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ABSTRACT A complex fuzzy set (CFS) is a generalization of a fuzzy set (FS) in which a limit of degrees
occurs on the complex plane with unit disc. The averaging operators are a key part of turning all the data
into one value. Dombi operators have exceptional flexibility with operating factors, and they are particularly
efficient in decision-making problems. In this paper, we establish a complex dombi fuzzy graph (CDFG).
We implement dombi operators on CFSs to extend graph nomenclature. We define the complement of CDFG
with an example. The idea of self-complementary in CDFG is discussed. The concepts of homomorphism,
isomorphism, weak isomorphism, and co-weak isomorphism of two CDFGs are discussed. We define
regular and entirely regular graphs with sufficient elaboration and examine their key properties. Furthermore,
significant characteristics are used to explain the edge regularity of CDFG. Lastly, we establish an application
of CDFG in decision making problems.

INDEX TERMS CDFG, complement, self complementary of CDFG, homomorphism, isomorphism, weak

isomorphism, co-weak isomorphism, regular and totally regular CDFG, application.

I. INTRODUCTION

Due to the existence of unclear data, Zadeh [20] created the
concept of a FS, which is an extension of the crisp set theory.
A FS consists of a true membership function that belongs to
a closed interval [0, 1]. The FS has many applications in the
area of science.

Menger [12] introduced triangle norms and conorms in
the context of probabilistic metric spaces, later defined and
analysed by Schweizer and Sklar [13]. Numerous additional
researchers have proposed alternative T-operators [5], [10].
Zadeh’s conventional T-operators, min and max, are widely
employed in fuzzy logic, especially in decision-making and
fuzzy graph theory. It is commonly recognised that alternative
T-operators function better in specific contexts, especially in
decision-making procedures. Examples of preferable opera-
tors include products [6]. When choosing T-operators for a
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certain application, one must evaluate their features, model
applicability, simplicity, software and hardware implementa-
tion, etc. As the study of these operators has grown, more
alternatives for selecting T-operators have emerged.

Graphs have many applications in the field of operational
research and computer science. A graph is a visual repre-
sentation of links between several items that is useful for
elaborating on information. However, haziness turns a graph
into a fuzzy graph. Fuzzy graphs are intended to portray as
a matter of degree structures of connections (in the form of
edges) between tangible objects (nodes). Fuzzy graphs have
a wide variety of applications, including decision-making,
database theory, cluster analysis, and network optimization.
Kaufman [11] firstly proposed the concept of fuzzy graph.
After that, Rosenfeld [14] studied fuzzy relations on fuzzy
sets and used max and min operations to construct the
structure of fuzzy graphs, resulting in analogues of numer-
ous graph-theoretical ideas. Bhattacharya [4] made some
comments on fuzzy graphs. Reference [16] described new
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operations on picture fuzzy graph. Recently, a few researchers
are contributing their efforts in filed of fuzzy theory
(71, [81, [91, [17], [18], [19].

Fuzzy graph theory makes it simple to structure and
model uncertain decision-making issues. In the discipline of
graph theory, only a small amount of work is put towards
using the Dombi operator. As a result, Ashraf et al. [3] pro-
posed the Dombi fuzzy graph (DFG). Ramot et al. [15] pre-
sented the concept of CFS in which a range of degrees occurs
in the complex plane with unit disk. Akram and Khan [1]
studied complex pythagorean fuzzy graph in decision making
problem.

The following is a summary of the motivation for this
paper:

e When faced with one-dimensional phenomena of impre-
cise and intuitive knowledge, a CFS is capable of coping with
the situation effectively. There is no information loss due to
the phase term of the CFS.

e As a result of incorporating the qualities of numerous
frequently used operators, Dombi operators have a broader
range of applications and are extremely efficient in decision-
making.

The following are the key points of this paper:

e The notion of CDFG is initiated.

e The concept of the degree and total degree of a node
in both phase terms and amplitude terms are discussed with
examples.

e We define complement, self-complementary, homomor-
phism, isomorphism, weak isomorphism and co-weak iso-
morphism with their properties.

e We define strong CDFG and complete CDFG.

e We introduce regular and totally regular graphs with
appropriate elaboration, and their pivotal properties are dis-
cussed.

The following is the structure of this paper:

We presented some basic definitions which will help to
understand the paper in Section II. In section III, we study
the notion of CDFG, the degree and total degree of a node,
complement, self-complementary, homomorphism, isomor-
phism, weak isomorphism, co-weak isomorphism, strong
CDFG, complete CDFG, regular and totally regular graphs
with appropriate elaboration, and their pivotal properties are
discussed. In Section IV, application of CDFG is discussed.
At the end, we write the conclusion and some future plans in
Section V.

Il. PRELIMINARIES

Definition 1 [1]: A FS on a universe v is an object of the
following formC = {< g, cc(g) > |g € ¥}, wheregs : ¥ —
[0, 1] denotes the membership value of C.

Definition 2 [1]: A FS on X ¥ is called fuzzy relation
onr, denoted by F = {< xy, cr(xy) > |xy € ¥ X ¥}, where
s ¥ x ¥ — [0, 1] denotes the membership value of F.

Definition 3 [1]: A fuzzy graph on ¥ # ¢ is a pair T =
(C, F) with C a FS on  and F a fuzzy relation on { such
that r(xy) < se(x) A ge(y) forall x,y € .
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Definition4 [1]: A : [0,1] x [0,1] — [0, 1] binary
function known as triangular norm (t-norm) if for all x, y,
r € [0,1], it follows the following axioms:

1. A(x, 1) = x.

2. Ax,y) = Ay, x).

3. Ax, Ay, r)) = A(A(x, y), ).

4 Ax,y) < A(r,s)ifx <randy <s.

Interchanging 1 by 0 in axiom (1), we get the idea of
triangular conorm (t-conorm,).

Following are some popular t-norms:

e M(x, y) = min(x, y). (minimum operator M)

e P(x,y) = xy. (product operator P)

e W(x,y) = max(x + y —1, 0). (Lukasiewicz’s t-norm W)

e D(x,y) = : A > 0. (Dombi’s t-norm

D)
By putting A = 1 in dombi’s t-norm, we obtain one more
T-operator thatis T'(x, y) = 77 LY 5
The corresponding t-conorms are as follows:
o M*(x,y) = max(x, y). (maximum operator M*)
e P*(x,y) = x +y — xy. (probabilistic sum P*)
e WH¥(x,y) = min(x+y, 1) (Lukasiewicz’s t-conorm W¥*)
e D*(x,y) = : A > 0. (Dombi’s t-

1+[(‘;‘)k+( SOM

(l—x) A+(I x) |/A
conorm D¥)

By putting A = 1 in dombi’s t-conorm, we obtain one more
T-operator that is S(g, h) = %.

