IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY SECTION

Received 12 August 2022, accepted 14 September 2022, date of publication 21 September 2022,
date of current version 30 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3208270

==l APPLIED RESEARCH

Deep Learning for Real-Time Malaria Parasite
Detection and Counting Using YOLO-mp

ANAND KOIRALA™'', MEENA JHA“2, SRINIVAS BODAPATI?,
ANIMESH MISHRA“4, (Member, IEEE), GIRUJA CHETTY 3, (Senior Member, IEEE),
PRAVEEN KISHORE SAHU®, SANJIB MOHANTYS, TIMIR KANTA PADHANS,

7 3
JX@%I!‘OM@I]};CQ yst%ms,yce)oﬁo'!ﬁ!al!;l, gl!SchaQ\g Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia

2Centre for Intelligent Systems, School of Engineering and Technology, Central Queensland University, Sydney, NSW 2000, Australia
3Intel Corporation, Santa Clara, CA 95052, USA

4NVIDIA Corporation, Santa Clara, CA 95051, USA

5 Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia

6'Community Welfare Society Hospital, Rourkela, Odisha 769042, India

7Intel Technology India Pvt. Ltd., Bengaluru, Karnataka 560103, India

Corresponding author: Meena Jha (m.jha@cqu.edu.au)

This work was supported in part by the Australia India Council Grant through Australian Government Department of Foreign Affairs and
Trade under Grant AIC-116-2021, and in part by the Center for Intelligent Systems, Central Queensland University, Australia.

ABSTRACT Malaria in the rural and remote regions of tropical countries remain a major public health
challenge. Early diagnosis and prompt effective treatment are the basis for the management of malaria and
for reducing malaria mortality and morbidity worldwide and the key to malaria elimination. While Rapid
Diagnostic Test (RDT) remains the current mainstay testing malaria infections, it is usually used in conjunc-
tion with clinical findings and lab tests of blood films through Microscopy- the gold standard of malaria
diagnosis. Recent reports suggest that the accuracy of RDTs could be compromised due to parasite antigen
gene deletion(s), and the lack of expertise and high turnover time makes microscopy impractical to be used in
rural and remote areas which impede the diagnosis and treatment of the disease. Delay in receiving treatment
for uncomplicated malaria is reported to increase the risk of developing severe malaria and mortality. Thus,
the need to develop advanced, faster, and smarter tools for malaria diagnosis is paramount, specially to
reinforce the gold standard method, i.e., malaria microscopy which is a full-proof tool given the limitations
be addressed. Deep learning-based methods have proven to provide human expert level performance on
object detection/classification on image data. Such methods can be utilized for automation of repetitive task
in assessing large number of microscope images of blood samples. In this paper, we propose a novel approach
to improve the performance of deep learning models through consistent labelling of ground truth bounding
box for the task of pathogen detection on microscope images of thick blood smears. Recommendations are
made on the reliability and repeatability testing of the trained models. A custom deep learning architecture
(YOLO-mp) is developed based on the design criteria of optimizing accuracy and speed of detection with
minimal resources. The custom three-layered YOLO-mp-31 and four-layered YOLO-mp-41 models achieved
the best mAP scores of 93.99 (@IoU=0.5) and 94.07 (@IoU=0.5), respectively outperforming standard
YOLOv4 (mAP 92.56 @IoU=0.5) for detection of malaria pathogen on a public dataset of thick blood
smear microscope images captured using phone camera. YOLO-mp-31 (BFLOPs = 21.8, model size =
24.5Mb) and YOLO-mp-41 (BFLOPs=24.477, model size = 25.4Mb) outperformed standard YOLOv4
(BFLOPs=127.232, model size = 244Mb) in terms of computation and memory requirements proving them
suitable to run on low resource devices.

INDEX TERMS Custom YOLO, deep learning, medical imaging, microscope images, object detection,
thick blood smear images. I. INTRODUCTION

Malaria disease is caused by plasmodium parasite species.
The associate editor coordinating the review of this manuscript and There are different species of human malaria plasmodium
approving it for publication was Gina Tourassi. such as P. falciparum, P. vivax, P. ovale, P. malariae and
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P. knowlesi. P. falciparum is the most virulent species respon-
sible for the majority of the severe malaria complications
and death [1]. While microscopic examination of the thick
and thin blood smears taken from suspected malaria patients
under a microscope is considered as the gold standard test to
identify these malaria parasites [2], [3], [4]; the rapid diag-
nostic tests (RDT), is the mainstay for diagnosis of malaria
across all healthcare sectors and in field settings. Nonethe-
less, the accuracy of these antigen-based diagnoses by RDT
could become compromised due to the emergence of parasite
antigen gene deletion(s) as per recent global literature [5], [6].
On the other hand, the lack of highly skilled expertise in
microscopy and prolonged turnover time of reading the blood
smears for an accurate malaria parasite detection, deems it
most challenging to be used in rural and remote areas which
impede the diagnosis and treatment of malaria at large.

