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ABSTRACT Background: Two-year delay is reported between the first developmental concern raised by
the parents and the diagnosis of ASD (Autism Spectrum Disorder), delaying the start of early intervention
programs most beneficial within the first three years.Aim: Evaluate the role of technology in ASD detection
by answering four research questions analyzing 1) evolution of technology, 2) use of various bio-behavioral
data sources, 3) demographic categories, databases, controls, comparators, and assessment instruments, and
4) data collection, processing, and outcomes of the technology-based methods in ASD detection.Methods:
Scoping review included behavioral-based ASD screening and diagnostic studies, published between 1st
January 2011 to 31st December 2021 in PUBMED, SCOPUS, and IEEE Xplore databases for children under
six years. The studies were evaluated using the Critical Appraisal Skills Programm (CASP) and the PRISMA
scoping review checklist (PRISMA-ScR). Results: The shortlisted 35 studies were categorized into seven
bio-behavioral categories. The review highlighted the extensive use of machine learning (ML) and Deep
Learning (DL) to detect infants (as young as 9 to 12 months) at risk of ASD and Other developmental
delays (ODD) using multimodal structured and unstructured data. However, the review reported various
internal and external validity threats. Conclusion: Technology can significantly improve the current ASD
detection process. The validation and adoption of technology can be fast-tracked by 1) designing robust
study protocols, 2) executing multi-cultural field trials, 3) standardizing datasets, data quality, and feature
engineering methods, 4) recruiting statistically significant participants fromASD, typically developing (TD)
and other developmental disorders (ODD) groups to ensure technological generalization, validation, and
adoption outside laboratory settings.

INDEX TERMS Autism, screening, diagnosis, technology, machine learning, mobile technology, artificial
intelligence.

I. INTRODUCTION
Autism SpectrumDisorder (ASD) roughly affects 1.3 million
children annually, on a conservative one in hundred diagnosis
rate [1], and has increased 700% since 1996 [2].

Generally, the best-recommended practices to detect ASD
and other development disorders (ODD) are developmental
monitoring, screening, and diagnosis [3]. The World Health
Organization [4] recommends developmental monitoring in
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Low and Medium Income countries (LMICs) for the early
identification of developmental challenges. Screening is a
more formal, standardized method that includes routine pedi-
atric evaluations [5], usually practiced in high-income coun-
tries (HIC). Practitioners such as doctors, nurses, and school
teachers request families to respond to level 1 screeners [6]
such as M-CHAT-R/F [7], evaluating children’s social com-
munication, peer interaction, eye contact, motor skills, and
fixated behaviors if any. Further, High-Risk (HR) children,
for example, siblings of children with ASD or with birth com-
plications, low birth weight, or admitted to newborn intensive
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care unit (NICU), are recommended to undergo additional
developmental risk assessments [8].

An exhaustive developmental examination can confirm
diagnosis and referral to intervention if the screening instru-
ment indicates a developmental concern. Clinicians usually
implement gold-standard tools such as Autism Diagnostic
Observation Schedule (ADOS-2) [9] and Autism Diagnostic
Interview-Revised (ADI-R) [10] to confirm ASD diagnosis.

Though early ASD indicators are evident at 12months, and
diagnosis is possible at earlier than 18 months [11],
most children are diagnosed between 48-60 months
[12], [13], highlighting a delay of two years. Delayed diag-
nosis slows the initiation of early intervention services by
12-14 months [14], which can improve children’s IQ by
10-15 points if started under the age of three [15] due to the
brain’s high neuroplasticity. Therefore, early ASD identifi-
cation and intervention can ensure a better quality of life for
ASD children.

There are various reasons for the delayed or misdiagnosis
of ASD among children. Firstly, children with ASD exhibit
high variability in typical ASD features such as stereotypical
interests, repetitive behaviors, and limited communication
and social skills [1]. The high behavioral variance makes it
challenging for the clinician to establish an early diagnosis for
borderline and high-functioning ASD children, for example,
with Asperger syndrome [16]. Moreover, with 80% of ASD
cases diagnosed in males [1], women with ASD [17] are sus-
ceptible to diagnostic delays and misdiagnosis attributed to
stereotypical gender biases [18]. Secondly, the symptomatic
similarity of ASD with Attention Deficit Hyperactive Disor-
der (ADHD) and speech delays [19] often leads to delayed or
misdiagnoses [20]. An accurate diagnosis is critical to identi-
fying the child’s area of strength and developing a personal-
ized need-based intervention plan per the child’s need [21].
Thirdly, the gold standard ASD diagnostic and screening
tools such as ADOS [9], ADI-R [10], M-CHAT-R/F [7], and
CARS2 [22] are designed for the western world. Therefore,
these tests are sensitive to evaluation biases and subjec-
tive decision-making of clinicians from Low and Medium
income countries (LMICs), resulting in incorrect results,
primarily influenced due to lack of training and cultural
disparities [23]. Fourthly, the availability of clinicians and
infrastructure globally to assist ASD detection and manage-
ment is limited [24], especially in LMICs, a challenge further
constrained by the poor awareness of the disorder [25]. Also,
families have limited access to clinicians and infrastructure
and usually travel considerable distances or relocate to access
services [26]. These limitations lead to lengthy wait times,
delayed diagnosis, and causing stress to individuals and
families [26], [27].

In addition, the current ASD detection process has limi-
tations. The clinicians require significant training and time
to implement diagnostic instruments [28]. A 93-point ADI-R
questionnaire, for example, can take 2.5 hours to com-
plete [29] across multiple visits. Further, interview responses
are based on the caregiver’s subjective comprehension of

assessment questions and their reliance on memory recall of
the child’s developmental history, contributing to evaluation
and assessment biases [30]. Moreover, developmental eval-
uations are seldom conducted in children’s natural contexts,
such as in their homes. An encounter with a new clinician
in a new environment with social performance pressure may
trigger discomfort for the child resulting in assessment and
diagnostic biases.

Artificial Intelligence (A.I.) based innovations have
fast-tracked ASD diagnostics [31], [32], increased clinician
capacity, and improved access to early intervention pro-
grams [26]. The adoption of these technologies has surged
during the COVID-19 pandemic [33]. These solutions have
the following benefits over traditional face-to-face methods:
1) enhancing ASD management solution access to rural and
underserved persons and families, 2) reducing doctors’ and
patients’ expenditures (such as travel duration and cost),
and 3) expanding providers’ coverage areas. The prelimi-
nary findings provide evidence of technological innovation’s
feasibility and efficacy in improving current ASD detection
and behavioral intervention methods, enhancing access, qual-
ity, and affordability. However, more in-depth analysis and
information can confirm the impact and outcomes of these
innovations.

Scoping reviews are a descriptive method that aids in ana-
lyzing complicated or varied research projects by identifying
the critical concepts, theories, and evidence sources to guide
and evaluate the adoption of new methods into practice [34].
The results of scoping reviews can identify gaps in the exist-
ing literature and indicate areas with limited evidence to
merit additional studies or a systematic review.We, therefore,
performed a scoping review to evaluate the use of innovative
technologies for ASD detection. We investigated a body of
literature to examine the extent, nature, and scope of current
research activities and answer the following four research
questions based on the PICO framework [35], [36] aligned
toward diagnostic innovations. In the framework definition,
‘‘P’’ signifies the population in focus, ‘‘I’’ for intervention or
researched condition, ‘‘C’’ for the comparators, and ‘‘O’’ for
psychometric outcomes.

1) RQ1 How has the literature on technology-based ASD
detection methods evolved?

2) RQ2Howdo researchers use the various bio-behavioral
markers to detect ASD?

3) RQ3 What demographic categories, databases, con-
trols, comparators, and assessment instruments are
a part of the technology-facilitated ASD detection
process?

4) RQ4 How have researchers gathered and processed
multimodal data? How do technological innova-
tion’s results compare to conventional ASD detection
methods?

