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ABSTRACT In this study, an adaptive proportional-integral-derivative (PID) sliding mode control technique
combined with the super-twisting algorithm is planned for the stabilization of rotational inverted pendulum
in the appearance of exterior perturbation. The state-space model of rotational inverted pendulum in the
existence of exterior disturbance is attained. Then, the super-twisting PID sliding mode controller is designed
for finite time stability control of the considered underactuated control system. The upper bounds of
perturbation are presumed to be unknown; consequently, the adaptive control procedure is taken into account
to approximate the uncertain bounds of external disturbances. The stability control of rotational inverted
pendulum system is verified by means of the Lyapunov stability theory. In order to validate the accuracy and
efficiency of the recommended control technique, some simulation outcomes are prepared and compared
with other existing scheme. Finally, the experimental results are implemented to show the success of the
designed method.

INDEX TERMS Robust control, adaptive tuning, underactuated systems, sliding mode control, inverted
pendulum.

I. INTRODUCTION trol problem of RIP system is divided into two subsystems.

Rotary (rotational) inverted pendulum (RIP) system is con-
sidered as an underactuated system which has been estab-
lished by Furuta with the help of his college at first [1], [2],
[31, [4], [5], [6]. This system contains a rotational arm and a
pendulum linked at the end of the arm. The arm can move in
the horizontal plane as well as pendulum has movement in the
vertical plane [7], [8], [9], [10], [11], [12], [13]. Various types
of physical systems such as human’s arm motion, control
of position and attitude of aircrafts, and robot system have
been originated from the model of RIP system [14], [15],
[16]. For this reason, stability and control of RIP system is
still in consideration [17], [18], [19], [20]. Hence, the con-
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In the first subsystem, the stability of position and angular
velocity relevant to the arm of RIP system is investigated.
In addition, in the second subsystem, the main goal of con-
trol is the balancing of pendulum to be stand up-right [21],
[22], [23], [24]. Therefore, some control methods including
proportional-integral-derivative (PID), linear quadratic regu-
lator (LQR), linear quadratic Gaussian (LQG), linear matrix
inequality (LMI) [25], sliding mode control (SMC), adaptive-
control, fuzzy logic and neural network [26] techniques have
been applied for both stability and balancing control of RIP
systems [18], [27], [28], [29], [30], [31].

In [32], LOR and LQG methods based on the fuzzy logic
controltechnique has been proposed aimed at stability con-
trol of double-RIP system under perturbation. Besides, these
methods are compared with the classical LOR and LQG
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techniques which confirm better performance of the pro-
posed methods. In [33], an LQR control scheme decoupled
PID control technique is designed in order to stability and
balancing control of RIP systems. In [34], a robust LQR
controller is presented based on the adaptive fuzzy logic
control technique mixed with neural network in the target
of stability and balancing control of RIP system. In [35],
an observer for inverted pendulum system is designed based
on the adaptive technique using auxiliary variable. On the
other hand, an auxiliary observer is used for approxima-
tion of the external disturbance and an adaptive observer is
applied for estimation of states and uncertain parameters.
In [36], an adaptive integral SMC technique is designed for
the wheeled inverted pendulum system in the presence of
external disturbance and parametric uncertainty. In addition,
this method forces that the state of the system is converged
to the origin in the finite time. In [37], the dynamic model
of double inverted pendulum combined with crane system is
presented. Then, an adaptive SMC (ASMC) scheme is pro-
posed for stabilization and tracking control of derived system
by using Lyapunov and LaSalle’s theory [38], [39], [40], [41].
In [42], three methods, i.e., second-order SMC, proportional-
derivative SMC and ASMC are designed for Furuta inverted
pendulum system. To the best of the authors’ knowledge,
no robust adaptive super-twisting sliding mode stability con-
trol method has been investigated for the underactuated
rotary inverted pendulum systems in the presence of external
disturbances.

According to the above-mentioned discussion about the
stability control of RIP system, it can be inferred that
rare researches have paid attention to the finite-time stabi-
lization control of underactuated RIP system in the pres-
ence of external disturbance using adaptive supper-twisting
PID-SMC method. In this paper, firstly, a PID-SMC-based
super-twisting method is used for finite-time stabilization
control of RIP system in the existence of known bounded dis-
turbances. Whereas upper bound of perturbation is unknow,
PID-ASMC mixed super-twisting technique is planned for
the estimation if the upper bound of disturbance which is
entered to the RIP system. Thus, the key novelties of this
paper can be listed as follows:

- Design of PID-SMC combined super-twisting algorithm
for finite-time stability control of RIP system under
known bounded perturbation;

- Proposing of PID-ASMC for stability control
of RIP system with unknown bounded external
disturbance;

- Finite-time reachability of the proposed PID-switching
surface by means of Lyapunov theory concept.

