
Received 3 September 2022, accepted 15 September 2022, date of publication 21 September 2022,
date of current version 30 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3208279

A Study of Complex Dombi Fuzzy Graph With
Application in Decision Making Problems
EHSAN MEHBOOB AHMED BUTT1, WAQAS MAHMOOD1,
FERDOUS M. O. TAWFIQ2, QIN XIN 3, AND MUHAMMAD SHOAIB 4
1Department of Mathematics, Quaid-I-Azam University, Islamabad 45320, Pakistan
2Department of Mathematics, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
3Faculty of Science and Technologhy, University of Faroe Islands, Tórshavn, 100 Faroe Islands, Denmark
4Department of Mathematics, Ghazi University, Dera Ghazi Khan 32200, Pakistan

Corresponding author: Muhammad Shoaib (muhammadshoaibe14@gmail.com)

This work was supported by the Researchers Supporting Project, King Saud University, Riyadh, Saudi Arabia, under Grant RSP2022R440.

1

2

3

4

5

6

7

8

9

10

ABSTRACT A complex fuzzy set (CFS) is a generalization of a fuzzy set (FS) in which a limit of degrees
occurs on the complex plane with unit disc. The averaging operators are a key part of turning all the data
into one value. Dombi operators have exceptional flexibility with operating factors, and they are particularly
efficient in decision-making problems. In this paper, we establish a complex dombi fuzzy graph (CDFG).
We implement dombi operators on CFSs to extend graph nomenclature. We define the complement of CDFG
with an example. The idea of self-complementary in CDFG is discussed. The concepts of homomorphism,
isomorphism, weak isomorphism, and co-weak isomorphism of two CDFGs are discussed. We define
regular and entirely regular graphs with sufficient elaboration and examine their key properties. Furthermore,
significant characteristics are used to explain the edge regularity of CDFG. Lastly, we establish an application
of CDFG in decision making problems.
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INDEX TERMS CDFG, complement, self complementary of CDFG, homomorphism, isomorphism, weak
isomorphism, co-weak isomorphism, regular and totally regular CDFG, application.

I. INTRODUCTION13

Due to the existence of unclear data, Zadeh [20] created the14

concept of a FS, which is an extension of the crisp set theory.15

A FS consists of a true membership function that belongs to16

a closed interval [0, 1]. The FS has many applications in the17

area of science.18

Menger [12] introduced triangle norms and conorms in19

the context of probabilistic metric spaces, later defined and20

analysed by Schweizer and Sklar [13]. Numerous additional21

researchers have proposed alternative T-operators [5], [10].22

Zadeh’s conventional T-operators, min and max, are widely23

employed in fuzzy logic, especially in decision-making and24

fuzzy graph theory. It is commonly recognised that alternative25

T-operators function better in specific contexts, especially in26

decision-making procedures. Examples of preferable opera-27

tors include products [6]. When choosing T-operators for a28
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approving it for publication was Yiming Tang .

certain application, one must evaluate their features, model 29

applicability, simplicity, software and hardware implementa- 30

tion, etc. As the study of these operators has grown, more 31

alternatives for selecting T-operators have emerged. 32

Graphs have many applications in the field of operational 33

research and computer science. A graph is a visual repre- 34

sentation of links between several items that is useful for 35

elaborating on information. However, haziness turns a graph 36

into a fuzzy graph. Fuzzy graphs are intended to portray as 37

a matter of degree structures of connections (in the form of 38

edges) between tangible objects (nodes). Fuzzy graphs have 39

a wide variety of applications, including decision-making, 40

database theory, cluster analysis, and network optimization. 41

Kaufman [11] firstly proposed the concept of fuzzy graph. 42

After that, Rosenfeld [14] studied fuzzy relations on fuzzy 43

sets and used max and min operations to construct the 44

structure of fuzzy graphs, resulting in analogues of numer- 45

ous graph-theoretical ideas. Bhattacharya [4] made some 46

comments on fuzzy graphs. Reference [16] described new 47
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operations on picture fuzzy graph. Recently, a few researchers48

