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ABSTRACT In this paper we present a high-performance compact phased array antenna which is easy to
integrate into mobile devices for 5G-and-beyondwireless telecommunications. The proposed design features
high efficiency andwide-scan capabilities. The linear array consists of eight elements realized using substrate
integrated waveguide technology in combination with two rows of metasurfaces that are used to optimize the
transition towards free space for enhanced impedance matching characteristics. The integrated metasurface
structure also enables a larger half-power beamwidth and wide-angle scanning at array level. A prototype
has been realized using a dielectric substrate of Rogers RO4003C with relative permittivity of 3.55. The
array is designed with an inter-element spacing of half-wavelength at 29.5 GHz and is characterized using
dedicated millimeter-wave anechoic and reverberation chambers. The measurement results show that the
proposed antenna array can scan from φ = −55◦ to φ = 55◦ with a gain fluctuation less than 3 dB in
the frequency band of operation from 27 GHz to 29.5 GHz, and a measured total efficiency above 70 %
with an uncertainty of 10% (95% confidence interval). Furthermore, when compared to the state-of-the-art,
the proposed antenna provides a much wider scanning range while occupying a significantly smaller and
compact volume.

15 INDEX TERMS 5G communications, beam forming, metasurfaces, phased array, wireless testing.

I. INTRODUCTION16

With the advancement of new mobile communication tech-17

nologies and the introduction of 5G networks, phased-array18

antennas operating at millimeter-wave (mm-wave) frequen-19

cies play a progressively more critical role in the successful20

deployment of such infrastructures. Enhanced gain character-21

istics at antenna system level are necessary to compensate for22

the propagation losses at high frequencies. Such performance23

can be achieved by integrating multiple radiating elements in24

an array configuration. The contradiction between the need25

for a large number of antenna elements being combined in26

The associate editor coordinating the review of this manuscript and

approving it for publication was Giorgio Montisci .

the same system and the limited space typically available on 27

printed circuit boards (PCBs) embedded in mobile devices 28

makes the integration of multiple phased arrays challenging, 29

though this is necessary to perform adaptive beamforming to 30

guarantee full radio coverage. 31

In this context, one should notice that the integration of 32

a large number of antenna elements in a limited portion of 33

space poses problems in terms of power consumption and 34

thermal management [1]. In this regard, an important role is 35

played by the array beamforming network which could lead 36

to extra insertion and radiation losses. Therefore, embedding 37

the antenna array directly in the PCB of a 5G cellular device 38

is useful to minimize the insertion loss between the antenna 39

elements and the radio-frequency integrated circuits. 40
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FIGURE 1. Illustration of the 3D radiation pattern of the 1 × 8 antenna
array which is contained in a smartphone housing.

Numerous papers are available in the scientific literature on41

different mm-wave antenna array technologies for integration42

in smartphones or mobile terminals [2]. Most of the proposed43

technical solutions rely on boresight-oriented patch antennas44

by virtue of the relevant ease of integration with the electronic45

components on the main PCB. Such antenna structures typi-46

cally provide a maximum scan range up to ±50◦ [3].47

In this work, we propose a compact end-fire like antenna48

array embedded in the PCB and realized using substrate49

integrated waveguide (SIW) technology. Such technology50

allows for easy integration andmanufacturing in combination51

with mainstream PCB processes, and enables excellent radio52

frequency (RF) performance in terms of losses while pre-53

serving most of the advantages of traditional waveguides [4].54

Antennas based on SIW technology represent sounding solu-55

tions for integration in PCBs with reduced available space.56

The main limitation is associated with the typical thickness57

of such PCBs which is much smaller than the height of58

traditional waveguide-based radiators. In combination with59

very thin dielectric substrates, having thicknesses typically60

below λ0/10 (where λ0 is the wavelength in free space), SIW-61

based open-ended waveguides usually have a very limited62

bandwidth [5]. For this reason, in this study, we propose the63

integration ofmetasurfaces to optimize the transition from the64

basic SIW structure to free space to improve the impedance65

matching characteristics of the antenna and increase the rel-66

evant bandwidth while enhancing the achievable realized67

gain [5]. At the same time, the adopted grid of metasurfaces is68

effective in enhancing the half-power beamwidth (HPBW) of69

the embedded antenna elements while reducing the parasitic70

coupling level between adjacent radiating elements. This is71

instrumental to the achievement of wide-scanning capabili-72

ties at array level.73

The proposed 1 × 8 antenna array provides a typical74

end-fire like radiation pattern as illustrated in Fig. 1, and it75

is particularly suitable for mobile devices. Next to the array76

design concept, another original contribution of this research77

study is the use of a dedicated mm-wave reverberation cham-78

ber to accurately characterize, with a confidence level of79

FIGURE 2. Top view and side view of the single element.