The review is based on PRISMA scoping review guide-
lines and includes the following sections. Section II details
eligibility criteria for study selection, keyword definition
and justification, study search process, data extraction, and
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analysis. The results are listed in section III, where we
synthesized the review finding and answered four research
questions. We present the result under seven multimodal
data categories, technological subdivisions, analyzing data
sources, data extraction, synthesis, and outcomes. Discussion
section IV highlights internal and external validity threats,
advantages, disadvantages, ethical, legal, and cultural con-
straints, high-level limitations, and mitigation measures and
recommends future directions. Section V lists the study’s lim-
itations and section VI lists future directions and additional
focus areas for research. Finally, in section VII, we conclude
our findings.

II. MATERIALS AND METHODS
This section describes the study’s selection criteria, search
strategy, justification, data extraction, and analysis. The
review is conducted using the PRISMA Extension for
Scoping Reviews (PRISMA-ScR) checklist [37]. The
22-point checklist is attached in the appendix section (See
Appendix C).

A. ELIGIBILITY CRITERIA
The inclusion criteria for this study are as follows: (1) Stud-
ies that leveraged technology and included behavioral-based
ASD screening or diagnostic methods; (2) included children
under the age of six; (3) published between January 1, 2011,
andDecember 31, 2021; (4) included quantitative ASD detec-
tion methods including cross-sectional experiments, longitu-
dinal data analysis, and dataset investigations; and (5) were
part of one of the three electronic databases: PUBMED, IEEE
Xplore, and SCOPUS. The following are the search criteria
justifications:

1) Most evidence-based ASD detection methods [38], and
tools [9], [10], [22], [30] track social communica-
tion, eye contact, challenging behavioral, and notable
play-based landmarks to identify children with ASD.
We, therefore, shortlisted studies that used these behav-
ioral landmarks and excluded studies focusing on
medicine, biology, genetics, EEG (electroencephalo-
gram), MRI (Magnetic resonance imaging) usage,
and non-technology-based ASD screening or diagnosis
methods.

2) We excluded conference papers to ensure we included
only high-quality peer-review journal publications
selected from PUBMED, IEEE Xplore, and SCOPUS.

3) We excluded literature reviews as we focussed on stud-
ies that conducted experiments, trials, datasets, or lon-
gitudinal multimodal data analysis.

4) Since 2011, the growth in mobile and edge-based
A.I. innovations can be attributed to the emergence
of low-cost, scalable cloud computing infrastructure
and sensors [39], [40], [41], [42], [43]. Therefore,
we selected studies published between January 1, 2011,
and December 31, 2021, to evaluate the role of technol-
ogy in ASD evaluation.

5) Given the importance and effectiveness of early ASD
detection and intervention due to the brain’s strong
neuroplasticity, the emphasis of the review was limited
to studies that included children under the age of six.

B. SEARCH STRINGS
We searched the following search strings in the title, abstract,
and keywords fields: (‘‘Autism spectrum disorder’’ OR
‘‘ASD’’ OR ‘‘Autism’’ OR ‘‘AUTISTIC’’) AND (‘‘Detect*’’
OR ‘‘Predict*’’ OR ‘‘Diagnos*’’ OR ‘‘Screening’’ OR ‘‘Iden-
tif*’’ OR ‘‘Suspect’’ OR ‘‘Classif*’’ OR ‘‘Distinguish*’’
OR ‘‘Differentiate’’ OR ‘‘Risk’’) AND (‘‘Technology’’ OR’’
A.I.’’ OR ‘‘Artificial Intelligence’’ OR ‘‘Machine Learning’’
OR ‘‘Mobile’’).

The search string justification is as follows:
1) The keywords ‘‘Autism spectrum disorder’’ OR

‘‘ASD’’ OR ‘‘Autism’’ OR ‘‘AUTISTIC’’ shortlisted
studies focused on Autism Spectrum Disorder.

2) To ensure shortlisted studies focused on screen-
ing, diagnosis, detection, and identification of ASD,
we included the following keywords: ‘‘Detect*’’ OR
‘‘Predict*’’ OR ‘‘Diagnos*’’ OR ‘‘Screening’’ OR
‘‘Identif*’’ OR ‘‘Suspect’’ OR ‘‘Risk’’. The keywords
‘‘Classif*’’ OR ‘‘Distinguish*’’ OR ‘‘Differentiate’’
were included to shortlist studies that differentiate
between ASD, T.D. (Typical development), and ODD
(other developmental disorder) groups.

3) The keywords ‘‘Technology’’ OR’’ A.I.’’ OR ‘‘Arti-
ficial Intelligence’’ OR ‘‘Machine Learning’’ OR
‘‘Mobile’’ helped shortlist studies with technology
usage.

4) The search outcomes of the above three criteria were
combined with an AND operator.

C. SEARCH RESULTS PROCESSING
Two authors MK and AKK (Manu Kohli & Arpan Kumar
Kar), completed each phase of the PRISMA scoping review
depicted in Figure 1. Any contradictory results were resolved
with the consultation and mediation of a third author SS
(Shuchi Sinha). The search results were downloaded, com-
piled, and imported into Zotero c© for the presence of dupli-
cates and subsequent removal. Zotero c© assists reference
management by syncing citations with bibliographies, DOI
(Digital object identifiers), and metadata. Each unique arti-
cle’s title and abstract were screened for relevancy, followed
by a full-text analysis per the inclusion-exclusion criteria
listed in subsection II-A. Thirty-two studies were shortlisted
post-full-text analysis, and additional three publications [44],
[45], [46] were uncovered by analyzing the shortlisted study’s
references, making the total shortlisted study count to 35.

D. DATA EXTRACTION AND ANALYSIS
The review included extracting the below-listed data
from thirty-five shortlisted studies listed in two tables.
Table 1 includes multimodal input data, feature reduction
steps, environment setting, data processing algorithms, and
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FIGURE 1. PRISMA flow diagram- Literature screening and shortlisting studies.

psychometric outcomes, i.e., sensitivity, specificity, and accu-
racy. Table 2 summarizes the enrolment counts, software or
hardware devices used, assessment tools, assessment dura-
tion, limitations, and future direction of each study. In addi-
tion, a quality evaluation using the Critical Appraisal Skills
Programme (CASP) was performed for each shortlisted
study.

The technical terms used in the review are explained in
Appendix B in Table 5.

1) Study objective, methods, and experiment locations
2) Participant’s group size and diagnosis status
3) Datasets used in the study
4) Bio-behavioral markers for data extraction
5) Assessment duration, tools, and methods
6) List of software, material, or devices used
7) Multimodal data collection steps
8) Data processing steps
9) Technology used in the study, and

10) Outcomes, limitations, and future direction

III. RESULTS
This section answers four research questions and presents
quality assessment results.

A. QUALITY EVALUATION
Two authors (MK and AKK) undertook the quality evalua-
tion of shortlisted studies using the Critical Appraisal Skills

Programme (CASP) tool [80]. The studies were scored with
three possible responses: a) criterion met, b) partially met,
or c) not applicable, not met, or not mentioned, with scores
of 2,1 and 0, respectively. Table 3 shows implemented rating
scales, referring to previous clinical studies [81], [82], to rank
studies into high, medium, and moderate categories. The
quality evaluation sheet for shortlisted studies is attached in
Appendix C section.
The quality evaluation suggested ten studies with moderate

quality [46], [48], [49], [50], [52], [53], [56], [57], [63], [76].
While twenty-five studies were classified as high-quality
[44], [45], [47], [51], [54], [55], [59], [60], [61], [62], [64],
[65], [66], [67], [68], [69], [70], [71], [72], [74], [75], [77],
[78], [83], [84]. In general, the quality analysis highlighted
the following limitations for most studies: 1) small sample
sizes, 2)Unclear study questions, objectives, inclusion and
exclusion criteria, 3) Insufficient information on participant
sampling and recruitment,4) Imprecise data analysis and out-
comes reporting.

In the following sections, four research questions are
answered.

B. RQ1 HOW HAS THE LITERATURE ON
TECHNOLOGY-BASED ASD DETECTION
METHODS EVOLVED?
We respond to the research question by assessing the selected
study’s 1) temporal publishing, 2) co-authorships, and
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TABLE 1. Data input, processing, and outcomes summary from (N=35) shortlisted studies.
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TABLE 1. (Continued.) Data input, processing, and outcomes summary from (N=35) shortlisted studies.