are contributing their efforts in filed of fuzzy theory49

[7], [8], [9], [17], [18], [19].50

Fuzzy graph theory makes it simple to structure and51

model uncertain decision-making issues. In the discipline of52

graph theory, only a small amount of work is put towards53

using the Dombi operator. As a result, Ashraf et al. [3] pro-54

posed the Dombi fuzzy graph (DFG). Ramot et al. [15] pre-55

sented the concept of CFS in which a range of degrees occurs56

in the complex plane with unit disk. Akram and Khan [1]57

studied complex pythagorean fuzzy graph in decision making58

problem.59

The following is a summary of the motivation for this60

paper:61

•When faced with one-dimensional phenomena of impre-62

cise and intuitive knowledge, a CFS is capable of coping with63

the situation effectively. There is no information loss due to64

the phase term of the CFS.65

• As a result of incorporating the qualities of numerous66

frequently used operators, Dombi operators have a broader67

range of applications and are extremely efficient in decision-68

making.69

The following are the key points of this paper:70

• The notion of CDFG is initiated.71

• The concept of the degree and total degree of a node72

in both phase terms and amplitude terms are discussed with73

examples.74

•We define complement, self-complementary, homomor-75

phism, isomorphism, weak isomorphism and co-weak iso-76

morphism with their properties.77

•We define strong CDFG and complete CDFG.78

• We introduce regular and totally regular graphs with79

appropriate elaboration, and their pivotal properties are dis-80

cussed.81

The following is the structure of this paper:82

We presented some basic definitions which will help to83

understand the paper in Section II. In section III, we study84

the notion of CDFG, the degree and total degree of a node,85

complement, self-complementary, homomorphism, isomor-86

phism, weak isomorphism, co-weak isomorphism, strong87

CDFG, complete CDFG, regular and totally regular graphs88

with appropriate elaboration, and their pivotal properties are89

discussed. In Section IV, application of CDFG is discussed.90

At the end, we write the conclusion and some future plans in91

Section V.92

II. PRELIMINARIES93

Definition 1 [1]: A FS on a universe ψ is an object of the94

following form C = {< g, ςC(g) > |g ∈ ψ}, where ςA : ψ →95

[0, 1] denotes the membership value of C.96

Definition 2 [1]: A FS on ψ × ψ is called fuzzy relation97

onψ , denoted byF = {< xy, ςF (xy) > |xy ∈ ψ×ψ}, where98

ςB : ψ × ψ → [0, 1] denotes the membership value of F .99

Definition 3 [1]: A fuzzy graph on ψ 6= φ is a pair τ =100

(C,F) with C a FS on ψ and F a fuzzy relation on ψ such101

that ςF (xy) ≤ ςC(x) ∧ ςC(y) for all x, y ∈ ψ .102

Definition 4 [1]: A : [0, 1] × [0, 1] → [0, 1] binary 103

function known as triangular norm (t-norm) if for all x, y, 104

r ∈ [0,1], it follows the following axioms: 105

1. A(x, 1) = x. 106

2. A(x, y) = A(y, x). 107

3. A(x,A(y, r)) = A(A(x, y), r). 108

4. A(x, y) ≤ A(r, s) if x ≤ r and y ≤ s. 109

Interchanging 1 by 0 in axiom (1), we get the idea of 110

triangular conorm (t-conorm). 111

Following are some popular t-norms: 112

•M(x, y) = min(x, y). (minimum operator M) 113

• P(x, y) = xy. (product operator P) 114

•W(x, y) = max(x+y−1, 0). (Lukasiewicz’s t-normW) 115

• D(x, y) = 1
1+[( 1−xx )λ+( 1−yy )λ]1/λ

: λ > 0. (Dombi’s t-norm 116

D) 117

By putting λ = 1 in dombi’s t-norm, we obtain one more 118

T-operator that is T (x, y) = xy
x+y−xy . 119

The corresponding t-conorms are as follows: 120

•M∗(x, y) = max(x, y). (maximum operatorM∗) 121

• P∗(x, y) = x + y− xy. (probabilistic sum P∗) 122

•W∗(x, y) = min(x+y, 1). (Lukasiewicz’s t-conormW∗) 123

• D∗(x, y) = 1
1+[( 1−xx )−λ+( 1−yy )−λ]1/−λ

: λ > 0. (Dombi’s t- 124

conorm D∗) 125

By putting λ = 1 in dombi’s t-conorm, we obtain one more 126

T-operator that is S(g, h) = g+h−2gh
1−gh . 127

Definition 5 [1]: A DFG on V (underlying set) is an 128

ordered pair τ = (C,F), where F : V × V → [0, 1] is a 129

symmetric fuzzy relation on C and C : V → [0, 1] is a fuzzy 130

subset in V such that 131

ςF (gh) ≤
ςC(g)ςC(h)

ςC(g)+ ςC(h)− ςC(g)ςC(h)
132

for all g,h∈ V , where ςC and ςF denotes the membership 133

values of C and F respectively. 134

Definition 6 [1]: A complex fuzzy set (CFS) on a universe 135

ψ is an object of the form C = {< g, ςC(g)eiϑC (g) > |g ∈ ψ}, 136

i =
√
−1, where ςC : ψ → [0, 1] is a real valued function 137

represents the membership value and ϑC(g) ∈ [0, 2π ], for all 138

g ∈ ψ . Note that ςC(g) is called amplitude term and ϑC(g) is 139

called phase term. 140

Definition 7 [1]: A CFS on ψ × ψ is said to be 141

complex fuzzy relation (CFR) denoted by F = {< 142

gh, ςF (gh)eiϑF (gh) > |gh ∈ ψ × ψ}, i =
√
−1, where 143

ςF : ψ × ψ → [0, 1] represents the membership value and 144

ϑF (gh) ∈ [0, 2π ], for all gh ∈ ψ . Note that ςF (gh) is called 145

amplitude term and ϑF (gh) is called phase term. 146

III. CDFG 147

Definition 8: A CDFG on a universe ψ is an ordered pair 148

τ = (C,F), where C = (g, ςCeiϑC ) : ψ → {z : z ∈ C, |Z | ≤ 149

1} is a CFS subset in ψ and F = (gh, ςFeiϑF ) : ψ × ψ → 150

{z : z ∈ C, |Z | ≤ 1} is a complex fuzzy relation (CFR) on C 151

such that for amplitude term 152

ςF (gh) ≤
ςC(g)ςC(h)

ςC(g)+ ςC(h)− ςC(g)ςC(h)
, 153
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FIGURE 1. G1 ◦ G2.

and for phase term154

ϑF (gh) ≤
ϑC(g)ϑC(h)

ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)
,155

for all g,h∈ ψ , where i =
√
−1, and ϑF (gh) ∈ [0, 2π ].156

We call C andF the complex fuzzy node set and complex fuzzy157

edge set, respectively.158

Example 1: Let τ = (C,F) be a CDFG on τ ∗ = (ψ,A)159

as shown in Figure 1, where ψ = {g, h, r, s} and A =160

{gh, pr, ps, qs}. The set of nodes C and set of arcs F of τ161

are defined on ψ and A, respectively.162

C=<
g

0.5ei2π (0.4)
,

h
0.4ei2π (0.3)

,
r

0.45ei2π (0.5)
,

s
0.3ei2π (0.6)

>163

and164

F =<
gh

0.2ei2π (0.19)
,

pr
0.3ei2π (0.25)

,165

ps
0.13ei2π (0.3)

,
qs

0.17ei2π (0.2)
>166

By calculations, one can see that τ = (C,F) is a CDFG.167

Definition 9: Let F = {(gh, ςF (gh)eiϑF (gh))|gh ∈ A} be168

a set of arcs in CDFG τ , then169

• The degree of node g ∈ ψ for amplitude term is denoted170

by Dτ (g) = Dς (g), where171

Dς (g) =
∑

g,h 6=g∈ψ

ςF (gh)172

=

∑
g,h 6=g∈ψ

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

.173

The degree of a node g ∈ ψ for a phase term is expressed174

by Dτ (g) = Deiϑ (g), where175

Deiϑ (g) =
∑

g,h 6=g∈ψ

ϑF (gh)176

=

∑
g,h 6=g∈ψ

ϑC(g)ϑC(h)
ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)

.177

• The total degree of node g ∈ ψ for amplitude term is178

expressed by T Dτ (g) = T Dς (g), where179

T Dς (g) =
∑

g,h 6=g∈ψ

ςF (gh) + ςA(g)180

=

∑
g,h 6=g∈ψ

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

+ ςA(g).181

The total degree of a node g ∈ ψ for a phase term is 182

expressed by T Dτ (g) = T Deiϑ (g), where 183

T Deiϑ (g) =
∑

g,h 6=g∈ψ

ϑF (gh) + ϑA(g) 184

=

∑
g,h 6=g∈ψ

ϑC(g)ϑC(h)
ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)

+ ϑA(g). 185

Example 2: From above example, we have 186

• The degree of nodes in τ are as follows: 187

Dτ (g) = 0.63ei2π (0.74), 188

Dτ (h) = 0.37ei2π (0.39), 189

Dτ (r) = 0.3ei2π (0.25), 190

Dτ (s) = 0.3ei2π (0.5), 191

• The total degree of nodes in τ are as follows: 192

T Dτ (g) = 1.13ei2π (1.14), 193

T Dτ (h) = 0.77ei2π (0.69), 194

T Dτ (r) = 0.75ei2π (0.75), 195

T Dτ (s) = 0.6ei2π (1.1), 196

Definition 10: Let τ = (C,F) be a CDFG on a graph 197

τ ∗ = (ψ,A). The complement of τ for amplitude term is 198

determined by: 199

1. ςC̄(g) = ςC(g). 200

2. ςF̄ (gh) =



ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

,

if ςF (gh) = 0.