The rest of this paper is formed as follows: in Sect. II,
model description of the RIP system is expressed. The state-
space form of RIP system in the existence of disturbance is
obtained in Sect. III. In Sect. IV, PID-ASMC strategy based
on super-twisting method is presented. Simulation outcomes
are provided in Sect. V. The fundamental conclusion of the
paper is reported in Sect. VL.
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FIGURE 1. Rotational inverted pendulum configuration.

Il. MATHEMATICAL MODEL DESCRIPTION
The schematic configuration of rotary inverted pendulum
system is depicted in Fig.1. Consider #1 and 02 are the
angular displacement of arm and angular displacement of
pendulum, respectively. The terms my, I and ¢ are the
mass, length and distance to the center of arm. Also, ma, [2
and c2 denote the mass, length and distance to pendulum’s
center, correspondingly.

Dynamic equation of rotational inverted pendulum is
expressed as

M@©6+V(0,0)06+GO) =1 )

where 6 = [0, 92]T. The terms M, V, G and t are the mass,
Coriolis and Centripetal, gravitational and torque matrixes,
respectively, which are given as follow:

Ji1 +malr + mzcgsinz(é’z) malicacos (67)

M = 2

mplicrcos (62) Jr +mycs5
(2)

. 5
V= 1 2 925292 —2116292S92 + C2915292 3)
2 —6‘2916292 0

G= [ —mycpg sin (62) :| @)

f=[0} )

where Ji, J2, g and 71 are the moment of the arm’s inertia,

moment of the pendulum’s inertia, gravitational accelera-

tion and applied torque, respectively. Moreover, we define

$20, = sin (203), c29, = ¢ (262) and 59, = sin (62) .
Consider that Eq. (1) is rewritten as follow:

G+M7' OV (0.6)0+ M O)GO) =M @),  (6)

where M ~! is the inversion of matrix M. After simplification
and substituting Egs. (4),(5) into Eq. (6), one can obtain

91 _ My Mo [vie vz 9:1
6> | Mai M | [var va2 | [ 62
My M| 0
| Moy Moy || —macagsin (62)
[ My Mp][n
+ 9 7
| M1 M || 0} M

where M1, M2, M»; and M»>, are the elements of matrix
M~ and vq1, vi2, v21 and vy, denote the components of the
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matrix V. Now, by multiplying the matrices and doing some
simplifications, we have

6y
02
_ [—ann — Mirvo —M11V12—M12V22:| [91]

—Mpivir — Mvar  —Moyvip — Mpvy || 62
Miymycags Myt
4 | Miomacagse, | nry | 8)
Myympcrgsg, Mty
Define F\ = —Myvii — Mipvar, Fo = —Myviz —
Miyvy, F3 = Miamycag8se,, Fa = —Maiviy — Mavyy,
F5 = —Mjvi2 — Mxuvy and Fg = Mmacagse,; so, the

dynamical equation of rotary inverted pendulum is written as

61 = F10) + F26r + F3 + My 74, 9
6> = F46) + Fs0y + Fo + M 7. (10)

Ill. PROBLEM DESCRIPTION AND ASSUMPTIONS
In this part, the dynamical model of rotary inverted pendulum
system is offered in the state-space form in the appearance of
external disturbances. Afterward, the required assumption is
studied.

Consider Y = [y, y2,y3, y4]T = [91, él, 6>, ég]T and
A = [A1, A2]T as the state-space variable and external dis-
turbance vectors, respectively. The dynamic model (9)-II1 is
expressed in the state-space form with external disturbances
as

yi(®) = y2(2), (11)
Va(t) = F1y2(t) + Faya(t) + F3

+ My () + A1), (12)
y3(t) = ya(), (13)
Va(t) = Fay2(t) + Fsya(t) + Fe

+ Mot (1) + Ao (2). (14)

Assumption 1: Presume that the constrained exterior per-
turbations A1, Aj fulfill the subsequent conditions:

wsA ()] < B, (15)
[waAo ()] < B, (16)

where 81 and B, are the unknown positive constants, and w;’s
are positive constants.