3) keywords trends. In addition, we highlight prominent jour-
nals where shortlisted articles were published.

1) PUBLICATIONS TRENDS
The temporal publication patterns suggested that around 80%
of the shortlisted studies were published between 2018 and

2021 (Figure 2). Even though the use of technology in ASD
management and in general has shown growth since 2011
[85], [86], [87], the review highlight 2018 to 2021 as dom-
inant years in the adoption of Machine Learning (ML) and
Deep Learning (DL) technologies. This aberration can be
attributed to the following inclusion criteria for shortlisting
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TABLE 2. Shortlisted studies (N=35) participants,evaluation duration, hardware, software,limitations and future Directions summary.
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TABLE 2. (Continued.) Shortlisted studies (N=35) participants,evaluation duration, hardware, software,limitations and future Directions summary.
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TABLE 2. (Continued.) Shortlisted studies (N=35) participants,evaluation duration, hardware, software,limitations and future Directions summary.
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TABLE 2. (Continued.) Shortlisted studies (N=35) participants,evaluation duration, hardware, software,limitations and future Directions summary.

TABLE 3. Rating scales and quality evaluation.

FIGURE 2. Yearly publication count per Data category.

studies for the review; 1) selecting studies focussing on ASD
detection rather than an intervention that has seen higher tech-
nological adoption, 2) including only behavioral-based detec-
tion methods and excluding EEG, MRI, and genetic methods
that have incorporated technology since 2011, 3) selecting
studies with participants of less than six years, and 4) skewed
temporal adoption of technology in ASD detection.

2) COAUTHORSHIP PATTERNS
The publication pattern shown in Figure 3 depicts the county
as a node and its size as the publication frequency from the
country’s authors. The country node’s edge strength indi-
cates collaboration between co-authors from multiple coun-
tries. The significant country-level contributions are from
the United States of America (USA), whose researchers

FIGURE 3. Coauthorship pattern based on author’s country of origin and
respective ties.

co-authored with researchers from Austria, Bangladesh,
China, Japan, and Israel. Authors from Iran, Canada,
South Korea, the United Kingdom (UK), the Netherlands,
Poland, Italy, the UAE, and India are the other countries with
co-authorship collaborations. Authors from Brazil, France,
Sweden, Spain, and Switzerland collaborated with other
co-authors from the same country. The analysis highlights
that most research initiatives and partnerships are from devel-
oped economies that have formed partnerships with selected
developing economies.

3) KEYWORDS ASSOCIATION
Figure 4 depicts the most important and frequently used
keywords in the shortlisted studies. The size of the keyword
nodes represents the frequency of occurrences in the short-
listed studies, with the edge weights indicating their simul-
taneous occurrence in other studies as shown in Figure 4.
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Keywords with substantial edge weights and dense connec-
tions share a semantic relationship. The most frequently used
keywords in research papers are ‘‘Autism spectrum disor-
der,’’ ‘‘child,’’ ‘‘age,’’ ‘‘clinician,’’ ‘‘joint attention,’’ ‘‘behav-
ior,’’ ‘‘time,’’ ‘‘analysis,’’ ‘‘deep neural network,’’ ‘‘td child,’’
‘‘machine learning,’’ ‘‘development,’’ ‘‘study,’’ ‘‘gaze,’’ ‘‘asd
child,’’ ‘‘screening tool,’’ ‘‘feature,’’ ‘‘classifier,’’ ‘‘symp-
tom,’’ ‘‘infants,’’ and ‘‘pattern.’’ These keywords suggest that
most ASD solutions used ML and DL classification methods
on multimodal eye-gaze, behavior, and joint-attention data.

4) JOURNAL PUBLICATIONS
The frequency distribution of 35 review articles was as fol-
lows: four in the Journal of Autism andDevelopmental Disor-
ders, three in Scientific Reports, two in the Journal ofMedical
Internet Research, and the remaining publications were pub-
lished in different journals. The breadth of studies published
in various journals suggests the adaptability and validation of
awide range of technology-basedASDdetection innovations,
with multi-country authorships and multimodal data types.

C. RQ2 HOW DO RESEARCHERS USE THE VARIOUS
BIO-BEHAVIORAL MARKERS TO DETECT ASD?
Each shortlisted study is assigned to one of the seven data
categories shown in Figure 5, also referred to as bio behavior.
Listed below are the study counts for each data category.

1) Stereotypical behavior (Nine Studies)
2) Eye gaze (Six Studies)
3) Facial expressions (Three Studies)
4) Postural analysis (Three Studies)
5) Motor control and movements (Four Studies)
6) Auditory data (Three Studies) and
7) Assessments and electronic health record data (Seven

Studies).
We summarize shortlisted studies in seven data categories

in the subsections below.

1) STEREOTYPED ASD BEHAVIORS
In this review section, nine studies [47], [48], [49], [50],
[51], [52], [53], [54], [55] extracted and classified the ASD
deterministic behaviors such as tantrums, self-stimulatory
and injurious behavior, non-compliance, the objects lining,
and poor communication, eye contact, or social skills from
videos to perform ASD detection.

[47] developed ML models through a two-stage pro-
cess: (1) feature selection and (2) ASD and TD classifica-
tion. They trained ML models using historical ADI-R and
ADOS-2 records, shortlisted 20 critical features using the
DF (Decision Forest) algorithm, and incorporated them in
the parental questionnaire (PQ) and annotation-based video-
tagging module. In the second stage, researchers integrated
responses of both modules applying L2-regularized logis-
tic regression (LR) [88], whose psychometric outcomes
outperformed those of M-CHAT, CBCL (Child Behavior
Checklist), standalone questionnaire, and video modules.
[48] enhanced their previous work by introducing a third

clinician questionnaire module. The three-module screener
implemented in 8-10 minutes outperformed earlier psycho-
metric outcomes using the GBDT (Gradient Boosted Deci-
sion Tree) algorithm.

[49] collected one to five-minute home-based videos rated
by non-experts generating a feature set analyzed by eight ML
classifiers previously trained on ADI-R and ADOS datasets.
All classifiers had a sensitivity above 0.945, but only three
had a specificity above 0.5. The LR5 (LR model with five
shortlisted features) outperformed other ML models. [50]
validated their previous work [49] on Bangladeshi children,
including those with SLC (speech-language conditions).
Non-expert US raters, after one-hour training, reviewed
videos and responded to 31 multiple-choice questions, gen-
erating a feature set from the responses. The LR with Elastic
Net penalty [89] and LR5 were the best performing ML
models on the feature set with sensitivity, specificity, AUC,
and accuracy for ASD vs. TD as 0.76, 0.58, 0.76, and 0.70 and
ASD vs. ODD as 0.76, 0.77, 0.85 and 0.76 respectively.

[51] video-recorded mother and child social interactions
of HR (High-Risk) toddlers aged 9-12 months in three social
situations. 1) Face-to-Face (FF) mother-child interactions,
2) mother’s unresponsive Still-face (SF), followed by 3) usual
mother and child interactions. The SVM classification model
outperformed NB (Naive Bayes) and RF (Random forest) in
the ASD detection and classification.

Further, [52] developed a Video-referenced Infant Rating
System for Autism (VIRSA). The system algorithm proposed
a series of parent-infant interactive age-matched videos, with
parents choosing the most appropriate ones matching their
child, resulting in a score computation. At ages 6, 9, 12, and
18months, childrenwere clinically examined, diagnosed, and
rated on the VIRSA. The statistical analysis of VIRSA scores
predicted 100% ASD in children at 18 months and 78% at
36 months compared to diagnostic established using gold-
standard tools. This study is a first step towards creating a
novel video-based online rating system for detecting ASD in
children with robust psychometric properties.