(
ςC(g)ςC(h)

ςC(g)+ ςC(h)− ςC(g)ςC(h)
− ςF (gh))

if 0 < ςF (gh) ≤ 1.

201

Similarly the complement of τ for phase term is determined 202

by: 203

1. ϑC̄(g) = ϑC(g). 204

2.ϑF̄ (gh) =



ϑC(g)ϑC(h)
ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)

,

if ϑF (gh) = 0.

(
ϑC(g)ϑC(h)

ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)
− ϑF (gh))

if 0 < ϑF (gh) ≤ 2π.

205

Further, the complement of a CDFG τ is denoted by τ̄ = 206

(C̄, F̄). 207

Definition 11: A homomorphism Z : τ → G′ of two 208

CDFGs τ = (C,F) and G′ = (C′,F ′) is a mapping Z : 209

ψ → ψ ′ satisfying 210

1. ςC(g) ≤ ςC′ (Z(g)), ϑC(g) ≤ ϑC′ (Z(g)), for all g ∈ ψ . 211

2. ςF (gh) ≤ ςF ′ (Z(g)Z(h)), ϑF (gh) ≤ ϑF ′ (Z(g)Z(h)), 212

for all gh ∈ A. 213

Definition 12: An isomorphism Z : τ → G′ of two 214

CDFGs τ = (C,F) and G′ = (C′,F ′) is a bijective mapping 215

Z : ψ → ψ ′ satisfying 216

1. ςC(g) = ςC′ (Z(g)), ϑC(g) = ϑC′ (Z(g)) for all g ∈ ψ . 217

2. ςF (gh) = ςF ′ (Z(g)Z(h)), ϑF (gh) = ϑF ′ (Z(g)Z(h)) 218

for all gh ∈ A1. 219

Definition 13: A weak isomorphism Z : τ → G′ of two 220

CDFGs τ = (C,F) and G′ = (C′,F ′) is a bijective mapping 221

Z : ψ → ψ ′ satisfying 222
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1. Z is a homomorphism.223

2. ςC(g) = ςC′ (Z(g)), ϑC(g) = ϑC′ (Z(g)) for all g ∈ ψ .224

Definition 14: An co-weak isomorphism Z : τ → G′ of225

two CDFGs τ = (C,F) and G′ = (C′,F ′) is a bijective226

mapping Z : ψ → ψ ′ satisfying227

1. Z is a homomorphism.228

2. ςF (gh) = ςF ′ (Z(g)Z(h)), ϑF (gh) = ϑF ′ (Z(g)Z(h))229

for all gh ∈ A.230

Definition 15: A CDFG τ = (C,F) is called self comple-231

mentary if τ̄ ∼= τ .232

Proposition 1: If τ = (C,F) is a self complementary233

CDFG, then234 ∑
g 6=h

ςF (gh) =
1
2
(
∑
g 6=h

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

),235

∑
g6=h

ϑF (gh) =
1
2
(
∑
g 6=h

ϑC(g)ϑC(h)
ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)

),236

Proof: Suppose that τ is a self complementary CDFG,237

then there occurs an isomorphism Z : ψ → ψ such that238

ςC(Z(g)) = ςC(g), ϑC(Z(g)) = ϑC(g) for all g ∈ ψ.239

ςF (Z(g)Z(h)) = ςF (gh),240

ϑF (Z(g)Z(h)) = ϑF (gh) for all gh ∈ A.241

By using definition of complement, we have242

ςF (Z(g)Z(h))243

=
ςC(Z(g))ςC(Z(h))

ςC(Z(g))+ ςC(Z(h))− ςC(Z(g))ςC(Z(h))
244

− ςF (Z(g)Z(h)).245

ςF (gh)246

=
ςC(g)ςC(h)

ςC(g)+ ςC(h)− ςC(g)ςC(h)
− ςF (Z(g)Z(h)),247 ∑

g 6=h

ςF (gh)248

=

∑
g 6=h

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

−

∑
g 6=h

ςF (Z(g)Z(h)),249

∑
g 6=h

ςF (gh)+
∑
g6=h

ςF (Z(g)Z(h))250

=

∑
g 6=h

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

,251

2
∑
g 6=h

ςF (gh)252

=

∑
g 6=h

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

,253

∑
g 6=h

ςF (gh)254

=
1
2

∑
g6=h

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

,255

Similarly, the phase term can be proved. �256

Proposition 2: If a CDFG G = (A,B) on an underlying 257

graph τ ∗ = (ψ,A) satisfy the following: 258

ςF (gh) =
1
2
(

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

), 259

ϑF (gh) =
1
2
(

ϑC(g)ϑC(h)
ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)

), 260

for all g,h∈ ψ , then τ is self complementary. 261

Proof: Consider τ is CDFG that satisfies 262

ςF (gh) =
1
2
(

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

), 263

for all g,h∈ψ , then the identity mapping I : ψ → ψ 264

is an isomorphism from τ to τ̄ that satisfies the following 265

conditions: 266

ςC(I(g)) = ςC(g), ϑC(I(g)) = ϑC(g), for all g ∈ ψ. 267

Since the membership value of an edge set gh is given by 268

ςF (gh) =
1
2
(

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

), for all g, h ∈ ψ. 269

We have 270

ςF (I(g)I(h)) 271

= ςF (gh) =
ςC(g)ςC(h)

ςC(g)+ ςC(h)− ςC(g)ςC(h)
− ςF (gh) 272

=
ςC(g)ςC(h)

ςC(g)+ ςC(h)− ςC(g)ςC(h)
273

−
1
2
(

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

) 274

=
1
2
(

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

) 275

= ςF (gh). 276

Similarly the phase term condition of isomorphism 277

ϑF (I(g)I(h)) = ϑF (gh), 278

is satisfied by I. Hence G = (A,B) is self complementary. � 279

Proposition 3: Let τ = (C,F) and G′ = (C′,F ′) be two 280

CDFGs, then τ ∼= G′ iff τ̄ ∼= τ̄ ′. Proof: Suppose that 281

τ and G′ are two isomorphic CDFGs. Then by definition of 282

isomorphism, there occur a bijective mapping Z : ψ → ψ ′ 283

that satisfies 284

ςC(g) = ςC′ (Z(g)), ϑC(g) = ϑC′ (Z(g)) for all g ∈ ψ1. 285

ςF (gh) = ςF ′ (Z(g)Z(h)), 286

ϑF (gh) = ϑF ′ (Z(g)Z(h)) for all gh ∈ A1. 287

By using definition of complement, themembership of an edge 288

gh is 289

ςF (gh) =
ςC(g)ςC(h)