Thick blood smears contain many blood cells on multiple
layers and therefore usually contain high parasitemia which
is suitable and sensitive for diagnosis or detection of malaria
infection. Thin blood smears contain fewer blood cells in a
single layer and allow a clear view for identification and clas-
sification of malaria parasite species which is necessary for
providing correct treatment [4]. A repetitive test is required
several times a day for several days to assess the change
in the parasitemia levels throughout the treatment [4]. How-
ever, microscopic examination is laborious, subjective, time-
consuming and requires expert microscopists [2], [3], [7].
Malaria is more prevalent in developing countries and there
is a shortage of expert microscopists [2] and even if they are
available the results are subject to the expert’s judgment [7].

Quinn et al. [2] have reported increasing interest in using
computer vision to automate the process of malaria detec-
tion in microscope images to compensate for the shortage
of expert microscopists. Alternatively, decision support tools
based on computer vision can also speed up the diagnosis
by speeding up the pathogen detection task while allowing
the experts to make final judgements. In object classification
tasks, deep learning has previously been known to surpass
human-level performance [8].

Deep learning is an emerging field under machine learning
and have an ability to automatically learn important fea-
tures from large amounts of data to produce accurate results.
Deep learning builds on neural network which simulates the
human brain and works on analysis and learning via input
perception data into a mechanism of deep neural networks.
However, training a supervised model requires ground-truth
labels with the need for identifying target objects (e.g., par-
asites) in images by an expert. Large number of overlapping
cells with different orientations, and unclear morphological
features such as shape, color, and size of blood cells in
thick blood smear microscope images make it difficult to
identify malaria parasites from artifacts compared to thin
blood smears. These challenges bring difficulties in precisely
drawing annotations for rectangular bounding boxes or poly-
gons around the perimeter of the target parasites on micro-
scope images for the purpose of training object detection or
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segmentation models. Object detection methods rely on both
localization (also called the position of objects in images),
and classification (also called as the category of the detected
object). Therefore, the performance of such methods is sen-
sitive to the consistency of labelling or drawing annotations
and the size of target objects in the images. Moreover, the
ambiguity in ground-truth labelling can result in missing
object labels in the training datasets that can adversely affect
the performance of supervised object detection models [9].

The number of parasites on an image indicates the severity
of infection in a blood sample. With deep learning-based
object detection methods, not only the objects can be local-
ized in images but also their number can be counted. Para-
sites and their morphologies are clearly visible in thin blood
smears but, contain a smaller number of parasitemia com-
pared to thick smears. However, a large number of parasites
and their morphologies can be seen in thick blood smear.
Therefore, examining a thick blood smear is recommended
over a thin blood smear [10] as thick smears allow more
efficient detection of parasites with increased sensitivity.

In general, there are two deep learning detection frame-
works in the field of object detection, one is one-stage object
detection, and the other is two-stage object detection. Faster
Regional Convolutional Network (Faster R-CNN) [11] is
one of the widely used two-stage object detection frame-
works based on deep learning CNN. You Only Look Once
(YOLO) [12] and Single Shot Detector (SSD) [13] are
among the few most popular single-stage object detection
frameworks. Single-stage object detectors are very fast com-
pared to two-stage detectors and find their use in real-time
applications.

YOLO has officially evolved from version 1 to ver-
sion 4 [12], [14], [15], [16] and recently version 7 [17] with
substantial changes making it better and one of the state-
of-the-art algorithms in object detection. The performance
of such object detection frameworks is benchmarked against
large image datasets of day-to-day objects covering a large
portion of objects in images, such as Visual Object Chal-
lenge (PASCAL VOC) [18] and Common Objects in Context
(COCO) [19] containing 20 and 80 object categories, respec-
tively. The standard CNN architectures and models designed
and trained for such datasets may require modifications and
tuning to work on the datasets from other domains e.g., med-
ical x-ray images. Therefore, depending on the application
type there is a need for modification in the classification part
of CNN architecture or the detection part of the pipeline.

In this paper, a method to improve the performance of deep
learning models through consistent labelling of the ground
truth bounding boxes is proposed for the task of malaria par-
asite detection on microscope images of thick blood smears.
Recommendations are made on the reliability and repeata-
bility testing of the trained models. A custom deep learning
architecture (YOLO-mp) was developed on the design criteria
of accuracy and speed for automation of current application
in a low resource setting to be used predominantly in rural
areas.
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A. PUBLISHED DATASETS USED IN THIS STUDY

We have used two published open access malaria datasets
from the Makerere Al Lab, Makerere University, Uganda
(http://air.ug) and named as Dataset A, and Dataset B for our
study.

1) DATASET A [2]

Dataset A is a “plasmodium-images.zip” dataset and con-
tains 2703 color images, taken from 133 thick blood smears
treated with field stain, and all the images have a resolu-
tion of 1024 x 768 pixels (http://air.ug/datasets/; accessed
on 20/06/2022). Each image has an accompanying annotation
file containing the coordinates of bounding boxes around any
visible plasmodium. Images were captured using a Motic
MC1000 camera mounted on a Brunel SP150 microscope at
1000x magnification.

