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ABSTRACT Malaria in the rural and remote regions of tropical countries remain a major public health
challenge. Early diagnosis and prompt effective treatment are the basis for the management of malaria and
for reducing malaria mortality and morbidity worldwide and the key to malaria elimination. While Rapid
Diagnostic Test (RDT) remains the current mainstay testing malaria infections, it is usually used in conjunc-
tion with clinical findings and lab tests of blood films through Microscopy- the gold standard of malaria
diagnosis. Recent reports suggest that the accuracy of RDTs could be compromised due to parasite antigen
gene deletion(s), and the lack of expertise and high turnover timemakes microscopy impractical to be used in
rural and remote areas which impede the diagnosis and treatment of the disease. Delay in receiving treatment
for uncomplicated malaria is reported to increase the risk of developing severe malaria and mortality. Thus,
the need to develop advanced, faster, and smarter tools for malaria diagnosis is paramount, specially to
reinforce the gold standard method, i.e., malaria microscopy which is a full-proof tool given the limitations
be addressed. Deep learning-based methods have proven to provide human expert level performance on
object detection/classification on image data. Such methods can be utilized for automation of repetitive task
in assessing large number of microscope images of blood samples. In this paper, we propose a novel approach
to improve the performance of deep learning models through consistent labelling of ground truth bounding
box for the task of pathogen detection on microscope images of thick blood smears. Recommendations are
made on the reliability and repeatability testing of the trained models. A custom deep learning architecture
(YOLO-mp) is developed based on the design criteria of optimizing accuracy and speed of detection with
minimal resources. The custom three-layered YOLO-mp-3l and four-layered YOLO-mp-4l models achieved
the best mAP scores of 93.99 (@IoU=0.5) and 94.07 (@IoU=0.5), respectively outperforming standard
YOLOv4 (mAP 92.56 @IoU=0.5) for detection of malaria pathogen on a public dataset of thick blood
smear microscope images captured using phone camera. YOLO-mp-3l (BFLOPs = 21.8, model size =
24.5Mb) and YOLO-mp-4l (BFLOPs=24.477, model size = 25.4Mb) outperformed standard YOLOv4
(BFLOPs=127.232, model size= 244Mb) in terms of computation and memory requirements proving them
suitable to run on low resource devices.

26

27

INDEX TERMS Custom YOLO, deep learning, medical imaging, microscope images, object detection,
thick blood smear images.

The associate editor coordinating the review of this manuscript and
approving it for publication was Gina Tourassi.

I. INTRODUCTION 28

Malaria disease is caused by plasmodium parasite species. 29

There are different species of human malaria plasmodium 30

such as P. falciparum, P. vivax, P. ovale, P. malariae and 31
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P. knowlesi. P. falciparum is the most virulent species respon-32

