

the execution time can be represented by (12). 484

T execnv,uav =
lnv
fUAV

(12) 485

where fUAV denotes the computing frequency of the MEC 486

server (CPU cycles per second). 487

The offloading-decision matrix at moment t can be 488

expressed by (13). 489

OL t =
{
ol ti1, ol

t
i2, . . . , ol

t
iv, . . . ., ol

t
nv
}

(13) 490

where each ol tnv is the offloading action of task v of the user’s 491

device. It is a two-bit variable that can be selected from the 492

set {0, 1, 2}. Where 0 represents offloading to the UAV layer, 493

1 represents offloading to the MEC layer, and 2 represents 494
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offloading to the cloud layer. Therefore, the execution time495

can be computed by (14).496

T excnv =


TUAVnv , ol tnv = 0, UAV offload
TMECnv , ol tnv = 1, MEC offload
T cloudnv , ol tnv = 2, Cloud offload

(14)497

Consequently, the total task delay T of user n at moment t498

(including the transmission and computation delays) can be499

computed by (15).500

T tnv =


T transnv,uav + T

exec
nv,uav, ol tnv = 0, UAV offload

T transnv,mec + T
exec
nv,mec, ol tnv = 1, MEC offload

T transnv,cloud + T
exec
nv,cloud , ol tnv = 2, Cloud offload

501

(15)502

C. OFFLOADING ENERGY MODEL503

Various forms of consumed energy due to offloading process504

are considered in this model. One of the main forms of them505

is the consumed energy in data transmission of offloaded506

task to the computing terminal that has been selected by507

COC. Hence, the overhead for energy offloading by the user’s508

device n at moment t can be computed by (16).509

E transvi =


piT transnv,uav, ol tnv = 0, UAV offload
piT transnv,mec, ol tnv = 1, MEC offload
piT transnv,cloud , ol tnv = 2, Cloud offload