2) DATASET B [10]

Dataset B is a ““plasmodium-phonecamera.zip” dataset and
the images were collected using a smartphone camera
attached to a microscope’s eyepiece at x 1000 magnification.
Dataset B contains 1182 color images of thick blood smears
treated with field stain, and all the images have a resolution
of 750 x 750 pixels. It contains 948 malaria-infected images
with 7628 P. falciparum parasites and 234 normal (negative)
images with artifacts due to impurities (http://air.ug/datasets/;
accessed on 20/06/2022). Each image has an accompanying
annotation file containing the coordinates of bounding boxes
around any visible P. falciparum parasite.

Il. RELATED WORKS IN THIS FIELD

Depending on the applications sometimes there arises a need
to run an object detection model in a real-time setting on a
low-resource hardware device. In such low-resource settings,
the model size and detection speed are also as important
as the model’s accuracy. Quinn et al. [10] have reported a
significant improvement in the model performance with the
use of deep learning CNN for malaria pathogen detection on
microscope images. A sliding window (SW) approach was
used to pull out the overlapping patches from the original
image and classify each patch using methods such as the
Extremely Randomized Trees (ERT) classifier [2] or using
CNN [10]. However, both, [2] and [10], reported their model
performance on the classification accuracy of patches and not
for object detections on the full image.

Chibuta and Acar [3], experimented with YOLOvV3 [15]
for malaria pathogen detection on both datasets from studies
conducted by Quinn et al. [2] and [10]. Chibuta and Acar [3]
re-implemented the Quinn et al. [10] (SW +CNN) for eval-
uating detection performance and achieved very poor Mean
Average Precision (mAP) 0.515 on Dataset A and 0.685 on
Dataset B. the modified YOLOV3 achieved the best mAPs
0.887 and 0.902 for Dataset A and Dataset B, respectively,
and a detection speed of about 0.42 seconds per image (800
x 800 pixels) using a CPU computer [3].

Abdurahman et al. [20] reported a very good detec-
tion accuracy from their modified YOLOv4 model
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(mAP=96.32 @ inference IoU 0.3, mAP=89.73 @ inference
IoU 0.5). Results from study [20] showed that all YOLO
models outperformed Faster RCNN [11] (two-stage detector)
(mAP = 71.0 @ inference IoU 0.3) and SSD [13] (one-stage
detector) (mAP=71.4 @ inference IoU 0.3). The authors also
argued that the modifications by extending feature scales
and introducing an additional detection layer to the standard
YOLOV3 and YOLOvV4 models have improved the capability
to detect small objects on images.

Ill. RESEARCH GAP

Chibuta and Acar [3] modified YOLOV3 to be very small and
tiny for increased detection speed but with decreased perfor-
mance for the detection of malaria on microscope images.
Abdurahman et al. [20] modified YOLOvV4 to achieve higher
performance for the detection of malaria parasites but with
added detection layers making the models very complex and
computationally expensive. Since Abdurahman et al. [20]
reported YOLO models outperformed Faster R-CNN and
SSD for detecting malaria parasites on thick blood smear
microscope images, we used a similar line of investigation
and conducted experiments based on the YOLO object detec-
tion framework. Bochkovskiy et al. [16] have also reported
that YOLOV4 has a promise for both speed and accuracy. Our
previous study [21] in which standard YOLO architecture was
re-designed for fruit detection tasks to run on lower memory
and higher speed through reduced computation without com-
promising the detection accuracy, established a starting point
for pathogen detection with low hardware resources. There-
fore, in this study, we aimed to experiment with YOLOv4
models with the following objectives.

« Diagnosis of malaria under microscopy through visual
inspection of blood film is considered a gold standard
but it is laborious, time-consuming, and requires an
expert microscopist. Therefore, a model for automated
detection of malaria pathogens in microscopy images is
desirable.

o Malaria is mostly prevalent in less developing coun-
tries which face poor health facilities and a shortage of
expert microscopists. When there are large number of
patients it is difficult for the limited number of experts
to do timely diagnoses. Therefore, it is desirable that the
trained model be able to run on real-time in low-resource
setting devices.

IV. MATERIALS AND METHODS

The research study by Chibuta and Acar [3] has established
a baseline for what we could expect from the trained mod-
els to benchmark against human performance for pathogen
detection on Dataset A and Dataset B images. Dataset B
is chosen in our study for training and validation of object
detection models because of two reasons, firstly, this dataset
is produced under a low-cost setting by microscope image
captured using a general phone camera, and secondly, Field
stain is used for quick smear preparation. Both are suitable for
developing practical applications targeting malaria-endemic
regions of the globe.
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Moreover, Dataset B contains images of P. falciparum
which is the deadliest and most prevalent species of malaria
parasite in endemic regions such as Africa. All images
and XML annotations from Dataset A and Dataset B were
uploaded to the Roboflow website (https://roboflow.com/;
accessed on 20/06/2022) and the annotations were exported in
darknet format for YOLO model training, validation, and test-
ing. All models were trained using the official darknet frame-
work for YOLOv4 (https://github.com/AlexeyAB/darknet;
accessed on 20/06/2022).

Transfer learning is commonly used in deep learning
to initialize a model with weights from pre-trained mod-
els usually trained on large datasets such as PASCAL
VOC [18], COCO [19], and ImageNet [22]. Such a
strategy allows to train large models on relatively small
datasets of similar applications through re-using previously
learned weights from a larger dataset. Transfer learning was
used for all YOLOv4 standard models used in this study
through initialization with weight files from COCO pre-
trained models (https://github.com/Alexey AB/darknet/wiki/
YOLOv4-model-zoo; accessed on 20/06/2022).