sible for the majority of the severe malaria complications33

and death [1]. While microscopic examination of the thick34

and thin blood smears taken from suspected malaria patients35

under a microscope is considered as the gold standard test to36

identify these malaria parasites [2], [3], [4]; the rapid diag-37

nostic tests (RDT), is the mainstay for diagnosis of malaria38

across all healthcare sectors and in field settings. Nonethe-39

less, the accuracy of these antigen-based diagnoses by RDT40

could become compromised due to the emergence of parasite41

antigen gene deletion(s) as per recent global literature [5], [6].42

On the other hand, the lack of highly skilled expertise in43

microscopy and prolonged turnover time of reading the blood44

smears for an accurate malaria parasite detection, deems it45

most challenging to be used in rural and remote areas which46

impede the diagnosis and treatment of malaria at large.47

Thick blood smears contain many blood cells on multiple48

layers and therefore usually contain high parasitemia which49

is suitable and sensitive for diagnosis or detection of malaria50

infection. Thin blood smears contain fewer blood cells in a51

single layer and allow a clear view for identification and clas-52

sification of malaria parasite species which is necessary for53

providing correct treatment [4]. A repetitive test is required54

several times a day for several days to assess the change55

in the parasitemia levels throughout the treatment [4]. How-56

ever, microscopic examination is laborious, subjective, time-57

consuming and requires expert microscopists [2], [3], [7].58

Malaria is more prevalent in developing countries and there59

is a shortage of expert microscopists [2] and even if they are60

available the results are subject to the expert’s judgment [7].61

Quinn et al. [2] have reported increasing interest in using62

computer vision to automate the process of malaria detec-63

tion in microscope images to compensate for the shortage64

of expert microscopists. Alternatively, decision support tools65

based on computer vision can also speed up the diagnosis66

by speeding up the pathogen detection task while allowing67

the experts to make final judgements. In object classification68

tasks, deep learning has previously been known to surpass69

human-level performance [8].70

Deep learning is an emerging field under machine learning71

and have an ability to automatically learn important fea-72

tures from large amounts of data to produce accurate results.73

Deep learning builds on neural network which simulates the74

human brain and works on analysis and learning via input75

perception data into a mechanism of deep neural networks.76

However, training a supervised model requires ground-truth77

labels with the need for identifying target objects (e.g., par-78

asites) in images by an expert. Large number of overlapping79

cells with different orientations, and unclear morphological80

features such as shape, color, and size of blood cells in81

thick blood smear microscope images make it difficult to82

identify malaria parasites from artifacts compared to thin83

blood smears. These challenges bring difficulties in precisely84

drawing annotations for rectangular bounding boxes or poly-85

gons around the perimeter of the target parasites on micro-86

scope images for the purpose of training object detection or87

segmentation models. Object detection methods rely on both 88

localization (also called the position of objects in images), 89

and classification (also called as the category of the detected 90

object). Therefore, the performance of such methods is sen- 91

sitive to the consistency of labelling or drawing annotations 92

and the size of target objects in the images. Moreover, the 93

ambiguity in ground-truth labelling can result in missing 94

object labels in the training datasets that can adversely affect 95

the performance of supervised object detection models [9]. 96

The number of parasites on an image indicates the severity 97

of infection in a blood sample. With deep learning-based 98

object detection methods, not only the objects can be local- 99

ized in images but also their number can be counted. Para- 100

sites and their morphologies are clearly visible in thin blood 101

smears but, contain a smaller number of parasitemia com- 102

pared to thick smears. However, a large number of parasites 103

and their morphologies can be seen in thick blood smear. 104

Therefore, examining a thick blood smear is recommended 105

over a thin blood smear [10] as thick smears allow more 106

efficient detection of parasites with increased sensitivity. 107

In general, there are two deep learning detection frame- 108

works in the field of object detection, one is one-stage object 109

detection, and the other is two-stage object detection. Faster 110

Regional Convolutional Network (Faster R-CNN) [11] is 111

one of the widely used two-stage object detection frame- 112

works based on deep learning CNN. You Only Look Once 113

(YOLO) [12] and Single Shot Detector (SSD) [13] are 114

among the few most popular single-stage object detection 115

frameworks. Single-stage object detectors are very fast com- 116

pared to two-stage detectors and find their use in real-time 117

applications. 118

YOLO has officially evolved from version 1 to ver- 119

sion 4 [12], [14], [15], [16] and recently version 7 [17] with 120

substantial changes making it better and one of the state- 121

of-the-art algorithms in object detection. The performance 122

of such object detection frameworks is benchmarked against 123

large image datasets of day-to-day objects covering a large 124

portion of objects in images, such as Visual Object Chal- 125

lenge (PASCAL VOC) [18] and Common Objects in Context 126

(COCO) [19] containing 20 and 80 object categories, respec- 127

tively. The standard CNN architectures and models designed 128

and trained for such datasets may require modifications and 129

tuning to work on the datasets from other domains e.g., med- 130

ical x-ray images. Therefore, depending on the application 131

type there is a need for modification in the classification part 132

of CNN architecture or the detection part of the pipeline. 133

In this paper, a method to improve the performance of deep 134

learning models through consistent labelling of the ground 135

truth bounding boxes is proposed for the task of malaria par- 136

asite detection on microscope images of thick blood smears. 137

Recommendations are made on the reliability and repeata- 138

bility testing of the trained models. A custom deep learning 139

architecture (YOLO-mp)was developed on the design criteria 140

of accuracy and speed for automation of current application 141

in a low resource setting to be used predominantly in rural 142

areas. 143
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A. PUBLISHED DATASETS USED IN THIS STUDY144

We have used two published open access malaria datasets145

from the Makerere AI Lab, Makerere University, Uganda146

(http://air.ug) and named as Dataset A, and Dataset B for our147

study.148

1) DATASET A [2]149

Dataset A is a ‘‘plasmodium-images.zip’’ dataset and con-150

tains 2703 color images, taken from 133 thick blood smears151

treated with field stain, and all the images have a resolu-152

tion of 1024 × 768 pixels (http://air.ug/datasets/; accessed153

on 20/06/2022). Each image has an accompanying annotation154

file containing the coordinates of bounding boxes around any155

visible plasmodium. Images were captured using a Motic156

MC1000 camera mounted on a Brunel SP150 microscope at157

1000× magnification.158

2) DATASET B [10]159

Dataset B is a ‘‘plasmodium-phonecamera.zip’’ dataset and160

the images were collected using a smartphone camera161

attached to a microscope’s eyepiece at x1000 magnification.162

Dataset B contains 1182 color images of thick blood smears163

treated with field stain, and all the images have a resolution164

of 750× 750 pixels. It contains 948 malaria-infected images165

with 7628 P. falciparum parasites and 234 normal (negative)166

images with artifacts due to impurities (http://air.ug/datasets/;167

accessed on 20/06/2022). Each image has an accompanying168

annotation file containing the coordinates of bounding boxes169

around any visible P. falciparum parasite.170

II. RELATED WORKS IN THIS FIELD171

Depending on the applications sometimes there arises a need172

to run an object detection model in a real-time setting on a173

low-resource hardware device. In such low-resource settings,174

the model size and detection speed are also as important175

as the model’s accuracy. Quinn et al. [10] have reported a176

significant improvement in the model performance with the177

use of deep learning CNN for malaria pathogen detection on178

microscope images. A sliding window (SW) approach was179

used to pull out the overlapping patches from the original180

image and classify each patch using methods such as the181

Extremely Randomized Trees (ERT) classifier [2] or using182

CNN [10]. However, both, [2] and [10], reported their model183

performance on the classification accuracy of patches and not184

for object detections on the full image.185

Chibuta and Acar [3], experimented with YOLOv3 [15]186

for malaria pathogen detection on both datasets from studies187

conducted by Quinn et al. [2] and [10]. Chibuta and Acar [3]188

re-implemented the Quinn et al. [10] (SW +CNN) for eval-189

uating detection performance and achieved very poor Mean190

Average Precision (mAP) 0.515 on Dataset A and 0.685 on191

Dataset B. the modified YOLOv3 achieved the best mAPs192

0.887 and 0.902 for Dataset A and Dataset B, respectively,193

and a detection speed of about 0.42 seconds per image (800194

x 800 pixels) using a CPU computer [3].195

Abdurahman et al. [20] reported a very good detec-196

tion accuracy from their modified YOLOv4 model197

(mAP=96.32@ inference IoU 0.3, mAP=89.73@ inference 198

IoU 0.5). Results from study [20] showed that all YOLO 199

models outperformed Faster RCNN [11] (two-stage detector) 200

(mAP = 71.0 @ inference IoU 0.3) and SSD [13] (one-stage 201

detector) (mAP=71.4@ inference IoU 0.3). The authors also 202

argued that the modifications by extending feature scales 203

and introducing an additional detection layer to the standard 204

YOLOv3 and YOLOv4 models have improved the capability 205

to detect small objects on images. 206

III. RESEARCH GAP 207

Chibuta and Acar [3] modified YOLOv3 to be very small and 208

tiny for increased detection speed but with decreased perfor- 209

mance for the detection of malaria on microscope images. 210

Abdurahman et al. [20] modified YOLOv4 to achieve higher 211

performance for the detection of malaria parasites but with 212

added detection layers making the models very complex and 213

computationally expensive. Since Abdurahman et al. [20] 214

reported YOLO models outperformed Faster R-CNN and 215

SSD for detecting malaria parasites on thick blood smear 216

microscope images, we used a similar line of investigation 217

and conducted experiments based on the YOLO object detec- 218

tion framework. Bochkovskiy et al. [16] have also reported 219

that YOLOv4 has a promise for both speed and accuracy. Our 220

previous study [21] inwhich standardYOLOarchitecturewas 221

re-designed for fruit detection tasks to run on lower memory 222

and higher speed through reduced computation without com- 223

promising the detection accuracy, established a starting point 224

for pathogen detection with low hardware resources. There- 225

fore, in this study, we aimed to experiment with YOLOv4 226

models with the following objectives. 227

• Diagnosis of malaria under microscopy through visual 228

inspection of blood film is considered a gold standard 229

but it is laborious, time-consuming, and requires an 230

expert microscopist. Therefore, a model for automated 231

detection of malaria pathogens in microscopy images is 232

desirable. 233

• Malaria is mostly prevalent in less developing coun- 234

tries which face poor health facilities and a shortage of 235

expert microscopists. When there are large number of 236

patients it is difficult for the limited number of experts 237

to do timely diagnoses. Therefore, it is desirable that the 238

trainedmodel be able to run on real-time in low-resource 239

setting devices. 240

IV. MATERIALS AND METHODS 241

The research study by Chibuta and Acar [3] has established 242

a baseline for what we could expect from the trained mod- 243

els to benchmark against human performance for pathogen 244

detection on Dataset A and Dataset B images. Dataset B 245

is chosen in our study for training and validation of object 246

detection models because of two reasons, firstly, this dataset 247

is produced under a low-cost setting by microscope image 248

captured using a general phone camera, and secondly, Field 249

stain is used for quick smear preparation. Both are suitable for 250

developing practical applications targeting malaria-endemic 251

regions of the globe. 252
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Moreover, Dataset B contains images of P. falciparum253