(16)510

When a task vi is transferred to a cloud server to be511

computed then the energy consumed by the IoT device can512

be computed by (17).513

Eexecnv,cloud = pidleT execnv,cloud (17)514

where pidle indicates the power consumed when the IoT515

device is idle, which means that the task is being offloaded516

elsewhere.517

Consequently, when task v is transferred to theMEC server518

to be computed, the energy consumed by the IoT device can519

be described by (18).520

Eexecnv,mec = pidleT execnv,mec (18)521

For UAV offloading case, there are two additional energy522

components, which are the UAV energy needed for both flight523

and processing. The flight energy is consumed when the UAV524

flies to the airspace closest to a device position in order to aid525

in computing process; it can be expressed by (19) as in [42].526

eflyuav = pf ‖ϑ(t) ‖2 (19)527

where pf = 0.5Muavtfly represents the power of flight of528

the UAV, Muav represents the UAV mass, and ϑ(t) represents529

UAV flight speed at time t .530

The stay energy is consumed when the UAV remains sta-531

tionary at its current location for a while to perform the taskv532

for the user’s device, The UAV stay consumed energy can be533

calculated by (20).534

estayuav = ps.T execnv,mec (20)535

where ps represents the power of stay of the UAV.536

Therefore, the energy consumption spent by the UAV 537

server to execute task v is given by (21). 538

Eexecuav = eflyuav + e
stay
uav (21) 539

Moreover, the energy consumption spent by the user n 540

device to execute task v on UAV server is given by (22). 541

Eexecnv,uav = pidleT execnv,uav (22) 542

Furthermore, the total consumed energy for transmitting 543

and executing task v of user n at moment t can be computed 544

by (23). 545

E tnv =


E transnv,uav + E

exec
nv,uav ol tnv = 0, UAV offload

E transnv,mec + E
exec
nv,mec ol tnv = 1, ME Coffload

E transnv,cloud + E
exec
nv,cloud , ol tnv = 2, Cloud offload

546

(23) 547

Additionally, the total latency and energy cost C t
nv for 548

transferring and executing task v of user n at moment t can 549

be computed by (24). 550

C t
nv =


ρtT uavnv + ρeE

uav
nv , ol tnv = 0, UAV offload

ρtTmecnv + ρeE
mec
nv , ol tnv = 1, MEC offload

ρtT cloudnv + ρeEcloudnv , ol tnv = 2, Cloud offload

551

(24) 552

where ρt and ρe are constant weighting parameters corre- 553

sponding to the time delay and the consumed energy for task 554

v of user device n respectively. 555

Additionally, taking into account the user’s mobility and 556

the simplicity of the UAV processing, the system agent can 557

gain a potential moving track of the user. Based on historical 558

requests data and user’s behavior patterns, it is possible to 559

predict the number of tasks that the user may want to be 560

offloaded. Meanwhile, the UAV movement pattern aids in 561

obtaining the offloading plans, which save energy. As a result, 562

the user’s QoE and QoS can be considerably improved. 563

D. PROBLEM FORMULATION 564

The task offloading problem is represented as a server layer 565

selection problem. In other words, each task group is mapped 566

to a server-side, either UAV,MEC, or cloud server-side. MDP 567

is adopted to model this problem instead of the classical 568

modeling approaches such as convex optimization. Mainly 569

because MDP is more efficient in modeling heterogeneous 570

and stochastic real systems. 571

Based on equations (15), (23), and (24), the objective 572

function Omin is optimizing MEC system by minimizing the 573

total system cost of latency and consumed energy which can 574

be expressed by (25). 575

Omin =
∑N

n=1

∑V

v=1
(1− OLnv) (2− OLnv)Cuav

nv 576

+OLnv(2− OLnv)Cmec
nv + OLnv(1− OLnv)C

cloud
nv 577

subject to OLnv ∈ 0, 1, 2} 578
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N∑
n=1

V∑
v=1

Eexecnv < Ebatteryuav ,579

OLnv = 0, E totalnv ≥ 0580

Tnv ≤ dv, Tnv ≥ 0 (25)581

where, Cuav
nv ,C

mec
nv , and Ccloud

nv represent the total UAV582

offloading cost, total MEC offloading cost, and total cloud583

offloading cost respectively, Ebatteryuav is the maximum battery584

energy of UAV, and dv is the maximum delay of task v.585

According to the optimization problem in (25), it is consid-586

ered an NP-hard problem based on the proof in [43]. Addi-587

tionally, each offloaded task has three choices with respect588

to offloading decision variable OLnv. Assume there are V589

tasks to be processed, hence, there are 3v+1 choices to offload590

task on, which demonstrates the complexity of the offloading591

optimization problem.592

When taking into accountMDPmodels, system states have593

a very high level of complexity. Additionally, continuous594

action space is required to support decision regarding offload-595

ing. Thus, a DDPG-based model is suggested in this study in596

order to determine the best policy for computation scheduling597

and offloading, UAVs mobility, and resource allocation in598

UAV-aided MEC based system.599

DRL approaches, especially DDPG, are very well suited600

for learning in MDP based environments. This is primarily601

due to the fact that such approaches can be used to adapt to602

the collective action of other agents in the existence of infor-603

mation scarcity. The offloading problem is tackled by using604

MDP in conjunction with DDPG. In an MDP environment,605

the agent applies DDPG algorithm to learn the best action to606

be chosen in the next round.607

E. DRL BASED OFFLOADING OPTIMIZATION ALGORITHM608

DRL introduces a deep neural network to replace the Q-table609

in the RL algorithm. DRL differs from supervised learning610

in that the labelled data of RL emerges from recursive RL611

updates. As a result, the feedback varies with each iteration.612

Because of the environment noisy feedback, the DRL model613

may oscillate during exploitation and exploration. To address614

this issue, DRL employs target networks to supplement the615

DQN with fixed weights during specific episodes.616

DDPG is an improved version of DQN to make DRL agent617

efficiently deal with continuous action space. As explained618

in Fig. 2, DDPG uses two separate DQNs for approximating619

the actor-network (policy-network) and the critic-network620

(Q-value network). In DDPG, both critic and actor networks621

have a target network with a similar structure as them.622

1) STATE SPACE623

In UAV-aided MEC environments, the state space is jointly624

described by N UDs, K UAVs,M MECs, and cloud and their625

surrounding environment. The system state at time slot t can626

be defined as St = {Qvi,Lvi,Fs,UV k ,UDi}:627

• Qvi = [qi1, qi2, . . . , qiv, .., qnv]: A vector consists of the628

data size of offloaded tasks at time slot t .629

FIGURE 2. Actor-Critic (AC) algorithm.

