IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received 27 August 2022, accepted 9 September 2022, date of publication 22 September 2022,
date of current version 30 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3208584

==l RESEARCH ARTICLE

A Deep Learning Approach for Task Offloading in
Multi-UAV Aided Mobile Edge Computing

MOSHIRA A. EBRAHIM', GAMAL A. EBRAHIM !, HODA K. MOHAMED',
AND SAMEH O. ABDELLATIF“2, (Senior Member, IEEE)

Computer and Systems Engineering Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt
2Electrical Engineering Department, Faculty of Engineering, The British University in Egypt (BUE), El-Sherouk, Cairo 11837, Egypt

Corresponding author: Gamal A. Ebrahim (gamal.ebrahim@eng.asu.edu.eg)

ABSTRACT Computation offloading has proven to be an effective method for facilitating resource-
intensive tasks on IoT mobile edge nodes with limited processing capabilities. Additionally, in the context
of Mobile Edge Computing (MEC) systems, edge nodes can offload its computation-intensive tasks to a
suitable edge server. Hence, they can reduce energy cost and speed up processing. Despite the numerous
accomplished efforts in task offloading problems on the Internet of Things (IoT), this problem remains a
research gap mainly because of its NP-hardness in addition to the unrealistic assumptions in many proposed
solutions. In order to accurately extract information from raw sensor data from IoT devices deployed in
complicated contexts, Deep Learning (DL) is a potential method. Therefore, in this paper, an approach
based on Deep Reinforcement Learning (DRL) will be presented to optimize the offloading process for
IoT in MEC environments. This approach can achieve the optimal offloading decision. A Markov Decision
Problem (MDP) is used to formulate the offloading problem. Delay time and consumed energy are the main
optimization targets in this work. The proposed approach has been verified using extensive simulations.
Simulation results demonstrate that the proposed model can effectively improve the MEC system latency,
energy consumption, and significantly outperforms the Deep Q Networks (DQNs) and Actor Critic (AC)
approaches.

INDEX TERMS Deep learning, deep reinforcement learning, Internet of Things, mobile edge computing,
task offloading.

I. INTRODUCTION

The 5G era networks has been realized based on networking
technologies, innovations, and the new computing and com-
munication paradigms [1]. Mobile Edge Computing (MEC) is
one of the key technologies for computation distribution that
boosts the performance of 5G cellular networks [2]. The main
role of MEC is the minimization of communication latency
between the user and the server. This behavior has a great
importance for Internet of Things (IoT) environments. IoT
has become an important area of research due to its rapid
use in our daily lives and in industry. Therefore, It faces
numerous challenges, including latency reduction, storage
management, energy consumption, task offloading, etc [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Pau

Increasing the number of end devices in IoT environments
leads to a corresponding increase in the number of possible
actions. Consequently, it is crucial to enhance the availability
and the terminal-to-terminal delay [4].

By offloading IoT tasks to resource-rich terminals in
cooperative edge servers or clouds, mobile end devices can
release intensive computation and storage. The end-to-end
performance of IoT applications is nevertheless significantly
impacted by the various service architectures and offloading
techniques. Indeed, computing needs have a greater impact on
the performance of IoT applications as compared with con-
nectivity requirements. However, communication bandwidth
represents the most important resource as the system expands
to support more IoT devices. As a result, it becomes the pri-
mary component that directly affects performance as a whole
[5]. Building an orchestral IoT architecture is thus a must

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

101716

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 10, 2022

https://orcid.org/0000-0002-6519-9511
https://orcid.org/0000-0001-8677-9497
https://orcid.org/0000-0002-5798-398X

M. A. Ebrahim et al.: Deep Learning Approach for Task Offloading in Multi-UAV Aided Mobile Edge Computing

IEEE Access

to include optimum solutions under various limitations for
the best offloading location. Even though MEC has several
benefits, it is still constrained by the positions of fixed towers.
Consequently, it is difficult to deploy MEC servers at any time
or location. Furthermore, there is a good chance that natural
disasters could occasionally destroy the infrastructure. Addi-
tionally, mounting infrastructure in remote locations such as
hotspots and mountains is nearly challenging. The IoT nodes
are unable to completely service their users in the aforemen-
tioned conditions. Unmanned Aerial Vehicles (UAVs) with
MEC servers installed on board can be used to support MEC
systems by taking advantage of their flexibility and ease of
deployment. This support is necessary for tasks that mobile
users in hotspot locations or in emergent scenarios have
been temporarily offloaded. In order to provide computing
servers for mobile user’s terminals in adaptable positions,
UAV-aided MEC [6] is introduced. By adding additional
compute resources to MEC servers, UAV-aided MEC speeds
up calculations and increases the operating lifetime of mobile
devices [7].

Deep Learning (DL) [8] has been widely used to learn
and optimize a variety of issues for UAV-aided MEC [9].
However, most DL approaches require labelled historical
data. Meanwhile, labelling the training data requires a signif-
icant amount of human effort. By engaging with MEC sur-
roundings, Reinforcement Learning (RL) [10] can learn and
improve UAV-assisted MEC without training data. Therefore,
to reduce overall energy consumption, Deep Reinforcement
Learning (DRL) [11] approaches can be used to provide
effective task offloading, resource allocation, and UAV con-
trol. DRL uses RL and Deep Neural Networks (DNNs) for
collecting the complicated states of MEC with UAV
assistance.

When developing distributed decision-making solu-
tions for wireless task offloading problems, conventional
approaches such as convex optimization [12] and mixed-
integer programming [13] are not always appropriate. Mostly
because such models become more complicated for systems
with numerous agents. This work essentially devises Markov
Decision Problem (MDP) [14] to model task offloading
according to real knowledge and tries to solve this problem
using a DRL algorithm. Hence, this paper aims to develop
a DRL model to solve task offloading problem for multi-
UAV-aided MEC systems. The proposed approach avoids
unrealistic assumptions such as ignoring user’s device mobil-
ity. Hence, the transmitting channel noise is taken into con-
sideration in addition to the coordination of mobile users
and UAVs. This model seeks to maximize the stability of
the entire system while minimizing the time and energy it
uses. Maximizing stability means balancing the computation
power of the system workload, extending operation time, and
maximizing the total number of completed tasks.

The remainder of the paper is organized as follows:
Section I presents an overview of MEC and 5G networks
followed by Section III that surveys the different methods for
using DRL to solve task offloading optimization problem.

VOLUME 10, 2022

Section IV presents the related work followed by Section V
which provides the details of the system model and problem
formulation. Then, simulation results are presented in
section VL. Finally, Section VII, concludes the paper.

Il. MOBILE EDGE COMPUTING AND 5G NETWORKS
Cloud computing and IoT infrastructure are combined by
the aid of MEC. By enabling the edge network to assure
Quality of Experience (QoE), it puts storage, computing,
and management closer to the end user. Because of this,
it maximizes resource usage and brings in money for network
operators [15]. To decrease latency and traffic in the backbone
network, end users can get data from nearby base stations
rather than from the huge regional data centers.

MEC is a modern communication paradigm that has been
utilized for bringing the energy resources and computing
capability to the edge of the radio access network. Hence,
computation capabilities can be distributed over the network
instead of being centralized [16]. Thus, MEC has proven to
be crucial to the rollout of 5G. It is necessary to reconsider
network and information delivery strategies in order to meet
the Internet continually shifting demand. To maximize the
potential of MEC systems, integration with upcoming 5G
technologies is required. This integration can be shown in
different aspects such as Internet Service Providers (ISPs),
Software-Defined Networking (SDN), Network Function
Virtualization (NFV), and UAVs communication. SDN and
NFV support agility and flexibility in multi-tenant MEC
environments[17]. Moreover, a combination of 5G networks
and MEC enables ISPs to meet consumer demands [18].
By utilizing cloud computing infrastructure, 5G networks can
be able to meet the higher bandwidth, availability, and lower
latency demands of the new Internet services and applica-
tions. The development of services that support multi-service
and multi-tenant infrastructure is accelerated by cloud service
providers using SDN and NFV [19]. NFV along with SDN
enables network operators to achieve a high degree of flexi-
bility and cost-saving, resulting in simplified and extensible
placement and management. Additionally, efficient utiliza-
tion of network functions and more reduction in power usage
can be achieved [20], [21]. MEC builds a virtualized infras-
tructure that can be installed near the edge of the network.
MEC architecture has a lot in common with NFV, which
enables seamless and effective application operation over
multi-access networks [22]. MEC has attracted interest as a
viable alternative to provide computation networks close to
consumers. It extends the cloud capabilities to a decentralized
cloud utilizing the same SDN and NFV concepts as the bigger
5G networks.

UAV-assisted wireless communication is a promising
essential component of MEC ecosystem and 5G cellular
system because of the advantages of the large coverage and
capacity enhancement. UAVs can be used as airborne edge
servers to carry out complex calculations that have been
transferred from users on the ground. On the other hand,

101717

IEEE Access

M. A. Ebrahim et al.: Deep Learning Approach for Task Offloading in Multi-UAV Aided Mobile Edge Computing

UAVs have the ability to function as airborne users and can
be connected to ground base stations [23].