95 %, the realized antenna array efficiency [7]. As a matter of 80

fact, one can notice that, in available scientific publications, 81

the reported antenna efficiency levels at mm-wave frequen- 82

cies are often based on numerical estimations only. 83

The paper is divided in three sections. In Section II, the 84

geometry of the developed antenna element is presented. 85

In Section III, the simulated array performance and the rele- 86

vant measurement results are discussed. Finally, the conclud- 87

ing remarks are summarized in Section IV. 88

II. ANTENNA ARRAY GEOMETRY 89

The geometry of the proposed metasurface-based end-fire 90

antenna is shown in Fig. 2.The bottom layer is hidden since 91

it is identical to the top layer. Two rows of metal patches, 92

on both the top and bottommetal layers, are integrated in such 93

a way to optimize the impedance transition from the SIW- 94

based open-ended waveguide structure to free space [8]. 95

In the design of an open ended SIW, the main challenge 96

is to match the characteristic impedance Zs of the structure 97

to the free-space impedance Zair. Typically, Zair ' 377� 98

is much larger than Zs. Therefore, strong reflections occur 99

at the antenna aperture unless suitable design solutions are 100

implemented. 101

The easiest way to improve impedance matching is to load 102

the antenna with a dielectric material by extending the inner 103

core of the substrate across the array aperture. In this way, the 104

impedance level at the aperture can be modified by changing 105

the realized effective permittivity εeff, as one can infer from 106

the general relation between impedance and permittivity Z = 107
√
µ0/ε0εeff, assuming that non-magnetic materials are being 108

used. 109

In [9], the transition at array aperture is further improved by 110

realizing perforations in the dielectric substrate. The diameter 111

of such perforations increases with the distance from the 112

aperture to synthesize smaller values of εeff and, thereby, 113

a higher impedance. A more extensive review of end-fire 114

antennas in SIW technology can be found in [10]. 115

In this study, to enhance the impedance matching at the 116

transition, we propose the integration of a suitable meta- 117

surface in combination with the basic SIW structure. Such 118

a metasurface consists of metal patches printed on the 119

extension of the substrate core at the array aperture (see 120
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FIGURE 3. Metasurface antenna array where the TEM mode originating
from the mini-SMP connector is transformed into the fundamental TE10
mode of the SIW.

FIGURE 4. Manufactured antenna array with 50 � loads.

Fig. 2). As shown in [11], the impedance of a substrate121

with double-sided parallel-strip lines, when neglecting the122

coupling between neighboring patches, can be calculated as:123

Zc =
120π

√
εeff [T + 1.393+ 0.667 ln(T + 1.444)]

(1)124

εeff =
εr + 1
2
+
εr − 1
2

1√
1+ 10

T

(2)125

T =
Px
h
, (Px > h). (3)126

An approximate value of the patch length Py can be derived127

as a function of the central working frequency fr, using the128

following expression [8]:129

Py =
2fr
√
εr

c0
− 0.7h (4)130

which properly accounts for the field fringing effects [12] and131

where c0 is the speed of the light in free space.132

More rows of metasurface elements can be used to make133

the transition to free space smoother. In literature, metasur-134

faces with multiple rows of elements are often adopted in135

such a way to enhance the antenna gain [13]. In our study,136

however, we make use of two rows only to mitigate the peak137

TABLE 1. Relevant dimensions of the proposed antenna element.