ςC(g)+ ςC(h)− ςC(g)ςC(h)
− ςF (gh), 290

ςF (gh) =
ςC′ (Z(g))ςC′ (Z(h))

ςC′ (Z(g))+ ςC′ (Z(h))− ςC′ (Z(g))ςC′ (Z(h))
291
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− ςF ′ (Z(g)Z(h)),292

ςF (gh) = ςF ′ (Z(g)Z(h)).293

Similarly for the phase term,294

ϑF (gh) =
ϑC(g)ϑC(h)

ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)
− ϑF (gh),295

ϑF (gh) =
ϑC′ (Z(g))ϑC′ (Z(h))

ϑC′ (Z(g))+ ϑC′ (Z(h))− ϑC′ (Z(g))ϑC′ (Z(h))
296

−ϑF ′ (Z(g)Z(h)),297

ϑF (gh) = ϑF ′ (Z(g)Z(h)).298

We conclude that the complement of τ is isomorphic to the299

complement of G′. Similarly, we can prove its converse part.300

�301

Proposition 4: Let τ = (C,F) and G′ = (C′,F ′) be302

two weak isomorphic CDFGs, then τ̄ and Ḡ′ are also weak303

isomorphic to each other. Proof: Suppose that τ and304

G′ are two weak isomorphic CDFGs. Then utilizing the def-305

inition of weak isomorphism, there exist a bijective mapping306

Z : ψ → ψ ′ that satisfies307

ςC(g) = ςC′ (Z(g)), ϑC(g) = ϑC′ (Z(g)) for all g ∈ ψ1.308

and309

ςF (gh) ≤ ςF ′ (Z(g)Z(h)),310

ϑF (gh) ≤ ϑF ′ (Z(g)Z(h)) for all gh ∈ A1.311

For the membership value of an edge, we have312

ςF (gh) ≤ ςF ′ (Z(g)Z(h))313

− ςF (gh) ≥ −ςF ′ (Z(g)Z(h))314

T (ςC(g), ςC(h))− ςF (gh)315

≥ T (ςC(g), ςC(h))− ςF ′ (Z(g)Z(h))316

T (ςC(g), ςC(h))− ςF (gh)317

≥ T (ςC′ (Z(g)), ςC′ (Z(h)))− ςF ′ (Z(g)Z(h))318

ςF (gh) ≥ ςF ′ (Z(g)Z(h)).319

Similarly for the phase term320

ϑF (gh) ≤ ϑF ′ (Z(g)Z(h))321

−ϑF (gh) ≥ −ϑF ′ (Z(g)Z(h))322

T (ϑC(g), ϑC(h))− ϑF (gh)323

≥ T (ϑC(g), ϑC(h))− ϑF ′ (Z(g)Z(h))324

T (ϑC(g), ϑC(h))− ϑF (gh)325

≥ T (ϑC′ (Z(g)), ϑC′ (Z(h)))− ϑF ′ (Z(g)Z(h))326

ϑF (gh) ≥ ϑF ′ (Z(g)Z(h)).327

Hence we conclude that complement of τ is weak isomorphic328

to the complement of G′. �329

Definition 16: A CDFG is said to be complete if 330

ςF (gh) =
ςC(g)ςC(h)

ςC(g)+ ςC(h)− ςC(g)ςC(h)
, 331

ϑF (gh) =
ϑC(g)ϑC(h)

ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)
, 332

for all g,h∈ ψ . 333

Definition 17: A CDFG is said to be strong if 334

ςF (gh) =
ςC(g)ςC(h)

ςC(g)+ ςC(h)− ςC(g)ςC(h)
, 335

ϑF (gh) =
ϑC(g)ϑC(h)

ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)
, 336

for all gh∈A. 337

Definition 18: Let τ = (C,F) be a strong CDFG on a 338

graph τ ∗ = (ψ,A). The complement of τ for amplitude term 339

is represented by: 340

1. ςC̄(g) = ςC(g). 341

2. ςF̄ (gh) =


ςC(g)ςC(h)

ςC(g)+ ςC(h)− ςC(g)ςC(h)
,

if ςF (gh) = 0.
0, if 0 < ςF (gh) ≤ 1.

342

Similarly the complement of τ for phase term is represented 343

by: 344

1. ϑC̄(g) = ϑC(g). 345

2. ϑF̄ (gh) =


ϑC(g)ϑC(h)

ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)
,

if ϑF (gh) = 0.
0, if 0 < ϑF (gh) ≤ 2π.

346

Further, the complement of a strong CDFG τ is expressed 347

by τ̄ = (C̄, F̄). 348

Remark 1: Every complete CDFG is strong. 349

Definition 19: A CDFG τ = (C,F) on a graph τ ∗ = 350

(ψ,A) is known as regular of degree R1eiR
∗

1 or R1eiR
∗

1 - 351

regular if its every node has equal degree, i.e, 352

Dς (g) =
∑

g,h 6=g∈ψ

ςF (gh) = R1, 353

Deiϑ (g) =
∑

g,h 6=g∈ψ

ϑF (gh) = R∗1, 354

for all g ∈ ψ 355

Example 3: Let τ = (C,F) be a CDFG on τ ∗ = (ψ,A) 356

as shown in Figure 2, where ψ = {g, h, r, s} and A = 357

{gh, qr, ps, rs}. The set of nodes C and set of edges F of τ 358

are defined on ψ and A, respectively. 359

C = <
g

0.5ei2π (0.4)
,

h
0.5ei2π (0.4)

,
r

0.5ei2π (0.4)
,

s
0.5ei2π (0.4)

> 360

and 361

F =<
gh

0.3ei2π (0.2)
,

qr
0.3ei2π (0.2)

,
ps

0.3ei2π (0.2)
,

rs
0.3ei2π (0.2)

> 362

By calculations, one can see that τ = (C,F) is a 0.6ei2π (0.4)- 363

regular CDFG. 364

102068 VOLUME 10, 2022



E. M. A. Butt et al.: Study of CDFG With Application in Decision Making Problems

FIGURE 2. Regular-CDFG.

FIGURE 3. Totally Regular-CDFG.