Besides the adaptation of UAVs and SDN/NFV technolo-
gies within 5G cellular networks, Artificial Intelligence espe-
cially DL is used with MEC for intelligent decision making.
It offers the chance to precisely identify and categorize the
applications on mobile nodes and automate the process of
creating adaptive network slicing [24]. Also, it can be adapted
to predict user’s actions and automate the dynamic network
resource management in 5G networks. In the future, it can
save operational cost for telecommunication firms while
enhancing user’s experience.

Ill. DRL FOR TASK OFFLOADING INTO MEC

One of the major unresolved issues in IoT environments is
how to extract real-world IoT data from complex noisy envi-
ronment that may confuse traditional approaches of machine
learning. DL is regarded as the most effective technique to
resolve this problem. It has been used for a variety of appli-
cations in IoT nodes with promising early outcomes [25].
Because of its high efficiency in handling complex data, deep
learning plays a very important role in future IoT services.

Traditional approaches such as genetic algorithms require
prior knowledge of mobile users’ patterns and network
parameters. These approaches may be preferred in static or
slowly varying environments. In rapidly and/or randomly
changing IoT wireless networks, there is a limited to no
prior knowledge for guiding decision making. As a result,
approaches based on machine learning should be preferred.
Furthermore, training over the entire dataset is computation-
ally impossible in such situations [26]. The small cell stations
in 5G networks could be used for offloading tasks that have
too heavy computations or greatly consume battery for the
majority of users’ mobile devices. This is mainly due to
their proximity to the users and the projected high number
of stations.

DRL is a deep learning technique that replaces Q-table
in the basic RL algorithm with a deep neural network
[27]. Involving deep learning in RL allows it to handle
high-dimensional actions and state spaces. Additionally,
learning efficiency is highly improved and the limitations of
reinforcement learning are relaxed to a certain extent.

There are different DRL techniques that are both accurate
and effectively tackle problems that are too complex for the
traditional learning approaches such as Q-learning. DRL uses
different types of algorithms to perform specific tasks such
as DNN models that use gradient descent to minimize the
cost function. Cost functions for 5G networks could include
operating cost, latency, and downtime. Another example is
Deep Q-learning Networks (DQN), which use DNN to avoid
feature engineering while training the policy and setting of
replay memories to continue using the gained knowledge
in earlier stages to simulate scenarios with enormous state
spaces [28]. Although DQN models can solve problems that
have high-dimensional state spaces, they still cannot deal
with the continuous action spaces. Hence, the most efficient

101718

type of DRL models is the Deep Deterministic Policy Gradi-
ent (DDPG) approach [29]. DDPG is an off-policy actor-critic
model-free algorithm which can learn policies in continuous
action spaces. A policy function and a Q-value function com-
prise the actor-critic algorithm. The policy function generates
actions by acting as an actor. The Q-value function acts as a
critic that evaluates the performance of the actor and directs
the actor’s subsequent actions.

Mobile edge computing can take the advantage of its
proximity to the user to address a variety of challenges in
5G networks. These challenges often require automated DRL
management of a series of increasingly complex tasks. Solu-
tions that combine DRL for 5G with efficiency are best when
they are made closer to the end-user in MEC rather than the
core network. DRL has numerous applications in MEC net-
working domain including predicting traffic, mobility mod-
elling, responsive resource allocation, effective energy usage,
and data privacy [30]. Meanwhile, this paper focuses on
adaptive resource allocation and computation offloading.

IV. RELATED WORK

DRL approaches can autonomously extract features while
minimizing human effort and domain expertise required to
collect distinguishing characteristics. Hence, they play a key
role against the heterogeneity of edge computing environ-
ments. Therefore, DRL models can efficiently optimize the
task offloading strategy and determines offloading policies.
Additionally, online heavy computation iterations can be
avoided by offline training.

Many research efforts have been conducted in this direc-
tion. For cooperative UAV-enabled MEC networks, the study
in [31] presents a cooperative offloading strategy based on
UAV-to-device interference mitigation. DRL-based optimiza-
tion is investigated to obtain the optimal offloading decisions
and resource management policies in order to maximize
the long-term system utility. Here, the system utility of the
DRL-based model is better than related solutions that use
non-cooperative UAV edge computing methods. Meanwhile,
the study in [32] introduces the multi-objective ant colony
optimization approach based on RL. It has been proposed
for accurate resource allocation among end-users depending
on the cost of creating Q-tables and optimal allocation in
MEC. Additionally, fast responsive task offloading based on
Meta-Reinforcement Learning (MRL) is introduced in [33]
to overcome the low sample efficiency of the original RL-
based algorithm. MRL enables learning and updating policies
according to new environments. Additionally, it enables the
user’s equipment to run the training process by using its
own data with little computing resources. Mobile applications
are modeled as directed acyclic graphs and the dynamic
offloading process are modeled as multiple MDPs. Moreover,
the study in [34] presents the task offloading problem in
satellite-terrestrial edge computing networks, where tasks
can be offloaded to the visible urban terrestrial cloud via
satellite link. DRL-based task offloading is used to accelerate
the learning process by dynamically adjusting the number

VOLUME 10, 2022

M. A. Ebrahim et al.: Deep Learning Approach for Task Offloading in Multi-UAV Aided Mobile Edge Computing

IEEE Access

of candidate locations and the size of action space. The
offloading problem is modeled as a mixed-integer program-
ming problem where the offloading location and bandwidth
allocation depend only on the current channel state. Further-
more, a reinforcement learning approach is presented in [35]
for computational offloading of energy harvesting for IoT
devices. This approach uses DRL algorithm with a transfer
learning strategy to compress the state space dimensions,
accelerate the learning rate, and enhance the offloading sys-
tem performance and system utility.

A distributed offloading approach called best response-
based offloading algorithm has been introduced using game
theory [36]. In this approach, users’ devices work together to
reduce energy cost and latency cost. Moreover, the authors in
[37] investigate UAV-assisted MEC system. In this system,
the UAV provides a complementary computation resource
to the terrestrial MEC system. UAV tries to maximize the
expected long-term computation performance. The study
investigates a proactive model based on DRL techniques.
MEC system is established for offline training of the proac-
tive DRL model. Furthermore, DDPG based computation
offloading algorithm has been introduced in [38] to find the
best offloading policy in a dynamic environment for UAV-
assisted MEC. Also, it can enable a continuous action space
offloading decision and UAV mobility but with only one UAV
server and one offloading layer. Hence, in this work, DDPG
algorithm is investigated for more complex and heteroge-
neous environment with more than one offloading layer.

Different from all these studies, this paper concentrates
on task offloading in heterogeneous 5G networks. Therefore,
an optimal multi-level offloading system is proposed. The
first layer contains multiple UAV servers instead of a single
UAV as in the previous studies. Meanwhile, the next layer
contains multiple MEC servers. The existence of multiple
UAV and MEC servers helps in increasing the number of
available servers for offloading in each layer. Consequently,
the offloading system can accept a large number of offloading
requests, which reduces the local computing requirements.
On the other hand, the last layer is the cloud server layer that is
used for computation-intensive tasks. UAV servers are closer
to the end devices than MEC servers to support mobility
and to provide fast response to users’ offloaded requests.
The proposed model jointly schedules resource allocation and
computation offloading in multi-UAV aided MEC through a
DDPG approach.

V. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the task offloading problem is going to be
illustrated. Then, it is modeled using MDP and the optimal
offloading decision is computed using a DRL algorithm.
Additionally, the architecture of the adopted edge computing
is detailed.

A. MEC SYSTEM ARCHITECTURE
The proposed offloading system architecture is illustrated
in Fig. 1, which is composed of N end-user devices, M

VOLUME 10, 2022

edge servers, K UAVs, one cloud server, and a Central
Offloading Controller (COC). The COC is deployed in MEC
layer, hence, it can be a master MEC server with special
and higher efficiency storage and computing resources. This
COC is a DDPG-based task offloading agent that is mainly
responsible for responding to task computing requests of
the end user’s devices. It receives offloaded requests from
different end devices, then it uses the DDPG algorithm to
decide where to offload the user’s task. Moreover, it has a
control on resource cooperation and coordination between
the access network edge server and the UAV cluster, as well
as resource allocation on the cloud server. Agent application
can get environment information through monitoring devices.
These devices are deployed on the user’s device, MEC, and
UAV. The environmental information can contain the user’s
device status, resource request conditions, and disposable
resources on MEC, UAYV, and cloud server. MEC and UAV-
aided MEC servers bring computing resources to the network
edge, which is close to the user’s device. Therefore, it can
overcome high network congestion and long transmission
delay when compared with the case of depending only on
cloud computing. Furthermore, COC works as an orches-
trator that manipulates numerous user offloading requests
and collects information to select the optimal computing
terminal. As a result, it avoids high congestion load on MEC
terminals compared with the case when COC does not exist.
In fact, cloud computing and MEC are mutually benefi-
cial. Cloud computing provides a wealth of applications and
computing resources. Meanwhile, MEC has short delays,
high stability, and adaptability to diverse network environ-
ments, making it an excellent choice for delay-sensitive
services [39].