FIGURE 5. Gain pattern measurement setup of the linear array in a
mm-wave anechoic chamber using a standard gain horn antenna [6].

gain of the individual array element while increasing the 138

HPBW. Fig. 6 shows the normalized radiation pattern of the 139

central antenna element embedded in the array structure with 140

and without metasurfaces. One can notice that the integration 141

of the metasurfaces significantly enhances (nearly doubling) 142

the HPBW of the basic antenna element. At the same time, 143

a considerable improvement is achieved in reducing the cou- 144

pling with the adjacent elements, as shown in Fig. 6c, with a 145

similar decouplingmechanism as shown in [14]. This, in turn, 146

is useful to enable wide-angle scanning capabilities at array 147

level. 148

The dimensions of the metal patches forming the metasur- 149

face can be tuned to control the impedance matching charac- 150

teristics of the antenna and the center frequency of operation. 151

The working principle of the considered metasurface is based 152

on the observation that the current flow in the y− direction, 153

along the metal patches and across the relevant gaps, can 154

be modeled, at circuit level, as a series of inductors and 155

capacitors, respectively [5]. Therefore, the length of the metal 156

patches and the gap between them have a tremendous impact 157

on the achievable impedance matching characteristics of the 158

antenna structure. 159

The proposed antenna element is fed by a mini-SMP con- 160

nector type 18S101-5H0E4. The mini-SMP connector is only 161

used for passive testing, but it is not required when the anten- 162

nas are directly connected to beamforming integrated circuits 163

(ICs). The feeding pin of the mini-SMP connector is inserted 164

in an unplated via hole with a diameter equal to 0.4mm,while 165

the outer metal surface of the connector is soldered on top 166

of the SIW structure. To prevent risk of short-circuiting, the 167
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FIGURE 6. HPBW of the embedded element pattern (a) with and
(b) without metasurfaces at 28 GHz, and (c) coupling level between the
central array element and the adjacent element.

bottom and top layers of the SIW include a circular clearance168

with a diameter of 1.1 mm around the feeding pin.169

To determine the optimal dimensions of the metasurface170

for enhanced impedance matching, a dedicated parameter171

study has been carried out using CST Microwave Studio 
.172

Each antenna element has dimensions of 22.61 mm× 7 mm,173

and is printed on a Rogers RO4003C dielectric substrate with174

relative permittivity εr = 3.38, loss tangent tan δ = 0.0027175

(at 10 GHz), and thickness t = 1.55 mm. The relevant design176

parameters are summarized in Table 1. The simulation model177

of a 1× 8 linear array based on the proposed antenna-element178

design is illustrated in Fig. 3 in combination with the electric179

field distribution originated by the incident TEMmode which180

propagates along the coaxial line and is transformed into the181

fundamental TE10 mode along the SIW. The complete array182

structure has dimensions of 41.53 mm × 22.60 mm, with183

the various antenna elements being separated by 5.08 mm184

(approximately λ0/2 at 29.5 GHz). The manufactured 1 ×185

8 linear array demonstrator is shown in Fig. 4, where 7 of the186

8 ports are terminated with 50 � loads.187

III. SIMULATION AND MEASUREMENT RESULTS188

The characterization of the array performance has been car-189

ried out with special focus on the radiation pattern and the190

radiation efficiency. The first parameter is to evaluate the191

beam-steering capability, whereas the latter provides a mea-192

sure of loss occurring in the structure. An anechoic chamber is193

used for radiation pattern measurements, whereas, by means194

of a suitable reverberation chamber, the radiation efficiency195

of the antenna can be accurately evaluated to verify the196

simulated low-loss properties. As a matter of fact, a rever-197

beration chamber is used because it can yield significantly198

FIGURE 7. Efficiency measurement setup in a mm-wave reverberation
chamber [7].