Definition 5 [1]: A DFG on V (underlying set) is an
ordered pair t = (C, F), where F : V xV — [0,1]isa
symmetric fuzzy relation on C and C : V — [0, 1] is a fuzzy
subset in'V such that

sc(gseh)
sc(@) + se(h) — se(g)se(h)

for all g,he V, where ¢¢ and ¢r denotes the membership
values of C and F respectively.

Definition 6 [1]: A complex fuzzy set (CFS) on a universe
¥ is an object of the form C = {< g, cc(g)e'?c¢® > |g € ¥},
i = /=1, where ¢¢ : ¥ — [0, 1] is a real valued function
represents the membership value and ¥¢(g) € [0, 21 ], for all
g € Y. Note that c¢c(g) is called amplitude term and ¥¢(g) is
called phase term.

Definition7 [1]: A CFS on ¥ x  is said to be
complex fuzzy relation (CFR) denoted by F = ({<
gh, cr(gh)e®F&W = |eh e ¢ x ¢}, i = /=1, where
cr ¥ x Y — [0, 1] represents the membership value and
9 r(gh) € [0, 2r], for all gh € . Note that ¢r(gh) is called
amplitude term and V' r(gh) is called phase term.

sr(gh) <

lll. CDFG

Definition 8: A CDFG on a universe \ is an ordered pair
7= (C, F), where C = (g, cce’’¢) : ¢ - {z:z€ C,|Z| <
1} is a CFS subset in  and F = (gh, cre’VF) 1 x ¢ —
{z:z€ C,|Z| < 1} is a complex fuzzy relation (CFR) on C
such that for amplitude term

sc(®gsc(h)
sc(g) + sc(h) — se(@)se(h)’

sr(gh) <
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and for phase term

de(g)de(h)
97 (gh ’
FEM = 5 ) F et — det@)et)

for all ghe , where i = /—1, and 9 5(gh) € [0, 27].
We call C and F the complex fuzzy node set and complex fuzzy
edge set, respectively.

Example 1: Let t = (C, F) be a CDFG on t* = (Y, A)
as shown in Figure 1, where & = {g,h,r,s} and A =
{gh, pr, ps, gs}. The set of nodes C and set of arcs F of T
are defined on r and A, respectively.

h
C=< .g , - , r , .S >
0'561271(0.4) 0'461271(0.3) 0'4581271(0.5) 0'381271(0.6)
and
Fo gh pr
== 026270.19) " () 34i27(0.25)"

ps qs
O.l3ei2”(0-3) ’ 0_17ei271(0.2) =

By calculations, one can see that t = (C, F) is a CDFG.

Definition 9: Let F = {(gh, cr(gh)e?F&M)|gh € A} be
a set of arcs in CDFG t, then

o The degree of node g € ¥ for amplitude term is denoted
by De(g) = De(g), where

D@ = Y. SFen
g.h#gey

= 2
8 .h#gey

The degree of a node g € V for a phase term is expressed
by D.(g) = D,is (g), where

Z O Feh

g h#gey
g h#gey

e The total degree of node g €  for amplitude term is
expressed by TD.(g) = TDc(g), where

sc(@sc(h)
se(®) + se(h) — sc(g)se(h)

Dy (g) =

ve(g)ve(h)
Ve(g) + Ve(h) — de(g)de(h)

TD() = D SFn+5a®)
8 .h#gey
_ Z sc(g)sc(h) o)
eireey SC®) F sch) — se(@)se(h) '
102066

The total degree of a node g €  for a phase term is
expressed by TD.(g) = TD,i»(g), where

TD,in(g) = Z U Fen) + Pa(g)
g-h#gey
_ ¥ Pe(@)ve
iz, 9@+ D) = De(@veh)
Example 2: From above example, we have
e The degree of nodes in t are as follows:

D‘L’(g) — 0.6361'27[(0.74)’
D (h) = 0.37¢27039,
De(r) = 0.3¢2702),
Dy (s) = 0.3¢770),

+ va(g).

e The total degree of nodes in t are as follows:

TD:(g) = 1132719,
TD:(h) = 0.77¢2709,
TD:(r) = 0.75¢*7 07,
TD:(s) = 0.6,

Definition 10: Let t = (C, F) be a CDFG on a graph
t* = (¢, A). The complement of T for amplitude term is
determined by:

1. c5(8) = sc(9)

sc(@)sc(h)
sc(g) + se(h) — se(®)se(h)’
if sr(gh)=0.
sc(@)sc(h)
sc(8) + se(h) — sc(@se(h)

if 0<gcr(gh =<1
Similarly the complement of T for phase term is determined

by:
1. 95(8) = vc(g).

2. sx(gh) =

— sF(gh)

De(g)de(h)
De (g,)f + el Pelch)’
i gh) =0.
2.9 p(gh) = Se(e)de(h)

be(9) + vety — vetgvedy T E
if 0<9r(gh) <2m.

Further, the complement of a CDFG t is denoted by T =
(C, F).

Definition 11: A homomorphism Z : t — G’ of two
CDFGs t = (C,F)and G = (C', F') is a mapping Z :
Y — ' satisfying

1. gc(8) = sc/(2(8), Vc(8) < Ve (Z2(g)), forall g € .

2. sr(gh) = s (Z2(8)Z(h), Vr(gh) < Pr(Z(g)Z(h)),
for all gh € A.

Definition 12: An isomorphism Z T — G of wo
CDFGst = (C, F)and G' = (C’, F') is a bijective mapping
Z fr — ' satisfying

1. ge(8) = ccr(2(8)), e(g) = Ve (Z2(g)) forall g € .

2. gr(gh) = sr(Z2()Z(h), Vr(gh) = V5 (Z(9)Z(h)
forall gh € A;.

Definition 13: A weak isomorphism Z : T — G’ of two
CDFGst = (C, F)and G' = (C', F') is a bijective mapping
Z :f — Y’ satisfying
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1. Z is a homomorphism.