To meet the delay constraints, it is necessary to utilize the
benefits of cloud computing besides MEC to offload tasks to
locations with different computing and communication capa-
bilities. As a result, this study attempts to combine hetero-
geneous computing resources and construct a collaborative
Device-UAV-Edge-Cloud computing environment. A task
offloading environment based on DDPG is distributed and
linked to the four-tier hierarchy, which includes IoT device
layer, UAV server layer, MEC server layer, and cloud server
layer. The following subsections describe the main character-
istics of each layer.

1) loT LAYER

A network of interconnected IoT devices is present at this
layer. Through wireless access points, each device can link
to UAV, MEC, and cloud servers. The IoT user must make
dynamic task offloading decisions for each cycle of offload-
ing based on QoS requirements and the state of the network
(transmission bandwidth, task size, available resources, etc.).

2) UAV LAYER

This layer contains lightweight MEC servers on UAVs, which
can provide high mobility and flexible deployment. Hence,
the processing delay can be reduced since this layer can

101719

IEEE Access

M. A. Ebrahim et al.: Deep Learning Approach for Task Offloading in Multi-UAV Aided Mobile Edge Computing

~
— \ o
/ Cloud
1

Servers

\Q{pud Computing Layer

.] AP
4 R

4 “"*-—_

/ it te LR T L
'I Edge Offloading Communication Lines ___ __ _
F - =
I ™

1

1 '\\ , \

i S B

1 P T

i TSl

[" melT AR
1 UAV Offloadlng ________________
i ___~

)”

Ay
~

l
’ - e-
s\
B
. Slooo 5]

7 / Central Offloading
Controller (COC)

Heterogeneous 5G End Devices Layer

FIGURE 1. Multi-layer computational offloading system architecture.

offer computing support for jobs that mobile users offload
in locations with temporary hotspots. For instance, sports
stadiums or communities that have been devastated by natural
disasters.

3) MEC LAYER

MEC servers for real-time task processing are present in this
layer. They can offer lower latency computation services at
the edge of the network. MEC servers may send complicated
computational jobs to resource-rich cloud servers. In order to
guarantee the security of offloading operations, MEC servers
provide dependable communication with the IoT device layer
and the cloud server layer.

4) CLOUD SERVER LAYER

This layer consists of numerous powerful virtual machines
with higher storage and computational capacity. It is mostly
utilized by IoT devices to do complicated computing tasks.
Each cloud node in this layer is securely connected to MEC
terminals and IoT nodes and runs in a decentralized safe
manner.

101720

B. OFFLOADING DELAY MODEL
Offloading delay model assumes that the user devices in
the service scope are represented by UDy = UD1i, UD3,
, UD,,. Each user has V independent tasks that need to be
offloaded. Each task donated by the size of its data quantity
to be offloaded @, and the task computation workload L,
(i.e., required CPU execution cycles). When the agent detects
user’s offloading request, it begins to develop an offloading
strategy with the goal of minimizing task delay duration.
The task delay is split into two portions: transmission delay
and computation delay. The transmission delay represents the
time required to offload the task to MEC, UAV, or cloud.
While the computation delay represents the time needed for
conducting computation on the server.

1) CLOUD COMPUTING OFFLOADING

The proposed model ignores the downlink delay. This is
mainly because the size of the downloaded result of task
execution is very small as compared with the uploaded task
data size. The uplink data rate between the user’s terminal
and the cloud server through a wireless channel at moment ¢

VOLUME 10, 2022

M. A. Ebrahim et al.: Deep Learning Approach for Task Offloading in Multi-UAV Aided Mobile Edge Computing

IEEE Access

is computed by (1).

t
pngnc
o2

rrtz,cloud = W 10g2 (1+) (1)
where w, represents the user-cloud channel bandwidth, g’
identifies the channel gain loss between the user’s device n
and the cloud server c, p, represents the transmitting power
of user’s device UD,,, and o2 represents the Gaussian noise.
Therefore, the delay for task data transmission can be com-
puted by (2).

qt
trans ny
nv,cloud = 1 (2
n,cloud
When computing task v is offloaded to a cloud server for
execution then the time spent can be expressed by (3).

exec Z’W (3)

nv,cloud — fl d
clou

where f;,uq denotes the computation frequency of the cloud
server (CPU cycles per second).

2) MEC COMPUTING OFFLOADING

In MEC layer, MEC servers communicate with IoT devices
through various wireless channels among LAN networks. The
uplink data rate between the user’s terminal and the MEC
server via a wireless channel at moment ¢ can be computed
by (4).

Png,
rrtl,mec = Wm 10g2(1 + r:)-;m) (4)

where wy, represents the user-MEC channel bandwidth, g’,,
represents the channel gain loss between user’s device n and
MEC terminal m. Consequently, the delay for the task data
transmission to MEC terminal can be computed by (5).

qt

trans __ ny

Tnv,mec — it (5)
n,mec

When task v is offloaded to the MEC server for execution,
the execution time is represented by (6).

I}

where fyrc represents the computation frequency of the
MEC server (CPU cycles per second).

3) UAV COMPUTING OFFLOADING

UAV servers are lightweight MEC servers flying closely
to IoT nodes. They communicate with IoT devices through
wireless channels. The uplink data rate between the user’s
terminal and the UAV server via a wireless channel at moment
t can be computed by (7).

n,uav

t
oy = 0 logy(1 4 228nky)
o

VOLUME 10, 2022

where w, represents the user-UAV channel bandwidth and g; k
is the channel gain loss of the uplink between the UAV and
user n, which can be expressed by (8) as in [40]:

8o
d2

n,uav

k= ®)
where g, represents the reference channel gain loss at a
baseline distance d = 1m and d,%’ «av 1ndicates the Euclidean
distance between user n and the UAV.

The DDPG based controller agent in COC executes the
action that decides if a task should be offloaded to the UAV,
MEC, or cloud. Then, it drives UAVs to the new location
if needed. In the 3D Cartesian coordinate system [41], the
trajectory of the UAV can be indicated by the UAV discrete
coordinates in each time slot, which is defined as UV, (t) =
[(1), yx ()] € R?>*! at time slot t. Assume that UAV
keeps flying at a fixed altitude H, where the UAV has a start
coordinate UV (¢), and after it has been selected to execute
the task of user’s device UD,,, UV, flies to a new coordinate
UVi@t+1) = [xe (t+ 1),y + 1] € R>*! with max-
imum flight speed ¥4 to be closer to the corresponding
user. The coordinate of user’s deviceUD,, is UD, (t) =
[x, (1), yp ()] € R¥*!. Thus, d?, will be given by (9).

> “nouav

s = N UV (1) ~UD, (] +)

At time slot ¢ with a speed ¥ (¢) and an anglep € [0, 27].
UAV flies from position UV (¢) to the new hover position
UV (t + 1) given by (10).

UV (t+1) = [x (1) + 9 (1) tay cos B(0), y (1)
+ 0 (1) tay sin B (1)] (10)

where 4, donates the fixed UAV flight time. Consequently,
the delay for task data transmission to UAV terminal can be
computed by (11).

q
Ty = == (11)
r n,uav
When task v is offloaded to the MEC server for execution,
the execution time can be represented by (12).

T, = 2 (12)
’ Suav
where fyay denotes the computing frequency of the MEC
server (CPU cycles per second).
The offloading-decision matrix at moment ¢ can be
expressed by (13).

OL" = {ol};,ol}y, ... ol,, ... o} (13)

where each ol’,, is the offloading action of task v of the user’s
device. It is a two-bit variable that can be selected from the
set {0, 1, 2}. Where O represents offloading to the UAV layer,
1 represents offloading to the MEC layer, and 2 represents

101721

IEEE Access

M. A. Ebrahim et al.: Deep Learning Approach for Task Offloading in Multi-UAV Aided Mobile Edge Computing

offloading to the cloud layer. Therefore, the execution time
can be computed by (14).

TrgAV, ol,’w = 0, UAV offload

TMEC ol =1, MEC offload (14)
Trflf””d, oll,, =2, Cloud offload

exc __
Tnv -

Consequently, the total task delay T of user n at moment ¢
(including the transmission and computation delays) can be
computed by (15).

Ttrans _"_ T€X€C

nv,uav n,uav’
t trans exec
Tnv - Tnv,mec + Tnv,mec’
T irans 4 exec
nv,cloud nv,cloud

oll,, = 0, UAV offload

ol,, =1, MEC offload

oll,, =2, Cloud offload
(15)

C. OFFLOADING ENERGY MODEL

Various forms of consumed energy due to offloading process
are considered in this model. One of the main forms of them
is the consumed energy in data transmission of offloaded
task to the computing terminal that has been selected by
COC. Hence, the overhead for energy offloading by the user’s
device n at moment ¢ can be computed by (16).

piTe,. oly, =0, UAV offload
E™ = 1 piTiins, .. oly, =1, MEC offload ~ (16)
piT;"ff'c";oud, oll,, =2, Cloud offload

When a task v; is transferred to a cloud server to be
computed then the energy consumed by the IoT device can
be computed by (17).

exec — . exec
Env,cloud = pta’leTnv,cloud A7)
where pjg indicates the power consumed when the IoT
device is idle, which means that the task is being offloaded
elsewhere.
Consequently, when task v is transferred to the MEC server

to be computed, the energy consumed by the IoT device can
be described by (18).