Definition 20: A CDFG τ = (C,F) on a graph τ ∗ =365

(ψ,A) is called totally regular of degree T1eiT
∗

1 or T1eiT
∗

1 -366

totally regular if its each node has same total degree, i.e,367

T Dς (g) =
∑

g,h6=g∈ψ

ςF (gh) + ςC(g) = T1,368

T Deiϑ (g) = =
∑

g,h6=g∈ψ

ϑF (gh) + ϑC(g) = T ∗1 ,369

for all g ∈ ψ.370

Example 4: Let τ = (C,F) be a CDFG on τ ∗ = (ψ,A)371

as shown in Figure 3, where ψ = {g, h, r, s} and A =372

{gh, qr, ps, rs}. The set of nodes C and set of edges F of τ373

are defined on ψ and A, respectively.374

C =<
g

0.45ei2π (0.35)
,

h
0.45ei2π (0.35)

,375

r
0.45ei2π (0.35)

,
s

0.45ei2π (0.35)
>376

and377

F =<
gh

0.25ei2π (0.2)
,

qr
0.15ei2π (0.2)

,378

ps
0.15ei2π (0.2)

,
rs

0.25ei2π (0.2)
>379

By calculations, one can see that τ = (C,F) is a380

0.85ei2π (0.75)-totally regular CDFG.381

Theorem 1: Consider a CDFG τ = (C,F) which is iso-382

morphic to another CDFG G′ = (C′,F ′);383

1. If τ is regular CDFG, then G′ is also regular CDFG.384

2. If τ is totally regular CDFG, then G′ is also totally385

regular CDFG.386

Proof: 1. Suppose that τ is isomorphic to G′ and τ is387

R1eiR
∗

1 -regular CDFG, therefore degree of each node of τ is388

given by389

Dτ (g) = Dςeiϑ (g)390

Dτ (g) =
∑
gh∈A

ςF (gh)e
i(

∑
gh∈A

ϑF (gh))
391

Dτ (g) =
∑

g,h 6=g∈ψ

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

392

× e
i(

∑
g,h 6=g∈ψ

ϑC (g)ϑC (h)
ϑC (g)+ϑC (h)−ϑC (g)ϑC (h) )

393

= R1eiR
∗

1 . 394

Since τ ∼= G′, we must have 395

R1eiR
∗

1 396

= Dςeiϑ (g) 397

=

∑
gh∈A

ςF (gh)e
i(

∑
gh∈A

ϑF (gh))
398

=

∑
g,h 6=g∈ψ

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

399

× e
i(

∑
g,h 6=g∈ψ

ϑC (g)ϑC (h)
ϑC (g)+ϑC (h)−ϑC (g)ϑC (h) )

. 400

=

∑
g,h 6=g∈ψ

ςC′ (Z(g))ςC′ (Z(h))
ςC′ (Z(g))+ ςC′ (Z(h))− ςC′ (Z(g))ςC′ (Z(h))

401

× e
i(

∑
g,h 6=g∈ψ

ϑC′ (Z(g))ϑC′ (Z(h))
ϑC′ (Z(g))+ϑC′ (Z(h))−ϑC′ (Z(g))ϑC′ (Z(h)) )

, 402

=

∑
gh∈A

ςF ′ (Z(g)Z(h))e
i(

∑
gh∈A

ϑF ′ (Z(g)Z(h)))
403

= D
ς ′eiϑ ′ (g) 404

= DG′ (g) 405

Thus, G′ is aR1eiR
∗

1 -regular CDFG. 406

2. Suppose that τ is isomorphic toG′ and τ is T1eiT
∗

1 -totally 407

regular CDFG, therefore the total degree of each node of G 408

is given by 409

T Dτ (g) = T Dς (g) 410

= (
∑
gh∈A

ςF (gh)+ ςC(g) 411

= (
∑

g,h6=g∈ψ

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

+ ςC(g), 412

= T1. 413

Since τ ∼= G′, we must have 414

T1 = T Dς (g) 415

=

∑
gh∈A

ςF (gh)+ ςC(g) 416

=

∑
g,h 6=g∈ψ

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

+ ςC(g) 417

=

∑
g,h 6=g∈ψ

ςC′ (Z(g))ςC′ (Z(h))
ςC′ (Z(g))+ ςC′ (Z(h))− ςC′ (Z(g))ςC′ (Z(h))

418

+ ςC′ (Z(g)), 419

=

∑
gh∈A

ςF ′ (Z(g)Z(h))+ ςC′ (Z(g)) 420

= T Dς ′ (g) 421

= T DG′ (g). 422
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Also for phase term,423

T Dτ (g) = T Deiϑ (g)424

=

∑
gh∈A

ϑF (gh)+ ϑC(g)425

=

∑
g,h 6=g∈ψ

ϑC(g)ϑC(h)
ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)

+ ϑC(g)426

= T ∗1 .427

Since τ ∼= G′, we must have428

T ∗1 = T Deiϑ (g)429

=

∑
gh∈A

ϑF (gh)+ ϑC(g)430

=

∑
g,h6=g∈ψ

ϑC(g)ϑC(h)
ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)

+ ϑC(g)431

=

∑
g,h6=g∈ψ

ϑC′ (Z(g))ϑC′ (Z(h))
ϑC′ (Z(g))+ϑC′ (Z(h))−ϑC′ (Z(g))ϑC′ (Z(h))

432

+ϑC′ (Z(g))433

=

∑
gh∈A

ϑF ′ (Z(g)Z(h))+ ϑC′ (Z(g))434

= T Dϑ ′ (g)435

= T DG′ (g).436

�437

Theorem 2: Suppose that τ = (C,F) is a CDFG on a438

graph τ ∗ = (ψ,A) with ςCeiϑC as a constant function, then439

τ = (C,F) is a regular CDFG if and only if τ is totally440

regular CDFG. Proof: Suppose that ςCeiϑC is a constant441

function, i.e, ςC(g)eiϑC (g) = c1eic
∗

1 is a constant function for442

all g ∈ ψ , where c1eic
∗

1 is constant.443

Suppose that τ = (C,F) isR1eiR
∗

1 -regular CDFG, then444

Dς (g) =
∑

g,h 6=g∈ψ

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

= R1,445

Deiϑ (g) =
∑

g,h 6=g∈ψ

ϑC(g)ϑC(h)
ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)

= R∗1,446

The total degree of a node is given by447

T Dς (g) =
∑

g,h 6=g∈ψ

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

448

+ ςC(g) = R1 + c1,449

T Deiϑ (g) =
∑

g,h 6=g∈ψ

ϑC(g)ϑC(h)
ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)