2. gc(8) = sc/(2(8)), Ve(8) = Ve (2(g) forall g € .
Definition 14: An co-weak isomorphism Z : © — G’ of

two CDFGs t = (C,F) and G = (C', F') is a bijective

mapping Z : W — ' satisfying
1. Z is a homomorphism.

2. cr(gh) = sr(Z(9)Z(h), Vr(gh) = 5 (Z2(8)Z(h)
forall gh € A.
Definition 15: A CDFG t = (C, F) is called self comple-
mentary if T = 1.
Proposition 1: If t = (C, F) is a self complementary
CDFG, then
sc(g)sc(h)
oz 5¢(8) + se(h) — se(@)se(h)
Ue(g)de(h)

1
Or(gh) = 7
g% 7 2(g% dc(8) + Velh) — Ve(g)de(h)

Proof: Suppose that t is a self complementary CDFG,
then there occurs an isomorphism Z : v — 1 such that

sc(Z2(8) = sc(8), Ve(Z(g)) = V¢(g) forall g € .
sr(Z(@)Z(h) = cr(gh),
Y r(Z(g)Z(h)) = O x(gh) for all gh € A.

1
> sFigh) = (

g#h

By using definition of complement, we have

Sr(2(e)Z(h)
sc(Z(g)sec(Z(h)

T 2@ + scZh) — ScZ@)ecZ )
— sr(Z(g)2(h)).

sr(gh)

_ sc(@sc(h)
sc(8) + se(h) — se(g)se(h)

> sr(gh

g#h

g#h
> srgh) + Y sr(Z(R)Z(h)
g#h g#h
-y sc(g)se(h)

= sc® + se(h) = se(®)seh)’

23 cr(gh
g#h
-3 sc(@)sc(h)
= se@ + se(h) = se@seh)’

> cr(gh
g#h
1

g#h

— sr(2(®)Z(h)),

sc(@sc(h)
sc(@) + se(h) — se(g)se(h)

— Y cF(Z@Zh),
g#h

sc(@se(h)
sc(®) + sc(h) — se(g)sc(h)’

Similarly, the phase term can be proved. 0
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Proposition 2: If a CDFG G = (A, B) on an underlying
graph t* = (Y, A) satisfy the following:

cr(gh) = 1 ( sc(@se(h)
2 6e(®) + seh) — sc(g)sc(h)”
1 Be(2)de(h

boeh — L c@ve)

2 Dc(g) + Oc(h) — e(g)dc(h)”
for all g,he s, then t is self complementary.
Proof: Consider t is CDFG that satisfies
1 (8)sc(h)
sr(gh) = =( L ,
2 gc(8) + sc(h) — se(g)se(h)

for all g,hey, then the identity mapping T : ¢ — ¢
is an isomorphism from t to T that satisfies the following
conditions:

se(@(@) = sc(g),  Ve(Z(g) =Vc(g), forall g € 4.

Since the membership value of an edge set gh is given by

cr(gh) = 1 ( sc(®se(h)
2 ge(g) + se(h) — se(g)se(h)

), forall g, h € .

We have

sr(Z(e)Z(h)
se(g)sc(h)

sc(8) + se(h) — sc(g)se(h)
_ sc(g)se(h)

sc(8) + sc(h) — se(g)sc(h)

1 sc(g)sc(h)

2 se(g) + scth) — se(g)se(h)
1 sc(g)sc(h)

2" ge(g) + seh) — ce(@)sch)
= cr(gh).

= ¢r(gh) = —cr(gh

Similarly the phase term condition of isomorphism
O r(Z(9)L(h) = 9 F(gh),

is satisfied by Z. Hence G = (A, B) is self complementary. [

Proposition 3: Let t = (C, F) and G' = (C', F') be two
CDFGs, then t = G iff T = 1. Proof: Suppose that
T and G' are two isomorphic CDFGs. Then by definition of
isomorphism, there occur a bijective mapping Z : vy — '
that satisfies

sc(g) = se(Z(g), Ve(g) = Ve (Z(g)) forall g € ¥ry.
sr(gh) = s (Z(g)Z(h),
D r(gh) = 07 (Z2(2)Z(h)) for all gh € A;.

By using definition of complement, the membership of an edge
ghis

cr(gh) sc(@sce(h)

h) = ~ N
S cc(g) + cc(h) — cc(g)sc(h) sF(gh)
Srlgh) = s (Z2(2)se/(Z(h)

se(Z2(8) + se(Z(h) — se(Z2(8))se (Z(h))
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—sF(Z2(89)Z(h)),
sr(gh) = cF(Z2(g)Z(h).

Similarly for the phase term,

S De@)Pe(h)
PFEN = ety + vety — ve@oem T E
— Do (Z@)Pe (Z(h)
50 (BN + 0e (B () — D Z @I ()
O (Z@Zh),

VF(gh) = 07 (Z()Z(h).

We conclude that the complement of T is isomorphic to the
complement of G'. Similarly, we can prove its converse part.
O
Proposition 4: Let t = (C,F) and G = (C', F') be
two weak isomorphic CDFGs, then T and G' are also weak
isomorphic to each other. Proof: Suppose that T and
G’ are two weak isomorphic CDFGs. Then utilizing the def-
inition of weak isomorphism, there exist a bijective mapping
Z :f — ' that satisfies
sc(8) = s (Z2(8),  Ve(g) = Ve (Z(g)) forall g € Yy

and

sr(gh) = s (Z2(8)Z(h)),
P r(gh) < 9 (Z(g)Z(h)) forall gh € A;.

For the membership value of an edge, we have
sr(gh) = cr(Z2(8)Z(h)
—cr(gh) = —sr(Z()Z(h)
T(sc(®). sc(h) — sF(gh)
= T(sc(8), sc(h) — s (Z(9)Z(h)
T(sc(®). sc(h) — sF(gh)

> T(se(Z(9). se(Z(h) — s (Z2(8)Z(h)
Sr(gh) =z s (2(g)2(h)).

Similarly for the phase term
Vr(gh) < O (Z(8)Z(h)
—Vr(gh) > =9 r(Z2(8)Z(h)
T(c(8), e(h) — Fr(gh)
> T(Wc(g), ¥c(h) — 9 F(Z(8)Z(h)
T (@c(g), Fe(h) — 9r(gh)

= TWe(Z2(9), ¥ (Z(h) — dF(Z(9Z(h)
Vr(gh) = 0 (2(8)Z(h)).