[53] developed a smartphone application, NODAsmart-
Capture empowering parents to record home videos of child’s
behavior and label social dialogue, play, and problematic
behavior in four social scenarios. Diagnosticians annotated
the videos with built-in tags designed on DSM criteria such
as ‘‘no eye contact’’ or ‘‘repetitive play,’’ matching ninety-one
percent of their recommendations with the ground truth diag-
nosis recorded at study enrolment.

West syndrome (WS) disorder [90], diagnosed in 0.06%
of infants and children, is characterized by epileptic spasms,
often leading to mental impairment in children. [54]
implementedML to predict the onset of ASD/ID (Intellectual
disability) in high-risk 9–12-months with WS. Researchers
captured three video-recorded social engagement scenar-
ios, and out of SVM, J48, and RF [91], the DS (Decision
stump) [92] algorithm predicted WS vs. TD with 0.765 and
WS+ vs. WS− with 0.812 accuracy using multimodal audio
and video data.
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FIGURE 4. Shortlisted studies (N=35) keywords association.

FIGURE 5. Studies distribution -Seven multimodal data categories.

Based on a movie stimuli [55] elicited and engaged the
child’s attention, video recorded behavioral and social reac-
tions of children. They analyzed the scenes using computer
vision to decipher children’s emotional, behavioral codings,
and head positions and classified ASD children with 85-95%
accuracy.

2) EYE-TRACKING
Eye-tracking is a non-invasive method for examining
an individual’s attention and mental processing abilities,
which serve as proxies for cognitive and neurological
functioning.

In this review, six studies, [56], [57], [58], [59], [60], [61]
used eye-tracking and gaze analysis to measure fixation
frequency, duration, and AOI (Area of Interest) responses
from children’s gaze towards social and nonsocial stimuli

in images and videos. The studies hypothesized that chil-
dren with ASD prefer circumscribed interests (CIs) [93],
preferring specific animated characters, toys, or activities.
Researchers use the gaze preference of children on the content
of images or AOI to make ASD vs. TD classification

In the experiment by [56], TD and ASD groups observed
six scenic images with social (e.g., people) or without social
cues (e.g., bowl). The researchers extended the experiment
with twelve images, half with CI (e.g., a toy car) and another
half without CI (e.g., a plant). Within-subjects CI and non-CI
eye-gaze data for ASD and TD groups using T-tests suggested
poor social attention processing abilities for the ASD group.

The study [57] recruited children fromASD and TD groups
who were similar in age and gender. For 10 seconds, partici-
pants observed a female speak the English alphabet, and their
fixation data on various facial and body areas were collected.
They applied DA (Discriminant analysis) to mouth and body
AOI fixation data and classified ASD and TD children.

[58] studied six-month-old preterm children’s gaze and
fixation on social figures, suggesting that children preferred
looking at the eyes or lips of social figures over nonsocial
images. However, at 18 months, each subject tested negative
for ASD when evaluated on M-CHAT and without CG (con-
trol group) presence; the results provided weak evidence to
detect and classify ASD and ODD.

[59] recorded participants’ eye movements while viewing
eleven photographs and constructed a virtual network graph
using temporal gaze patterns and fixation time on the seven
AOI on the human face. Betweenness centrality at four face
features, under the right and left eye, left eye, and mouth, was
lower in ASD children than TD children by 27, 53, 42, and
61%, respectively, forming a basis of ASD detection.

[60] captured the gaze modulation of children with ASD
and TD children using an eye tracker as they played a variant
of the Go/No-Go game. AdaBoost’s meta-learning algorithm
could distinguish ASD and non-ASD participants with an
accuracy of 88.6% based on gaze patterns.
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[61] evaluated if an impaired response to joint atten-
tion (RJA) in infancy is a critical ASD marker. The infant
eye gaze was recorded in a 10-minute session of several IJA
(Initiation to joint attention) tasks. Since newborns utilize
their gaze for RJA and IJA, this method can be used to
quantify children’s social cognition milestones at an early
development age of 10–18 months.

3) FACIAL EXPRESSIONS
Children with ASD struggle to produce and perceive facial
expressions that express a range of emotions and display
affection [94], impacting their social functions. Deep learn-
ing (DL) models can identify facial expressions from images
or videos in three steps, 1) preprocessing the image or videos,
2) extracting facial expression features, and 3) classifying the
extracted features to various emotions.

In this review section, two studies [62], [63] used pub-
lically available facial expressions datasets to train the DL
models and extracted and analyzed facial expressions from
EG (experiment group) and CG (control group) to make an
ASD diagnosis.

[62] trained CVA model on Binghamton University 3D
Facial Expression database [95] to extract facial landmarks
that SVM classified into positive, neutral, and other cat-
egories. They observed that children with ASD had more
neutral expressions than children without ASD. The AUROC
with age-covariates ranged between 0.75 to 0.83 for five
movies that children with ASD and TD watched.

Imitation of facial expressions is a critical measure of
social interaction skills. Studies demonstrate that children
with ASD on prompted stimuli usually perform imita-
tion slower than TD children [96]. [63] trained the DL
model to recognize facial expressions using FER2013 [97],
CK databases [98], and augmented the model learning with
sixteen Chinese children’s facial expressions. The partici-
pants imitated seven facial expressions, and their responses
were video-recorded. For the ASD group, average expression
imitation was lower than 60%, compared with TD, a critical
ASD deterministic threshold.

[64] studied facial expressions using the Facial Action
Coding System (FACS). An OpenFace software extracted the
subtle dynamics of social smiles of ASD and TD children
from their home recordings. The results suggested that ASD
children display happy facial expressions less intensely than
their TD counterparts during the first year of life.

4) POSTURAL AND HEAD MOVEMENT DATA
Children with ASD demonstrate a diminished capacity for
postural stability [99] and functional balance [100].

Two studies, [65], [66], used CVA (computer vision analyt-
ics) from recorded videos to measure head postural control in
study participants to distinguish ASD and TD groups.

[65] induced social and nonsocial stimuli by asking
study participants to watch five movies comprising animated
and complex characters and recorded participant’s rate of
head movements using CVA. After adjusting for age, ethnic

origin/race, and sex, the ASD group had a faster head move-
ment rate in four of five movies with complex stimuli.
By removing the ODD (other developmental delays) group
from the non-ASD group, the 95% CI level adjusted rate
ratios to distinguish ASD vs. TD were significant.

Reinforcement learning is a subfield of AI (Artificial Intel-
ligence) that guides intelligent entities’ behavior based on
a reward-based environment [101]. [66] in multiple stim-
uli, single Child-Robot Interaction (CRI) session measured
head postures, joint-attention, and eye-gaze data [102] using
RGBD sensors and cameras. They used CNN (Convolu-
tional Neural Network), CVA, and CLNF (Constrained Local
Neural Field), differentiating TD and ASD children. The
TD group had good adherence to IJA (Initiation of Joint
Attention) and RJA (Responding to Joint Attention) with
the therapist and robot than the ASD group. However, the
children with ASD displayed higher comfort and engagement
with robots and a high IJA towards the therapist during the
transition.

In addition, [67] developed and validated a deep neural
network (CNN-LSTM architecture) trained on the non-verbal
aspects of social interaction from video recordings captured
during ADOS-2 assessments that distinguished ASD and TD
peers with an accuracy of 80.9%.

5) MOTOR MOVEMENTS
Children with ASD have varying degrees of fine and gross
motor skills. Gross motor deficits in children with ASD can
impair body balance and make it challenging to participate
in sports or do daily tasks [103]. Difficulties with fine motor
skills might limit participation in activities that demand hand
muscle movements [104]. In this review section, we covered
four studies [68], [69], [70], [71] that used motor data to
classify ASD children.