Erc;g,er:;ec = Pidle T;\ie;?iec (18)

For UAV offloading case, there are two additional energy
components, which are the UAV energy needed for both flight
and processing. The flight energy is consumed when the UAV
flies to the airspace closest to a device position in order to aid
in computing process; it can be expressed by (19) as in [42].

= prl9(0) |1 (19)

uav

where pr = 0.5Mq 7y represents the power of flight of
the UAV, M,,,, represents the UAV mass, and () represents
UAV flight speed at time 7.

The stay energy is consumed when the UAV remains sta-
tionary at its current location for a while to perform the tasky
for the user’s device, The UAV stay consumed energy can be
calculated by (20).

stay __ T exec

€uay = Ps nv,mec (20)
where p; represents the power of stay of the UAV.

101722

Therefore, the energy consumption spent by the UAV
server to execute task v is given by (21).

Eexec — fly +estay 1)

uav uav uav

Moreover, the energy consumption spent by the user n
device to execute task v on UAV server is given by (22).
Eﬁ\fﬁfav = pidleT,f\iC;cav (22)
Furthermore, the total consumed energy for transmitting
and executing task v of user n at moment ¢ can be computed
by (23).
Elrans + EEXEC

nv,uav nv,uav
trans exec

Env,mec + Env,mec
trans exec

Env,cloud + Env,cloud’

oll,, = 0, UAV offload

oll,, =1, ME Coffload

oll,, =2, Cloud offload
(23)

r
Env_

Additionally, the total latency and energy cost C!, for
transferring and executing task v of user n at moment ¢ can
be computed by (24).

o THY 4 p EY, ol' =0, UAV offload

0T + p EMC, ol =1, MEC offload

piTelowd o o EClowd o1t =2 Cloud offload
(24)

o
Cnv_

where p; and p, are constant weighting parameters corre-
sponding to the time delay and the consumed energy for task
v of user device n respectively.

Additionally, taking into account the user’s mobility and
the simplicity of the UAV processing, the system agent can
gain a potential moving track of the user. Based on historical
requests data and user’s behavior patterns, it is possible to
predict the number of tasks that the user may want to be
offloaded. Meanwhile, the UAV movement pattern aids in
obtaining the offloading plans, which save energy. As aresult,
the user’s QoE and QoS can be considerably improved.

D. PROBLEM FORMULATION

The task offloading problem is represented as a server layer
selection problem. In other words, each task group is mapped
to a server-side, either UAV, MEC, or cloud server-side. MDP
is adopted to model this problem instead of the classical
modeling approaches such as convex optimization. Mainly
because MDP is more efficient in modeling heterogeneous
and stochastic real systems.

Based on equations (15), (23), and (24), the objective
function O,,;, is optimizing MEC system by minimizing the
total system cost of latency and consumed energy which can
be expressed by (25).

N \%4
Omin =) D (1= OLw) 2~ OLn)Cp"
+ OLyy(2 — OLp)C™ 4 OLpy(1 — OL,y,)CCloud
subject to OL,, € 0, 1, 2}

VOLUME 10, 2022

M. A. Ebrahim et al.: Deep Learning Approach for Task Offloading in Multi-UAV Aided Mobile Edge Computing

IEEE Access

N V
D) Ege < B,

n=1 v=1

OL,, =0, EP4l >0

Tw<dy, Tw=0 (25)

where, C!'%, CM and CSlo"d represent the total UAV
offloading cost, total MEC offloading cost, and total cloud
offloading cost respectively, E%ge'y is the maximum battery
energy of UAV, and d, is the maximum delay of task v.

According to the optimization problem in (25), it is consid-
ered an NP-hard problem based on the proof in [43]. Addi-
tionally, each offloaded task has three choices with respect
to offloading decision variable OL,,. Assume there are V
tasks to be processed, hence, there are 3v*+! choices to offload
task on, which demonstrates the complexity of the offloading
optimization problem.

When taking into account MDP models, system states have
a very high level of complexity. Additionally, continuous
action space is required to support decision regarding offload-
ing. Thus, a DDPG-based model is suggested in this study in
order to determine the best policy for computation scheduling
and offloading, UAVs mobility, and resource allocation in
UAV-aided MEC based system.

DRL approaches, especially DDPG, are very well suited
for learning in MDP based environments. This is primarily
due to the fact that such approaches can be used to adapt to
the collective action of other agents in the existence of infor-
mation scarcity. The offloading problem is tackled by using
MDP in conjunction with DDPG. In an MDP environment,
the agent applies DDPG algorithm to learn the best action to
be chosen in the next round.

E. DRL BASED OFFLOADING OPTIMIZATION ALGORITHM
DRL introduces a deep neural network to replace the Q-table
in the RL algorithm. DRL differs from supervised learning
in that the labelled data of RL emerges from recursive RL
updates. As a result, the feedback varies with each iteration.
Because of the environment noisy feedback, the DRL model
may oscillate during exploitation and exploration. To address
this issue, DRL employs target networks to supplement the
DQN with fixed weights during specific episodes.

DDPG is an improved version of DQN to make DRL agent
efficiently deal with continuous action space. As explained
in Fig. 2, DDPG uses two separate DQNs for approximating
the actor-network (policy-network) and the critic-network
(Q-value network). In DDPG, both critic and actor networks
have a target network with a similar structure as them.

1) STATE SPACE
In UAV-aided MEC environments, the state space is jointly
described by N UDs, K UAVs, M MECs, and cloud and their
surrounding environment. The system state at time slot # can
be defined as S; = {Q,;, Lyi, Fs, UV, UD;}:
e 0vi=1qi1,9i2, - qiv,s --» uv]: A vector consists of the
data size of offloaded tasks at time slot ¢.

VOLUME 10, 2022

\ 4

Policy

Actor

Temporal Difference
Error

Value Function

Critic »

\ 4

State Action

Reward

Environment

FIGURE 2. Actor-Critic (AC) algorithm.

o L, = [lin,lin, ..., Ly, .., Ly]: A vector consists of the
required CPU cycles of offloaded tasks at time slot 7.

o Fy = [fi,fo, -+« s fe+m+1]: A vector consists of the
remaining computing capacity of each available server
at time slot 7.

o« UV = [UV,UV,,.....,UVL]: A vector consists of
the coordinates of each UAV at time slot .

e« UD, = [UD{,UD,,.....,UD,].: A vector consists of
the coordinates of each UD at time slot ¢.

For a given state S;, the agent adopts action a; according to

the selected policy.

2) ACTION SPACE

Based on the current state S; of the observed system envi-
ronment parameters, the agent chooses a certain action a; to
offload the requested tasks of all mobile devices nodes to the
available computing terminal servers. The action vector A;
can be represented as A; = {OL’, 0S', Bi., FD,, }

The action dimension OL' represents the selected offload-
ing layer where OL' € {0, 1,2}. The next action dimen-
sion OS’ represents the selected server that the agent selects
from the offloading layer where OS’ € [0, k + m + 1]. The
last action dimensions ﬂ,i, FD; represent the required flying
angle and distance of selected UAV to serve the upcoming
user’s task.

3) REWARD FUNCTION

The behavior of DDPG agent is based on rewards. Hence, the
effectiveness of the DDPG framework is greatly influenced
by the selection of a suitable reward function. In order to opti-
mize the reward, it is important to reduce the total processing
time and the energy consumption as stated in (26).

Rt (Slv at) = (l — 6‘) F[— Pe]0g5 (Ettotal)
— 0 10g3 (Tttotal) + Cc (26)

101723

IEEE Access

M. A. Ebrahim et al.: Deep Learning Approach for Task Offloading in Multi-UAV Aided Mobile Edge Computing

Actor Critic
Gaussian noise e TR
i~ NQe 1020 (Optimizer) (Optimizer)
5 update 6” policy gradient update 8° Q gradient
UAV-aided MEC Sy ie R
Em-'?:o:men : Online policy network gradient Online Q network
J (ST Sev1) parame(ers:oﬂ a= u(s;) pamnetem:eg
soft update Yi soft update
Target policy network JZACINY) Target Q network
parameters: parameters:ﬁg

Store N = (s4,a;,7,Si+1)

FIGURE 3. Deep deterministic policy gradient algorithm.

Equation (26) shows that whenever user task is completed
before it expires, the agent is rewarded by a reward R;.
The task expiration state is described by a flag F;. The
agent punishment is represented in terms of energy and time
cost through p, and p; factors. The total consumed energy
E!™l and the total delay T/ values are smoothed by a
logarithmic function to avoid feedback of fluctuation in the
learning model. Additionally, it is a time-consuming process
if the original values are used. Moreover, C and ¢ are small
constants that are randomly generated to encourage the model
to keep running and accumulate rewards over time steps.
Where, both ¢ and C € [0.1, 0.5].

4) PROPOSED DDPG-OFFLOADING ALGORITHM

DDPG learning approach is an advanced DRL algorithm. The
DDPG is based on Actor-Critic (AC) algorithm that explained
in Fig. 2 [44]. In AC algorithm, the actor explores the policy
u that maps the observation S; of the agent to the action
A;. On the other hand, the critic evaluates actor’s actions
and estimates the Q-value function Q(S;). At time moment ¢,
when the action g, is taken by the actor, the agent will apply
it on the environment and sends the current environment
observation S; along with the feedback to the critic. The
feedback includes the reward r; and the new observation
S:+1. Then, the critic computes the temporal difference error
by (27).