Hence we conclude that complement of T is weak isomorphic
to the complement of G'. O

102068

Definition 16: A CDFG is said to be complete if

sr(gh) = sc(g)sc(h)
cc(9) + ce(h) — ce(g)ce(h)’

7 S (h

9 r(gh) = c(g)dc(h)

c(g) + Ve (h) — Ve(g)e(h)’

forall g,he .
Definition 17: A CDFG is said to be strong if

Cr(gh) = sc(®)sch)
sc(@) + sc(h) — se(g)se(h)’
ve(g)dc(h)
97 (gh) = :
FEN = 5@+ 9t — de(@)vch)
for all ghe A.

Definition 18: Let t = (C, F) be a strong CDFG on a
graph t* = (Y, A). The complement of T for amplitude term
is represented by:

1. ¢6(8) = sc(8).

sc(g)sc(h)
sc(®) + se(h) — se(®)se(h)’
if <r(gh)=0.
0, if O0<gcr(gh =<1
Similarly the complement of T for phase term is represented

2. cz(gh) =

by:
1.9¢(8) = v s).
pe(g)deh)
oy 1 9@ + 9t — de()e®’
20760 =1 T e =0,

0, if 0<dr(gh) <2m.
Further, the complement of a strong CDFG t is expressed
by T = (C, F).
Remark 1: Every complete CDFG is strong.
Definition 19: A CDFG v = (C, F) on a graph t* =
(¥, A) is known as regular of degree R0 or Riei-
regular if its every node has equal degree, i.e,

D@ = Y. SFen=Ri
g-h#ged

Dar(®) = D Dren =R,
8 h#gey
forallg € ¢
Example 3: Let t = (C, F) be a CDFG on t* = (¢, A)
as shown in Figure 2, where & = {g,h,r,s} and A =
{gh, qr, ps, rs}. The set of nodes C and set of edges F of T
are defined on W and A, respectively.

g h r s
C=< - , - , - , - >
0.56’2”(0'4) 0.56’2”(0'4) 0.56’2”(0'4) 0.56’2”(0'4)
and
h r s rs
F e 8 q p

0_3ei27r(0.2) ’ 0'361'271(0.2) ’ 0.3ei2n(0.2) ’ 0'3ei2n(0.2) >

By calculations, one can see that t = (C, F) is a 0.6¢2704)_

regular CDFG.
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(0.5e(0-41277) (0.5¢(0-2m1)

(9) (h)

(0.3¢02)2m%)

2y
(132(2:0)7€°0)

(036022

(0.3¢(02)2mi)

3 (r)
o sy

FIGURE 2. Regular-CDFG.

(0.456(0-35)2i) (0.45¢(0-35)2ri)

(9) (h)

(0.250(02)27)

(0.25¢022mi)
(122(:0252°0)

(0.250(02)27)

5)

( et S
(0.45¢(0:35)2r1) c(0.45e(0-39)2m1)

FIGURE 3. Totally Regular-CDFG.

Definition 20: A CDFG v = (C, F) on a graph t* =
(¥, A) is called totally regular of degree TieT" or Tie'Tr -
totally regular if its each node has same total degree, i.e,

TD®) = Y. Srn+sc® =T,
8-h#gey
TDaw(@ == Y Dren+c@=T"
g h#gey
for all g € .

Example 4: Let t = (C, F) be a CDFG on t* = (Y, A)
as shown in Figure 3, where ¥ = {g,h,r,s} and A =
{gh, gr, ps, rs}. The set of nodes C and set of edges F of T
are defined on r and A, respectively.

g h
C =< 545,27035)" () 45027039
r S
0.45027(035)" ().45¢27(035) ~
and
_ gh qr
P = 0256270 ) 502700
ps rs
0.15¢270.2)" () 25¢27(0.2)

By calculations, one can see that t = (C,F) is a
0.85¢27(0-75) totally regular CDFG.

Theorem 1: Consider a CDFG t = (C, F) which is iso-
morphic to another CDFG G' = (C', F/');

1. If t is regular CDFG, then G’ is also regular CDFG.

2. If t is totally regular CDFG, then G’ is also totally
regular CDFG.

Proof: 1. Suppose that T is isomorphic to G' and t is
RleiRT—regular CDFG, therefore degree of each node of T is
given by

D:(g) = D,in(8)
i 32 0F(gh)

Di(g) = Y cr(ghe @<
ghe A

VOLUME 10, 2022

se(@sc(h)
sc(@) + se(h) — se(g)se(h)

. 90 (9)0c (h)
i X 3 ()+z9c(h)—0 )0 (h>)
X e g.h#gey cle ¢ clere

= R]e[RT.

Di(g)= Y,

g.h#gey

Since T = G', we must have
RleiRT
= D;e“’ (€3]
i Y 9F(gh)
> cr(ghye @<

ghe A
Z sc(@sc(h)
se(@) + se(h) — se(g)se(h)

g.h#gey

. I @D
iC Y St

X e &h#gey .
sc(Z(g))sc (Z(h))

N . h;:a/, sc(Z2(8) + se(Z(h) — s (Z2()sc (Z(h)

9o (Z@)9 1 (Z()

« hge  PI E r Z W) Z e (2
xXe &

Y 0p(ZQZh)
Y SFEEZW)e @A

ghe A
= Dg/em’(g)
= Dg(8)
Thus, G' is a Rye™i -regular CDFG. '
2. Suppose that T is isomorphic to G' and t is Ty 1" -totally

regular CDFG, therefore the total degree of each node of G
is given by

TD:(g) = TDg(g)
= () sF(gh)+sc(®

ghe A

=( Z
8.h#gey
=Ti.

se(@sce(h)
sc(@) + sec(h) — ¢e(@)se(h)

+ sc(9),

Since T = G', we must have
Ti = TD(g)

= Y sr(gh) + sc(@)
ghe A

- ¥

8.h#gey

sc(@sc(h)
sc(g) + sec(h) — ge(g)se(h)
_ Z sc(Z(g)sc(Z(h))
¢ igey sc(Z2(9) + s (Z2(h) — s (Z2(9)se (Z(h)
+ s (2(g)),

= Y sPE@ZW) + s (2()
ghe A

=TDy(g)

= TDg(g).