FIGURE 8. Measured and simulated S-parameters of the central and edge
array elements.

more accurate results as compared to an anechoic chamber 199

when it comes to power-basedmetrics such as efficiency [15]. 200

Besides that, the reverberation chamber allows for filtering 201

out unwanted radiation sources from other parts of the system 202

and, in this way, evaluate the actual radiation characteristics 203

of the antenna array under test, so overcoming an intrinsic 204

limitation of anechoic chambers [17]. 205

Themeasured and simulated S-parameter results are shown 206

in Fig. 8. To improve readability, only the S-parameters 207

relevant to the central antenna elements have been plot- 208

ted. In spite of the narrower bandwidth (with respect to 209

the return-loss level of 10 dB), the measured reflection 210

coefficient is in good agreement with the simulated one. 211

Please note that the S-parameters have been evaluated after 212

de-embedding of the effect of the passive components 213

between the VNA cable and the antenna port using the 214

method described in [16]. The coupling between adjacent 215

elements is below −20 dB. 216

The radiation pattern measurement setup is shown in Fig. 5 217

where the antenna array is placed at the center of a mm-wave 218

anechoic chamber which uses a horn antenna as a probe [6], 219

that can be oriented to measure the co- or cross-polarized 220

component of the radiated electromagnetic field (in cross- 221

polarization in Fig. 5). A spherical scan was performed 222

in the far-field, where the radiation patterns in both the 223

E- and H -plane were measured in co-polarization and 224

VOLUME 10, 2022 102311
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FIGURE 9. Normalized realized gain of the embedded element at (a-b)
27 GHz, at (c-d) 28 GHz and (e-f) at 29 GHz in the θ = 90◦-plane on the
left column and in the φ = 90◦-plane on the right column.

cross-polarization. The antenna was placed in the physical225

center of the chamber. In order to carry out the measure-226

ments, 150 mm-long coaxial cables fitted with 1.85 mm to227

mini-SMP adapters are connected to the antenna array ports.228

The radiation patterns of the central array element along both229

θ = 90◦ and φ = 90◦ planes are shown in Fig. 9 at 27 GHz,230

28 GHz and 29 GHz, respectively. The comparison shows231

a good agreement between simulated and measured results232

and, in particular, confirms the wide HPBW of the embedded233

element pattern (approximately 120◦). It can also be observed234

that the embedded radiation pattern is quite stable over the235

entire frequency range, with a variation of the HPBW below236

0.6 dB which assures similar performance as the working237

frequency changes.238

Figs. 10a and 10b illustrate the measured and simulated239

scanning capabilities of the developed linear array at 28 GHz.240

The results show that the antenna is able to scan from φ =241

−55◦ to φ = 55◦ with a maximal scan loss below 3 dB and242

a variation with respect to the measurements of 0.2 dB. The243

results were obtained by evaluating the individual measured244

embedded element patterns of the various array elements and245

FIGURE 10. (a) Simulated realized gain function of the 1 × 8 linear array
while scanning in the θ = 90◦-plane at 28 GHz and (b) realized gain
measured at 28 GHz.

FIGURE 11. Active reflection coefficient while scanning from φ = 0◦ to
φ = 55◦.

by combining the different contributions from each port in 246

post-processing. A peak gain of 13.1 dBi has been simulated 247

with a side lobe level below −10 dB. 248

For amore extensive characterization of the scanning capa- 249

bilities of the array antenna, the active reflection coefficient is 250

determined using the de-embedded S-parameters. The results 251

are shown in Fig. 11, only for the scan range from φ = 0◦ to 252
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TABLE 2. Uncertainty budget of the efficiency measurement.

FIGURE 12. Simulated and measured antenna array efficiency when the
main beam radiates in end fire in the direction φ = 90◦.