8 =R + yO(Siv1ln) — O(Si) 27

where y € (0, 1) is the discount factor.
The AC critic network is updated according to the optimal
value function Q* which aims to minimize the least square of

101724

'\

/

Mini-batch sample
N = (suai7iSi41)

Experience
replay

temporal difference as in (28).
Q* = argming,(8;)° (28)

The DDPG algorithm illustrated in Fig. 3 is the efficient
enhanced version of AC algorithm. This is mainly because
DDPG uses four neural networks: a Q network (critic) 69, a
deterministic policy network (actor) 8#, a target Q network
09 anda target policy network 6" . The Q network and pol-
icy network are much similar to actor and critic networks [45].
However, in DDPG, the Actor is used to create a unique action
by directly mapping states to actions instead of outputting
the probability distribution across a discrete action space.
On the other hand, critic is used to approximate the Q-value
action function. The target networks are always time-delayed
copies of their original networks that slowly track the learned
networks. Therefore, using target value networks 02 can
greatly improve stability in the learning process. As explained
in Algorithm 1, the actor network employs an approximated
deterministic strategy i to acquire deterministic action a, that
complies with state S; and receives a reward R; in addition to
the new state S;+1. The critic-network critiques and directs
the actor performance using the approximated action-value
function Q[(S;, a;|6").

The improvement of equation (28) in the proposed DDPG
algorithm is that critic is updated by minimizing the sum
of gradient update loss for each experience sample N. This
improvement makes the DDPG model more effective and
practical than AC based model. The improved loss equation
is described in (29):

1
Loss (62) = =" (i — Q(Si. /627 (29)

VOLUME 10, 2022

M. A. Ebrahim et al.: Deep Learning Approach for Task Offloading in Multi-UAV Aided Mobile Edge Computing

IEEE Access

DDPG algorithm adds experience replay buffer and target
network properties to both actor and critic networks. These
two properties reduce the correlation among the collected
data and boost algorithm stability. The replay memory buffer
contains the previous system state transition experience.
In order to increase learning performance, it randomly selects
samples from the buffer during training process. Besides
the observed state transitions, the replay memory stores the
rewards obtained as a result of actions throughout each time.
Moreover, a group of N saved experiences are randomly
chosen as samples from the replay memory for training the
parameters of critic network.

Algorithm 1 DDPG-Based Computation Offloading for
UAV-Aided MEC System
Initialize: UAVs-aided MEC environment including User’s
Devices (UDs) coordinates, UAVs coordinates, empty replay
buffer B, actor weights, critic weights, and targets weights.
Input: Number of tasks V, task data size, task CPU cycles,
task maximum delay, number of episodes T, batch sample
length N, actor learning rate «, critic learning rate 8, dis-
counting factor y, and replay buffer size L.
1. for each episode t = 1 to T do
2. Reset simulation network parameters and obtain initial
observed state Sj.
while number of executed tasks < V do
4. Select action a; = u(S¢|0) + n° according to current
environment state and exploration noise n°.
5. Perform action a; to obtain reward r; and new state
Si+1.
6. if replay buffer B is not full then
7. Store transition (Sy, at, r¢, S;41) in B
8
9

et

. else
. Replace randomly a transition in replay buffer B with
(St, ar, 14, SH-I)
10. Select randomly a mini-batch of N transitions from B
11, Sety; = Ri +yQ'(Sit1, 1/ (Sr4116%), 69)
12. Update the critic network by minimizing the loss:

1 2
Loss <0Q) = Z (3, — OS¢, ar169))
L
13/ Update actor policy 6# by the sampled policy gradient:

1
Voud % = D[V (Siv a102) Vo n(si169) |

1

14. Soft update target actor and critic networks by:
02 «— 62+ (1—1)6¢
o1 — Ok 4 (1 — 1) O

15. end if

16. end while

17. end for

VI. SIMULATION RESULTS
In this section, the details of the simulation study are pre-
sented. PyTorch is adopted for developing the proposed

VOLUME 10, 2022

TABLE 1. Simulation parameters.

Parameter Value
Number of IoT application Tasks V=50
Number User’s devices N=10
UD-UAYV Bandwidth w, = 30MHz
UD-MEC Bandwidth Wy, = 75MHz
UD-Cloud Bandwidth w., = 150MHz

UAYVs computation capacity
MECs computation capacity
Cloud computation capacity
User’s device computation capacity

fuaw =[2.8,3.2]GHz

fmec = [2.8,3.2]GHz
fetoua = 20 GHz

fiocat = [0.8,0.9]GHz

User’s device idle power Pigie = 0.3W
User’s device transmission power Py = 1.3W
Task data size q, = [400,1200]MB
Task CPU cycles L, = [200,600]cycles/b
Task max. delay d, =[0.01,0.1]s
Actor learning rate (&) 0.0001

Critic learning rate (f8) 0.001
Number of hidden layer (actor) 512
Number of hidden layer (critic) 256

Total number of episodes 7 1000

DDPG based offloading environment. The adopted simulator
in the experiments has three main components. These com-
ponents are system environment, UAV-aided MEC, and the
DDPG controller agent. The entire UAV-aided MEC offload-
ing environment is described as MDP environment. The MDP
environment is the focus of the DDPG model actions. Con-
sequently, the proposed DDPG approach is compared with
DQN and AC approaches.

A. SIMULATION SETTINGS

Simulation adopts 2D square areas, each of them has N =
10UDs randomly distributed in 300 x 300m? area. Addi-
tionally, it is assumed that the UAVs fly at a fixed height
H = 100m. Each UAV has a unique mass M,,, = 9.65KG
[46] and a maximum flight speed ¥ = 50m/s [42]. During
the training phase, the batch and the buffer sizes are set to
be 64 and 10, respectively. The rest of the key simulation
parameters are described in details in Table 1.

B. PERFORMANCE EVALUATION

The results of the evaluation of DDPG-based computational
offloading model is presented in this section. Adam optimizer
[47] is adopted to train the DDPG agent, which is an adaptive
learning optimization method. To optimize the offloading
decision, the state of UAVs, MECs, cloud, users, and the
other environment parameters are used as inputs to the actor-
network. Meanwhile, the output is the UAV new position
and the offloading decision. The input environment state
parameters should include UAV current position, UAVs and
MECs frequencies, the coordinates and frequencies of the
users being served at the moment, and the parameters of the

101725

IEEE Access

M. A. Ebrahim et al.: Deep Learning Approach for Task Offloading in Multi-UAV Aided Mobile Edge Computing

60.0 -

59.5 -

59.0 4

58.5 -

58.0 1

Average Score (DDPG)

51.5 1

57.0 4

0 200 400 600 800 1000
Episodes

FIGURE 4. Average score of DDPG agent.

offloaded tasks such as required computation cycles, data
size, and expiration time.

It is assumed that there is a batch of task requests arriving
at the DDPG agent controller system in each time slot and
each UD generates its bulk task requests in each time slot.
The performance of the offloading strategy is evaluated using
the offloading time cost 7/ and the energy cost E/ in
each time slot. The offloading time cost is the total time
taken by all served UDs to complete their tasks within the
time slot. Meanwhile, the offloading energy cost is the total
amount of energy used by all served UDs to complete their
corresponding tasks within a time slot.

Fig. 4 shows the average score of the DDPG-based agent.
As shown in this figure, the average score increases during
the training interval 7. This indicates that the performance of
DDPG learning improves with the increase of training steps
and achieves higher rewards in each episode. Moreover, the
proposed DDPG-based agent can efficiently explore the MEC
environment action space, which demonstrates that efficient
task offloading policies can be successfully learned.

Based on the comparison among various learning rates
for actor and critic networks, the convergence performance
of the proposed algorithm is studied with different learning
rates as shown in Fig. 5. It can be noticed that when o =
0.0001 and B = 0.001, the proposed DDPG algorithm can
have the best convergence. Very small learning rates such as
o = 0.00001 and B = 0.0001 make both actor and critic
networks take more iterative episodes to converge. While
larger learning rates such as (¢« = 0.001 and 8 = 0.01)
or (@ = 0.0001 and 8 = 0.001) make DDPG algorithm
have faster convergence. Thus, it is clear that learning rates
o = 0.0001 and B8 = 0.001 are more stable and appropriate
for the proposed DDPG algorithm convergence. Fig. 6 and
Fig. 7 show the offloading time cost and energy cost of the
proposed DDPG-based model. These figures show that both
time cost and energy cost decrease over the interval T'. these
decays of both costs over time prove the efficiency of the
proposed model.

101726

60.0 1
0]
a 5 % S
o iy gvaitas] i S T
2 595 1 - - RRER
[
o
w
& 59.0 1
o
I
8BS 17 — =0.001,8=0.01
‘(\, == @=0.0001=0.001
N wer @=0,00001,8=0.0001
200 400 600 800 1000
Episodes

FIGURE 5. DDPG convergence under different learning rates.