which is the deadliest and most prevalent species of malaria254

parasite in endemic regions such as Africa. All images255

and XML annotations from Dataset A and Dataset B were256

uploaded to the Roboflow website (https://roboflow.com/;257

accessed on 20/06/2022) and the annotationswere exported in258

darknet format for YOLOmodel training, validation, and test-259

ing. All models were trained using the official darknet frame-260

work for YOLOv4 (https://github.com/AlexeyAB/darknet;261

accessed on 20/06/2022).262

Transfer learning is commonly used in deep learning263

to initialize a model with weights from pre-trained mod-264

els usually trained on large datasets such as PASCAL265

VOC [18], COCO [19], and ImageNet [22]. Such a266

strategy allows to train large models on relatively small267

datasets of similar applications through re-using previously268

learned weights from a larger dataset. Transfer learning was269

used for all YOLOv4 standard models used in this study270

through initialization with weight files from COCO pre-271

trained models (https://github.com/AlexeyAB/darknet/wiki/272

YOLOv4-model-zoo; accessed on 20/06/2022).273

A. TRAIN-VALID SET274

Dataset B was randomly split into a train-valid set constitut-275

ing 90% of images in the training set and 10% of images276

in the validation set. The validation dataset was not used to277

control the training behavior in our current study and was278

solely used to observe the model’s performance. In this con-279

text, more data would be available for training. Alternatively,280

a k-fold, where k=10, cross-validation is performed to test281

the repeatability of trained models on Dataset B.282

B. TEST SET283

Ideally, a test set should be an independent set that is other284

than the split of the current dataset and can be used for testing285

model robustness for accuracy and generalizability. Dataset A286

is used as a test set in our current study to assess the robustness287

of models trained on Dataset B images.288

C. MODEL CONFIGURATION289

Default training parameters in the YOLO configuration file290

were updated with new parameters. The new parameters291

used are learning rate = 0.001, momentum = 0.9, max292

batches = 4000, steps = 3200, 3600 as specified by Abdu-293

rahman et al. [20].294

In the YOLO configuration file, parameters ‘max_batches’295

specify the total number of iterations while the ‘steps’296

learning policy updates the starting learning rate (0.001) at297

specified iterations 3200 (i.e., 80% of total iterations) and298

3600 (i.e., 90% of total iterations) with new learning rates299

0.0001 and 0.00001, respectively calculated using scale val-300

ues (‘scales = 0.1, 0.1’) during model training.301

YOLO uses a set of prior/anchor boxes known as ‘masks’302

defined in the configuration file as initial sizes of height, and303

width to regress the bounding box around detections. The304

‘calc_anchors’ command from darknet was used to determine 305

anchors for our training set. 306

D. MODEL EVALUATION METRICS 307

1) INTERSECTION OVER UNION (IOU) 308

IoU is a metric whose value is between 0 and 1. IoU of 309

0 indicates no overlap and IoU of 1 indicates complete over- 310

lap between two bounding boxes. For detection algorithms, 311

a box will be treated as true detection for both model training 312

and inference, if the overlap between the detected box and 313

ground truth box is above the set IoU threshold. Using a 314

lower IoU threshold during inference allows to increase True 315

Positive (TP) by accepting boxes with small overlaps as true 316

detection. 317

For each detection the trained model also returns a con- 318

fidence score based on how accurate the prediction is. 319

Detections can be filtered out by thresholding inference-time 320

confidence scores. It is possible to detect more objects with 321

high chances of False Positives (FP) when the confidence 322

threshold is set to lower values. 323

2) F1 SCORE 324

F1 score is a harmonic mean between precision and recall 325

therefore, F1 will be maximum when both precision and 326

recall are maximum. Depending on the application we can 327

trade-off precision and recall of a trained model for detection 328

task by adjusting IoU and confidence threshold values which 329

will affect the F1 score. 330

3) MEAN AVERAGE PRECISION 331

Mean average precision mAP quantifies the performance of 332

the model by summarizing the precision-recall curve. mAP is 333

affected by changes in IoU threshold values because an IoU 334

determines whether detection is to be considered true or false. 335

For, a fixed IoU threshold, the change in confidence threshold 336

value will not affect mAP but F1 score. Therefore, in this 337

study we will report only the mAP values for performance 338

evaluation of trained models. 339

V. BASELINE YOLOv4 ARCHITECTURES 340

A. YOLOv4 ARCHITECTURE 341

• YOLOv4 backbone: 342

◦ YOLOv4 uses CSPDarknet53 backbone as 343

feature extractor which has 53 convolutional layers 344

arranged as dense blocks with Cross-Stage-Partial- 345

connections (CSP) [23]. A better result was obtained 346

with CSPDarknet53 and ‘‘Mish’’ [24] activation func- 347

tion. Misra [24] in his study claimed that ‘‘Mish’’ out- 348

performed many other activation functions in various 349

datasets. 350

• YOLOv4 neck: 351

◦ YOLOv4 also used Spatial Pyramid Pooling 352

(SPP) [25] block before the first YOLO detection head. 353

In YOLOv4’s SPP block the convolutional Kernels of 354

different sizes (1 × 1, 5 × 5, 9 × 9, 13 × 13) are slid 355
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on a feature map with maximum pooling operation and356

the features finally concatenated together to get output357

of same spatial size. It is multi-scale max-pooling.358

◦ Full-YOLOv4 finally implements Path aggregation359

Net (PAN) [26] as the neck after the backbone and360

just before the YOLO detection head. Unlike PAN [26],361

which adds neighbor layers together, YOLOv4 concate-362

nates feature maps together in its PAN implementation.363

• YOLOv4 head:364

◦ For network input resolution of 608 × 608 pixels365

YOLOv4 uses three detection heads on feature maps of366

19× 19, 38× 38 and 76× 76 pixels.367

B. YOLOv4-TINY ARCHITECTURE368

YOLOv4-tiny uses the tiny version of CSPDarknet53 fea-369

ture extractor as backbone. There are only three CSP Nets370

in CSPDarknet53-tiny with ‘‘leaky’’ activation functions.371

Unlike full-YOLOv4 as shown in Figure 1, SPPNet and372

PANet are not part of the YOLOv4-tiny architecture as shown373

in Figure 2. This tiny architecture design reduces the compu-374

tational cost of YOLOv4 which makes YOLOv4-tiny the best375

model in terms of detection speed. The ‘‘yolov4-tiny.cfg’’376

and ‘‘yolov4-tiny-3l.cfg’’ come with two and three detection377

heads, respectively.378

FIGURE 1. Architecture of original YOLOv4.