• Lvi = [li1, li2, . . . , liv, .., lnv]: A vector consists of the 630

required CPU cycles of offloaded tasks at time slot t . 631

• Fs = [f1, f2, . . . .., fk+m+1]: A vector consists of the 632

remaining computing capacity of each available server 633

at time slot t . 634

• UV k = [UV 1,UV 2, . . . ..,UV k ]: A vector consists of 635

the coordinates of each UAV at time slot t . 636

• UDn = [UD1,UD2, . . . ..,UDn]: A vector consists of 637

the coordinates of each UD at time slot t . 638

For a given state St , the agent adopts action at according to 639

the selected policy. 640

2) ACTION SPACE 641

Based on the current state St of the observed system envi- 642

ronment parameters, the agent chooses a certain action at to 643

offload the requested tasks of all mobile devices nodes to the 644

available computing terminal servers. The action vector At 645

can be represented as At =
{
OL t ,OS t , β tk ,FD

t
k

}
. 646

The action dimension OL t represents the selected offload- 647

ing layer where OL t ∈ {0, 1, 2}. The next action dimen- 648

sion OS t represents the selected server that the agent selects 649

from the offloading layer where OS t ∈ [0, k + m+ 1]. The 650

last action dimensions β tk ,FD
t
k represent the required flying 651

angle and distance of selected UAV to serve the upcoming 652

user’s task. 653

3) REWARD FUNCTION 654

The behavior of DDPG agent is based on rewards. Hence, the 655

effectiveness of the DDPG framework is greatly influenced 656

by the selection of a suitable reward function. In order to opti- 657

mize the reward, it is important to reduce the total processing 658

time and the energy consumption as stated in (26). 659

Rt (st , at) = (1− ε)Ft − ρe log5
(
E totalt

)
660

− ρt log3 (T
total
t )+ C (26) 661
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FIGURE 3. Deep deterministic policy gradient algorithm.