A. TRAIN-VALID SET

Dataset B was randomly split into a train-valid set constitut-
ing 90% of images in the training set and 10% of images
in the validation set. The validation dataset was not used to
control the training behavior in our current study and was
solely used to observe the model’s performance. In this con-
text, more data would be available for training. Alternatively,
a k-fold, where k=10, cross-validation is performed to test
the repeatability of trained models on Dataset B.

B. TEST SET

Ideally, a test set should be an independent set that is other
than the split of the current dataset and can be used for testing
model robustness for accuracy and generalizability. Dataset A
isused as a test set in our current study to assess the robustness
of models trained on Dataset B images.

C. MODEL CONFIGURATION

Default training parameters in the YOLO configuration file
were updated with new parameters. The new parameters
used are learning rate = 0.001, momentum = 0.9, max
batches = 4000, steps = 3200, 3600 as specified by Abdu-
rahman et al. [20].

In the YOLO configuration file, parameters ‘max_batches’
specify the total number of iterations while the ‘steps’
learning policy updates the starting learning rate (0.001) at
specified iterations 3200 (i.e., 80% of total iterations) and
3600 (i.e., 90% of total iterations) with new learning rates
0.0001 and 0.00001, respectively calculated using scale val-
ues (‘scales = 0.1, 0.1”) during model training.

YOLO uses a set of prior/anchor boxes known as ‘masks’
defined in the configuration file as initial sizes of height, and
width to regress the bounding box around detections. The
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‘calc_anchors’ command from darknet was used to determine
anchors for our training set.

D. MODEL EVALUATION METRICS

1) INTERSECTION OVER UNION (IOU)

IoU is a metric whose value is between O and 1. IoU of
0 indicates no overlap and IoU of 1 indicates complete over-
lap between two bounding boxes. For detection algorithms,
a box will be treated as true detection for both model training
and inference, if the overlap between the detected box and
ground truth box is above the set IoU threshold. Using a
lower IoU threshold during inference allows to increase True
Positive (TP) by accepting boxes with small overlaps as true
detection.

For each detection the trained model also returns a con-
fidence score based on how accurate the prediction is.
Detections can be filtered out by thresholding inference-time
confidence scores. It is possible to detect more objects with
high chances of False Positives (FP) when the confidence
threshold is set to lower values.

2) F1 SCORE

F1 score is a harmonic mean between precision and recall
therefore, F1 will be maximum when both precision and
recall are maximum. Depending on the application we can
trade-off precision and recall of a trained model for detection
task by adjusting IoU and confidence threshold values which
will affect the F1 score.

3) MEAN AVERAGE PRECISION

Mean average precision mAP quantifies the performance of
the model by summarizing the precision-recall curve. mAP is
affected by changes in IoU threshold values because an IoU
determines whether detection is to be considered true or false.
For, a fixed IoU threshold, the change in confidence threshold
value will not affect mAP but F1 score. Therefore, in this
study we will report only the mAP values for performance
evaluation of trained models.

V. BASELINE YOLOv4 ARCHITECTURES
A. YOLOv4 ARCHITECTURE
o YOLOV4 backbone:
o YOLOv4 wuses CSPDarknet53 backbone as
feature extractor which has 53 convolutional layers
arranged as dense blocks with Cross-Stage-Partial-
connections (CSP) [23]. A better result was obtained
with CSPDarknet53 and “Mish” [24] activation func-
tion. Misra [24] in his study claimed that “Mish” out-
performed many other activation functions in various
datasets.
e YOLOV4 neck:
o YOLOv4 also wused Spatial Pyramid Pooling
(SPP) [25] block before the first YOLO detection head.
In YOLOvV4’s SPP block the convolutional Kernels of
different sizes (1 x 1,5 x 5,9 x 9, 13 x 13) are slid
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on a feature map with maximum pooling operation and
the features finally concatenated together to get output
of same spatial size. It is multi-scale max-pooling.

o Full-YOLOV4 finally implements Path aggregation
Net (PAN) [26] as the neck after the backbone and
just before the YOLO detection head. Unlike PAN [26],
which adds neighbor layers together, YOLOvV4 concate-
nates feature maps together in its PAN implementation.

e YOLOV4 head:

o For network input resolution of 608 x 608 pixels
YOLOV4 uses three detection heads on feature maps of
19 x 19, 38 x 38 and 76 x 76 pixels.

B. YOLOvV4-TINY ARCHITECTURE

YOLOvV4-tiny uses the tiny version of CSPDarknet53 fea-
ture extractor as backbone. There are only three CSP Nets
in CSPDarknet53-tiny with “leaky” activation functions.
Unlike full-YOLOv4 as shown in Figure 1, SPPNet and
PANet are not part of the YOLOv4-tiny architecture as shown
in Figure 2. This tiny architecture design reduces the compu-
tational cost of YOLOv4 which makes YOLOv4-tiny the best
model in terms of detection speed. The ‘“‘yolov4-tiny.cfg”
and ‘““yolov4-tiny-3l.cfg” come with two and three detection
heads, respectively.