16 1

14

12 1

10 1

Average Task Latency (Sec)

0.8 4

06 1

300 400 500 600 700 800 900
Episodes

FIGURE 6. DDPG average time delay (seconds) for 50 tasks.

11 1

10 1

Average Consumed Energy (1)

300 400 500 600 700 800 900
Episodes

FIGURE 7. DDPG average consumed energy for 50 tasks.

Moreover, the correct offloaded task ratio is measured to
evaluate the offloading decision strategy. Fig. 8 shows the
correct offloaded task ratio of the DDPG-based model with

VOLUME 10, 2022

M. A. Ebrahim et al.: Deep Learning Approach for Task Offloading in Multi-UAV Aided Mobile Edge Computing

IEEE Access

0.850

0.825

0.800

0.775

0.750

0.725

Right offloaded tasks

0.700

0.675

0.650

T T

200 400 600 800 1000
Episodes

FIGURE 8. Correct offloaded tasks ratio.

0.65 1
0.60 1

0.55 1

0.50 1 —— offloaded tasks ratio |
= local tasks ratio

Task Ratio

200 400 600 800 1000
Episodes

FIGURE 9. Offloading ratio versus local ratio.

respect to all requested tasks. The right offloaded task is
the task that has been offloaded and executed before being
expired (i.e., 1°°¢ < task™*-%!4) Meanwhile, Fig. 9 shows
the offloading computational tasks ratio versus the local
computed tasks ratio that has been achieved by the proposed
model. As shown in this figure, the offloading ratio is much
higher than the local ratio. Hence, the proposed model can
achieve lower local computational load on user’s devices.
Additionally, Fig. 10 shows the percentage of tasks that have
been offloaded to each system layer. This figure indicates
that the number of tasks transferred to cloud and MEC layers
is much lower than the number of tasks transferred to UAV
layer. Also, it shows that the cloud task ratio decreases over
time while the UAV task ratio increases. These observations
proves that the DDPG can efficiently learn over time how to
take the best offloading action that minimizes the offloading
cost.

The performance of the proposed model is compared
with three main models, which are edge offloading only,
DQN-based offloading, and AC-based offloading. The com-
parison against edge offloading only is conducted to prove
the positive effect gained when UAV layer exists. Meanwhile,
DQN-based offloading and AC-based offloading are used
because of the similarity between them and DDPG as all of

VOLUME 10, 2022

0.040 | wmm AV task ratio

mmm MEC task ratio
0.035 | mmm Cloud task ratio

0.030 1

0.025 1

0.020 1

Task Ratio

0.015 1

0.010 1

0.005 1

0.000 -

75 150 225 300 375 450 525 600 675 750 825 900 975
Episodes

FIGURE 10. Offloaded task ratio to UAV, MEC and cloud layer.

0.20 1

0.18 4

Average Reward
o o (=]
- - v
~N E o

o
-
o

0.08 1 = DDPG |
— N

500 1000 1500 2000 2500 3000 3500 4000 4500
Episodes

FIGURE 11. DDPG versus DQN average reward evaluation.

them depend on the Q-value. Hence, the comparison is con-
ducted to assess the efficiency of DDPG offloading decision
over the DQN offloading decision.

1) DQN-BASED OFFLOADING

In this model, the agent applies DQN to select from offload-
ing to UAV, MEC, or cloud server. Fig.11 shows that
DDPG-based model achieves a larger average reward with a
faster convergence than the DQN model over the time. Mean-
while, Fig. 12 shows that the proposed DDPG-offloading
achieves higher average reward and lower task latency delay
as compared with DQN-offloading over different numbers of
offloaded tasks. These results show that the proposed model
is more efficient in making the right offloading decision as
compared with the DQN model.

2) EDGE OFFLOADING ONLY

In this model, the agent applies DDPG algorithm to select
between two offloading choices, which are local offloading
and edge offloading. Fig. 13 shows the comparison between
the proposed model and the edge offloading only model.
As shown in this figure, the consumed energy in edge-only

101727

IEEE Access

M. A. Ebrahim et al.: Deep Learning Approach for Task Offloading in Multi-UAV Aided Mobile Edge Computing

80 - - UAV_Edge_cloud
—— edge_only”
>
2
2 601
w
©
LY
E
£«
(=]
o
v
o
e
o 201
E:
/
0 4
20 30 40 S0 60 70 80 20 100
No. of Tasks
(@
10
—— 05 +=r= UAV_Edqe_cloucj» . N —
—— Edge oply—
o 09 1
© 04 1
2 o
509
b w 031
] = UAV_Edge_cloud -
2 071 — Edge only 8
:’g © 02
© S
g 0.6 1
S 0.1 1
v
05 4 /\\/\—\—-—-\
0.0 1
2 3 4 SO 6 7 8 % 100 20 30 4 S 6 7 8 9% 100
No. of Tasks No. of Tasks
(b) (¢

FIGURE 12. Comparison between the proposed model architecture and edge-only architecture over different numbers of offloaded tasks in terms
of: a) Average consumed energy. b) Correct offloading Ratio. C) Local computing ratio.

0.030

0.025

0.020

0.015

0.010

Average Task Latency (sec)

0.005

0.22 1
0.20 1
B
2 018 1
&
v
g
‘;' 0.16
54
0.14 1
0.12 1
10 15 20 25 30
No.of Tasks
(a)

0.000 *+— T T T T T T T u

No.of Tasks

(b)

FIGURE 13. DDPG versus DQN comparison over different numbers of tasks.

scenario increases when the number

increases. Hence, the UAV-Edge-Cloud proposed scenario
can preserve lower energy consumption with the increase

101728

of offloaded tasks in the number of tasks. Additionally, it can be noticed that
the lower percentage of correct offloaded tasks in edge-only

scenario is compared with the corresponding higher value

VOLUME 10, 2022

M. A. Ebrahim et al.: Deep Learning Approach for Task Offloading in Multi-UAV Aided Mobile Edge Computing

IEEE Access

24 L ==+ AC Latency X ==+ AC Energy
\ = DDPG Latency 25] \\ - DDPG Energy
o 22 2
@ & 200
‘% 20 o
< : 17.5
< 18 <
3 € 150
= 2
s 16 g
); o 125
214 “g’
o < 10.0 1
<12 2
75 1
10
S 0 T T T T T
200 400 600 800 1000 200 400 €00 800 1000
Episodes Episodes
(a) (b)
11.5 1
— _DOPG-Scote
=== A _Score
11.0
105 +— 54—+ S SmesgTooosotopesssoes
¥ 100
o
A
95
9.0 1
85
200 400 600 800 1000
Episodes

(c)

FIGURE 14. DDPG versus AC comparison in terms of: a) Average latency. b) Average consumed energy. C) Average agent score.

in the UAV-Edge-Cloud proposed scenario. Furthermore,
as shown in Fig. 13, the number of local computed tasks ratio
in the Edge-only scenario is larger than the corresponding
value in UAV-Edge-Cloud proposed scenario. Therefore, this
decrease in local computation rate can enhance system stabil-
ity as compared with edge-only scenario. These comparative
experiments prove that UAV existence with the MEC and
the cloud can efficiently improve the performance of the
offloading system.

3) AC-BASED OFFLOADING

In this model the agent applies AC algorithm to select where
to offload users’ tasks. Fig. 14 shows the comparison between
the proposed model and AC model in terms of agent aver-
age score, consumed energy, and latency delay. This com-
parison indicates that the DDPG achieves higher score as
compared with AC model. Also, DDPG based offloading
system achieves lower energy cost and lower latency cost as
compared with AC based offloading.

VIl. CONCLUSION

Edge computing is evolving rapidly toward the fundamental
infrastructure and facilitating the future of IoT. Efficient
coordination mechanisms and task offloading models are

VOLUME 10, 2022

leveraged to enable mobile devices and edge-cloud to coop-
eratively work. This paper investigated one of the efficient
deep reinforcement learning algorithms, which is the DDPG
algorithm. It proposed a DDPG-based offloading system
to improve the efficiency of offloading decision strategy.
It assessed the UAV benefits in 5G IoT environments to
maximize the percentage of offloaded tasks from the total
requested task. The paper proposed a DDPG model to tackle
the offloading optimization problem for making correct deci-
sions regarding offloading to one of the previously mentioned
layers to reduce energy and time. It was demonstrated that
DDPG performed better than DQN. Moreover, offloading to
UAVs in cooperation with MECs and cloud servers resolves
incomplete offloaded task requests. Hence, the three-layer
offloading system and the deep learning-based algorithms can
serve most of the task offloading requests and can achieve
effective offloading decisions and resource management.

In future work, an improvement of the proposed model
will be made to maximize the offloading system stability in
dynamic and uncontrollable networking environments.

REFERENCES

[1] T. Dragicevid, P. Siano, and S. R. S. Prabaharan, “Future generation 5G
wireless networks for smart grid: A comprehensive review,” Energies,
vol. 12, no. 11, p. 2140, Jun. 2019, doi: 10.3390/en12112140.