Equation (26) shows that whenever user task is completed662

before it expires, the agent is rewarded by a reward Rt .663

The task expiration state is described by a flag Ft . The664

agent punishment is represented in terms of energy and time665

cost through ρe and ρt factors. The total consumed energy666

E totalt and the total delay T totalt values are smoothed by a667

logarithmic function to avoid feedback of fluctuation in the668

learning model. Additionally, it is a time-consuming process669

if the original values are used. Moreover, C and ε are small670

constants that are randomly generated to encourage themodel671

to keep running and accumulate rewards over time steps.672

Where, both ε and C ∈ [0.1, 0.5].673

4) PROPOSED DDPG-OFFLOADING ALGORITHM674

DDPG learning approach is an advanced DRL algorithm. The675

DDPG is based onActor-Critic (AC) algorithm that explained676

in Fig. 2 [44]. In AC algorithm, the actor explores the policy677

µ that maps the observation St of the agent to the action678

At . On the other hand, the critic evaluates actor’s actions679

and estimates the Q-value function Q(St ). At time moment t ,680

when the action at is taken by the actor, the agent will apply681

it on the environment and sends the current environment682

observation St along with the feedback to the critic. The683

feedback includes the reward rt and the new observation684

St+1. Then, the critic computes the temporal difference error685

by (27).686

δt = Rt + γQ(St+1|µ)− Q(St |µ) (27)687

where γ ∈ (0, 1) is the discount factor.688

The AC critic network is updated according to the optimal689

value function Q∗ which aims to minimize the least square of690

temporal difference as in (28). 691

Q∗ = argminQµ (δt )
2 (28) 692

The DDPG algorithm illustrated in Fig. 3 is the efficient 693

enhanced version of AC algorithm. This is mainly because 694

DDPG uses four neural networks: a Q network (critic) θQ, a 695

deterministic policy network (actor) θµ, a target Q network 696

θQ
′

, and a target policy network θµ
′

. The Q network and pol- 697

icy network aremuch similar to actor and critic networks [45]. 698

However, in DDPG, theActor is used to create a unique action 699

by directly mapping states to actions instead of outputting 700

the probability distribution across a discrete action space. 701

On the other hand, critic is used to approximate the Q-value 702

action function. The target networks are always time-delayed 703

copies of their original networks that slowly track the learned 704

networks. Therefore, using target value networks θQ
′

can 705

greatly improve stability in the learning process. As explained 706

in Algorithm 1, the actor network employs an approximated 707

deterministic strategyµ to acquire deterministic action at that 708

complies with state St and receives a reward Rt in addition to 709

the new state St+1. The critic-network critiques and directs 710

the actor performance using the approximated action-value 711

function Q[(St , at |θµ). 712

The improvement of equation (28) in the proposed DDPG 713

algorithm is that critic is updated by minimizing the sum 714

of gradient update loss for each experience sample N . This 715

improvement makes the DDPG model more effective and 716

practical than AC based model. The improved loss equation 717

is described in (29): 718

Loss
(
θQ
)
=

1
N

∑
t
(yt − Q(St , at/θQ))2 (29) 719
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DDPG algorithm adds experience replay buffer and target720

network properties to both actor and critic networks. These721

two properties reduce the correlation among the collected722

data and boost algorithm stability. The replay memory buffer723

contains the previous system state transition experience.724

In order to increase learning performance, it randomly selects725

samples from the buffer during training process. Besides726

the observed state transitions, the replay memory stores the727

rewards obtained as a result of actions throughout each time.728

Moreover, a group of N saved experiences are randomly729

chosen as samples from the replay memory for training the730

parameters of critic network.731

Algorithm 1 DDPG-Based Computation Offloading for
UAV-Aided MEC System
Initialize: UAVs-aided MEC environment including User’s
Devices (UDs) coordinates, UAVs coordinates, empty replay
buffer B, actor weights, critic weights, and targets weights.
Input: Number of tasks V , task data size, task CPU cycles,
task maximum delay, number of episodes T , batch sample
length N , actor learning rate α, critic learning rate β, dis-
counting factor γ , and replay buffer size L.

1. for each episode t = 1 to T do
2. Reset simulation network parameters and obtain initial

observed state S1.
3. while number of executed tasks < V do
4. Select action at = µ(St |θ ) + ne according to current

environment state and exploration noise ne.
5. Perform action at to obtain reward rt and new state

St+1.
6. if replay buffer B is not full then
7. Store transition (St , at , rt , St+1) in B
8. else
9. Replace randomly a transition in replay buffer B with

(St , at , rt , St+1)
10. Select randomly a mini-batch of N transitions from B
11. Set yt = Rt + γQ′(St+1, µ′(St+1|θµ

′

), θQ
′

)
12. Update the critic network by minimizing the loss:

Loss
(
θQ
)
=

1
N

∑
i

(yt − Q(St , at |θ
Q))

2

13/ Update actor policy θµ by the sampled policy gradient:

∇θµJ ≈
1
N

∑
i

[
∇atQ

(
St , at |θQ

)
∇θµµ(St |θQ)

]
14. Soft update target actor and critic networks by:

θQ
′

← θQ + (1− τ) θQ
′

θµ
′

← θµ + (1− τ) θµ
′

15. end if
16. end while
17. end for

VI. SIMULATION RESULTS732

In this section, the details of the simulation study are pre-733

sented. PyTorch is adopted for developing the proposed734

TABLE 1. Simulation parameters.