VI. STUDY CONDUCTED USING BASELINES379

A. PRELIMINARY STUDY380

Full version of standard YOLOv4 model was used for381

baseline study.382

1) FULL-YOLOv4 MODEL383

YOLOv4 (yolov4-custom.cfg) was trained on Dataset B with384

all parameters specified in section ‘Model configuration’.385

Individual model was trained with varying train IoU thresh-386

olds of 0.3 to 0.6 in steps of 0.1, and detection mAP obtained387

for varying inference IoU thresholds for 0.3 and 0.5, as shown388

in Table 1.389

2) FULL-YOLOv4 PERFORMANCE ANALYSIS ON DATASET B390

The best mAP and average IoU was obtained for train and391

inference IoU of 0.5 and 0.3, respectively as shown in Table 1.392

FIGURE 2. Architecture of original YOLOv4-tiny-3l.

TABLE 1. Full-YOLOv4 performance on validation set for inference IoU
0.5 and IoU 0.3 for models trained using different train IoU (0.3 to 0.6).
Avg. IoU is the average overlap between predicted and ground truth
bounding box for validation set images.

Increased IoU threshold values during model training will 393

allow only the objects detected with greater overlaps as true 394

positives therefore the model will detect less false positives. 395

However, if an object was truly classified but failed to meet 396

the IoU threshold then the object will not be considered as 397

detection by YOLO method. 398

The significant differences (∼5% difference) between 399

columns 2 and 4 of Table 1, for different training IoU thresh- 400

olds (column1), indicates that the trained model was unable 401

to fit bounding box properly on the detected objects. This is 402

supported by the fact that the average IoU of the models is 403

very low and less than 50% (<50%). Lower average over- 404

lap between detected and ground truth boxes due to model’s 405

localization error can come from improper ground truthing. 406

B. PATHOGEN IDENTIFICATION CHALLENGES ON IMAGES 407

Object detection involves both localization and classification 408

of the target object in images. The goal of the model training 409

is to minimize training loss which is a weighted combination 410

of the localization and the classification error/loss. The mea- 411

sure of overlap between ground truth and predicted bounding 412

box in images determines if a prediction can be considered 413

as a detection. Similarly, the predicted class/category of the 414

detected target is assessed against ground truth label to deter- 415

mine if the detection is a true positive or a false positive. 416

Therefore, if the ground truth boxes are not tight and not 417
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consistent around the target object it will be difficult for an418

object detection algorithm to train an accurate model.419

In general an IoU threshold of 0.5, it is about 52.5% over-420

lap, and is used for detecting objects on image datasets like421

PASCAL VOC [18] that consists of images of the general422

objects but this threshold can be tuned specific to the appli-423

cations. However, Chibuta and Acar [3] have reported better424

mAP can be obtained from the trained models when using425

IoU threshold of 0.3 for inference on test sets of Dataset B that426

is consistent to the report in [20]. The authors of [3] argued427

that IoU of 0.3 was suitable to account for inconsistencies in428

placing pathogen in the center of ground truth bounding box.429

C. FURTHER INVESTIGATION ON DATASET B430

Chibuta and Acar [3] reported annotation error on images431

of current Dataset B. A closer look on the image datasets432

revealed that the boxes were not consistently drawn around433

the pathogen. There were many tiny boxes of about 1 or434

2 pixels. Some boxes contain nothing, some boxes were too435

big around the object, and some boxes only covered part of the436

pathogen. This report from [3] along with our results shown437

in Table 1 warranted for further investigation on the current438

training dataset Dataset B itself.439

We observed following annotation errors in Dataset B:440

• 7 images contained at least one duplicate bounding box:441

(image names: 0044, 0208, 0239, 0578, 0967, 1083,442

0545).443

• 21 images contained at least one very tiny bounding box444

(1-2 pixels): (image names: 0051, 0081, 0089, 0091,445

0389, 0410, 0547, 0567, 0682, 0762, 0797, 0907, 0951,446

1019, 1029, 1113, 0433, 0479, 0707, 0940, 1024).447

• 8 images contained at least one blank bounding box:448

(image names: 0110, 0163, 0197, 0234, 0819, 0889,449

1063, 1148).450

D. DATASET B-CENTERED451

Ground truth annotations inDataset Bwere shifted in position452

such that the chromatin was aligned towards the center of453

the bounding boxes in images as in figure 3. The transla-454

tion was done without resizing. A graphical annotation tool455

‘‘labelImg’’ (https://pypi.org/project/labelImg/; accessed on456

20/06/2022) was used for adjusting the annotation box. This457

process created a new dataset, and we named it as Dataset458

B-centered which is used in the rest of the paper. We did459

not attempt to completely re-annotate the dataset but rather460

tried to reduce training noise to make the annotations more461

consistent.462

Following treatment was carried out in Dataset B-centered463

to remove annotation errors of Dataset B.464

• Duplicate boxes were removed to keep one box per465

object.466

• Tiny boxes of 1-2 pixels were removed because they467

can’t contribute to training as they don’t contain any468

useful information. Most of these tiny boxes were on top469

of the pathogen-like objects.470

FIGURE 3. Example annotations from Dataset B (left (a)) and Dataset
B-centered (right (b)).

• Some bounding boxes drawn around plain background 471

of the image were deleted because they don’t contain 472

any useful feature information about the target pathogen 473

class. 474

Chromatin is present in all pathogens irrespective of the 475

morphologies such as shape, size, and colors. Kaewkamn- 476

erd et al. [27] studied the detection and classification of p. 477

falciparum and p. vivax based on the size of chromatin on 478

the microscope images and reported that the color and edge 479

features of the chromatin can be easily detected on Giemsa- 480

stained thick blood films while the cytoplasm edge can blend 481

with the background making it difficult to determine. There- 482

fore, in this study an attempt was made to re-position chro- 483

matin towards the center of ground truth bounding boxes. 484

Centering of chromatin on ground-truth bounding boxes is 485

proposed to improve quality of data labelling and following 486

hypotheses are established. 487

• Hypothesis 1 (H1): Centering chromatin on the bound- 488

ing boxes could enhance the consistency of data 489

labelling and thus improve performance of bound- 490

ing box-based object detection methods through better 491

localization and classification capabilities. 492

• Hypothesis 2 (H2): Through consistent labelling based 493

on chromatin centering it is possible to craft relatively 494

smaller models with similar or better accuracies in com- 495

parison to large and complex models while it can run in 496

real-time under low resource settings. 497

E. MODEL TRAINING AND VALIDATION ON DATASET 498

B-CENTERED 499

Standard full and tiny versions of YOLOv4 models were 500

trained and assessed against custom YOLOv4 models on 501

dataset B-centered. 502

All models were trained and tested on 90-10 (Train-valid) 503

split of Dataset B-centered which is the same image list as 504

train-valid split of Dataset B. The IoU threshold was set to 505

0.5 for training. Full-YOLOv4 is standard YOLOv4 model 506

as shown in Figure 1. 507

1) CRAFTING CUSTOM FULL VERSION OF YOLO MODELS 508

The standard YOLOv4 architecture is redesigned to create 509

custom model architectures as follows. 510
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FIGURE 4. Architecture of YOLOv4-4l.