[68] used a smart tablet with touch-sensitive screens and
inertial movement sensors to capture the study participant’s
contact impact data patterns while playing games. They
applied the Kolmogorov-Smirnov test (KST) [105] on the
sensor dataset, shortlisting the ten most significant features
from 262 and classified ASD vs. TD using RGF2 (Reg-
ularized Greedy Forest) [106] algorithm computing AUC,
sensitivity, and specificity scores. [69] analyzed participant’s
upper-limb movements in a reach-to-drop task exercise. The
participant reached the ball, placed it in the support, and
transferred it to the target box hole. They shortlisted seven
discriminating features out of seventeen using Fisher discrim-
inant ratio (FDR) [107] for both EG and gender and mental
age-matched CG. They used the SVM algorithm to identify
ASD children using seven features. [70] on three real-world
virtual reality imitation tasks collected participant’s body
movements in response to visual, auditory, and olfactory
stimuli. They identified joint motions using the DL (Deep
Learning) OpenPose and shortlisted critical and extensive
body part movements using PCA (Principal component anal-
ysis) [108] to detect children with ASD. The SVM algorithm
classified ASD children with an accuracy of 0.893 using
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five joint movements (head, trunk, arms, legs, and feet) in
response to visual stimuli. Inter-joint coordination and motor
synergies [71] can be potential substrates of ASD markers.
Researchers asked ASD and TD participants to engage in a
motor task behavior by manipulating a felt-tip pen to draw
on a sheet of paper. At the same time, an optoelectronic
motion capture system recorded their movement kinematics
that was analyzed by the SVM algorithm to classify ASD and
TD participants with a 94.7 percent accuracy. The analysis
implies that an ecologically valid autism motor signature can
predict ASD risk in children.

6) ASSESSMENTS, DATASETS, AND EMR ANALYSIS
We discussed seven papers in this section. Two studies
[72], [73] incorporated natural language processing (NLP),
[74] used Electronic Medical Records (EMR). Another two
publications analyzed Q-CHAT [77], [78], one study VABS
(Vineland Adaptive Behavior Scales) [76] and [75] used cus-
tomized ASD assessment dataset to classify ASD and TD
children.

Word2Vec algorithms [109] convert words to vectors, eval-
uate similarities, and group words logically, allowing the pro-
cessing of sizeable unstructured text repositories. In addition,
LDA (Latent Dirichlet Allocation) [110] uses a prior Dirichlet
distribution [111] matching word distributions with logical
topics. Combining LDA and Word2Vec, both parts of NLP
can generate discriminative features for a topic based on
contextual associations.

[72] analyzed unstructured ASD evaluation referrals
by scanning, preprocessing, physical records, and reading
through OCR (Optical character reader). The dataset was
upsampled [112] by adding two simulated positive samples
for each positive case and feature reduced using L1 and L2
regularizations [88] using SVM. Word2Vec predicted ASD
risk with precision, recall, and F2 scores of 0.646, 0. 911,
and 0.842, respectively, outperforming LDA.

[73] predicted ASD risk by asking families of HR children
to state social-communication developmental concerns in a
sentence. A regression tree algorithm analyzed the textual
responses that either suggested ASD risk or presented an
additional M-CHAT-R [7] or ASQ [113] question and, after
processing, suggested ASD risk. The ML model AUC with
text-only analysis ranged between 0.36 to 0.54, and for text
and with M-CHAT-R [7] questionnaire between 0.74 to 0.88.

The EMR [114] is usually implemented in clinicians’
offices, clinics, and hospitals to capture notes, assessments,
and treatment records cross-sectionally and longitudinally
for diagnosis and treatment. [74] extracted 89 features from
longitudinal retrospective EMR data and shortlisted 20 fea-
tures using RF Gini impurity [115] scores. They used
SMOTE [115] to upsample and overcome the class imbalance
in the ASD dataset. The LR predicted ASD risk with an
AUC of 0.727. Researchers obtained ground truth labels for
patients (ASD or non-ASD) in the studies [116] from the
clinical reports.

In addition to analyzing and classifying multimodal data,
few studies focused on enhancing ML performance. [75]
used Grasshopper Optimization Algorithm (GOA) [117]
on three datasets [79] and predicted ASD with near
100% accuracy.

[76] assessed HR and low-risk infants at eight, fourteen,
twenty-four, and thirty-six months. The best ML classifier
was SVM (AUC of 0.713) trained on VABS [118] daily
living module [119] records that were captured at 14 months,
normalized and z-scored. [77] used ML to investigate the
Q-CHAT [120] assessment records to distinguish between
ASD and non-ASD children. Of five ML algorithms: RF,
NB, SVM, LR, and KNN, the SVM achieved the highest
accuracy of 95%. [78] used the Q-CHAT and Q-CHAT-10
(Q-CHAT with ten features) datasets to develop two 5-layer
DNNs to detect children with ASD. They compared the per-
formance of both the models and observed that the Q-CHAT-
10model reported higher AUROC, sensitivity, and specificity
than the outcome of SVM and DNN algorithms processed
on Q-CHAT data [78]. The findings confirm the role of ML
models in reducing the assessment features and predicting an
ASD condition.

7) AUDIO DATA
DL models can identify distinctive vocal patterns by analyz-
ing the production of canonical syllables and speech volubil-
ity [121]. Canonical syllables [122] have a consonant and a
vowel-like component that emerge by the second half-year of
life and not later than ten months in TD children. Volubility
refers to syllable production frequency and is usually limited
in children with ASD [123]. In the review, three studies
analyzed audio data; two used syllable production, speech
patterns, and canonical babbling [44], [45], and the third used
crying patterns [46] to detect ASD.

[44] used a pre-trained feature extraction auto-encoder
integrated with a joint optimization method, and trained four
ML models on eGeMAPS (Geneva minimalistic acoustic
parameter set) dataset [124]. TheMLmodels: SVM, BLSTM
(88 features) [125], BLSTM (54 features), and optimized AE
BLSTMwere tested on 95ASD and 130 TD utterances across
five vocalizations categories: syllables, canonical babbling,
calling mother or father, screaming and crying. The BLSTM
AE model outperformed other ML models with precision,
recall, and F1 scores of 0.4526, 0.6869, and 0.5457.

[45] conducted a retrospective study examining the vocal-
izations of 37 infants from two 5-mins videos in the 9–12
months and the 15–18 months age range; that included fam-
ily play, vacations, and familiar routines (e.g., mealtimes).
The video recordings were annotated on canonical babbling,
syllables production, and speech volubility features. The LR
model trained on the canonical babbling ASD features was
the strongest predictor to classify 90% of ASD and 63% of
TD infants at 9–12 months. Further, Log odds ratios (log
OR) confirmed that TD infants reached the canonical bab-
bling [123] stage earlier than other infants who were later
diagnosed with ASD.
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[46] for tenASD and TD children collected crying samples
(300 ms to 3-sec clips), preprocessed and cleansed them
by removing screaming, babbling, or vocalizations instances
with a closed or non-empty mouth. They used phonation and
vocal quality features from Belalcazar-Bolaños dataset [126]
created from audios of Parkinson’s patients. To minimize
misclassification, they used a novel SubSet Instance (SSI)
method using unsupervised and supervised methods. They
shortlisted two discriminative speech features, i.e., an MFCC
and SONE coefficient, to measure tone’s timbre and loudness
with temporal difference variance to form a basis to screen
children with ASD.

D. RQ3 WHAT DEMOGRAPHIC CATEGORIES, DATABASES,
CONTROLS, COMPARATORS, AND ASSESSMENT
INSTRUMENTS ARE A PART OF THE
TECHNOLOGY-FACILITATED ASD
DETECTION PROCESS?
This section identifies various participant counts, datasets,
experiment and control groups, assessment instruments, loca-
tions, and durations.

1) PARTICIPANT COUNTS
The study participant counts are reported in Table 2 in the
column ‘Participant Count’. The majority of studies reported
limited Participant enrollment in the study. There are only
three studies that reported greater than 250 participants [74],
[77], [78], six studies between 150-250 [47], [48], [49],
[50], [72], [76] and another six studies between 100-150
participants [52], [61], [62], [65], [67], [73]. Seven studies
[46], [51], [54], [56], [57], [60], [68] reported enrolment
between 50-100 participants and nine studies [44], [45], [55],
[58], [59], [64], [69], [70], [71] represented between 10-50
enrollments. Two studies reported less than 10 participants
[53], [66]. The remaining studies reported using datasets for
analysis.