IV. ADAPTIVE SUPER-TWISTING PID SLIDING

MODE CONTROL

In this part, the stability control of rotational inverted pen-
dulum is investigated using super-twisting PID sliding mode
control technique. For this reason, the PID sliding surface is
defined as

s() = wiyr (1) +ways (1) +w3ya () + ways (1)
t
+K1/0 1 (V) +y3(0)d T, (17)

VOLUME 10, 2022

where k; is the positive constant. Taking time-derivative of
(17), it yields

§(t) = wiy1(@) +ways(t) + w3y () + waya()
+ k1 (1(8) + y3(0)). (18)

Substituting Egs. (11)-IV into (18), we have

5() = wi(2 ) +w2(ya(®) + w3 (F1y2(t) + Faya(t)
+F3 + Miiti(t) + A1(2) + wa(Fay2(t) + Fsya(r)
+ Fo + Myt1(t) + A2(2) + k1 (01(2) + y3(2)).
(19)

After some simplification, we can get

5(t) = (w1 +w3F1 +waFa)ys (1)
+ (w2 + w3F2+waFs) ya (1) + (W3F3+waFe)
+rr (1 (1) +y3 (1)) + (W3Mi1 +waMay) 71 (7)
+wiAy (1) +waAr (1). (20)

Now, the super-twisting PID sliding mode controller is
defined as

T1(t) = — (Tipy + Tig)s 21

w3Mi1+waMo
where
Tl = W1+ w3F1 +waFa)ys (1)
+ W2 + w3F2+waF's) ya (t) + (W3F3+waFp)
+ (1 () +y3 (2) + Bisign (s(1))

+ Basign(s(1))), (22)
1, = 01v/8(2)sign (s(1)) + o2sign(s(?)) (23)

with o1 and o5 as the positive constants.

The objective of the following theorem is the finite time
stability of the rotational inverted pendulum in the existence
of external disturbance with known bounds.

Theorem 1: Assume that the dynamical equation of rota-
tional inverted pendulum be as (11)-IV and the PID sliding
surface and control input are designed as (17) and (21). Then,
the finite-time convergence of the planned sliding surface
to the origin is proved and the system’s stability control is
performed.

Proof: Consider the candidate Lyapunov function as

V (1) = 0.55(1)°. (24)

Taking derivative of (24) with respect to time and using
(20), it can obtain

V(1) = s (1) [y + wsF1 + waFa) y2 (1)
+ (W2 + w3Fa+waFs) y4 (1)
+ (W3F3+waFs) +kr (v1 (1) +y3 (1))
+ (W3Mi1+waM>1) 71 (1)
Fw3Aa(t) + waAa(2))], (25)
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where substituting the control laws (21)-(23) into (25), one
achieves

V(t) = s(t)[—o1+/s5ign (s) — opsign (s)
— Busign (s) — Basign(s)
+w3Ay () +wahAa (D], (26)

After some simplification, we have

V(t) = —o1/sls| — o2 Isl — B Isl
=B ls )] + w3A1 (1) +waha (1))s (). (27)

Considering Assumption 1 and doing some mathematical
operations, it yields

. 3
V() < —orls|2 —ozls| — Bils| — B2 Is]

+ Bils O] + B2 Is(0)], (28)

3. ... . .
whereas o1 |s (f)|2 is a positive expression; so, it can be
removed, therefore we have

V(1) < —oals (1), (29)
where considering the Lyapunov function (24), we obtain
V(1) < —v202V2(1). (30)

Hence, according to the above equation, the PID sliding
surface is converged to zero in the finite time via the super-
twisting controller. 0

Remark 1: The adaptive control technique is an effective
method for aproximatation of the upper bounds of exterior
perturbation which is unknown in practical and actual appli-
cations. Thus, in the following theorem, an adaptive-tunning
scheme is applied to estimate the upper bound of exterior
disturbance. For thispurpose, the estimation errors are defined
as

B (t) = B — Bi1 (1), 31)
B (t) = B2 — B (1), (32)

where /§1 (t) and 32 (t) are the estimated values of 8; and $,.
The adaptive laws can be offered as