Full-YOLOv4-det104511

• Input to the first detection layer (layer-54, feature map512

76 × 76 pixels) of full-YOLOv4 was moved to early513

layer (layer-23, feature map 152×152 pixels i.e., 104×514

104 pixels @416× 416 input resolution) to extract fea-515

tures from early stages of the CNN backbone. This new516

design is named Full-YOLOv4-det104.517

Full-YOLOv4-4l518

• One more detection layer was introduced inside PANet519

of full-YOLOv4 making 4 detection layers (feature520

maps 19×19, 38×38, 76×76, 152×152 @ input res-521

olution 608×608 pixels) and used 12 cluster of anchors522

(3 anchors per detection layer). This new design is523

named Full-YOLOv4-4l as shown in Figure 4 in this524

study.525

2) PERFORMANCE OF FULL-YOLOv4 MODELS ON DATASET526

B-CENTERED527

Using early feature maps as input to one of the detection528

layers slightly improved the mAP of Full-YOLOv4 as shown529

in Table 2. There was no performance advantage with 4 detec-530

tion layers and had an increased computational cost.531

TABLE 2. Performance of full-YOLOv4 and custom full-version models
trained and validated on 90-10 split Dataset B, using IoU of 0.5 for
training and inference.

3) CRAFTING SMALLER VERSION OF YOLO MODELS532

The aim of this exercise was to re-design YOLO models to533

obtain smaller and faster model without compromising the534

accuracy that can be obtained from larger full version model.535

Yolov4 tiny models are the smallest and fastest model in the536

YOLO family of YOLOv1-v4. Therefore, yolov4-tiny-3l.cfg 537

model configuration file from the repository was chosen as 538

a base architecture to start crafting a custom plasmodium 539

pathogen detection model. 540

The followingmodels were trained on the 90-10 train-valid 541

split of Dataset B-centered which has the same image list as 542

train-valid split of Dataset B. IoU threshold for training was 543

set to 0.5 for all models. 544

Yolov4-tiny-3l: 545

• Yolov4-tiny-3l is same as standard yolov4-tiny-3l.cfg 546

model. 547

4) CRAFTING CUSTOM TINY VERSION OF YOLOv4 MODELS 548

Several experiments (not reported) were iteratively carried 549

out before finally naming few model variants as follows- 550

pertaining to the modifications that produced significant 551

improvement in detection performance. 552

YOLOv4-tiny-3l-det104: 553

• One of the inputs to the first YOLO detection layer 554

(@76×76 feature map) of yolov4-tiny-3l was moved to 555

earlier layer (@152×152 featuremap i.e., 104×104 pix- 556

els@416×416 input resolution) creatingYOLOv4-tiny- 557

3l-det104. This is in attempt to utilize the information 558

about the target object learned by CNN backbone in the 559

earlier layers which could have not propagated in the 560

following layers- specifically for smaller objects in our 561

study. 562

YOLOv4-tiny-3l-det104-SPP: 563

• Introduced Spatial Pyramid Pooling (SPP) network to 564

YOLOv4-tiny-3l-det104 as in full YOLOv4 to create 565

YOLOv4-tiny-3l-det104-SPP. This is an attempt to pool 566

the spatial information about a target object on the fea- 567

tures extracted by the CNN-backbone using kernels of 568

different sizes (5× 5, 9× 9 and 13× 13 pixels) as used 569

in standard YOLOv4 full model. 570

YOLOv4-tiny-3l-det104-mish: 571

• Replaced ‘leaky’ activation function of YOLOv4-tiny- 572

3l-det104 with ‘mish’ activation function to create 573

YOLOv4-tiny-3l-det-104-mish. This is an attempt to 574

switch to a newer and better activation function ‘mish’ 575

which is used by standard YLOv4 full model. 576

YOLOv4-tiny-3l-det104-SPP-mish (YOLO-mp-3l): 577

• Introduction of both SPPNet and ‘mish’ activation func- 578

tion in YOLOv4-tiny-3l-det104 architecture to create 579

YOLOv4-tiny-3l-det104-SPP-mish. This is an attempt 580

to combine the best of both ‘SPP’ and ‘mish’ into a 581

single model. 582

YOLOv4-tiny-3l-det104-SPP-mish with SPP network and 583

‘mish’ activation was the best performing model as shown in 584

Table 3. YOLO-mp-3l also outperformed the best performing 585

full YOLOv4 models as shown in Table 2. YOLOv4-tiny- 586

3l-det104-SPP-mish model was chosen as the best and final 587

tiny architecture in this study and renamed as YOLO-mp- 588

3l as shown in Figure 5 which is short for YOLO malaria 589
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parasite detection model having three detection layers and590

implemented in YOLO framework.591

FIGURE 5. Architecture of YOLO-mp-3l.

TABLE 3. Performance of standard YOLOv4-tiny-3l and custom tiny
models trained and validated on 90-10 split Dataset B, using IoU of
0.5 for training and inference.

5) REPEATABILITY TEST ON DATASET B-CENTERED592

K-fold validation:593

To verify the consistency of model performance the594

Dataset B-centered consisting of 1182 images was sorted595

according to image names and split into 10-folds. Folds596

roughly 10% of dataset were created sequentially without597

shuffling. Fold-1 and fold-2 consisted of 119 validation598

images while remaining folds fold-3 to fold-10 consisted of599

118 validation images each as shown in Table 4. Each fold600

was considered as validation set while remaining folds mixed601

into train set which resulted in 10 different models.602

TABLE 4. Number of ground truth bounding boxes in validation set of
each fold.

YOLO-mp-3l obtained best mAP of 93.44 and 93.81 on603

fold-5 validation set as shown in Table 5. Similarly,604

YOLO-mp-3l achieved mAP of 93.08% (@ 0.5 IoU) and 605

mAP of 93.53% (@ 0.3 IoU) on fold-5 training set as shown 606

in Table 5. 607

TABLE 5. Performance (mAP) of YOLO-mp-3l models trained and
validated separately on set of each fold.