101729

http://dx.doi.org/10.3390/en12112140

IEEE Access

M. A. Ebrahim et al.: Deep Learning Approach for Task Offloading in Multi-UAV Aided Mobile Edge Computing

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

I. Al Ridhawi, M. Aloqaily, Y. Kotb, Y. Al Ridhawi, and Y. Jararweh,
“A collaborative mobile edge computing and user solution for service
composition in 5G systems,”” Trans. Emerg. Telecommun. Technol., vol. 29,
no. 11, p. €3446, Nov. 2018, doi: 10.1002/ett.3446.

S. Nizeti¢, P. golic', D. Lépez-de-Ipifia Gonzélez-de-Artaza, and
L. Patrono, “Internet of Things (IoT): Opportunities, issues and challenges
towards a smart and sustainable future,” J. Cleaner Prod., vol. 274,
Nov. 2020, Art. no. 122877, doi: 10.1016/j.jclepro.2020.122877.

M. S. Hossain, C. I. Nwakanma, J. M. Lee, and D.-S. Kim, “Edge
computational task offloading scheme using reinforcement learning for
IIoT scenario,” ICT Exp., vol. 6, no. 4, pp. 291-299, Dec. 2020, doi:
10.1016/j.icte.2020.06.002.

J. Almutairi and M. Aldossary, “‘Modeling and analyzing offloading strate-
gies of IoT applications over edge computing and joint clouds,” Symmetry,
vol. 13, no. 3, p. 402, Mar. 2021, doi: 10.3390/sym13030402.

W. Zhang, L. Li, N. Zhang, T. Han, and S. Wang, ‘‘Air-ground
integrated mobile edge networks: A survey,” [EEE Access, vol. 8,
pp. 125998-126018, 2020, doi: 10.1109/ACCESS.2020.3008168.

L. Zhang, Z.-Y. Zhang, L. Min, C. Tang, H.-Y. Zhang, Y.-H. Wang, and
P. Cai, “Task offloading and trajectory control for UAV-assisted mobile
edge computing using deep reinforcement learning,” IEEE Access, vol. 9,
pp. 53708-53719, 2021, doi: 10.1109/ACCESS.2021.3070908.

Z. Zhou, H. Liao, B. Gu, K. M. S. Huq, S. Mumtaz, and J. Rodriguez,
“Robust mobile crowd sensing: When deep learning meets edge
computing,” IEEE Netw., vol. 32, no. 4, pp. 54-60, Jul. 2018, doi:
10.1109/MNET.2018.1700442.

F. Jiang, K. Wang, L. Dong, C. Pan, W. Xu, and K. Yang, “Deep-learning-
based joint resource scheduling algorithms for hybrid MEC networks,”
IEEE Internet Things J., vol. 7, no. 7, pp. 6252-6265, Jul. 2020, doi:
10.1109/JI0T.2019.2954503.

A. M. Andrew, ‘“Reinforcement learning: An introduction,” Kybernetes,
vol. 27, no. 9, pp. 1093-1096, 1998, doi: 10.1108/k.1998.27.9.1093.3.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “‘Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533,
Feb. 2015, doi: 10.1038/nature14236.

H. Mei, K. Yang, Q. Liu, and K. Wang, ‘““Joint trajectory-resource optimiza-
tion in UAV-enabled edge-cloud system with virtualized mobile clone,”
IEEE Internet Things J., vol. 7, no. 7, pp. 5906-5921, Jul. 2020, doi:
10.1109/110T.2019.2952677.

Q. Wang, A. Gao, and Y. Hu, “Joint power and QoE optimization scheme
for multi-UAV assisted offloading in mobile computing,” IEEE Access,
vol. 9, pp. 21206-21217, 2021, doi: 10.1109/ACCESS.2021.3055335.

O. Alagoz, H. Hsu, A. J. Schaefer, and M. S. Roberts, ‘“Markov deci-
sion processes: A tool for sequential decision making under uncer-
tainty,” Med. Decis. Making, vol. 30, no. 4, pp. 474-483, Jul. 2010, doi:
10.1177/0272989X09353194.

M. McClellan, C. Cervellé-Pastor, and S. Sallent, “Deep learning at the
mobile edge: Opportunities for 5G networks,” Appl. Sci., vol. 10, no. 14,
p- 4735, Jul. 2020, doi: 10.3390/app10144735.

Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W.-J. Hwang,
and Z. Ding, “A survey of multi-access edge computing in 5G and beyond:
Fundamentals, technology integration, and state-of-the-art,” IEEE Access,
vol. 8, pp. 116974117017, 2020, doi: 10.1109/ACCESS.2020.3001277.
N. Kiran, X. Liu, S. Wang, and C. Yin, “VNF placement and
resource allocation in SDN/NFV-enabled MEC networks,” in Proc. IEEE
Wireless Commun. Netw. Conf. Workshops, Apr. 2020, pp. 1-6, doi:
10.1109/WCNCW48565.2020.9124910.

M. McClellan, C. Cervellé-Pastor, and S. Sallent, “Deep learning at the
mobile edge: Opportunities for 5G networks,” Appl. Sci., vol. 10, no. 14,
p. 4735, Jul. 2020, doi: 10.3390/app10144735.

Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—A key technology towards 5G,” IEEE Internet Things J.,
vol. 11, no. 11, pp. 1-16, 2015.

M. A. Abdelaal, G. A. Ebrahim, and W. R. Anis, “High availability
deployment of virtual network function forwarding graph in cloud com-
puting environments,” IEEE Access, vol. 9, pp. 53861-53884, 2021, doi:
10.1109/ACCESS.2021.3068342.

M. A. Abdelaal, G. A. Ebrahim, and W. R. Anis, “Efficient placement of
service function chains in cloud computing environments,” Electronics,
vol. 10, no. 3, p. 323, Jan. 2021, doi: 10.3390/electronics10030323.

101730

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(391

(40]

K. Antevski, C. J. Bernardos, L. Cominardi, A. de la Oliva, and A. Mourad,
“On the integration of NFV and MEC technologies: Architecture analysis
and benefits for edge robotics,” Comput. Netw., vol. 175, Jul. 2020,
Art. no. 107274, doi: 10.1016/j.comnet.2020.107274.

Z. Ullah, F. Al-Turjman, and L. Mostarda, “Cognition in UAV-
aided 5G and beyond communications: A survey,” [EEE Trans. Cog-
nit. Commun. Netw., vol. 6, no. 3, pp.872-891, Sep. 2020, doi:
10.1109/TCCN.2020.2968311.

A. Nakao and P. Du, “Toward in-network deep machine learning for
identifying mobile applications and enabling application specific network
slicing,” IEICE Trans. Commun., vol. E101.B, no. 7, pp. 1536-1543,
Jul. 2018, doi: 10.1587/transcom.2017CQI0002.

M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and
M. Guizani, “A survey of machine and deep learning methods for Internet
of Things (IoT) security,” IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 1646-1685, 2020, doi: 10.1109/COMST.2020.2988293.

H. Li, K. Ota, and M. Dong, “Learning IoT in edge: Deep learning for
the Internet of Things with edge computing,” IEEE Netw., vol. 32, no. 1,
pp. 96-101, Jan. 2018, doi: 10.1109/MNET.2018.1700202.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A.K.Fidjeland, G.
Ostrovski, and S. Petersen, ‘“Human-level control through deep
reinforcement learning,” Nature, vol. 518, pp.529-533, Feb. 2015,
doi: 10.1038/nature14236.

M. J. J. Douglass, “Book review: Hands-on machine learning with scikit-
learn, keras, and tensorflow, 2nd edition by Aurélien Géron,” Phys. Eng.
Sci. Med., vol. 43, no. 3, pp. 1135-1136, Sep. 2020, doi: 10.1007/s13246-
020-00913-z.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
2016, arXiv:1509.02971.

Z. Xiong, Y. Zhang, D. Niyato, R. Deng, P. Wang, and L.-C. Wang,
“Deep reinforcement learning for mobile 5G and beyond: Fundamentals,
applications, and challenges,” IEEE Veh. Technol. Mag., vol. 14, no. 2,
pp. 44-52, Jun. 2019, doi: 10.1109/MVT.2019.2903655.

Y. Liu, S. Xie, and Y. Zhang, “Cooperative offloading and resource man-
agement for UAV-enabled mobile edge computing in power IoT system,”
IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 12229-12239, Oct. 2020,
doi: 10.1109/TVT.2020.3016840.

S. Vimal, M. Khari, N. Dey, R. G. Crespo, and Y. Harold Robinson,
“Enhanced resource allocation in mobile edge computing using reinforce-
ment learning based MOACO algorithm for IIOT,” Comput. Commun.,
vol. 151, pp. 355-364, Feb. 2020, doi: 10.1016/j.comcom.2020.01.018.

1. Alghamdi, C. Anagnostopoulos, and D. P. Pezaros, ‘‘Data quality-aware
task offloading in mobile edge computing: An optimal stopping theory
approach,” Future Gener. Comput. Syst., vol. 117, pp. 462-479, Apr. 2021,
doi: 10.1016/j.future.2020.12.017.

D. Zhu, H. Liu, T. Li, J. Sun, J. Liang, H. Zhang, L. Geng, and Y. Liu,
“Deep reinforcement learning-based task offloading in satellite-terrestrial
edge computing networks,” in Proc. IEEE Wireless Commun. Netw. Conf.,
Mar. 2021, pp. 1-7, doi: 10.1109/wenc49053.2021.9417127.