Bin) = a7 (s (1)) — B2, By (1)), (33)
Ba(t) = a; ' (Is (1)| — b2 fa (1)), (34)

where a; and a, are the positive constants and b,,; and b
are achieved by the following equations:

bt = —km1bm1, (35)
bm2 = - m2bm2’ (36)
while k1 and k;;» signify the positive constants. Thus, the

control input is designed as

(1) = — (Tt + T1g)s (37

w3M114+waM>
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where
T1,, = W1 +w3F1 +waFg)ys (1)
+ (w2 + w3F2+waFs) y4 (1) + (W3F3 + waFe)
+ (1 (1) +y3 (1) + Bisign (s(1))

+ Basign(s(1))), (38)
Ty, = o1+/8(t)sign (s(t)) + oosign(s(t)). (39)

Theorem 2: For the rotary inverted pendulum system
(11)-IV under known external disturbance which holds
Assumption 1, the control inputs (37)-(39) are designed based
on the sliding surface (17) and adaptive laws (33)-(36). Thus,
the sliding surface is converged to the origin as well as the
stability control of the underactuated system is fulfilled.

Proof: Form the candidate Lyapunov function as follow:

V (1) = 0.55(t)> + 0.5a1 B7 (1) + 0.5a283 (1)

L1 B1ba)? + k=L (Babua)®. (40
+§ 1 (B1bm1) +§ o (B2bu2)”,  (40)
where respect to the time-derivative of Eq. (40) and consid-
ering B1 (1) = —B1(t) and B (t) = — B (1), it obtains

V() = si+afi () By (1) +axfa (1) o (1)
1 . 1 .
+Zk,;fﬂlbm1<ﬂ1bm1> + Zk,;;ﬁzbmz(ﬂzbmz) (41)

Now, the equations (20) and (33)-(36) are substituted into
(41), then the subsequent equation is achieved

V(t) = s (t) [(w1 + w3F1 + waFg) y2 (t)
+ W2 + w3F2+waFs) y4 (1) + (W3F3 + waFs)
+ ok (y1 (8) +y3 (1) + (WwsMyy + waMay) 71 (1)
FwsAs (1) +wahs 1461 015 O1 =02 fr (1))
- N 1
+ B2 (Is O = B () = Z(B1bun)?
1
= 3 (B2bm2)*. (42)
Using the control laws (37)-(39), it gets
V(1) = 5@ [wah1 (1) + wala (1) — o1+/5sign (5)
— osign (s) — 1 (1) sign (s) — B (1) sign (5
+ 810 (1s 01 = 3,81 1))
- " 1
+ B2 (Is O = bpaba (1) = 7 (B1bw)’
1
= 3(B2bm2)”. (43)
According to Assumption 1, we have

V() < —o1ls]? —oals| + (B — Br () Is]
+ (B2 — B ) Isl — B1 () Is| — B2 () ||

- ~ ~ ~ 1
+ b B1 (1) 1 (0) + B (1) B () = £ (B1bwn)?
1
- Z(ﬂzbmz)Z- (44)
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TABLE 1. Rotary-inverted- pendulum parameters.

Parameter Value Parameter Value
my(kg) 0.056 m,(kg) 0.022
l,(m) 0.16 l,(m) 0.16
c;(m) 0.08 c,(m) 0.08
ANm/ g 01560 T2 M6 6001785
rads) rads)

From Eqgs. (31) and (32) and removing the similar terms,
we can obtain

V() < —o1 s (012 — oa|s (O] + b2, (By — B1 ()1 (1)
~ ~ 1
+b2p(Ba — B2 (1)Ba (1) — Z(ﬁlbmoz

1 2
- Z('szmZ) ) (45)
where by simplification, it yields
. 3 N ~
V(1) < —o1 s = oz Is| + by B1B1 (1) + bypBaBa ()
A A 1
— by BT (1) = by B3 (1) — Z(,Blbml)z
1 2
- Z(ﬂzhmz) . (46)

Now, consider the following inequalities [43]:
~ 1 ~
(B1bm1)(B1 (1) bm1) < Z(,Blbml)z + b BT (), 47)

n 1 ~
(Babm2)(By (1) byp) < Z(,szmz)z +b2,B3 (). (48)

Substituting (47) and V into (46), the following equation is
resulted:

. 3 1 A
V@) = —ols 01 = o2 ls O + 5 (Bibm)’ + by AT ()
1 N A A
+ 5 (Babma) + 003 (1) = by BT (1) — a3 ()
1 1
= 3B1bm)* = L (Babm)’, (49)
where by removing the same expressions, it leads to

V()< —o1ls]? —oals| < —oa sl. (50)

Hence, we obtain v (t) < 0. Therefore, it is demonstrated
that the proposed switching surface converges to origin. The
proof is finished. U

V. SIMULATION AND EXPERIMENTAL RESULTS
A. SIMULATION RESULTS
In this part, the simulation results for RIP system are per-
formed based on the adaptive super-twisting PID-SMC tech-
nique as exposed in Fig.1. The constant parameters of RIP
system and the design values are given in Table 1 and Table 2,
correspondingly.