2) DATASETS
Large-scale datasets give researchers the motivation and nec-
essary sample size to develop, collaborate, and benchmark the
performance of ML and DL algorithms. The studies reported
use of datasets in the audio [126], [127], assessments [79],
facial expression [95], [97], [98], and EMR category [74].
The studies reported challenges such as data preprocessing,
cleaning, and augmenting the audio and EMR datasets as
they were neither age-matched [62] nor culturally relevant
to the experiment data [63]. Additional datasets are listed in
Appendix A, allowing researchers to collaborate and develop
ASD detection innovations and improve the current ASD
detection process.

3) CONTROLS AND COMPARATORS
While the majority of studies focused on categorizing chil-
dren with ASD and TD, a few studies included children with
ODD as well. For example, [54] performed classification
between WS and TD and WS+ vs. WS-. In addition [46],

[47], [48], [49], [50], [52], [54], [62], [62], [65], [65], [68],
[76] included HR, ASD and ODD children in the control
group to perform classification tasks.

4) ASSESSMENT TOOLS
Out of the seventeen different psychometric tools, six of
the most widely used in the review were ADOS, ADI-R,
M-CHAT-R, MSEL, CARS, and DSM. The ADOS, ADI-R,
CARS-2, and DSM are gold-standard ASD diagnostic tools.
The outcomes of these tools arematchedwith the outcomes of
technology-based tools to calculate psychometric properties.
The MSEL measures children’s cognitive development and
ensures that the controls and comparators recruited in the
study are age and IQ matched.

5) ASSESSMENT DURATION AND LOCATION
The assessment duration is reported in Table 2 in the col-
umn ‘Evaluation duration’. Most assessments lasted less than
10 minutes. In addition, studies capturing bio-behavioral
data involved parents and non-experts to perform annotations
were conducted in-home setting [47], [48], [49], [50], [51],
[52], [53], [54], [73]. Studies that used eye-contact, postural
measures and facial expressions required extensive set up of
sensors and cameras and were conducted in clinic or hospitals
[44], [45], [56], [57], [58], [59], [60], [61], [63], [65], [66],
[67], [69], [71], [72], [74], [76], [77], [78]. Few studies that
captured motor, behavioral and postural data captured infor-
mation in home and clinic settings [46], [48], [55], [62], [64],
[68]. Studies that used virtual reality framework to capture
motor data required a dedicated VR room [70].

E. RQ4 HOW HAVE RESEARCHERS GATHERED AND
PROCESSED MULTIMODAL DATA? HOW DO
TECHNOLOGICAL INNOVATION’s RESULTS
COMPARE TO CONVENTIONAL ASD
DETECTION METHODS?
This section list various data collection methods, shortlisted
ASD markers post feature reduction, the performance of ML
and DL models, and their psychometric outcomes.

1) DATA COLLECTION METHODS
The review selected a variety of approaches to capture
unstructured data. Eye trackers such as Tobii [56], [61],
BeGaze software [57], SensoMotoric with infrared tech sen-
sors [59] and Mirametrix S2 Eye Tracker [58] captured eye-
gaze data. The inertial sensors, tri-axial accelerometers, and
gyroscopes captured motor motions [68], [69], [70] data.

Further, cameras and RGBD sensors; captured videos
that were analyzed using CVA to classify facial expressions
[62], [63], [64], postural and head movements [55], [65],
[66], and socio-emotional behaviors and head positions [55].
In addition, cameras recorded ASD-specific behavior mark-
ers [47], [48], [49], [50], [51], [52], [53], [54] and the video
frames were manually annotated to generate feature sets on
which ML and DL models were trained. The ML models
were trained on structured assessments such as VABS [76],
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Q-CHAT [77], [78], ADOS-2 [47], [49], and ADI-R
[47], [49]. The scanned referrals [72] were processed using
OCR (optical character readers) and classified ASD and TD
cases by training ML models with ground truth diagnosis as
labels.

2) SHORTLISTED ASD MARKERS
Numerous studies incorporated feature reduction methods,
marked in column ‘‘reduced features’’ in Table 1, and short-
listed critical ASD deterministic landmarks. Researchers
trained ML models on these features to perform ASD vs.
TD classification using a supervised learning method shown
in figure 6. For example, [72] applied feature reduction on the
scanned referral records and shortlisted behavioral patterns
such as vocal vowel sounds and mood swings as critical ASD
deterministic markers. Additionally, [74] shortlisted parental
age, medication use, treatment, and dietary patterns as signif-
icant predictors of ASD.

Further, [63] highlighted that children with ASD can com-
prehend and imitate facial expressions such as happiness and
sadness but struggle with complicated facial expressions such
as neutrality, aversion, disgust, and surprise. [62] reported
that non-ASD children, while watching movies, often raised
eyebrows and an open mouth, a characteristic of normal
development and a feature not displayed by ASD children.
The social communication deficit is a critical marker for
ASD. [49], [51], [67] highlighted speech patterns, com-
municative engagement, language understanding, emotional
expression, sensory seeking, responsive social smile, and
stereotyped speech as critical markers for ASD. Further, [50],
[53], [67], [76] highlighted the child’s stereotyped behav-
iors, repetitive interests, and poor eye contact as important
markers for ASD risk determination. In addition, [55] sug-
gested name-call responses and emotional state analysis as an
enabler for early ASD warning flags in children. [51], [52],
[53] emphasized shorter duration and lower frequencies of
eye contact, lack of social smiling, and poor social engage-
ment as ASD risk markers. However, [76] revealed that poor
eye contact and repetitive hand movements alone did not
accurately diagnose ASD. Individual behaviors such as daily
living skills impairments and compliance within the house-
hold must be considered in conjunction with other behaviors
to suggest predictive accuracy of ASD. Further, [54] used
PCA to identify stereotypical hand motions (HM), mother-
child communication exchange, and speech analysis as essen-
tial behavioral and auditory markers for ASD among children
with WS. Thus, ML models can analyze facial expressions,
gestural patterns, stereotypical behavior, and communication
exchanges to predict ASD risk with high confidence.

While measuring joint attention skills, [61] reported
that infants later diagnosed with ASD exhibit considerable
atypical IJA but not RJA. In addition, the prevalence of atyp-
ical nonverbal behaviors manifested by displaying uncom-
mon, limited gestural postures decoupled from visual contact,
facial affect, and speech in ASD children [67] can lead to
ASD identification.

Atypical motor movements can predict the risk for ASD.
In an experiment, [68], researchers observed that while play-
ing tablet games, gesture velocity was more significant in the
ASD group, while the time to tap a screen was shorter than
in the control group. In another study, a ball drop task [69]
indicated an improper wrist angle position, hand inclination,
and slower, fragmented movement as critical criteria for ASD
and TD classification. Similar findings were reported by [71]
in a reaching-grasping paradigm in which children with
ASD displayed decreased coupling between DoF (degree of
freedom), which correlated with the severity of their socio-
communicative symptoms. During a virtual reality, motor
movement task [70] could classify ASD and TD groups with
82.98% using only head movements, 74.47%, and 72.34%
accurately using arms and legs movements, respectively.
The findings corroborate the literature suggesting that head
spinning and banging, body rocking, and foot-stomping are
three major stereotypes and repetitive motions associated
with ASD.

[77], [78] findings indicated that ML algorithms could
detect ASD with an accuracy greater than 90 percent from a
selection of 14 feature items and greater than 80 percent using
only three items of Q-CHAT.In addition, VABS (Vineland
Adaptive Behavior Scale) [118] daily living normalized z-
scored [119] assessment scores at 14 months reported AUC
of 0.713 [76] for ASD detection.

A study by [60] using the eye gaze reported that ASD
children exhibited more unstable gaze modulation and
demonstrated significantly shorter initial, average, and total
fixation durations for social stimuli [56]. Further, [57] sug-
gested that children with ASD show reduced fixation time at
the eyes, mouth, and nose, affirming the critical role of fix-
ation on the eyes in detecting autism via eye-tracking. How-
ever, findings of [58] suggested quite the opposite, as preterm
children preferred to glance at the eyes or lips of social images
or people. Therefore the ability to process social cues by
analyzing the fixation duration at various body parts can
predict the severity of ASD in children. [45] presented the
vocal analysis of the children and confirmed that at 9–12
months, TD infants reached the canonical babbling [123]
stage earlier than other infants later diagnosed with ASD.
They further confirmed that infants diagnosed later with ASD
produced fewer words per minute than those diagnosed with
TD. Therefore canonical ability and syllables production in
younger years can confirm the risk of ASD.