+ sc(®)
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Also for phase term,
TD:(8) = TD,in(g)
= Y Or(gh) +9c()

ghe A
ve(g)de(h)
g,hgew 5e(@ + dcth) — e(gvet T ¢®
= 7'1*
Since T = G', we must have
T = TD,in(g)
= ) 9r(gh) + dc(g)
ghe A
ve(g)dc(h)
g,h%:a,, 5@ + vch) — ve@vety ¥
_ Z Ve (2(8))0¢c (Z(h))
eiirey DO (E@N+ Ve (Z() =T (2(9)e (Z(h)
+ Ve (Z(g)
= ) 9F(ZQZI) + dc(Z(9)
ghe A
= TDy(g)
= TDg (g).

g
Theorem 2: Suppose that T = (C, F) is a CDFG on a
graph v = (¥, A) with cce'”C as a constant function, then
t = (C,F) is a regular CDFG if and only if t is totally
regular CDFG. Proof: Suppose that ¢ce'”C is a constant
function, i.e, cc(g)e’c® = 1€ is a constant function for
all g € ¥, where 161 is constant.
Suppose that T = (C, F) is RleiRT—regular CDFG, then

sc(g)sc(h)
D - == k)
o g,h;,;ew s(@) + st — se@sem)
Pe(@)deth) .
Deiz? = — R ’
“ g,h%ex// e(9) + V() — de(@deth)
The total degree of a node is given by
se(@sc(h)
TD =
" g,h%ew se(8) + sc(h) — ge(®)se(h)
+sc(g) =Ri +c1,
ve(g)ve(h)
TDei19 (g) = Z
¢ hgey ve(g) + Pc(h) — ve(g)de(h)

+0c(g) = R} +cf,

Hence, tisa (R + cl)ei(RT+CT)—totally regular C_DFG.
Conversely, suppose that T = (C,F) is Tie'Ti -totally
regular CDFG, then

TD(®) = ).
8-h#gey

sc(@sc(h)
sc(@) + se(h) — se(g)se(h)
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+sc(@) =T,
sc(@sc(h)
+er =T,
g,h%ew cc(®) + s — se@se)
Z sc(@)sc(h) T e
ciizaey SC® +seh) = se(@)sch) ’
Dg(g) =T —c =R
Ve (g)de(h)
TD i =
8 ‘. ,,%E,p Ve(g) + de(h) — ve(g)de(h)
+0c(g) =T,

Ve (g)de(h)
Ve (g) + de(h) — dc(g)ve(h)

2

g.h#gey
+cf =T,
Z Ue(g)vc(h) _
ciiigey Ye(®) +eh) —Ic(g)de(h)

D,iv(g) = Ty — ] = R}.

Sotisa RleiRT-regular CDFG. (|
Theorem 3: Suppose that Tt = (C, F) is a CDFG on a
graph v = (Y, A). If T is both R1e'™ -regular and Ti 1" -
totally regular CDFG, then cce'”C is a constant function.
Proof: Suppose that T is RleiRT-regular and Tyt -totally
regular CDFG. Then, then the degree of a node is given by

T =i,

se(@se(h)
De(g) = =7
(&) g!hgew ce(@) + co(h) — ce(g)ce(h) 1
ve(@)ve(h) *
D,i = =R
7(2) g,h;jew 9c(g) + oc(h) — ve)oety !
The total degree of a node is given by
sc(g)se(h)
TD.(g) = Z
i se(g) + se(h) — se(g)se(h)
+sc(®) =T,
ve(g)ve(h)
TD, =
e (8) g,h%@ﬁ dc(g) + Ve (h) — de(g)de(h)
+0c(g) =T,

It follows that

TDg(a) = Ri+sc®) =T,
sc(® =Ti —Ri.
TDgv(a) = Ry + Vc(g) =T,
de(®) =T = Ri.
Hence, ¢cce'’¢ = (T7 — R])ei(ﬂ*_RT) is a constant function.
g
Remark 2: Converse of above theorem need not to be true
as given in the following example.

Example 5: Let t = (C, F) be a CDFG on t* = (¢, A)
as shown in Figure 4, where & = {g,h,r,s} and A =
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(gn)'u (042)2mi) (0.5¢0422m)
) (

(0126017251

07e1°0)

(0.12¢0017

(0.1200017)2m)

(6]
(0.568%2msy (05604227

FIGURE 4. Not Totally Regular nor Regular CDFG.

{gh, ps, qr, rs}. The set of nodes C and set of edges F of T
are defined on r and A, respectively.
g h

C=< 0.5027(042) () 5i27(0.42)

r S
0.5¢27(042) () 5i27(0.42) =

and

gh ps
0.25€i2”(0'12) ’ 0. 12¢i27(0.17) ’
qr rs

0.2481'271(0.23) ’ 0.236’277(024) =

F =<

Here cce'”C for g,h,i;s is a constant function. But
Dy (g) = 0.37¢77 02 £ 0.47¢7704D = D (r)
and
TD:(g) = 0.87¢27O7D £ 0.9767708) = TD (7).

Hence, T = (C, F) is neither regular nor totally regular
CDFG.

Definition 21: Let F = {(gh, cr(gh)e’F&M)|gh € A} be
the set of edges in CDFG t, then

o The degree of an edge gh € A'is represented by D;(gh) =
D_,iv (gh), where

Degh = Y srpr+ Y, srigr

preA.rh greAgtr
= D¢ (8) + Dee(h) — 257(gh)
= D¢ (g) + Dgp(h)
sc(g)se(h)
sc(@) + se(h) — sc(g)seh) ™

> vrer+ Y. 9Fr)
preA,r#h qre A, g#r
= Dyc(8) + Dy (h) — 20 r(gh)
= Dz?c (g) + Dz?c (h)
Ve(g)de(h)
9c(g) + ve(h) — e(@)veh) ™

e The total degree of an edge gh € A is represented by
TD<(gh) = TD_,iv (gh), where

D,is(gh) =

-

TD.(gh)
= Y srpr+ Y crlgr)+ sr(gh
preA,r#h qreA,g#r

VOLUME 10, 2022

= D¢ (8) + Dge(h) — sr(gh)

h
= D (g) + Doy () — ( sc(g)se(h)

se(®) + sc(h) — se(@)seh)”

TD,i»(gh)
= Y O9rper+ Y, Orgr)+0x(gh)
preA,r#h qreA.g#r

= Dy (8) + Dy (h) — I r(gh)
Ve (g)de(h)

= Dyc(g) + Dy (h) — ( .
a8l Hoe 9c(9) + veh) — de(@)de(h)
Definition 22: A CDFG t = (C, T-() is known as an edge

regular, if the degree of its each edge is equal, i.e,

D.(gh) = Deo(g) + Deo(h) — 26 7(gh)

= Dgc (&) + Dgc (h)
_ sc(@sc(h) e
sc(g) + se(h) — se(g)sc(h)
D,iv (gh) = Dy (g) + Dy, (h)
=29 r(gh)
= Dy (8) + Dy (h)
— Ve(g)ve(h) )= CF.