450

+ϑC(g) = R∗1 + c
∗

1,451

Hence, τ is a (R1 + c1)ei(R
∗

1+c
∗

1)-totally regular CDFG.452

Conversely, suppose that τ = (C,F) is T1eiT
∗

1 -totally453

regular CDFG, then454

T Dς (g) =
∑

g,h 6=g∈ψ

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

455

+ ςC(g) = T1, 456∑
g,h 6=g∈ψ

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

+ c1 = T1, 457

∑
g,h 6=g∈ψ

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

= T1 − c1, 458

Dς (g) = T1 − c1 = R1. 459

T Deiϑ (g) =
∑

g,h 6=g∈ψ

ϑC(g)ϑC(h)
ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)

460

+ϑC(g) = T ∗1 , 461∑
g,h 6=g∈ψ

ϑC(g)ϑC(h)
ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)

462

+ c∗1 = T ∗1 , 463∑
g,h 6=g∈ψ

ϑC(g)ϑC(h)
ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)

= T ∗1 − c
∗

1, 464

Deiϑ (g) = T ∗1 − c
∗

1 = R∗1. 465

So τ is aR1eiR
∗

1 -regular CDFG. � 466

Theorem 3: Suppose that τ = (C,F) is a CDFG on a 467

graph τ ∗ = (ψ,A). If τ is both R1eiR
∗

1 -regular and T1eiT
∗

1 - 468

totally regular CDFG, then ςCeiϑC is a constant function. 469

Proof: Suppose that τ is R1eiR
∗

1 -regular and T1eiT
∗

1 -totally 470

regular CDFG. Then, then the degree of a node is given by 471

Dς (g) =
∑

g,h 6=g∈ψ

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

= R1, 472

Deiϑ (g) =
∑

g,h 6=g∈ψ

ϑC(g)ϑC(h)
ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)

= R∗1, 473

The total degree of a node is given by 474

T Dς (g) =
∑

g,h 6=g∈ψ

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

475

+ ςC(g) = T1, 476

T Deiϑ (g) =
∑

g,h 6=g∈ψ

ϑC(g)ϑC(h)
ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)

477

+ϑC(g) = T ∗1 , 478

It follows that 479

T Dς (a) = R1 + ςC(g) = T1, 480

ςC(g) = T1 −R1. 481

T Deiϑ (a) = R∗1 + ϑC(g) = T ∗1 , 482

ϑC(g) = T ∗1 −R∗1. 483

Hence, ςCeiϑC = (T1 −R1)ei(T
∗

1 −R∗1) is a constant function. 484

� 485

Remark 2: Converse of above theorem need not to be true 486

as given in the following example. 487

Example 5: Let τ = (C,F) be a CDFG on τ ∗ = (ψ,A) 488

as shown in Figure 4, where ψ = {g, h, r, s} and A = 489
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FIGURE 4. Not Totally Regular nor Regular CDFG.

{gh, ps, qr, rs}. The set of nodes C and set of edges F of τ490

are defined on ψ and A, respectively.491

C =<
g

0.5ei2π (0.42)
,

h
0.5ei2π (0.42)

,492

r
0.5ei2π (0.42)

,
s

0.5ei2π (0.42)
>493

and494

F =<
gh

0.25ei2π (0.12)
,

ps
0.12ei2π (0.17)

,495

qr
0.24ei2π (0.23)

,
rs

0.23ei2π (0.24)
>496

Here ςCeiϑC for g,h,r,s is a constant function. But497

Dτ (g) = 0.37ei2π (0.29) 6= 0.47ei2π (0.47) = Dτ (r)498

and499

T Dτ (g) = 0.87ei2π (0.71) 6= 0.97ei2π (0.89) = T Dτ (r).500

Hence, τ = (C,F) is neither regular nor totally regular501

CDFG.502

Definition 21: Let F = {(gh, ςF (gh)eiϑF (gh))|gh ∈ A} be503

the set of edges in CDFG τ , then504

• The degree of an edge gh ∈ A is represented byDτ (gh) =505

Dςeiϑ (gh), where506

Dς (gh) =
∑

pr∈A,r 6=h
ςF (pr)+

∑
qr∈A,g 6=r

ςF (qr)507

= DςC (g)+DςC (h)− 2ςF (gh)508

= DςC (g)+DςC (h)509

− 2(
ςC(g)ςC(h)

ςC(g)+ ςC(h)− ςC(g)ςC(h)
).510

Deiϑ (gh) =
∑

pr∈A,r 6=h
ϑF (pr)+

∑
qr∈A,g 6=r

ϑF (qr)511

= DϑC (g)+DϑC (h)− 2ϑF (gh)512

= DϑC (g)+DϑC (h)513

− 2(
ϑC(g)ϑC(h)

ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)
).514

• The total degree of an edge gh ∈ A is represented by515

T Dτ (gh) = T Dςeiϑ (gh), where516

T Dς (gh)517

=

∑
pr∈A,r 6=h

ςF (pr)+
∑

qr∈A,g6=r
ςF (qr)+ ςF (gh)518

= DςC (g)+DςC (h)− ςF (gh) 519

= DςC (g)+DςC (h)− (
ςC(g)ςC(h)

ςC(g)+ ςC(h)− ςC(g)ςC(h)
). 520

T Deiϑ (gh) 521

=

∑
pr∈A,r 6=h

ϑF (pr)+
∑

qr∈A,g 6=r
ϑF (qr)+ ϑF (gh) 522

= DϑC (g)+DϑC (h)− ϑF (gh) 523

= DϑC (g)+DϑC (h)− (
ϑC(g)ϑC(h)

ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)
). 524

Definition 22: A CDFG τ = (C,F) is known as an edge 525

regular, if the degree of its each edge is equal, i.e, 526

Dς (gh) = DςC (g)+DςC (h)− 2ςF (gh) 527

= DςC (g)+DςC (h) 528

− 2(
ςC(g)ςC(h)

ςC(g)+ ςC(h)− ςC(g)ςC(h)
) = L1. 529

Deiϑ (gh) = DϑC (g)+DϑC (h) 530

− 2ϑF (gh) 531

= DϑC (g)+DϑC (h) 532

− 2(
ϑC(g)ϑC(h)

ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)
) = L∗1. 533

for all gh ∈ A. τ is called L1eiL
∗

1 -edge regular CDFG. 534

Definition 23: A CDFG τ = (C,F) is known as totally 535

edge regular, if the total degree of its each edge is equal, i.e, 536

T Dς (gh) = DςC (g)+DςC (h)− ςF (gh) 537

= DςC (g)+DςC (h) 538

− (
ςC(g)ςC(h)

ςC(g)+ ςC(h)− ςC(g)ςC(h)
) = K1. 539

T Deiϑ (gh) = DϑC (g)+DϑC (h)− ϑF (gh) 540

= DϑC (g)+DϑC (h) 541

− (
ϑC(g)ϑC(h)

ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)
) = K∗1. 542

for all gh ∈ A. τ is known as K1eiK
∗

1 -totally edge regular 543

CDFG. 544

Example 6: Let τ = (C,F) be a CDFG on τ ∗ = (ψ,A) 545

as shown in Figure 5, where ψ = {g, h, r, s} and A = 546

{gh, ps, qs, pr, qr, rs}. The set of nodes C and set of edges 547

F of τ are defined on ψ and A, respectively. 548

C =<
g

0.45ei2π (0.35)
,

h
0.35ei2π (0.45)

, 549

r
0.5ei2π (0.35)

,
s

0.35ei2π (0.5)
> 550

and 551

F =<
gh

0.11ei2π (0.13)
,

ps
0.11ei2π (0.13)

,
qs

0.11ei2π (0.13)
, 552

pr
0.11ei2π (0.13)

,
qr

0.11ei2π (0.13)
,

rs
0.11ei2π (0.13)

> . 553

Since degree of each edge is 0.44ei2π (0.52) and total degree of 554

each edge is 0.55ei2π (0.65). 555

So, τ = (C,F) is 0.44ei2π (0.52)-edge regular and 556

0.55ei2π (0.65)-totally edge regular CDFG. 557
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FIGURE 5. CDFG.

Theorem 4: Suppose τ = (C,F) is R1eiR
∗

1 -regular558

CDFG. If ςFeiϑF is a constant function, then τ is L1eiL
∗

1 -559

edge regular CDFG. Proof: Suppose that τ = (C,F) is560

aR1eiR
∗

1 -regular CDFG, then561

Dςeiϑ (g) =
∑

g,h 6=g∈ψ

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

562

× e
i(

∑
g,h 6=g∈ψ

ϑC (g)ϑC (h)
ϑC (g)+ϑC (h)−ϑC (g)ϑC (h) )

= R1eiR
∗

1 .563

Now ςFeiϑF is a constant function, therefore,564

ςF (gh)eiϑF (gh)
= c1eic

∗

1 for all gh ∈ A.565

Since the degree of an edge gh ∈ A is given by Dτ (gh) =566

Dςeiϑ (gh), where567

Dς (gh) = DςC (g)+DςC (h)568

− 2(
ςC(g)ςC(h)

ςC(g)+ ςC(h)− ςC(g)ςC(h)
)569

= R1 +R1 − 2c1 = 2(R1 − c1) = L1.570

Deiϑ (gh) = DϑC (g)+DϑC (h)571

− 2(
ϑC(g)ϑC(h)

ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)
)572

= 2R∗1 − 2c∗1 = 2(R∗1 − c
∗

1) = L∗1.573

Hence τ is L1eiL
∗

1 -edge regular CDFG. �574

Theorem 5: Suppose a CDFG τ is L1eiL
∗

1 -edge regular575

and K1eiK
∗

1 -totally edge regular, then ςFeiϑF is a constant576

function. Proof: Suppose that τ is L1eiL
∗

1 -edge regular577

CDFG, then the degree of its every arc is578

Dς (gh) = DςC (g)+DςC (h)579

− 2(
ςC(g)ςC(h)

ςC(g)+ ςC(h)− ςC(g)ςC(h)
) = L1.580

Deiϑ (gh) = DϑC (g)+DϑC (h)581

− 2(
ϑC(g)ϑC(h)

ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)
) = L∗1.582

Also τ isK1eiK
∗

1 -totally edge regular CDFG, then the degree583

of its each edge is584

T Dς (gh) = DςC (g)+DςC (h)585

− (
ςC(g)ςC(h)

ςC(g)+ ςC(h)− ςC(g)ςC(h)
) = K1.586

T Deiϑ (gh) = DϑC (g)+DϑC (h)587

− (
ϑC(g)ϑC(h)

ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)
) = K∗1. 588

Further, it follows that 589

T Dς (gh) = K1 590

DςC (g)+DςC (h)− (
ςC(g)ςC(h)

ςC(g)+ ςC(h)− ςC(g)ςC(h)
) = K1 591

DςC (g)+DςC (h) 592

− 2(
ςC(g)ςC(h)

ςC(g)+ ςC(h)− ςC(g)ςC(h)
)+ ςF (gh) = K1 593

ςF (gh) = K1 −R1. 594

T Dϑ (gh) = K∗1 595

DϑC (g)+DϑC (h)− (
ϑC(g)ϑC(h)

ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)
) = K∗1 596

DϑC (g)+DϑC (h) 597

− 2(
ϑC(g)ϑC(h)

ϑC(g)+ ϑC(h)− ϑC(g)ϑC(h)
)+ ϑF (gh) = K∗1 598

ϑF (gh) = K∗1 −R∗1. 599

Hence, ςFeiϑF is a constant function. � 600

Theorem 6: Suppose τ = (C,F) is a CDFG. Then ςFeiϑF 601

is a constant function if and only if τ is both regular-CDFG 602

and totally edge regular-CDFG. 603

Proof: Suppose that τ is a CDFG. Assume that ςFeiϑF 604

is a constant function, therefore, ςF (gh)eiϑF (gh)
= c1eic

∗

1 for 605

all gh ∈ A, where c1eic
∗

1 is a constant. 606

Since the degree of a node g ∈ ψ is given by Dτ (g) = 607

(Dςeiϑ (g),Dςeiϑ (g),Dκeiρ (g)), where 608

Dςeiϑ (g) =
∑
gh∈A

ςF (gh)e
i(

∑
gh∈A

ϑF (gh))
609

Dςeiϑ (g) =
∑

g,h 6=g∈ψ

ςC(g)ςC(h)
ςC(g)+ ςC(h)− ςC(g)ςC(h)

610

e
i(

∑
g,h 6=g∈ψ

ϑC (g)ϑC (h)
ϑC (g)+ϑC (h)−ϑC (g)ϑC (h) )