Conv x2

Conv x3 Conv x2

Upsample Convxl
Conv x1

Conv x3

Conv x3

FIGURE 1. Architecture of original YOLOv4.

VI. STUDY CONDUCTED USING BASELINES

A. PRELIMINARY STUDY

Full version of standard YOLOv4 model was used for
baseline study.

1) FULL-YOLOv4 MODEL

YOLOvV4 (yolov4-custom.cfg) was trained on Dataset B with
all parameters specified in section ‘Model configuration’.
Individual model was trained with varying train IoU thresh-
olds of 0.3 to 0.6 in steps of 0.1, and detection mAP obtained
for varying inference IoU thresholds for 0.3 and 0.5, as shown
in Table 1.

2) FULL-YOLOv4 PERFORMANCE ANALYSIS ON DATASET B

The best mAP and average IoU was obtained for train and
inference IoU of 0.5 and 0.3, respectively as shown in Table 1.
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\ i i
CspDarknets3-tiny [N [ YoL0 head |

Input [608x608x3]

Convx2

Maxpool

Upsample

Convx1

Conv x1
Convxl

FIGURE 2. Architecture of original YOLOv4-tiny-3I.

TABLE 1. Full-YOLOv4 performance on validation set for inference loU
0.5 and loU 0.3 for models trained using different train loU (0.3 to 0.6).
Avg. loU is the average overlap between predicted and ground truth
bounding box for validation set images.

Train mAP@0.5 Avg. mAP@0.3 Avg.
IoU IoU@0.5 TIoU@0.3
0.3 79.57 43.44% 85.97 44.85%
04 82.64 47.60% 87.97 48.77%
0.5 84.72 47.67% 89.60 48.90%
0.6 82.00 43.35% 87.77 44.75%

Increased IoU threshold values during model training will
allow only the objects detected with greater overlaps as true
positives therefore the model will detect less false positives.
However, if an object was truly classified but failed to meet
the IoU threshold then the object will not be considered as
detection by YOLO method.

The significant differences (~5% difference) between
columns 2 and 4 of Table 1, for different training IoU thresh-
olds (columnl), indicates that the trained model was unable
to fit bounding box properly on the detected objects. This is
supported by the fact that the average IoU of the models is
very low and less than 50% (<50%). Lower average over-
lap between detected and ground truth boxes due to model’s
localization error can come from improper ground truthing.

B. PATHOGEN IDENTIFICATION CHALLENGES ON IMAGES
Object detection involves both localization and classification
of the target object in images. The goal of the model training
is to minimize training loss which is a weighted combination
of the localization and the classification error/loss. The mea-
sure of overlap between ground truth and predicted bounding
box in images determines if a prediction can be considered
as a detection. Similarly, the predicted class/category of the
detected target is assessed against ground truth label to deter-
mine if the detection is a true positive or a false positive.
Therefore, if the ground truth boxes are not tight and not
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consistent around the target object it will be difficult for an
object detection algorithm to train an accurate model.

In general an IoU threshold of 0.5, it is about 52.5% over-
lap, and is used for detecting objects on image datasets like
PASCAL VOC [18] that consists of images of the general
objects but this threshold can be tuned specific to the appli-
cations. However, Chibuta and Acar [3] have reported better
mAP can be obtained from the trained models when using
IoU threshold of 0.3 for inference on test sets of Dataset B that
is consistent to the report in [20]. The authors of [3] argued
that IoU of 0.3 was suitable to account for inconsistencies in
placing pathogen in the center of ground truth bounding box.

C. FURTHER INVESTIGATION ON DATASET B

Chibuta and Acar [3] reported annotation error on images
of current Dataset B. A closer look on the image datasets
revealed that the boxes were not consistently drawn around
the pathogen. There were many tiny boxes of about 1 or
2 pixels. Some boxes contain nothing, some boxes were too
big around the object, and some boxes only covered part of the
pathogen. This report from [3] along with our results shown
in Table 1 warranted for further investigation on the current
training dataset Dataset B itself.

We observed following annotation errors in Dataset B:

« 7 images contained at least one duplicate bounding box:
(image names: 0044, 0208, 0239, 0578, 0967, 1083,
0545).

« 21 images contained at least one very tiny bounding box
(1-2 pixels): (image names: 0051, 0081, 0089, 0091,
0389, 0410, 0547, 0567, 0682, 0762, 0797, 0907, 0951,
1019, 1029, 1113, 0433, 0479, 0707, 0940, 1024).

« 8 images contained at least one blank bounding box:
(image names: 0110, 0163, 0197, 0234, 0819, 0889,
1063, 1148).

D. DATASET B-CENTERED
Ground truth annotations in Dataset B were shifted in position
such that the chromatin was aligned towards the center of
the bounding boxes in images as in figure 3. The transla-
tion was done without resizing. A graphical annotation tool
“labellmg™ (https://pypi.org/project/labellmg/; accessed on
20/06/2022) was used for adjusting the annotation box. This
process created a new dataset, and we named it as Dataset
B-centered which is used in the rest of the paper. We did
not attempt to completely re-annotate the dataset but rather
tried to reduce training noise to make the annotations more
consistent.