3) MULTIMODAL DATA PROCESSING
The research utilized seventeen ML algorithms listed in the
column ‘‘Algorithms’’ of Table 2. Decision trees, random
forests, and support vector machines were the most often
used machine learning models. CNN algorithm is utilized
approximately 80% of the time when deep learning methods
are employed. The review employed six statistical methods,
with the ANOVA, T-test, and Chi-squared test being the most
often utilized. Ensemble decision trees [128] performed the
best on structured data generated from the video annotation of
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ASD-relevant behaviors. In eye-tracking, statistical and dis-
criminant analysis were the most effective algorithms. CVA
ranked highest in analyzing unstructured facial expressions
and postural and head movement data. Additionally, SVM
scored admirably in the structured feature reduced data cap-
tured from the motor movements. MGOA and word2vector
algorithms outperformed all other algorithms inAssessments,
Datasets, and EMR Analysis. Finally, BLSTM (Bidirectional
LSTM), AE, and SVM effectively classified audio data to
detect ASD conditions.

4) MACHINE LEARNING VS. DEEP LEARNING
A ML model trained on multimodal data can classify ASD
and TD children at the current state of the art. However,
DL outperformedMLmethods in feature extraction and clas-
sification tasks on unstructured data. For instance, researchers
captured features of interest for ASD classification using DL
from facial expressions [62], [63], postural and head move-
ments [65], [66], [67], text analysis using NLP [72], [74],
[78], motor movements [68], [69], [70], and audio recordings
[44], [45], [46] and incorporated supervised learning tech-
niques as shown in figure 6 to classify ASD children. As a
result, a conclusive DL model trained on multimodal data
sourced from one or more of the seven categories can make
the ASD diagnosis procedure efficient.

5) PSYCHOMETRIC OUTCOMES
The robustness of the technological solutions can be mea-
sured on psychometric properties such as sensitivity, speci-
ficity, and accuracy listed in Table 1. The following eight
studies [46], [47], [48], [49], [53], [69], [74], [75] reported
psychometric properties of greater than 0.9 on any one of
the sensitivity, specificity, and accuracy measures. Seventeen
studies [45], [50], [51], [52], [54], [55], [57], [60], [67], [68],
[70], [71], [72], [73], [76], [77], [78] reported psychometric
outcomes between 0.7 to 0.9, one study [44] less than 0.7 and
ten studies [56], [58], [59], [61], [62], [63], [64], [65], [66]
did not reported any outcomes.

IV. DISCUSSION
The scoping review shortlisted 35 studies after eligibility and
inclusion-exclusion assessments. The review analyzes tech-
nology’s viability, application, division, and outcomes for
the following seven bio-behaviors;(a) Stereotypical behavior;
(b) facial expressions; (c) eye gaze; (d) motor movements;
(e) postural analysis; (f) assessments and EHR datasets;
and (g) auditory data. The review data summary is popu-
lated in table Table 1 which includes multimodal input data,
feature reduction steps, environment setting, data process-
ing algorithms, and psychometric outcomes, i.e., sensitivity,
specificity, and accuracy. Table 2 lists enrolment counts, soft-
ware or hardware devices used, assessment tools, assessment
duration, limitations, and future directions. The review uses
table data and answers four research questions on technol-
ogy usability, multimodal data capture, data analysis, quality
evaluation, limitations, and strengths.

The review contributes to the literature by
1) Shortlisting various multimodal bio-behavioral mark-

ers for ASD detection;
2) Analyzing automatic multimodal data extraction, fea-

ture optimization, and data processing methods;
3) Highlighting psychometric outcomes from technolog-

ical innovations and comparing them with traditional
methods, and

4) Identifying relevant datasets for researchers to collabo-
rate and cocreate ASD and ODD detection innovations
bringing efficacy to the detection process. The review
highlights that ASD detection ML and DL methods
can be applied to identify children at risk of ODD,
including speech and developmental delays and hyper-
active challenges. Researchers can shortlist specific
feature sets for each condition and train machine learn-
ing models with statistically significant data volume.
The outcomes of the machine learning models can be
measured based on psychometric properties calculated
by comparing predicted diagnoses with gold-standard
tools.

The subsections below detail the role of technology in ASD
detection and internal and external validity threats.

A. PROMISING ROLE OF TECHNOLOGY IN ASD
DETECTION
The analysis highlights an upward trend in adopting
technology-based ASD detection solutions during 2018-2021
attributed to multiple factors.

1) The demand for low-cost diagnoses [129], universal
screening [130], and the availability of research fund-
ing [131] have promoted research initiatives to develop
technology-based ASD screening innovations.

2) The high penetration of mobile devices, low-cost cam-
eras, and Micro-Electro-Mechanical System (MEMS)
sensors such as accelerometers and gyroscopes [132]
have enabled the real-time capturing of vast volumes of
structured and unstructured data. In clinical situations,
cameras and sensors are more practical, less expen-
sive, and less invasive technologies than fMRI and
EEG.

3) With technology maturing, the generation and multi-
modal data processing is automated by researchers by
building data pipelines on a low-cost cloud infrastruc-
ture. Integrating data pipelines with technologies such
as AI, ML, and DL has expedited the development of
cost-effective and superior detection and on-risk iden-
tification of ASD and ODD population.

However, the traditional ASD diagnostic services are not
always accessible, affordable, or data-driven [27], [133].
The review findings suggest that technology-based ASD
methods can be extrapolated to the ODD population and
can effectively, efficiently, rapidly, and potentially serve
larger population groups with improved quality, access, and
affordability [27].
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FIGURE 6. Process flow of Supervised Machine Learning methods.

Further, the technology-facilitated innovations are expec-
ted to supplement traditional detection methods because of
the following reasons:

1) Diagnostic methods based on ML and DL can be
trained on a large volume of involuntary generated
multimodal data from various bio-behaviors to detect
children with ASD and ODD risk.

2) Traditional ASD screening methods can misdiag-
nose children with borderline ASD or with speech
delay or ODD as ASD. These limitations can be
overcome using technological innovations such as
an inconclusive ML classifier developed by [47]
trained solely on misclassified data instances. The
method reduces misdiagnosis of comorbid conditions
with an implementation time of under ten minutes
by suggesting borderline or ODD instances into an
inconclusive class and recommending users for fur-
ther evaluation by a clinician. Thus, ML technologies
can potentially alleviate the misdiagnosis of detecting
comorbid, ASD, or ODD borderline conditions such
as speech and developmental delays with increased
accuracy.

3) A few gold-standard tools, such as CARS-2, can diag-
nose children only beyond two years. Also, children’s
social communication, language, and other critical
milestones do not develop until the second or third
year of life. Therefore, evaluating ASD risk in children
under two years can give conflicting results by an inex-
perienced clinician. The review emphasized the extrac-
tion and analysis of ASD and ODD landmarks from

behavioral [51], [52], [54], eye gaze [58], audio [44],
[45], [46], Facial expressions [62], postural [65] and
assessments [73], [74], [76] data to identify children at
risk of ASD between 6-18 months, circumventing tra-
ditional diagnostic instrument’s age constraints. These
improvements can advance the field by promoting
early identification, improving clinician’s capacity, and
thereby improving access to early intervention [134]
services.

Even though the review highlights that the demand
for technology-based detection methods has grown from
2018-2021, the actual adoption of these innovations has
been minimal. These innovations should ideally be used by
non-specialists, available on mobile applications ( to ensure
widespread adoption), and able to identify TD, ASD, and
ODD ( speech delay, development delay, Intellectual delay)
based on well-defined minimal distinguishable features,
in the first three years [135]. The adoption of these technolo-
gies can be supported through controlled pilots through the
participation of stakeholders such as parents, clinicians, and
schools, digitizing downstream detection processes, assess-
ments, and treatments [136]. A digital human-supported
ASD and ODD detection and management framework can
be initiated and transition to an autonomous and need-based
blended digital model, optimizing cost and maximizing
scale [137].