611

Dςeiϑ (g) =
∑
gh∈A

c1e
i(

∑
gh∈A

c1)
612

Dςeiϑ (g) = Rc1eiRc∗1 . 613

Thus, τ isRc1eiRc∗1 -regular CDFG. 614

As the total degree of an edge gh ∈ A is given as 615

T Dτ (gh) = T Dςeiϑ (gh), where 616

T Dς (gh) =
∑

pr∈A,r 6=h
ςF (pr)+

∑
qr∈A,g6=r

ςF (qr)+ ςF (gh) 617

=

∑
pr∈A,r 6=h

c1 +
∑

qr∈A,g 6=r
c1 + c1 618

= c1(R− 1)+ c1(R− 1)+ c1 619

= c1(2R− 1). 620

T Dϑ (gh) =
∑

pr∈A,r 6=h
ϑF (pr)+

∑
qr∈A,g 6=r

ϑF (qr)+ ϑF (gh) 621
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=

∑
pr∈A,r 6=h

c∗1 +
∑

qr∈A,g 6=r
c∗1 + c

∗

1622

= c∗1(R− 1)+ c∗1(R− 1)+ c∗1623

= c∗1(2R− 1).624

Hence τ is c1(2R−1)ei(c
∗

1(2R−1))-totally edge regular CDFG.625

So τ is both regular-CDFG and totally edge regular-CDFG.626

Conversely, Let τ be L1eiL
∗

1 -edge regular and K1eiK
∗

1 -627

totally edge regular CDFG. Furthermore, the total degree of628

an edge is given by629

T Dτ (gh) = T Dςeiϑ (gh), where630

T Dς (gh) = DςC (g)+DςC (h)− ςF (gh)631

K1 = R1 +R1 − ςF (gh)632

ςF (gh) = 2R1 −K1.633

T Deiϑ (gh) = DϑC (g)+DϑC (h)− ϑF (gh)634

K∗1 = R∗1 +R∗1 − ϑF (gh)635

ϑF (gh) = 2R∗1 −K∗1.636

for all gh ∈ A.637

Hence, ςFeiϑF is a constant function. �638

IV. APPLICATION639

In this part, we present an algorithm and resolve a problem of640

decision making to choose the best spot to set up an internet641

office in a city. This situation may help us to understand the642

proposed methodology.643

A. ALGORITHM644

The algorithm to determine a suitable location or place for an645

internet office in a city is as follows:646

INPUT: A distinct collection of suitable options P =647

{P1,P2, . . . ,Pn} in certain conditions in order to reach the648

goal of and construction of complex fuzzy preference relation649

(CFPR) Q = (b× h)n×n.650

OUTPUT: The decision of an appropriate choice.651

1. Consider dkq = ςkqeiϑkq (k, h = 1, 2, . . . ., n) and652

collection of choices P = {P1,P2, . . . ,Pn}.653

2. Aggregate all dkq = ςkqeiϑkq (k, h = 1, 2, . . . ., n)654

corresponding to the choice Pk and obtain the complex fuzzy655

element (CFE) dk of the choice Pk over all other choices by656

using Complex Dombi Fuzzy operator.657

dk = CDFoperator(dk1, dk2, . . . , dkn)658

dk = (1−
1

1+ [
∑n

h=1
1
n (

ςkq
1−ςkq

)ξ ]1/ξ
)659

× e

i2π (1− 1

1+[
∑n
h=1

1
n (

ϑkq
2π

1−
ϑkq
2π

)ξ ]1/ξ

)

.660

TABLE 1. CFPR of experts.

FIGURE 6. CDFG directed network.

3. The formula of score functions is given by: 661

s(dk ) = ς +
1
2π
ϑ 662

4. Compute the score function s(dk ) of the combined 663

overall preference value dk (k = 1, 2, . . . ., n) by using the 664

formula of score function. 665

5. Rank all the choices Pk (k = 1, 2, . . . , n) on the basis of 666

score function s(dk ) (k = 1, 2, . . . ., n). 667

6. Output the appropriate option based on the score func- 668

tions derived in step 4 of the procedure. 669

B. SELECTION OF SUITABLE PLACE TO ESTABLISH AN 670

INTERNET OFFICE 671

Telecommunication plays an important role in the develop- 672

mental level of any country. Developed countries have strong 673

telecommunication system. A variety of factors like social 674

interaction, employee, economic growth, job creation, busi- 675

ness productivity are all dependent on telecommunication 676

system. There are many ways of telecommunication includ- 677

ing smart phones features, skype, whatsapp, imo, snapchat, 678

facebook etc. It plays an important role in globalization. The 679

telecommunication through these softwares is dependent on 680

high speed internet. A private internet company decided to 681

build their office in a city for the convenience of its service to 682

the public. They decided three place in a city Pk (k=1,2,3). 683

The company make a pairwise comparison in these three 684

places to build an internet office. Following are some param- 685

eters that are to be observed. 686

• a desirable location to open an office. 687

• Any internet office. 688

• Available resources. 689

• Expenditures and outcomes. 690

• Facilitation for public. 691

The specialists of company give their preference infor- 692

mation in the form of CFPR Q = (dkq)3×3 as shown in 693

Table 1, where dkq = ςkqeiϑkq is a complex fuzzy element 694

(CFE) preferred by the expert. Consider 0.8ei2π (0.7), For the 695

value 0.8, the amplitude term shows that eighty percent of 696

the specialist says P1 is best choice to establish an office 697
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over place P2. Now the phase term 0.7 represents that seventy698

percent of the specialists conclude that P1 location will create699

more time profit for the company over location P2. The CFPR700

Q = (dkq)3×3 is given in Table 1.701

The directed network of CFPR Q represented in702

Table 1 and is shown as in Figure 6.703

To evaluate dkq = ςkqeiϑkq (k,h = 1,2,3) of the place Pk704

over all other places, we use complex dombi fuzzy operator705

(CDFO). We have taken ξ = 1. The combined overall706

preference value dk (k=1,2,3) follows:707

d1 = 0.6ei2π (0.0533)708

d2 = 0.4939ei2π (0.0796)709

d3 = 0.617ei2π (0.1012)710

The score function s(dk ) (k=1,2,3) is calculated by using711

s(dk ) = ς + 1
2π ϑ which is given below:712

s(d1) = 0.6085713

s(d2) = 0.5065714

s(d3) = 0.6331715

We get the ranking order of the four terminals Pk from the716

score functions as follows:717

P3 � P1 � P2718

The ranking leads to the conclusion that P3 is best place to719

establish an internet office.720

V. CONCLUSION721

In order to represent information visually, graphs are quite722

useful. They are also used to model interactions between723

different objects. Graphical models can be found everywhere,724

for example, in manufacturing, communications network725

diagnosis, and a variety of social, biological, and physi-726

cal systems, among other applications. They are extremely727

important since they play a critical role in changing the data728

received from diverse sources in order to establish the out-729

comes of decision-making difficulties. In this paper, the idea730

of CDFG is introduced. A CDFG is extension of DFG. The731

flexibility and comparability of CDFG is much higher. The732

concept of complement of CDFG is defined. The concepts733

of homomorphism, isomorphism, weak isomorphism, and734

co-weak isomorphism of two CDFGs are discussed in details735

with different results. Regular and totally regular CDFGs are736

discussed. At the end, we wrote the application of CDFG.737

In the future work, we will describe some operation on738

CDFG. Energy of CDFG may be discuss.739
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