Following treatment was carried out in Dataset B-centered
to remove annotation errors of Dataset B.

o Duplicate boxes were removed to keep one box per
object.

o Tiny boxes of 1-2 pixels were removed because they
can’t contribute to training as they don’t contain any
useful information. Most of these tiny boxes were on top
of the pathogen-like objects.
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(a) (b)

FIGURE 3. Example annotations from Dataset B (left (a)) and Dataset
B-centered (right (b)).

« Some bounding boxes drawn around plain background
of the image were deleted because they don’t contain
any useful feature information about the target pathogen
class.

Chromatin is present in all pathogens irrespective of the
morphologies such as shape, size, and colors. Kaewkamn-
erd et al. [27] studied the detection and classification of p.
falciparum and p. vivax based on the size of chromatin on
the microscope images and reported that the color and edge
features of the chromatin can be easily detected on Giemsa-
stained thick blood films while the cytoplasm edge can blend
with the background making it difficult to determine. There-
fore, in this study an attempt was made to re-position chro-
matin towards the center of ground truth bounding boxes.

Centering of chromatin on ground-truth bounding boxes is

proposed to improve quality of data labelling and following
hypotheses are established.

o Hypothesis 1 (H1): Centering chromatin on the bound-
ing boxes could enhance the consistency of data
labelling and thus improve performance of bound-
ing box-based object detection methods through better
localization and classification capabilities.

« Hypothesis 2 (H2): Through consistent labelling based
on chromatin centering it is possible to craft relatively
smaller models with similar or better accuracies in com-
parison to large and complex models while it can run in
real-time under low resource settings.

E. MODEL TRAINING AND VALIDATION ON DATASET
B-CENTERED

Standard full and tiny versions of YOLOv4 models were
trained and assessed against custom YOLOv4 models on
dataset B-centered.

All models were trained and tested on 90-10 (Train-valid)
split of Dataset B-centered which is the same image list as
train-valid split of Dataset B. The IoU threshold was set to
0.5 for training. Full-YOLOV4 is standard YOLOv4 model
as shown in Figure 1.

1) CRAFTING CUSTOM FULL VERSION OF YOLO MODELS
The standard YOLOvV4 architecture is redesigned to create
custom model architectures as follows.
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FIGURE 4. Architecture of YOLOv4-4l.

Full-YOLOv4-det104

« Input to the first detection layer (layer-54, feature map
76 x 76 pixels) of full-YOLOv4 was moved to early
layer (layer-23, feature map 152 x 152 pixels i.e., 104 x
104 pixels @416 x 416 input resolution) to extract fea-
tures from early stages of the CNN backbone. This new
design is named Full-YOLOv4-det104.

Full-YOLOv4-41

« One more detection layer was introduced inside PANet
of full-YOLOv4 making 4 detection layers (feature
maps 19 x 19, 38 x 38, 76 x 76, 152 x 152 @ input res-
olution 608 x 608 pixels) and used 12 cluster of anchors
(3 anchors per detection layer). This new design is
named Full-YOLOv4-4] as shown in Figure 4 in this
study.

2) PERFORMANCE OF FULL-YOLOv4 MODELS ON DATASET
B-CENTERED

Using early feature maps as input to one of the detection
layers slightly improved the mAP of Full-YOLOv4 as shown
in Table 2. There was no performance advantage with 4 detec-
tion layers and had an increased computational cost.

TABLE 2. Performance of full-YOLOv4 and custom full-version models
trained and validated on 90-10 split Dataset B, using loU of 0.5 for
training and inference.

Model name Transfer learning mAP@0.5 IoU
Full-YOLOV4 (standard) yes 90.61
Full-YOLOv4-det104 yes 91.06
Full-YOLOv4-41 yes 91.00

3) CRAFTING SMALLER VERSION OF YOLO MODELS

The aim of this exercise was to re-design YOLO models to
obtain smaller and faster model without compromising the
accuracy that can be obtained from larger full version model.
Yolov4 tiny models are the smallest and fastest model in the
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YOLO family of YOLOvV1-v4. Therefore, yolov4-tiny-31.cfg
model configuration file from the repository was chosen as
a base architecture to start crafting a custom plasmodium
pathogen detection model.

The following models were trained on the 90-10 train-valid
split of Dataset B-centered which has the same image list as
train-valid split of Dataset B. IoU threshold for training was
set to 0.5 for all models.

Yolov4-tiny-31:

o Yolov4-tiny-31 is same as standard yolov4-tiny-3l.cfg

model.

4) CRAFTING CUSTOM TINY VERSION OF YOLOv4 MODELS

Several experiments (not reported) were iteratively carried
out before finally naming few model variants as follows-
pertaining to the modifications that produced significant

improvement in detection performance.
YOLOV4-tiny-31-det104:

e One of the inputs to the first YOLO detection layer
(@76 x 76 feature map) of yolov4-tiny-31 was moved to
earlier layer (@152 x 152 feature map i.e., 104 x 104 pix-
els @416x416 input resolution) creating YOLOv4-tiny-
31-det104. This is in attempt to utilize the information
about the target object learned by CNN backbone in the
earlier layers which could have not propagated in the
following layers- specifically for smaller objects in our
study.