The simulation outcomes based on the planned scheme are
compred with the method of [1] in two parts. The proosed PD
sliding surface in [1] is defined as s (#) = w1y1(¢)+woy3(t)+

VOLUME 10, 2022

TABLE 2. Initial conditions and design parameters.

Az(8) = A4(D)
= 0.01cos(t)

A4 (t) = A3(t) = 0.01sin(t)

wy=10,w; =5 wy = 20,w, = 10

a1=a2=0.5 km1=km2=05
gy = 1. 5, gy = 0.01 [bml(o)J me(O)]
=[0,0]
[61(0),6,(0),6,(0),6,(0)] [$1(0), B2(0)]
[Pt _; =[0.5,0.5
- [ 25 i [0.5,05]
/15, o]

Adzps tives ‘liaws }—. Control inputs
L G»GE6 | (37)-39)

/P[D
< sliding Rotary-inverted-pendulum
surface
system

\ 17)

(11)-(14)

FIGURE 2. Block diagram of adaptive super-twisting PID-SMC scheme.

PID-SMC super-twisting

1.5 T T
‘ == === PD-SMC super-twisting of [1]

6‘1 (rad)

0 10 20 30 40 50
Time(sec)

6'1 (rad/s)

Time(sec)

FIGURE 3. Time responses of angular position and velocity of arm of
rotary inverted pendulum.

waya(t) + ways(t). At first, simulation results are obtained
with the known upper bound of exterior disturbances. The
finite time stablity of rotational inverted pendulum applying
the super-twisting PID-SMC law is observed in Fig.3 and
Fig.4. In Fig.3, the angular position and velocity of arm of
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PID-SMC super-twisting
= === PD-SMC super-twisting of [1]

0 ‘r
-0.1 002 b

-0.2 002 1

92 (rad)

-0.3 t -

Time(sec)

0.8 T T T T

0.4 2 - .

9'2 (rad/s)

20 30 40 50
Time(sec)

FIGURE 4. Time responses of angular position and velocity of inverted
pendulum.

PID-SMC super-twisting
— = —=PD-SMC super-twisting of [1]
6 .

-
"

7
H
I
”
7
g

A

o 10 20 30 40 50
Time(sec)

FIGURE 5. Time histories of sliding surface under known bound
perturbation.

0.01

PID-SMC super-twisting
= =—=PD-SMC super-twisting of [1]

-0.01 b

-0.02 B

-0.03 —ao 7

T (N/m)

-0.04 |

-0.05 |

-0.06 |

-0.07 t
10 20 30 40 50
Time(sec)

FIGURE 6. Time response of applied torque to rotary inverted pendulum
system using super-twisting PID-SMC.

RIP system are illustrated. Fig.4 shows the time trajectories
of angular position and angular velocity. Time histories of
the sliding surfaces under known bound perturbation are

100862

PID-ASMC super-twisting
======PD-ASMC super-twisting in [1]

01 (rad)

Time(sec)

0‘1 (rad/s)

Time(sec)

FIGURE 7. Time trajectories of angular position and velocity of arm of
rotary-inverted-pendulum.

0.1 T T
PID-ASMC super-twisting
= === PD-ASMC super-twisting in [1]
° <

= .
S o1 005 / |
< ok

-0.2 0.05. 4

01
P A )
0.3 L . L L
0 10 20 30 40 50
Time(sec)

40 50

Time(sec)

FIGURE 8. Time trajectories of angular position and velocity of inverted
pendulum using adaptive supper-twisting PID-SMC.

presented in Fig. 5. The applied torque of the system which
is gained by the super-twisting PID-SMC is shown in Fig.6.
From these figures, it can be seen that not only the suggested
method has quick response respect to the method of [1], but
also the transient performnace of the recomende method is
much better than method of [1].