DDPG based offloading environment. The adopted simulator 735

in the experiments has three main components. These com- 736

ponents are system environment, UAV-aided MEC, and the 737

DDPG controller agent. The entire UAV-aided MEC offload- 738

ing environment is described asMDP environment. TheMDP 739

environment is the focus of the DDPG model actions. Con- 740

sequently, the proposed DDPG approach is compared with 741

DQN and AC approaches. 742

A. SIMULATION SETTINGS 743

Simulation adopts 2D square areas, each of them has N = 744

10UDs randomly distributed in 300 × 300m2 area. Addi- 745

tionally, it is assumed that the UAVs fly at a fixed height 746

H = 100m. Each UAV has a unique mass Muav = 9.65KG 747

[46] and a maximum flight speed ϑ = 50m/s [42]. During 748

the training phase, the batch and the buffer sizes are set to 749

be 64 and 105, respectively. The rest of the key simulation 750

parameters are described in details in Table 1. 751

B. PERFORMANCE EVALUATION 752

The results of the evaluation of DDPG-based computational 753

offloadingmodel is presented in this section. Adam optimizer 754

[47] is adopted to train the DDPG agent, which is an adaptive 755

learning optimization method. To optimize the offloading 756

decision, the state of UAVs, MECs, cloud, users, and the 757

other environment parameters are used as inputs to the actor- 758

network. Meanwhile, the output is the UAV new position 759

and the offloading decision. The input environment state 760

parameters should include UAV current position, UAVs and 761

MECs frequencies, the coordinates and frequencies of the 762

users being served at the moment, and the parameters of the 763
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FIGURE 4. Average score of DDPG agent.

offloaded tasks such as required computation cycles, data764

size, and expiration time.765

It is assumed that there is a batch of task requests arriving766

at the DDPG agent controller system in each time slot and767

each UD generates its bulk task requests in each time slot.768

The performance of the offloading strategy is evaluated using769

the offloading time cost T totalt and the energy cost E totalt in770

each time slot. The offloading time cost is the total time771

taken by all served UDs to complete their tasks within the772

time slot. Meanwhile, the offloading energy cost is the total773

amount of energy used by all served UDs to complete their774

corresponding tasks within a time slot.775

Fig. 4 shows the average score of the DDPG-based agent.776

As shown in this figure, the average score increases during777

the training interval T . This indicates that the performance of778

DDPG learning improves with the increase of training steps779

and achieves higher rewards in each episode. Moreover, the780

proposedDDPG-based agent can efficiently explore theMEC781

environment action space, which demonstrates that efficient782

task offloading policies can be successfully learned.783

Based on the comparison among various learning rates784

for actor and critic networks, the convergence performance785

of the proposed algorithm is studied with different learning786

rates as shown in Fig. 5. It can be noticed that when α =787

0.0001 and β = 0.001, the proposed DDPG algorithm can788

have the best convergence. Very small learning rates such as789

α = 0.00001 and β = 0.0001 make both actor and critic790

networks take more iterative episodes to converge. While791

larger learning rates such as (α = 0.001 and β = 0.01)792

or (α = 0.0001 and β = 0.001) make DDPG algorithm793

have faster convergence. Thus, it is clear that learning rates794

α = 0.0001 and β = 0.001 are more stable and appropriate795

for the proposed DDPG algorithm convergence. Fig. 6 and796

Fig. 7 show the offloading time cost and energy cost of the797

proposed DDPG-based model. These figures show that both798

time cost and energy cost decrease over the interval T . these799

decays of both costs over time prove the efficiency of the800

proposed model.801

FIGURE 5. DDPG convergence under different learning rates.

FIGURE 6. DDPG average time delay (seconds) for 50 tasks.

FIGURE 7. DDPG average consumed energy for 50 tasks.

Moreover, the correct offloaded task ratio is measured to 802

evaluate the offloading decision strategy. Fig. 8 shows the 803

correct offloaded task ratio of the DDPG-based model with 804
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FIGURE 8. Correct offloaded tasks ratio.

FIGURE 9. Offloading ratio versus local ratio.

respect to all requested tasks. The right offloaded task is805

the task that has been offloaded and executed before being806

expired (i.e., texec < taskmax_delay). Meanwhile, Fig. 9 shows807

the offloading computational tasks ratio versus the local808

computed tasks ratio that has been achieved by the proposed809

model. As shown in this figure, the offloading ratio is much810

higher than the local ratio. Hence, the proposed model can811

achieve lower local computational load on user’s devices.812

Additionally, Fig. 10 shows the percentage of tasks that have813

been offloaded to each system layer. This figure indicates814

that the number of tasks transferred to cloud and MEC layers815

is much lower than the number of tasks transferred to UAV816

layer. Also, it shows that the cloud task ratio decreases over817

time while the UAV task ratio increases. These observations818

proves that the DDPG can efficiently learn over time how to819

take the best offloading action that minimizes the offloading820

cost.821

The performance of the proposed model is compared822

with three main models, which are edge offloading only,823

DQN-based offloading, and AC-based offloading. The com-824

parison against edge offloading only is conducted to prove825

the positive effect gained when UAV layer exists. Meanwhile,826

DQN-based offloading and AC-based offloading are used827

because of the similarity between them and DDPG as all of828

FIGURE 10. Offloaded task ratio to UAV, MEC and cloud layer.