Ve(g) + de(h) — dc(g)ve(h)

forall gh € A. t is called £1eiET-edge regular CDFG.
Definition 23: A CDFG t = (C, F) is known as totally
edge regular, if the total degree of its each edge is equal, i.e,

TDgs(gh) = Dsc(8) + D (h) — cF(gh)

= Do (8) + Dgc (h)
B sc(@se(h) _ K.
sc(g) + se(h) — se(@)sc(h)
TD,i»(gh) = Dy, (g) + Dy, (h) — ¥ r(gh)
= Dyc(g) + Dy (h)
Ve(g)de(h) )= KE.

9c(g) + Delh) — ve(g)dc(h)

for all gh € A. t is known as lCleiKT-totally edge regular
CDFG.

Example 6: Let t = (C, F) be a CDFG on t™ = (Y, A)
as shown in Figure 5, where & = {g,h,r,s} and A =
{gh, ps, qs, pr, qr, rs}. The set of nodes C and set of edges
F of T are defined on W and A, respectively.

g h

0.4561'271(0.35) ’ 0.3561'271(0.45) ?
r s

0.50127(0.33)" () 350127(03)

C =<

and

gh ps gs
0.11¢i27(0.13)* (). 11¢i27(0.13) () 1127 (0.13)°
pr qr rs
0_1lei27r(0.13)’ 0'1161'2:1(0‘13)’ 0_1161'271(0.13) >

F =<

Since degree of each edge is 0.44¢>" 032 and total degree of
each edge is 0.55¢27 (065,

So, T = (C,F) is 0.44e2702 edge regular and
0.55¢27O0-65)_torally edge regular CDFG.
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h(0.45¢127(0.35))
(0.11¢27(0.13))

9(0.45¢127(0:35))

(0.11¢#27(013))

FIGURE 5. CDFG.

Theorem 4: Suppose T = C,F) is RleiRT-regular
CDFG. If ¢Fe'®F is a constant function, then T is LieLi-

edge regular CDFG. Proof: Suppose that t = (C, F) is
aRq R -regular CDFG, then
sc(@)sc(h)

Pt ®= D\ e — cc@ee

g:h#gey

. @D k)

y e’(g?hge y TC@TICh-dc@Ieh) _ Ry

Now c¢re® is a constant function, therefore,

cr(gh)e?F &M = ¢1¢l for all gh € A.
Since the degree of an edge gh € A is given by D;(gh) =
D_,iv (gh), where

Dg(gh) = Dgc (&) + Dgc (h)
sc(g)sc(h)

sc(g) + se(h) — se(@)sc(h)
=Ri+Ri1—2c1 =2(R1 —c1)=Ly.

D,iv (gh) = Dy, (g) + Dy, (h)

ve(g)vc(h)

Ue(g) + de(h) — Dc(g)de(h)
= 2R} —2c} = 2(R} —¢}) = L7.

Hence 1 is Elei’CT-edge regular CDFG. 0

Theorem 5: Suppose a CDFG t is £1ei£T-edge regular
and lCle”q-totally edge regular, then cre'®F is a constant
function. Proof: Suppose that T is Eleiq—edge regular
CDFG, then the degree of its every arc is

Dg(gh) = Dge(8) + Dee(h)
sc(@sch)

— = L.
cc(®) + ceth) — ce(@ceny’ !

D,iv (gh) = Dy, (g) + Dy (h)
e(g)0e(h) .

=L7.
%@+%W—%@%®) !

Also T is IClei’CT-lotally edge regular CDFG, then the degree
of its each edge is

TDc(gh) = D (g) + D (h)
sc(@sc(h)

cc(8) + ce(h) — ce(®ceh)’
TD,is(gh) = Dy, (g) + Dy (h)

K.
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B Pe(@)de(h) ot
dc(g) + de(h) = ve(@de’
Further, it follows that

TDc(gh) = Ky
se(@sc(h)
D Dc.(h) — =K
§C(g) + §C( ) (S-C(g) + S‘C(l’l) — §C(g)§c(h) 1
Dgc (g) + D§C (h)
sc(@sc(h)
5 h) =K
(@ + et — et FFEN =
sr(gh) =K1 =R
TDs(gh) = K}
Ve (g)de(h)
D Dy, (h) — =K
9c(8) + Do (h) (19(3(8) + Oc(h) — ﬂc(g)l?c(h)) !
Dﬁc (g) + Dl?c (h)
Ve (g)ve(h)

+ 9 r(gh) = K*
De(g) & dcn) — vevetn T IFE =H

9 r(gh) = K — RY.

Hence, cre'VF is a constant function. 0

Theorem 6: Suppose T = (C, F) isa CDFG. Then ¢ re'”F
is a constant function if and only if T is both regular-CDFG
and totally edge regular-CDFG.

Proof: Suppose that 7 is a CDFG. Assume that ¢ ze/” 7
is a constant function, therefore, g;(gh)emf (8h) — cle"”’f for
all gh € A, where c1€1 is a constant.

Since the degree of a node g € v is given by D;(g) =
(Dgeiv (8), Deeiv (8), Dyoin(8)), where

i Y. 9F(gh)
Dein(®) = Y cr(gh)e <A
ghe A

Dgem (&) = Z
g-h#gey
i( Z e (@)ve (h)

e, Te@TCHIC @)
e &

i Y c1)
Dgem(g) = Z cie gheA
ghe A

se(@sc(h)
sc(@) + se(h) — se(g)se(h)

D_,i»(g) = Rei eRet,

Thus, 7 is RcleiRClk -regular CDFG.
As the total degree of an edge gh € A is given as
TD+(gh) = TD_,i»(gh), where

Yo e+ Y. srlgr)+ cr(gh)
preA,r#h qreA,g#r

= Z cr+ Z c1 +ci

preA,r#h qreA,g#r
=ciR-—D4+c1i(R—1)+c¢;
=ci2R —1).