Now, it is persumed that the upper bound of exterior
disturbance is unknown. So, the simulation results are reim-
plemented using the adaptive control technique. The stability
control of RIP system based on the adaptive super-twisitng
PID sliding mode controller is exposed in Fig.7 and Fig.8.
Also, time trajectory of reachability of sliding surface to
origin is represented in Fig.9. Time response of the applied
torque based on the adaptive super-twisting PID-SMC is
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PID-ASMC super-twisting
—==—= PD-ASMC super-twisting in [1]

10 20 30 40 50
Time(sec)

FIGURE 9. Time histories of sliding surface under unknown bound
perturbation.

PID-ASMC super-twisting
== === PD-ASMC super-twisting in [1]
0.01 [ q

0.02 T T ‘

0.01fi

-0.02

7, (Nim)

-0.03 |

-0.04

-0.05 ¢

-0.06

Time(sec)

FIGURE 10. Time histories of applied torque using adaptive
supper-twisting PID-SMC.

3 =
= 2 N
1 4
o | . . .
o 10 20 30 40 50
Time(sec)
4
3 =
2 i
1 4
o , . . .
(o] 10 20 30 40 50

Time(sec)

FIGURE 11. Time histories of estimation of upper bound of perturbation.

displayed in Fig.10. From this figure, it can be understood that
the chttering phenomenon has been improved in comparison

VOLUME 10, 2022

Inertial Load Control Tuner Rotating Arm Pendulum Rods

DC Motor CANA&B RS232A&B  Encoder

Power Supply
MCU control and motor drive board

FIGURE 12. Components of EMECS.

=]
2 &%
b
o g
= o
5
ENCODER I
MLy Card DC MOTOR
Power Switching
supply

FIGURE 13. Block diagram of the implementing of the proposed method.

with the method of [1]. At last, the adapation laws related
to the approximation of upper bound of exterior disturbances
are illustrated in Fig.11. Acording to these figures and com-
parisions, it can be seen that the recommended method based
on the adptive super-twisting PID-SMC presents the fast and
better transient response in comparison with technique of [1].

B. EXPERIMENTAL RESULTS
In this part, some experimental outcomes are implemented on
a real electro-mechanical engineering control system which
is developed by the TERASOFT company in Future Tech-
nology Research Center (FTRC) in National Yunlin Uni-
versity of Science and Technology. The components of this
system are shown in Fig.12. Moreover, this control system
has support package in MATLAB as the embedded coder
toolbox that supports Texas instruments C2000 Processors.
In addition, block diagram of the platform is depicted in
Fig.13. The laboratory environment for implementation of the
suggested method on real RIP system is exposed in Fig.14.
The applied voltage for motor in the control of RIP system
is calculated as the following equation:

= Em + ’29 (51)
=2l + =L |,
¢ K; : Ry :
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FIGURE 14. Laboratory environment of rotary-inverted-pendulum.
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where R, and K, are the motor armature resistance and motor
torque constants.
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FIGURE 17. Applied voltage for DC Motor.

After implementing the suggested method on the RIP sys-
tem, the subsequent outcomes are found. Time responses of
the position and angular velocities of the arm and pendulum
are shown in Fig.15 and Fig.16, individually. It can be seen
that the position of arm is stabilized near 0.7 degree which
is equal to 0.012 radian. Additionally, the pendulum position
is converged to zero (around 3.11 degree). So, the positions
of the arm and pendulum are stabilized to a region near the
origin. In VI, time trajectory of the applied voltage in DC
motor is displayed. Hence, the validation of the suggested
method is proved.

VI. CONCLUSION

In this paper, the dynamical model of rotational inverted
pendulum system was studied in the form of state-space
model. The finite time stability of the rotary inverted pen-
dulum system under known bounded exterior disturbance
was accomplished according to the super-twisting PID slid-
ing mode control. Whereas the upper bound of perturbation
was assumed to be unknown and the adaptive-tuning con-
trol scheme was designed to estimate the unknown bounds.
In addition, the Lyapunov stability theory was used to attest
the stability control of underactuated rotary inverted pendu-
lum based on the adaptive super-twisting PID sliding mode
control technique. As well, simulation results were provided
based on the recommended method. The simulation outcomes
were compared with another method which was confirmed
the proficiency and efficacy of the suggested procedure in
comparison with the other method. Furthermore, experimen-
tal results on real RIP were provided to demonstrate the
efficiency of the planned method.
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