FIGURE 11. DDPG versus DQN average reward evaluation.

them depend on the Q-value. Hence, the comparison is con- 829

ducted to assess the efficiency of DDPG offloading decision 830

over the DQN offloading decision. 831

1) DQN-BASED OFFLOADING 832

In this model, the agent applies DQN to select from offload- 833

ing to UAV, MEC, or cloud server. Fig.11 shows that 834

DDPG-based model achieves a larger average reward with a 835

faster convergence than the DQNmodel over the time. Mean- 836

while, Fig. 12 shows that the proposed DDPG-offloading 837

achieves higher average reward and lower task latency delay 838

as compared with DQN-offloading over different numbers of 839

offloaded tasks. These results show that the proposed model 840

is more efficient in making the right offloading decision as 841

compared with the DQN model. 842

2) EDGE OFFLOADING ONLY 843

In this model, the agent applies DDPG algorithm to select 844

between two offloading choices, which are local offloading 845

and edge offloading. Fig. 13 shows the comparison between 846

the proposed model and the edge offloading only model. 847

As shown in this figure, the consumed energy in edge-only 848
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FIGURE 12. Comparison between the proposed model architecture and edge-only architecture over different numbers of offloaded tasks in terms
of: a) Average consumed energy. b) Correct offloading Ratio. C) Local computing ratio.

FIGURE 13. DDPG versus DQN comparison over different numbers of tasks.

scenario increases when the number of offloaded tasks849

increases. Hence, the UAV-Edge-Cloud proposed scenario850

can preserve lower energy consumption with the increase851

in the number of tasks. Additionally, it can be noticed that 852

the lower percentage of correct offloaded tasks in edge-only 853

scenario is compared with the corresponding higher value 854
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FIGURE 14. DDPG versus AC comparison in terms of: a) Average latency. b) Average consumed energy. C) Average agent score.

in the UAV-Edge-Cloud proposed scenario. Furthermore,855

as shown in Fig. 13, the number of local computed tasks ratio856

in the Edge-only scenario is larger than the corresponding857

value in UAV-Edge-Cloud proposed scenario. Therefore, this858

decrease in local computation rate can enhance system stabil-859

ity as compared with edge-only scenario. These comparative860

experiments prove that UAV existence with the MEC and861

the cloud can efficiently improve the performance of the862

offloading system.863

3) AC-BASED OFFLOADING864

In this model the agent applies AC algorithm to select where865

to offload users’ tasks. Fig. 14 shows the comparison between866

the proposed model and AC model in terms of agent aver-867

age score, consumed energy, and latency delay. This com-868

parison indicates that the DDPG achieves higher score as869

compared with AC model. Also, DDPG based offloading870

system achieves lower energy cost and lower latency cost as871

compared with AC based offloading.872

VII. CONCLUSION873

Edge computing is evolving rapidly toward the fundamental874

infrastructure and facilitating the future of IoT. Efficient875

coordination mechanisms and task offloading models are876

leveraged to enable mobile devices and edge-cloud to coop- 877

eratively work. This paper investigated one of the efficient 878

deep reinforcement learning algorithms, which is the DDPG 879

algorithm. It proposed a DDPG-based offloading system 880

to improve the efficiency of offloading decision strategy. 881

It assessed the UAV benefits in 5G IoT environments to 882

maximize the percentage of offloaded tasks from the total 883

requested task. The paper proposed a DDPG model to tackle 884

the offloading optimization problem for making correct deci- 885

sions regarding offloading to one of the previously mentioned 886

layers to reduce energy and time. It was demonstrated that 887

DDPG performed better than DQN. Moreover, offloading to 888

UAVs in cooperation with MECs and cloud servers resolves 889

incomplete offloaded task requests. Hence, the three-layer 890

offloading system and the deep learning-based algorithms can 891

serve most of the task offloading requests and can achieve 892

effective offloading decisions and resource management. 893

In future work, an improvement of the proposed model 894

will be made to maximize the offloading system stability in 895

dynamic and uncontrollable networking environments. 896
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