6) HUMAN BENCHMARK ON DATASET A AND DATASET 608

B-IMAGES 609

Chibuta andAcar [3] have reportedmAP of 92.3% and 91.2% 610

@ IoU 0.3 by two independent human experts on their test 611

for Dataset A and Dataset B, respectively. In our current 612

study, the performance average mAPs of 91.137%@ 0.5 IoU 613

and 91.657% @0.3 IoU of YOLO-mp-3l model trained from 614

scratch with no transfer learning and averaged across 10-fold 615

validation set (fromTable 5) is at the same level to human per- 616

formance on Dataset B as reported by Chibuta and Acar [3]. 617

Therefore, YOLO-mp-3l is all ready to be used for automa- 618

tion of pathogen detection on microscope images of thick 619

blood smears. 620

With the success of YOLO-mp-3l architecture for pathogen 621

detection a four-layered YOLO-mp-4l model as shown in 622

Figure 6 was created by adding an extra detection layer on 623

YOLO-mp-3l model for further experiments. 624

FIGURE 6. Architecture of YOLO-mp-4I.

As the best mAP was achieved on fold-5 validation 625

set of Dataset B-centered as shown in Table 5, com- 626

parison of YOLO-mp-3l model with full-YOLOv4 model 627

was done on same train-valid set as shown in Table 6. 628
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For transfer learning COCO pre-trained weights file for629

Yolov4-tiny and Yolov4 were downloaded from model630

ZOO (https://github.com/AlexeyAB/darknet/wiki/YOLOv4-631

model-zoo; accessed on 20/06/2022) and initialized for train-632

ing YOLO-mp-3l and full-YOLOv4 models, respectively.633

TABLE 6. Performance of YOLO-mp-3l and full-YOLOv4 on fold-5
validation set (118 images, 749 ground truth boxes) of Dataset B-centered
trained using 0.5 IoU threshold and a range of IoUs (0.3-0.6) for inference.

7) MODEL WITH FOUR DETECTION LAYERS634

Improved performance of full-YOLOv4-det104, YOLO-mp-635

3l and YOLO-mp-4l models can be attributed to moving the636

feature input of first detection layer from deeper 52 × 52637

feature map referred to 416 × 416 input resolution layer in638

their original configurations to early layer 104 × 104 fea-639

ture map referred to 416 × 416 input resolution as shown in640

Table 6. Models with 4-detection layers 13 × 13, 26 × 26,641

52×52 and 104×104 in reference to 416×416 network input642

resolution, however, showed insignificantly small increase in643

performance but additional computation cost as compared to644

their 3-detection layered counterparts as shown in Table 6.645

Table 7 shows the performance comparison of custom646

3-layered and 4-layered models against standard full-647

YOLOv4 models trained and validated on 90-10 split Dataset648

B Centered using IoU of 0.5 for training and a range of IoU649

0.3-0.6 for inference.650

8) MODEL ROBUSTNESS TESTING651

Use Test against other public datasets:652

Trained model obtained from our current study on Dataset653

B-centered 90−10 split and fold-5 was used to do infer-654

ence on Dataset A images with 2704 microscope images and655

49900 ground truth boxes.656

Better results obtained for lower inference IoU threshold657

value on Dataset A as shown in Table 8 and Table 9 compared658

to higher IoU values, which can be attributed to localization659

errors that can occur due to the difference in the ground660

truth annotation boxes between train and test data. Moreover,661

we have noticed annotation errors (like those reported for662

TABLE 7. Performance comparison of custom 3-layered and 4-layered
models against standard full-YOLOv4 models trained and validated on
90-10 split Dataset B-centered, using IoU of 0.5 for training and a range
of IoUs (0.3-0.6) for inference.

Dataset B in our study) on Dataset A which can be attributed 663

to poor results obtained for higher inference IoU threshold 664

(Table 8 and Table 9). YOLO-mp-3l and YOLO-mp-4l out- 665

performed other full versions of YOLOv4models at 0.3 infer- 666

ence IoU threshold as shown in Table 8 and Table 9. 667

TABLE 8. Performance of models trained on fold-5 of Dataset B-centered
applied to infer on all images of Dataset A. All models have input
resolution 608 × 608 pix and trained using 0.5 IoU threshold.

TABLE 9. Performance of models trained on split 90-10 of Dataset
B-centered applied to infer on all images of Dataset A. All models have
input resolution 608 × 608 pix and trained using 0.5 IoU threshold.

9) MODEL SIZE, COMPUTATION, AND SPEED 668

REQUIREMENTS 669

For a test on 118 images and network input resolution 670

of 608 × 608 pixels the average detection-only time on 671

a CPU computer with specification Intel R©CoreTMi7-10700 672

CPU @ 2.90 GHz, 8 Cores, 16 Logical Processors were 673

11, 12 and 77 seconds for YOLO-mp-3l, YOLO-mp-4l and 674
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full-YOLOv4 models, respectively. YOLO-mp-3l model is675

7 times faster (93.22ms per image) compared to full-YOLO676

model (652.54ms per image) due to YOLO-mp-3l having677

fewer number of layers (51 layers) and require less compu-678

tation (21.800 BFLOPS) compared to full-YOLOv4 model679

with 162 layers and 161.839 BFLOPS as shown in Table 10.680

TABLE 10. BFLOPS of trained model and memory size.

Larger model needs more storage space, longer down-681

loading time and more computing resource such as proces-682

sor and memory. Therefore, YOLO-mp-3l model is suitable683

for real-time mobile and embedded device applications.684

YOLO-mp-3l model’s weight file size is 24.5MB which is685

about 10 times less than full-YOLOv4 model’s weight size686

of 244MB as shown in Table 10.687

VII. QUANTITATIVE ANALYSIS688

Irrespective of diagnostic methods used for identification689

of malaria infection, all positive results should be accom-690

panied by quantifying percentage parasitemia content in691

the blood films [4]. Trained models were used for detec-692

tion and the number of detections per image was counted693

and assessed against the ground truth count of bounding694

boxes using regression analysis as shown in Table 11 and695

Table 12.696

TABLE 11. Detection counts from models trained on trainset of fold-5 of
Dataset B-centered applied to infer on validation set of fold-5 Dataset
B-centered. All models have input resolution 608 × 608 pix and trained
using 0.5 IoU threshold. Inference-time conf threshold of 0.25. ‘‘y’’ and
‘‘x’’ refers to predicted and ground truth counts, respectively.