Further, adopting these technologies can be supported with
vernacular massive online open courses’’ (MOOCs), training
websites, and brief knowledge content, including text-based
training procedures with video clips [137].
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TABLE 4. Internal and external validity threats and mitigation measures.
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TABLE 4. (Continued.) Internal and external validity threats and mitigation measures.
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TABLE 4. (Continued.) Internal and external validity threats and mitigation measures.

B. VALIDITY THREATS
Internal [138] and external validity [139] threats need to be
reviewed and managed to ensure the reliability and robust-
ness of the study’s research methods and their outcomes.
Internal validity evaluates study appropriateness concerning
its method, rigor of an experiment, protocol, structure, study
variables, and execution. External validity confirms study
findings in the real world and leads to broader adoption.
While rigorous research procedures can ensure the study’s
internal validity, they may limit its generalization, applica-
tion, and external validation. Below Table 4 list internal and
external validity threats and suggest methods to overcome
those.

V. LIMITATIONS
The access and reach of technology-based ASD detection
methods depend on the availability of computers, mobile
phones, and the internet. A lack of internet coverage may dis-
proportionately disadvantage those in rural and underserved
locations hampered by sluggish internet speeds, poor qual-
ity, unstable connectivity, and persons’ lack of technological
ability and trust in technology. In addition, the internal and
external validity threats listed above limit the acceptance and
generalization of the innovations.

Further, although the scoping review eligibility to shortlist
studies was for children between two and six years, the

following studies had overlapping and higher age ranges.
Three studies recruited children between two to eight years
[48], [63], [70], and two studies included adolescents, teens,
and adults age-group [72], [75]. The mismatch between study
eligibility definition and study selection can limit the validity
of the scoping review.

VI. FUTURE DIRECTIONS
The review highlighted the presence of a sophisticated tech-
nical stack, which produced promising but non-generalizable
results with privacy, legal, cultural, and ethical chal-
lenges [142]. Therefore future studies should:

1) Future research should focus on establishing trust with
the ‘‘vulnerable’’ population and their families by
addressing ethical, legal, and cultural obstacles in addi-
tion to the internal and external validity risks discussed
in the previous section.

2) Initiate a framework for collaborative research to create
new datasets and improve the existing ones described
in Appendix A to disseminate research results globally.
This can encourage collaborations between academics
from developing and developed nations, enabling them
to conduct fair performance comparisons of technical
solutions, conduct joint experiments, and assure thor-
ough worldwide and systematic empirical validation of
studies.
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3) Researchers should focus on policy-level activities
involving stakeholders in developing study designs
based on the FATE (Fairness, Accountability, Trans-
parency, and Ethics) framework for using AI for ASD
detection. In addition, adopting and enforcing strong
regulations, policies, and data protection and privacy
legislation to prevent inadvertent data leaking can
inspire confidence among stakeholders [143].

In addition, the development of technology-facilitated
early ASD and ODD detection solutions should be supported
downstream with reliable referral and intervention infrastruc-
ture, improving the healthcare system’s efficiency, capacity,
and efficacy [136].

Most studies in the review captured data from a single
bio-behavior to develop ASD detection innovations. Future
improvements should include capturing multimodal data
from diverse bio-behavior categories. The feature engineer-
ing methods can assign weights to multimodal data originat-
ing from more than one of the seven categories, such as eye
contact, stereotyped behaviors, postural demonstration, and
speech, to develop ML and DL models to predict ASD and
ODD risk and their severity levels for broader age groups.
These improvements can be offered as a service on a mobile
application to improve its adoption and usability.

Finally, future studies should focus on preventive methods
incorporating genetic approaches. For example, [84] used
Hidden Markov Models and genetics to examine the risk
of having an ASD offspring, as the ASD risk is multiplied
by 40 to 65 times in parents with an ASD diagnosis or
carrying a risk gene. Therefore, future genetic-focused trials
can preempt the risk of ASD in children and empower parents
to decide on starting families with possible risk exposure.
In addition, technological innovations using trained robots
to treat and diagnose ASD in young children, using POMDP
(Partially Observable Markov Decision Process) [144], [145]
can significantly automate the ASD detection process and
should be a focus for future research.

VII. CONCLUSION
The review comprised 35 studies grouped into seven mul-
timodal data categories: (a) stereotyped behavior, (b) facial
expressions, (c) eye gaze, (d) motor control and move-
ments, (e) postural analysis, (f) auditory data, and (g) assess-
ments and electronic health record data. A scoping review
based on PRISMA guidelines revealed a rising trend of
technology-based ASD detection tools incorporating mul-
timodal data analyzed through ML and DL methods and
supports the role and effectiveness of technology applications
in improving current ASD screening and diagnosis meth-
ods. The review reported internal and external validity chal-
lenges with ethical, legal, dataset, and restricted participant
and controls as critical challenges. In addition, most solu-
tions reported outcomes limited to the laboratory with non-
generalizable outcomes. Therefore, additional cross-cultural
intensive trials with large population groups with various
other disorders are needed to examine the field preparedness,

ethical, legal, and adoption challenges of technological solu-
tions in real-world scenarios. The review can aid academics,
clinicians, and practitioners by offering vital inputs for devel-
oping technologically-based ASD screening and diagnostic
solutions that are efficient, cost-effective, and data-driven and
can address the current constraints of the industry.

APPENDIX A
Appendix lists important datasets in autism research:

JAFFE [146] – The database of 213 images containing
the facial expressions of ten Japanese women. There are
seven distinct facial expressions: neutral, happy, smiling, sad,
surprised, anger, disgust, and fear.

CK+ [147] – The expression database created in the
laboratory includes 593 expression sequences from 123 indi-
viduals, 69% female and 31% male from African Ameri-
cans, Asians, and South Americans. It comprises seven facial
expressions: disdain, disgust, fear, happiness, sadness, and
surprise.

2013 FER [148] – The library contains 35,887 facial pho-
tos in gray–scale representing seven different facial expres-
sions: angry, disgusted, fearful, pleased, sad, surprised, and
neutral.

MMI [149] – The expression database is broken into two
sections: the first is a dynamic data set containing over 2,900
video sequences; the second is a static data set containing over
2,900 video sequences. The second component is a static data
collection consisting of many high–resolution photographs.
The collection contains seven distinct types of expressions.

AFEW [150] – All of the facial photos in the database were
edited from movies and included seven fundamental facial
expressions

SFEW [151] – The expression library consists of a static
frame image from the AFEW data set containing seven fun-
damental expressions.

eGeMAPS [152] – A set of acoustic parameters suit-
able for use in various areas of automatic voice analysis,
including para–linguistic and clinical speech analysis. The
set is designed to serve as a single reference point for future
research evaluations and prevent discrepancies produced by
separate parameter sets or even by different implementations
of the same parameter

The Simons Simplex Collection (SSC) [153] is a
resource of the Simons Foundation Autism Research Initia-
tive (SFARI). The SSC established a permanent repository of
genetic samples from 2,600 simplex families, each of which
has one child affected with an autism spectrum disorder, and
unaffected parents and siblings.

Binghamton University 3D Facial Expression database
[95] has currently, 100 participants (56% female, 44% male),
ranging in age from 18 to 70 years and representing a diversity
of ethnic/racial ancestries. Each person made seven different
facial expressions in front of the 3D face scanner. Except for
the neutral emotion, each of the six prototypical expressions
(happiness, disgust, fear, anger, surprise, and sadness) has
four intensity levels.
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TABLE 5. Explanation of technical terms used in the review.

APPENDIX B
See Table 5.

APPENDIX C
PRISMA Checklist: PRISMA-ScR checklist for studies.
CASP Evaluation Sheet: The results of the CASP quality
assessment tool for studies. (Microsoft Excel Open XML
Spreadsheet (XLSX))
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