YOLOv4-tiny-31-det104-SPP:

o Introduced Spatial Pyramid Pooling (SPP) network to
YOLOvV4-tiny-31-det104 as in full YOLOV4 to create
YOLOvV4-tiny-31-det104-SPP. This is an attempt to pool
the spatial information about a target object on the fea-
tures extracted by the CNN-backbone using kernels of
different sizes (5 x 5,9 x 9 and 13 x 13 pixels) as used
in standard YOLOv4 full model.

YOLOv4-tiny-31-det104-mish:

« Replaced ‘leaky’ activation function of YOLOv4-tiny-
31-det104 with ‘mish’ activation function to create
YOLOvV4-tiny-31-det-104-mish. This is an attempt to
switch to a newer and better activation function ‘mish’
which is used by standard YLOv4 full model.

YOLOv4-tiny-31-det104-SPP-mish (YOLO-mp-3l):

« Introduction of both SPPNet and ‘mish’ activation func-
tion in YOLOv4-tiny-31-det104 architecture to create
YOLOvV4-tiny-31-det104-SPP-mish. This is an attempt
to combine the best of both ‘SPP’ and ‘mish’ into a
single model.

YOLOV4-tiny-31-det104-SPP-mish with SPP network and
‘mish’ activation was the best performing model as shown in
Table 3. YOLO-mp-31 also outperformed the best performing
full YOLOv4 models as shown in Table 2. YOLOv4-tiny-
31-det104-SPP-mish model was chosen as the best and final
tiny architecture in this study and renamed as YOLO-mp-
31 as shown in Figure 5 which is short for YOLO malaria
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parasite detection model having three detection layers and
implemented in YOLO framework.
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FIGURE 5. Architecture of YOLO-mp-3I.

TABLE 3. Performance of standard YOLOv4-tiny-3| and custom tiny
models trained and validated on 90-10 split Dataset B, using loU of
0.5 for training and inference.

Model name Transfer mAP@0.5 IoU
learning

YOLOV4-tiny-31 (standard) no 89.47
YOLOv4-tiny-31-det104 no 90.33
YOLOV4-tiny-31-det104-SPP no 91.13
YOLOv4-tiny-31-det104-SPP- no 91.56

mish (YOLO-mp-31)

YOLOv4-tiny-31-det104-mish no 90.25

5) REPEATABILITY TEST ON DATASET B-CENTERED
K-fold validation:

To verify the consistency of model performance the
Dataset B-centered consisting of 1182 images was sorted
according to image names and split into 10-folds. Folds
roughly 10% of dataset were created sequentially without
shuffling. Fold-1 and fold-2 consisted of 119 validation
images while remaining folds fold-3 to fold-10 consisted of
118 validation images each as shown in Table 4. Each fold
was considered as validation set while remaining folds mixed
into train set which resulted in 10 different models.

TABLE 4. Number of ground truth bounding boxes in validation set of
each fold.

Fol Fol Fol Fol Fol Fol Fol Fol Fol Fol
d-1 d-2 d-3 d-4 d-5 d-6 d-7 d-8 d-9 d-
10
757 | 777 | 692 | 830 | 749 | 718 | 743 | 841 | 737 | 746

YOLO-mp-31 obtained best mAP of 93.44 and 93.81 on
fold-5 validation set as shown in Table 5. Similarly,
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YOLO-mp-31 achieved mAP of 93.08% (@ 0.5 IoU) and
mAP of 93.53% (@ 0.3 IoU) on fold-5 training set as shown
in Table 5.

TABLE 5. Performance (mAP) of YOLO-mp-3l models trained and
validated separately on set of each fold.

Fol | Fol | Fol | Fol | Fol | Fol | Fol | Fol | Fol | Fol
d-1|d2 |d3 |d4 |d5|d6 |d7 |d8 | d9 | d-
10
@0 | 90. | 90. | 89. | 92. [ 93. | 92. | 90. | 91. | 88. | 91.
5 90 03 47 89 44 18 97 12 77 60
Io

@O0 | 91. | 90. | 89. | 93. | 93. | 92. | 91. | 92. | &9. | 92.

Io

6) HUMAN BENCHMARK ON DATASET A AND DATASET
B-IMAGES

Chibuta and Acar [3] have reported mAP of 92.3% and 91.2%
@ JoU 0.3 by two independent human experts on their test
for Dataset A and Dataset B, respectively. In our current
study, the performance average mAPs of 91.137% @ 0.5 ToU
and 91.657% @0.3 IoU of YOLO-mp-31 model trained from
scratch with no transfer learning and averaged across 10-fold
validation set (from Table 5) is at the same level to human per-
formance on Dataset B as reported by Chibuta and Acar [3].
Therefore, YOLO-mp-3l is all ready to be used for automa-
tion of pathogen detection on microscope images of thick
blood smears.

With the success of YOLO-mp-31 architecture for pathogen
detection a four-layered YOLO-mp-41 model as shown in
Figure 6 was created by adding an extra detection layer on
YOLO-mp-31 model for further experiments.
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FIGURE 6. Architecture of YOLO-mp-4l.