TDs(gh) = Y, Or@r)+ Y. Oxgr)+0r(gh)
preA,r#h qreA,g#r

TD.(gh) =
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= Y d+ D cd+q

preA,r#h greA,g#r
=cfR-D+cfR-1)+c}
= CT(ZR —1).

Hence 7 is ¢ (2R — 1)ei(¢1GR=1) -totally edge regular CDFG.
So 7 is both regular-CDFG and totally edge regular-CDFG.

Conversely, Let 7 be L leiET-edge regular and IC ek
totally edge regular CDFG. Furthermore, the total degree of
an edge is given by

TD:(gh) = TD_,in(gh), where
TDc(gh) = Dec(g) + Dee (h) — s7(gh)
K1 =Ri+Ri— sr(gh
cF(gh) = 2R1 — K.
TD,i»(gh) = Dp.(8) + Dy (h) — ¥ x(gh)
1 =Ri+R—9r(gh
9 r(gh) = 2RY — K}
for all gh € A.

Hence, ¢ re’ is a constant function. O

IV. APPLICATION

In this part, we present an algorithm and resolve a problem of
decision making to choose the best spot to set up an internet
office in a city. This situation may help us to understand the
proposed methodology.

A. ALGORITHM
The algorithm to determine a suitable location or place for an
internet office in a city is as follows:

INPUT: A distinct collection of suitable options P =
{Py, P>, ..., P,} in certain conditions in order to reach the
goal of and construction of complex fuzzy preference relation
(CFPR) Q = (b X M)nxn-

OUTPUT: The decision of an appropriate choice.

1. Consider diy = cige (k,h = 1,2,....,n) and
collection of choices P = {P1, P>, ..., P,}.

2. Aggregate all dy;, = e (k,h = 1,2,....,n)
corresponding to the choice Py and obtain the complex fuzzy
element (CFE) dy of the choice Py over all other choices by
using Complex Dombi Fuzzy operator.

dr = CDFoperator(dy, da, . .
1

o) dkn)

dp = (1 - )
1, Sk
1+ [ S )eise
2 (1— 1 T )
gy g (e
1—Xq
X e 2
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TABLE 1. CFPR of experts.

Q Bl B2 Bg

B 0.6t27(0.5) 0.7¢127(0.3) 0.4¢%27(0.2)
Bo 0.561'27\'(0.6) 0.661.277(0‘5) 0.38127((04)
Bs 0.7¢12m(0.8) 0.5¢%27(0.6) 0.6ei27(0.5)

FIGURE 6. CDFG directed network.

3. The formula of score functions is given by:

1
s(dp) =6+ —70

2
4. Compute the score function s(dy) of the combined
overall preference value dy (k = 1,2, ....,n) by using the

formula of score function.

5. Rank all the choices Px(k = 1, 2, ..., n) on the basis of
score function s(dy) (k =1,2,....,n).

6. Output the appropriate option based on the score func-
tions derived in step 4 of the procedure.

B. SELECTION OF SUITABLE PLACE TO ESTABLISH AN
INTERNET OFFICE

Telecommunication plays an important role in the develop-
mental level of any country. Developed countries have strong
telecommunication system. A variety of factors like social
interaction, employee, economic growth, job creation, busi-
ness productivity are all dependent on telecommunication
system. There are many ways of telecommunication includ-
ing smart phones features, skype, whatsapp, imo, snapchat,
facebook etc. It plays an important role in globalization. The
telecommunication through these softwares is dependent on
high speed internet. A private internet company decided to
build their office in a city for the convenience of its service to
the public. They decided three place in a city Pi(k=1,2,3).
The company make a pairwise comparison in these three
places to build an internet office. Following are some param-
eters that are to be observed.

e a desirable location to open an office.

e Any internet office.

e Available resources.

e Expenditures and outcomes.

e Facilitation for public.

The specialists of company give their preference infor-
mation in the form of CFPR O = (di)3x3 as shown in
Table 1, where di;, = gige’"% is a complex fuzzy element
(CFE) preferred by the expert. Consider 0.8¢27©7) For the
value 0.8, the amplitude term shows that eighty percent of
the specialist says Pp is best choice to establish an office
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over place P,. Now the phase term 0.7 represents that seventy
percent of the specialists conclude that Py location will create
more time profit for the company over location P». The CFPR
0 = (dkg)3x3 is given in Table 1.

The directed network of CFPR Q represented in
Table 1 and is shown as in Figure 6.

To evaluate dy, = grge™ (kh = 1,2,3) of the place Py
over all other places, we use complex dombi fuzzy operator
(CDFO). We have taken & = 1. The combined overall
preference value dj (k=1,2,3) follows:

dy = 0.6¢27(0.0533)

dy = 0.4939¢7(0-0790)
d3 — 0.617€i2n(0'1012)

The score function s(dyx) (k=1,2,3) is calculated by using
s(dy) = ¢+ %19 which is given below:

s(dy) = 0.6085
s(dr) = 0.5065
s(ds) = 0.6331

We get the ranking order of the four terminals Py from the
score functions as follows:

Py > P > P,

The ranking leads to the conclusion that P3 is best place to
establish an internet office.

V. CONCLUSION

In order to represent information visually, graphs are quite
useful. They are also used to model interactions between
different objects. Graphical models can be found everywhere,
for example, in manufacturing, communications network
diagnosis, and a variety of social, biological, and physi-
cal systems, among other applications. They are extremely
important since they play a critical role in changing the data
received from diverse sources in order to establish the out-
comes of decision-making difficulties. In this paper, the idea
of CDFG is introduced. A CDFG is extension of DFG. The
flexibility and comparability of CDFG is much higher. The
concept of complement of CDFG is defined. The concepts
of homomorphism, isomorphism, weak isomorphism, and
co-weak isomorphism of two CDFGs are discussed in details
with different results. Regular and totally regular CDFGs are
discussed. At the end, we wrote the application of CDFG.
In the future work, we will describe some operation on
CDFG. Energy of CDFG may be discuss.

ACKNOWLEDGMENT
The data used to support the findings of the study are included
with in the article.

COMPETING INTERESTS
All authors are here with confirm that there are no competing
interests between them.

102074

REFERENCES

[1] M. Akram and A. Khan, “Complex Pythagorean Dombi fuzzy graphs for
decision making,” Granular Comput., vol. 6, no. 3, pp. 645-669, Jul. 2021,
doi: 10.1007/S41066-020-00223-5.