φ = 55◦ by virtue of the symmetry of the radiating structure.253

As it can be noticed, the magnitude of the active reflection254

coefficient is below−7.8 dB over the entire scan range in the255

considered frequency band.256

In order to quantify the losses occurring in the array,257

antenna-efficiency measurements were performed in a novel258

mm-wave reverberation chamber. We refer the reader to [17]259

for an extensive explanation of the operation of this chamber.260

The antenna efficiency was estimated using the three-antenna261

method [18]. To this end, two identical standard gain horn262

(SGH) antennas were used as reference antennas, and three263

two-antenna measurements were carried out. Since the effi-264

ciency of the complete array cannot be estimated out of the265

efficiency values measured at the individual antenna ports,266

a Wilkinson splitter was used as an RF beamformer to feed267

the entire radiating structure at once. The beamformer was268

de-embedded using the approach in [7]. The setup is shown269

in Fig. 7. Mode-stirring was performed using two paddle stir-270

rers, stepped using 36◦ angle spacing, resulting in 100 inde-271

pendent mode-stirring samples. Independence was verified272

with the within correlation approach described in [15], using273

a threshold of 0.3. The results were averaged over frequency274

using a running average with a 500 MHz bandwidth.275

Due to the stochastic nature of a reverberation cham-276

ber, it is common practice to include an uncertainty analy-277

sis [15]. The uncertainty contributors and the corresponding278

standard-uncertainty values are shown in Table 2, which are,279

in this case, all Type A uncertainties [19]. In this measure-280

ment, the RF beamformer quality is the most significant281

uncertainty contributor, since it has some unwanted radiation,282

and the PCB losses vary across the different traces. The283

latter is extracted from the variation across insertion loss284

between and is included as ‘PCB Loss Splitter’ in Table 2. 285

The variation in mismatch between the ports is extracted from 286

the measured reflection coefficients in the same measure- 287

ments.The measurement repeatability was estimated by car- 288

rying out the measurements nine times for different antenna 289

positions and calibrations, and the same approach was used 290

to estimate the uncertainty due to unwanted radiation [20]. 291

The expanded uncertainty was estimated by using the root- 292

sum-square approach as dictated by the CTIA standardized 293

test plan [21], expanded with a coverage factor (kp) of 1.96. 294

We state that the measurements are in good agreement with 295

the simulations when the simulation results lie within the 296

uncertainty bounds of the measurements, meaning they are 297

statistically not significantly different. 298

The simulated and measured results for the total efficiency 299

are shown in Fig. 12, the latter reporting the best estimate 300

taken from themean of the ninemeasurements. The simulated 301

efficiency values are slightly larger than the measured ones, 302

but always within the 95 % confidence interval of the rever- 303

beration chamber. While the efficiency was not measured 304

for different scanning angles, it should be noted that the 305

simulated total efficiency is above 70 % for the entire scan 306

range. 307

The array design presented in this manuscript is compared 308

to state-of-the-art solutions already proposed in the scientific 309

literature for 5G mobile communication and based on dif- 310

ferent antenna technologies with end-fire radiation pattern. 311

The benchmarking is performed on the basis of the figures of 312

merit (FoM) reported in Table 3. 313

In the literature, most of the alternative designs [23], [24], 314

[26] are characterized by a scanning range which is limited 315

to ±40◦ or less. Conversely, the array solution detailed in 316

this research study features measurably wider scanning capa- 317

bilities which, in turn, can enable a full 3D radio coverage 318

by integration of a reduced number of modules. Further- 319

more, the proposed array is more compact. Note that the 320

long transmission lines embedded in the physical prototype 321

shown in Fig. 4 are needed only for testing purposes. That 322

being said, such transmission lines in SIW technology are 323

completely shielded from interference and the top and bottom 324

metal layers can be used for accommodating, for example, 325

batteries or other suitable components. Most of the antenna 326

arrays listed in Table 3 are instead considerably larger than 327

the one presented in this work, especially when considering 328

the mobile-device application. Furthermore, the proposed 329

solution is easily scalable to a larger or a smaller number of 330

antenna elements, based on specific requirements. 331

IV. CONCLUSION 332

In this paper, a metasurface-based linear array of end-fire 333

like antennas with wide-angle scanning capabilities has been 334

presented. The radiating structure is implemented in SIW 335

technology to enable an easy integration into mainstream 336

PCBs, for use in smartphones or other mobile devices. Fur- 337

thermore, a metasurface is used to optimize the impedance 338

transformation from the open-ended dielectric-loaded SIW 339
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TABLE 3. Antenna arrays with end-fire radiation pattern proposed in the scientific literature for 5G mobile devices.

to free space. When integrated in a 1 × 8 linear array340

configuration, the proposed antenna solution can scan from341

φ = −55◦ to φ = 55◦ with a scan loss below 3 dB across the342

frequency range from 27 GHz to 29.5 GHz. The proposed343

antenna array features a total efficiency level above 70 %344

and a peak realized gain of 13 dBi at 28 GHz. The realized345

prototype shows a good agreement between simulated and346

measured results and a comparison with the state of the art347

shows how the proposed solution provides a wider scanning348

range while occupying a smaller volume.349
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