M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-
based computation offloading for IoT devices with energy harvesting,”
IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1930-1941, Feb. 2019, doi:
10.1109/TVT.2018.2890685.

B. Wu, J. Zeng, L. Ge, X. Su, and Y. Tang, “Energy-latency aware
offloading for hierarchical mobile edge computing,” IEEE Access, vol. 7,
pp. 121982-121997, 2019, doi: 10.1109/ACCESS.2019.2938186.

X. Chen, T. Chen, Z. Zhao, H. Zhang, M. Bennis, and Y. Ji, “‘Resource
awareness in unmanned aerial vehicle-assisted mobile-edge computing
systems,” in Proc. IEEE 915t Veh. Technol. Conf. (VTC-Spring), May 2020,
pp. 1-6, doi: 10.1109/VTC2020-Spring48590.2020.9128981.

Y. Wang, W. Fang, Y. Ding, and N. Xiong, “Computation offloading opti-
mization for UAV-assisted mobile edge computing: A deep deterministic
policy gradient approach,” Wireless Netw., vol. 27, no. 4, pp. 2991-3006,
May 2021, doi: 10.1007/s11276-021-02632-z.

T. Zhao, S. Zhou, X. Guo, and Z. Niu, “Tasks scheduling and resource
allocation in heterogeneous cloud for delay-bounded mobile edge com-
puting,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2017, pp. 1-7, doi:
10.1109/I1CC.2017.7996858.

J. Xiong, H. Guo, and J. Liu, “Task offloading in UAV-aided
edge computing: Bit allocation and trajectory optimization,” IEEE
Commun. Lett., vol. 23, mno. 3, pp.538-541, Mar. 2019, doi:
10.1109/LCOMM.2019.2891662.

VOLUME 10, 2022

http://dx.doi.org/10.1002/ett.3446
http://dx.doi.org/10.1016/j.jclepro.2020.122877
http://dx.doi.org/10.1016/j.icte.2020.06.002
http://dx.doi.org/10.3390/sym13030402
http://dx.doi.org/10.1109/ACCESS.2020.3008168
http://dx.doi.org/10.1109/ACCESS.2021.3070908
http://dx.doi.org/10.1109/MNET.2018.1700442
http://dx.doi.org/10.1109/JIOT.2019.2954503
http://dx.doi.org/10.1108/k.1998.27.9.1093.3
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1109/JIOT.2019.2952677
http://dx.doi.org/10.1109/ACCESS.2021.3055335
http://dx.doi.org/10.1177/0272989X09353194
http://dx.doi.org/10.3390/app10144735
http://dx.doi.org/10.1109/ACCESS.2020.3001277
http://dx.doi.org/10.1109/WCNCW48565.2020.9124910
http://dx.doi.org/10.3390/app10144735
http://dx.doi.org/10.1109/ACCESS.2021.3068342
http://dx.doi.org/10.3390/electronics10030323
http://dx.doi.org/10.1016/j.comnet.2020.107274
http://dx.doi.org/10.1109/TCCN.2020.2968311
http://dx.doi.org/10.1587/transcom.2017CQI0002
http://dx.doi.org/10.1109/COMST.2020.2988293
http://dx.doi.org/10.1109/MNET.2018.1700202
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1007/s13246-020-00913-z
http://dx.doi.org/10.1007/s13246-020-00913-z
http://dx.doi.org/10.1007/s13246-020-00913-z
http://dx.doi.org/10.1109/MVT.2019.2903655
http://dx.doi.org/10.1109/TVT.2020.3016840
http://dx.doi.org/10.1016/j.comcom.2020.01.018
http://dx.doi.org/10.1016/j.future.2020.12.017
http://dx.doi.org/10.1109/wcnc49053.2021.9417127
http://dx.doi.org/10.1109/TVT.2018.2890685
http://dx.doi.org/10.1109/ACCESS.2019.2938186
http://dx.doi.org/10.1109/VTC2020-Spring48590.2020.9128981
http://dx.doi.org/10.1007/s11276-021-02632-z
http://dx.doi.org/10.1109/ICC.2017.7996858
http://dx.doi.org/10.1109/LCOMM.2019.2891662

M. A

Ebrahim et al.: Deep Learning Approach for Task Offloading in Multi-UAV Aided Mobile Edge Computing I E E EACCGSS

[41]

[42]

[43]

[44]

[45]

[46]

[47]

X. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen,
“Space/aerial-assisted computing offloading for IoT applications:
A learning-based approach,” IEEE J. Sel. Areas Commun., vol. 37, no. 5,
pp. 1117-1129, May 2019, doi: 10.1109/JSAC.2019.2906789.

Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao, and G. Y. Li, “Joint offloading
and trajectory design for UAV-enabled mobile edge computing systems,”
IEEE Internet Things J., vol. 6, no. 2, pp. 1879-1892, Apr. 2019, doi:
10.1109/JI0T.2018.2878876.

K. Li, X. Wang, Q. Ni, and M. Huang, “Entropy-based reinforce-
ment learning for computation offloading service in software-defined
multi-access edge computing,” Futur. Gener. Comput. Syst., vol. 136,
pp. 241-251, 2022, doi: 10.1016/j.future.2022.06.002.

H. Wang, P. Zhang, and Q. Liu, “An actor-critic algorithm using cross
evaluation of value functions,” IAES Int. J. Robot. Autom., vol. 7, no. 1,
p- 39, Mar. 2018, doi: 10.11591/ijra.v7il.pp39-47.

Y. T. Liu, J. M. Yang, L. Chen, T. Guo, and Y. Jiang, “Overview
of reinforcement learning based on value and policy,” Chin.
Control Decis. Conf. (CCDC), Aug. 2020, pp.598-603, doi:
10.1109/CCDC49329.2020.9164615.

S. Jeong, O. Simeone, and J. Kang, “Mobile edge computing via a UAV-
mounted cloudlet: Optimization of bit allocation and path planning,”
IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 2049-2063, Mar. 2018, doi:
10.1109/TVT.2017.2706308.

S. Bock and M. Weil, “A proof of local convergence for the Adam
optimizer,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2019,
pp. 1-8, doi: 10.1109/IICNN.2019.8852239.

MOSHIRA A. EBRAHIM received the B.Sc. and
M.Sc. degrees from the Faculty of Engineering,
Ain Shams University, Cairo, Egypt, in 2009 and
2018, respectively. She is currently a Teacher
Assistant with the Computer and Systems Engi-
neering Department, Modern Academy for Engi-
neering and Technology. Her research interests
include intelligent systems, software engineering,
cloud computing, computer networks, and artifi-
cial intelligence.

VOLUME 10, 2022

GAMAL A. EBRAHIM received the B.Sc. and
M.Sc. degrees from the Faculty of Engineering,
Ain Shams University, Cairo, Egypt, in 1994 and
2000, respectively, and the Ph.D. degree in elec-
trical and computer engineering from the Univer-
sity of Miami, Coral Gables, FL, USA, in 2004.
He is currently a Professor with the Computer
and Systems Engineering Department, Faculty
of Engineering, Ain Shams University. His cur-
rent research interests include machine learning,
intelligent systems, computer networks, cloud computing, and distributed
multimedia communication.

HODA K. MOHAMED received the B.Sc., M.Sc.,
and Ph.D. degrees from the Faculty of Engineer-
ing, Ain Shams University, Cairo, Egypt, in 1978,
1983, and 1992, respectively. She has been a
Professor at the Computer and Systems Engi-
neering Department, Faculty of Engineering, Ain
Shams University, since 2009. Her research inter-
ests include intelligent systems, e-learning sys-
tems, data mining, database systems, software
engineering, natural language processing, cloud
computing, and image processing.

SAMEH O. ABDELLATIF (Senior Member,
IEEE) received the B.Sc. degree in electronics and
communication and the M.Sc. degree in semicon-
ductor nanostructures from Ain Shams University,
Cairo, Egypt, in 2009 and 2012, respectively. His
Ph.D. work was funded by DAAD and awarded
from Ain Shams University, in 2017, it was focus-
ing on the utilization of nano-photonic structures
in enhancing solar cells efficiency. Currently, he is
enrolled as a Lecturer with the Electrical Engi-
neering Department, The British University in Egypt (BUE), where he is
the Sub-Group Leader at the Fab Laboratory, Centre of Emerging Learning
Technology (CELT). In addition, he has collaborative research with the Max-
Planck-Institut fiir Kohlenforschung, Miilheim, Germany, the University of
Duisburg-Essen, Germany, and the University of Glasgow, U.K.

101731

http://dx.doi.org/10.1109/JSAC.2019.2906789
http://dx.doi.org/10.1109/JIOT.2018.2878876
http://dx.doi.org/10.1016/j.future.2022.06.002
http://dx.doi.org/10.11591/ijra.v7i1.pp39-47
http://dx.doi.org/10.1109/CCDC49329.2020.9164615
http://dx.doi.org/10.1109/TVT.2017.2706308
http://dx.doi.org/10.1109/IJCNN.2019.8852239