[2] C. Alsina, E. Trillas, and L. Valverde, “On some logical connectives
for fuzzy sets theory,” J. Math. Anal. Appl., vol. 93, no. 1, pp. 15-26,
Apr. 1983.

[3] S. Ashraf, S. Naz, and E. E. Kerre, “Dombi fuzzy graphs,” Fuzzy Inf. Eng.,
vol. 10, no. 1, pp. 58-79, Jan. 2018.

[4] P.Bhattacharya, “Some remarks on fuzzy graphs,” Pattern Recognit. Lett.,
vol. 6, no. 5, pp. 297-302, 1987.

[5] J.Dombi, “A general class of fuzzy operators, the DeMorgan class of fuzzy
operators and fuzziness measures induced by fuzzy operators,” Fuzzy Sets
Syst., vol. 8, no. 2, pp. 149-163, Aug. 1982.

[6] D. Dubois, W. Ostasiewicz, and H. Prade, “Fuzzy sets: History and basic
notions,” in Fundamentals of Fuzzy Sets (Handbook Fuzzy Sets Possibility
Theory), D. Dubois and H. Prade, Eds. Boston, MA, USA: Springer, 2000,
pp. 121-123.

[7]1 G. Ghorai and M. Pal, “Faces and dual of m-polar fuzzy planar graphs,”
J. Intell. Fuzzy Syst., vol. 31, no. 3, pp. 2043-2049, Aug. 2016.

[8] M. Gulzar, M. H. Mateen, D. Alghazzawi, and N. Kausar, “A novel
applications of complex intuitionistic fuzzy sets in group theory,” IEEE
Access, vol. 8, pp. 196075-196085, 2020.

[91 M. Gulzar, D. Alghazzawi, M. H. Mateen, and N. Kausar, “A cer-
tain class of t-intuitionistic fuzzy subgroups,” IEEE Access, vol. 8,
pp. 163260-163268, 2020, doi: 10.1109/ACCESS.2020.3020366.

[10] H. Hamacher, “Uber logische verkniipfungen unscharfer aussagen und
deren augehorige bewertungsfunctionen,” in Progress in Cybernetics and
Systems Research, vol. 3, G. Klir and I. Ricciardi, Eds. Washington, DC,
USA: Hemisphere, 1978, pp. 276-288.

[11] A. Kauffman, Introduction a la Theorie des Sous-Emsembles Flous. Paris,
France: Masson et Cie, 1973.

[12] K. Menger, “Statistical metrics,” Proc. Nat. Acad. Sci. USA, vol. 28,
no. 12, pp. 535-537, 1942.

[13] B. Schweizer and A. Sklar, Probabilistic Metric Spaces. Amsterdam,
The Netherlands: North-Holland, 1983.

[14] A. Rosenfeld, “Fuzzy graphs,” in Fuzzy Sets and Their Applications,
L. A. Zadeh, K. S. Fu, and M. Shimura, Eds. New York, NY, USA:
Academic, 1975, pp. 77-95.

[15] D. Ramot, R. Milo, M. Friedman, and A. Kandel, “Complex fuzzy sets,”
IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 171-186, Aug. 2002.

[16] M. Shoaib, W. Mahmood, Q. Xin, and F. Tchier, “Certain operations on
picture fuzzy graph with application,” Symmetry, vol. 13, no. 12, p. 2400,
Dec. 2021, doi: 10.3390/SYM13122400.

[17] M. Shoaib, S. Kosari, H. Rashmanlou, M. A. Malik, Y. Rao, Y. Talebi,
and F. Mofidnakhaei, “Notion of complex Pythagorean fuzzy graph with
properties and application,” J. Multi-Valued Log. Soft Comput., vol. 34,
pp. 553-586, Jan. 2020.

[18] M. Shoaib, W. Mahmood, Q. Xin, and F. Tchier, “Maximal product and
symmetric difference of complex fuzzy graph with application,” Symme-
try, vol. 14, no. 6, p. 1126, May 2022, doi: 10.3390/SYM14061126.

[19] M. Shoaib, W. Mahmood, W. Albalawi, and F. A. Shami, “Notion of
complex spherical fuzzy graph with application,” J. Function Spaces,
vol. 2022, pp. 1-27, May 2022.

[20] L. A. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338-353,
Jun. 1965.

EHSAN MEHBOOB AHMED BUTT was born
in Pakistan. He received the M.Phil. degree in
mathematics from Quaid-I-Azam University. He is
currently pursuing the Ph.D. degree in mathemat-
ics with Quaid-I-Azam University. His research
interests include group decision making and fuzzy
graph theory.

VOLUME 10, 2022


http://dx.doi.org/10.1007/S41066-020-00223-5
http://dx.doi.org/10.1109/ACCESS.2020.3020366
http://dx.doi.org/10.3390/SYM13122400
http://dx.doi.org/10.3390/SYM14061126

E. M. A. Butt et al.: Study of CDFG With Application in Decision Making Problems

IEEE Access

WAQAS MAHMOOD is an Associate Profes-
sor of mathematics with Quaid-I-Azam University,
Islamabad, Pakistan. His research interests include
homological algebra, fuzzy algebra, commutative
algebra, and fuzzy graph theory.

FERDOUS M. O. TAWFIQ is an Assistant Professor with the Depart-
ment of Mathematics, College of Science, King Saud University, Riyadh,
Saudi Arabia. Her research interests include numerical analysis, fuzzy graph
theory, and algebra.

VOLUME 10, 2022

'.'1 b ) M'/‘
Al

QIN XIN received the Ph.D. degree from the
Department of Computer, University of Liverpool,
UK., in December 2004. Currently, he is work-
ing as a Full Professor of computer science and
the Faculty Research Leader with the Faculty of
Science and Technology, University of the Faroe
Islands (UoFI), Faroe Islands. His main research
interests include design and analysis of sequen-
tial, parallel, and distributed algorithms for vari-
ous communication and optimization problems in

wireless communication networks, fuzzy graph, and cryptography and digital
currencies, including quantum money.

MUHAMMAD SHOAIB received the M.Phil.
degree in mathematics from the University of the
Punjab, Lahore. He is a Lecturer with Ghazi Uni-
versity, Dera Ghazi Khan. His research interests
include fuzzy logic, fuzzy graph, and algebra.

102075