Although, the confidence threshold value for each model697

should be determined separately to obtain best results, on a698

common confidence level of 0.25 and 0.5 the counts of699

pathogen from YOLO-mp-3l are similar to Full-YOLOv4700

model as shown in Table 11 and Table 12.701

With lower confidence threshold (Table 11) there is higher702

detection counts and higher RMSEs from all models com-703

pared to using higher confidence threshold (Table 12).704

At confidence threshold of 0.5 the counts form YOLO-mp-3l705

and Full-YOLOv4 are close to the ground truth counts706

with RMSEs of 2.163 and 2.190, respectively (Table 12).707

TABLE 12. Detection counts from models trained on trainset of fold-5 of
Dataset B-centered applied to infer on validation set of fold-5 Dataset
B-centered. All models have input resolution 608 × 608 pix and trained
using 0.5 IoU threshold. Inference-time conf threshold of 0.5. ‘‘y’’ and ‘‘x’’
refers to predicted and ground truth counts, respectively.

FIGURE 7. Pathogen detection results on image 0521.jpg for
0.5 confidence threshold left (a, c, e) and for 0.25 confidence threshold
right (b, d, f) from YOLO-mp-3l, Full-YOLOv4, and YOLO-mp-4l models,
respectively.

However, YOLO-mp-4l generated more detections than the 708

other models compared (Table 11 and Table 12). 709

VIII. QUALITATIVE ANALYSIS 710

Models trained on fold-5 trainset were used to detect parasites 711

on fold-5 validation set images of Dataset B-centered and 712

bounding box visualized for qualitative analysis as shown in 713

Figure 7-12. 714
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FIGURE 8. Pathogen detection results on image 0555.jpg (a) and image
0568.jpg (b).

Example detections on negative images:715

Fold-5 validation set consisted of 24 negative images.716

There was no detection on most of the negative images from717

all 3 models YOLO-mp-3l, Full-YOLO, and YOLO-mp-4l.718

However, pathogens were detected on some negative images719

analyzed below.720

In Figure 7, we have a negative image (0521.jpg), where721

YOLO-mp-3l, full-YOLOv4 and YOLO-mp-4l detected 6,722

5, and 8 pathogens (left image conf thresh 0.50), and 8,723

5, and 9 pathogens (right image conf thresh 0.25),724

respectively.725

However, YOLO-mp-4l detected all the possible pathogens726

in Figure 7, that were either missed by YOLO-mp-3l or727

full-YOLOv4.728

In Figure 8, we have negative images where all mod-729

els (YOLO-mp-3l, full-YOLOv4 and YOLO-mp-4l) detected730

5 pathogens in image 0555.jpg (left) and 3 pathogens in image731

0568.jpg (right). For both images of Figure 8, the detections732

were on the same objects for detection confidence thresholds733

of either 0.5 or 0.25.734

In Figure 9, we have a negative image (0540.jpg)735

in which YOlO-mp-3l, full-YOLOv4 and YOLO-mp-4l736

detected 2 objects each for with confidence threshold of 0.50.737

Although all models agreed on number of detections on738

images of Figure 9, but the detections were for different739

objects.740

In Figure 10, we have a negative image (0562.jpg) in which741

all models (YOLO-mp-3l, full-YOLOv4 and YOLO-mp-4l)742

detected same object with confidence scores of greater743

than 90%. A zoomed-in view of the detected pathogen is744

provided in figure 10.745

In Figure 11, we have a negative image (0537.jpg) in746

which YOLO-mp-3l, full-YOLOv4 and YOLO-mp-4l mod-747

els detected 2, 2 and 3 objects at confidence threshold of748

0.50 and 3,3 and 4 objects at confidence threshold of 0.25,749

respectively. However, in image of Figure 11 the detections750

from models are different objects.751

The trained models from our study have picked up752

pathogen like objects in negative images having no boxes in753

the ground truth, but it still begs the question whether the754

detections were really a false detection or an ambiguity in755

ground truth labelling.756

FIGURE 9. Pathogen detection results on image 0540.jpg left (a, c, e) and
cropped detection with confidence score displayed right (b, d, f) from
YOLO-mp-3l, Full-YOLOv4, and YOLO-mp-4l models, respectively.

FIGURE 10. Pathogen detection results on image 0562.jpg left (a) and
zoomed in display right (b).

Example detection on positive image: 757

We have considered as positive image where the differ- 758

ence between prediction and ground truth object counts was 759

high. 760

In Figure 12, we have a positive image (546.jpg), 761

where both YOLO-mp-3l and full-YOLOv4 models 762

detected 8 pathogens where the ground truth count being 763
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FIGURE 11. Pathogen detection results on image 0537.jpg for
0.5 confidence threshold left (a, c, e) and for 0.25 confidence threshold
right (b, d, f) from YOLO-mp-3l, Full-YOLOv4, and YOLO-mp-4l models,
respectively.

13 pathogens. However, YOLO-mp-4l model for the764

same image of Figure 12 detected all the 12 possible765

pathogens that were either missed by YOLO-mp-3l or766

full-YOLOv4.767

Although the model prediction of number of infected768

pathogens can be very close to the ground truth number of769

objects in the image as shown in Table 11 and Table 12, the770

total count can have false positives counts. Qualitative anal-771

ysis in Figure 7-11 showed that although, models detected772

similar number of pathogens for the image but few of the773

detections were from different objects. Therefore, we cannot774

judge the model performance only based on the detection775

counts. Average precision on the other hand considers the776

overlap of detected object with the ground truth box to deter-777

mine true positives and is therefore a better metrics for model778

performance assessment.779

FIGURE 12. Pathogen detection results on image 0546.jpg for
0.5 confidence threshold (b, c, d) from YOLO-mp-3l, Full-YOLOv4, and
YOLO-mp-4l models, respectively. Dataset B ground truth boxes for
0546.jpg (a).

IX. VALIDITY OF PUBLIC DATASET 780

Missing ground truth boxes and error in annotations were 781

reported for Dataset B by [3]. Form the previous section on 782

qualitative analysis of Dataset B, we observed our trained 783

models were detecting more malaria pathogens that did 784

not have ground truth annotation boxes. Interestingly, such 785

detections were clearly observed on negative images of 786

Dataset B. 787

We randomly selected eight images (0097.jpg, 0322.jpg, 788

0604.jpg, 0617.jpg, 0652.jpg, 0997.jpg, 1138.jpg, and 789

1149.jpg) from Dataset B but ensuring they include neg- 790

ative images as well as images with medium and high 791

level of parasite infection as per the ground truth count of 792

Dataset B. On those sampled eight images we draw bound- 793

ing box on all possible pathogen-like objects (141 annota- 794

tion boxes in total) and sent to our two independent expert 795

microscopists (‘expert-1’ and ‘expert-2’) for scoring each box 796

for presence or absence of malaria parasite. For comparison, 797

existing Dataset B annotator was considered as ‘expert-3’. 798

Any boxes (out of 141 boxes annotated by us in this study) 799

that were not labelled as pathogen in sampled images of 800

Dataset B was considered as scored no-pathogen by expert-3. 801

To test the similarity in labelling between any two 802

experts, we calculated the Jaccard similarity score between 803

labelled sets using ‘‘jaccard_similarity_score’’ function of 804

‘‘scikit-learn’’ machine learning package (https://scikit- 805

learn.org/stable; accessed on 20/06/2022). Jaccard similarity 806
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index (0∼1) is a statistical measure of similarity between807

two sample sets. Jaccard similarity scores of 0.6, 0.52, and808

0.59 were obtained for expert-3 vs. expert-1, expert-3 vs.809

expert-2, and expert-1 vs. expert-2, respectively. The low810

similarity scores between any of the two expert micro-811

scopists on sampled images of Dataset B indicates the high812

level of disagreement between experts’ judgement. There-813

fore, if we need to deploy low-cost healthcare solution in814

pathogen detection through computer vision then there is815

also a need to establish standards and quality control on data816

sets.817

X. DISCUSSION818

Chibuta and Acar [3] studied the images on their test sets of819

Dataset B where the performance of trained model was very820

poor and reported that in most cases there were few parasites821

that were not ground truth labelled but detected by the trained822

model. Authors of [3] have also reported some annotation823

errors in randomly sampled images from the Dataset B. For824

supervised learning such subjective errors along with non-825

appropriate and loose bounding box where objects are not826

centered properly would significantly affect the model train-827

ing and detection performance. In our study of dataset B828

for images containing tiny (1∼2 pixel) bounding boxes, it is829

unclear if the labelling expert missed to enlarge the boxes or830

that it was mistakenly annotated. Supervised learning mostly831

depends on the quality of training data i.e., correctness of832

labelling and consistency of drawing bounding box on ground833

truth target objects [9]. Similarly, on some images of dataset B834

we observed that few ground truth bounding box were unnec-835

essarily large compared to other boxes in the same image.836

Moreover, some bounding boxes contained only part of the837

pathogen although the box were big enough to cover whole838

object.839

For our new dataset we observed that in most cases the840

original bounding boxes from Dataset B were large enough841

in size to include the morphologies such as shape fea-842

tures around the centered chromatin on a re-adjusted dataset843

Dataset B-centered. Therefore, no attempt was made to resize844

the bounding box. However, it can be argued that if an845

expert microscopist can resize the boxes to properly fit846

around the object the overall quality of the dataset could847

improve.848

Abdurahman et al. [20] reported that on Dataset B, the849

performance of YOLO models was sensitive to change in850

inference IoU threshold values. A 6.59% to 17.5% improve-851

ment in mAP was observed on Dataset B images for different852

YOLOmodels studied by changing IoU threshold from 0.5 to853

0.3. Significant difference in mAP was observed on Dataset854

B for full-YOLOv4 model in our current study for two differ-855

ent inference threshold values as shown in Table 1, which is856

consistent to the results of [20].857

In contrast, we observed that the performance mAP858

of YOLO models is not very sensitive to the change in859

IoU threshold values on Dataset B-centered as shown in860

Table 6 and Table 7 which indicates better object localization861

and better overlap between predicted and ground truth bound- 862

ing box. We argue that the localization capability of models 863

was improved on Dataset B centered, following chromatin 864

centering approach. 865

YOLO-mp-4l achieved the best performance and was 866

slightly better than YOLO-mp-3l as shown in Table 6. In con- 867

trast YOLO-mp-3l was slightly better than YOLO-mp-4l 868

on 90-10 split dataset as shown in Table 7. Interestingly, 869

YOLO-mp-3l for both scratch and transfer learning, out- 870

performed full-YOLOv4 on fold-5 validation set of Dataset 871

B-centered as shown in Table 6. This result proved that cus- 872

tomized smaller models could achieve similar or even better 873

performance in comparison to large standard models. 874

XI. RECOMMENDATIONS 875

The importance of model training and method development 876

for very sensitive applications like medical imaging diag- 877

nosis should not solely rely on the model accuracies (num- 878

bers) reported on any publication but also on repeatability 879

and reproducibility of model on different train/test sets such 880

that the method will have some practical importance. It is 881

recommended that the authors of publications release their 882

train/test/valid set (especially for public datasets) and include 883

all technical information on their model implementation 884

clearly on the paper such that other person can re-produce the 885

results for benchmarking of new models. We argue that the 886

experts in medical imaging (e.g., microscopists) and machine 887

learning should sit together to properly define and validate 888

some rules for creating better quality datasets to improve 889

reliability and accuracy of supervised models. It is recom- 890

mended for authors of publications to explore and understand 891

the dataset (especially public dataset) before crafting complex 892

algorithms to solve the problems. 893

XII. CONCLUSION 894

Recommendation has been made from machine learning 895

viewpoint and are based on the publicly available datasets 896

of malaria pathogens in thick blood smears, about the sen- 897

sitivity of the dataset, methods of testing repeatability and 898

reproducibility of trained models and what information to 899

be released in publications for future benchmarking. It was 900

demonstrated that having a cleaner and consistently labelled 901

dataset would allow to craft smaller and less complex models 902

that can achieve similar or even better results than heavier 903

and more complex models with low resource such as less 904

computation and smaller hardware. A gap between experts 905

of two domains medical and machine learning was identified 906

for application under current study and recommendations are 907

made to close the gap. A tiny model based on YOLO object 908

detection framework was designed which achieved the best 909

result with mAP 94% at 0.5 IoU threshold on our test set for 910

the current dataset compared to heavier standard YOLO-v4 911

models studied. 912

In summary, this paper discusses and describes a method to 913

increase labelling consistency for improved model accuracy. 914

The improvement in model performance validated the 915
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proposed method of centering the ground truth bounding916

boxes around chromatin. Future developments and large-917

scale validations of this can possibly address the existing918

knowledge-gaps; and could augment the current efforts of919

several health implementations programs on strengthening920

Malaria Microscopy across remote and rural areas where it921

is warranted most. The custom three-layered YOLO-mp-3l922

and four-layered YOLO-mp-4l models achieved the best923

mAP scores of 93.99 (@IoU=0.5) and 94.07 (@IoU=0.5),924

respectively outperforming standard YOLOv4 (full-YOLOv4925

model, mAP 92.56 @IoU=0.5) for detection of malaria926

pathogen on a public dataset of thick smear micro-927

scopic images captured using phone camera. YOLO-mp-3l928

(BFLOPs = 21.8, model size =24.5Mb) and YOLO-mp-4l929

(BFLOPs=24.477, model size= 25.4Mb) outperformed full-930

YOLOv4 (BFLOPs=127.232, model size= 244Mb) in terms931

of computation and memory requirements proving them suit-932

able to run on low resource settings.933

Based on our results we can conclude that computer934

vision and deep learning methods can certainly help in935

automation of pathogen detection task, but there is a936

growing need for standardization on health care data set937

labelling.938
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