As the best mAP was achieved on fold-5 validation
set of Dataset B-centered as shown in Table 5, com-
parison of YOLO-mp-31 model with full-YOLOv4 model
was done on same train-valid set as shown in Table 6.
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For transfer learning COCO pre-trained weights file for
Yolov4-tiny and Yolov4 were downloaded from model
Z0O0 (https://github.com/Alexey AB/darknet/wiki/YOLOv4-
model-zoo; accessed on 20/06/2022) and initialized for train-
ing YOLO-mp-31 and full-YOLOv4 models, respectively.

TABLE 6. Performance of YOLO-mp-3I and full-YOLOv4 on fold-5
validation set (118 images, 749 ground truth boxes) of Dataset B-centered
trained using 0.5 loU threshold and a range of loUs (0.3-0.6) for inference.

Model | Transfer mAP@0.3 | mAP@0. | mAP@0. | mAP@O.
name learning IoU 4 IoU 5 IoU 6 IoU
YOLO | No 93.81 93.81 93.44 92.94
-mp-31
YOLO | Yes 94.20 94.20 93.99 93.54
-mp-31
YOLO | yes 94.25 94.25 94.07 93.39
-mp-41
Full- Yes 92.67 92.61 92.56 91.86
YOLO
v4
(stand
ard)
Full- Yes 92.95 92.88 92.84 92.53
YOLO
v4-
det104
Full- Yes 93.12 93.07 92.82 92.58
YOLO
v4-41

7) MODEL WITH FOUR DETECTION LAYERS
Improved performance of full-YOLOv4-det104, YOLO-mp-
31 and YOLO-mp-41 models can be attributed to moving the
feature input of first detection layer from deeper 52 x 52
feature map referred to 416 x 416 input resolution layer in
their original configurations to early layer 104 x 104 fea-
ture map referred to 416 x 416 input resolution as shown in
Table 6. Models with 4-detection layers 13 x 13, 26 x 26,
52 x 52 and 104 x 104 in reference to 416 x 416 network input
resolution, however, showed insignificantly small increase in
performance but additional computation cost as compared to
their 3-detection layered counterparts as shown in Table 6.
Table 7 shows the performance comparison of custom
3-layered and 4-layered models against standard full-
YOLOv4 models trained and validated on 90-10 split Dataset
B Centered using IoU of 0.5 for training and a range of IoU
0.3-0.6 for inference.

8) MODEL ROBUSTNESS TESTING
Use Test against other public datasets:

Trained model obtained from our current study on Dataset
B-centered 90—10 split and fold-5 was used to do infer-
ence on Dataset A images with 2704 microscope images and
49900 ground truth boxes.

Better results obtained for lower inference IoU threshold
value on Dataset A as shown in Table 8 and Table 9 compared
to higher IoU values, which can be attributed to localization
errors that can occur due to the difference in the ground
truth annotation boxes between train and test data. Moreover,
we have noticed annotation errors (like those reported for
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TABLE 7. Performance comparison of custom 3-layered and 4-layered
models against standard full-YOLOv4 models trained and validated on
90-10 split Dataset B-centered, using loU of 0.5 for training and a range
of loUs (0.3-0.6) for inference.

Model | Transfer mAP@0. | mAP@0. | mAP@0. | mAP@O.
name learning 3 IoU 4 IoU 5 IoU 6 loU
YOLO | Yes 92.13 92.13 91.99 91.50
-mp-31
YOLO | yes 91.81 91.79 91.68 91.16
-mp-41
Full- yes 90.89 90.74 90.60 89.07
YOLO
v4
(stand
ard)
Full- yes 91.39 91.30 91.06 89.89
YOLO
v4-
det104
Full- Yes 91.37 91.26 91.00 90.25
YOLO
v4-41

Dataset B in our study) on Dataset A which can be attributed
to poor results obtained for higher inference IoU threshold
(Table 8 and Table 9). YOLO-mp-31 and YOLO-mp-41 out-
performed other full versions of YOLOv4 models at 0.3 infer-
ence [oU threshold as shown in Table 8 and Table 9.

TABLE 8. Performance of models trained on fold-5 of Dataset B-centered
applied to infer on all images of Dataset A. All models have input
resolution 608 x 608 pix and trained using 0.5 loU threshold.

Model name map@0.5 | IoU@0.5 | map@0.3 | IoU@0.3
YOLO-mp-41 62.26 51.09 80.92 55.83
YOLO-mp-31 50.82 41.57 79.32 49.45
Full-YOLOv4 40.90 41.25 49.74 43.93
Full-YOLOv4-det104 | 61.30 55.82 74.38 59.14
Full-YOLOv4-41 62.59 52.28 78.22 5591

TABLE 9. Performance of models trained on split 90-10 of Dataset
B-centered applied to infer on all images of Dataset A. All models have
input resolution 608 x 608 pix and trained using 0.5 loU threshold.

Model map@0.5 | IoU@0.5 | map@0.3 IoU@0.3
YOLO-mp-41 66.0 55.22 82.01 59.25
YOLO-mp-31 65.98 55.38 81.27 59.16
Full-YOLOv4 58.37 54.91 74.04 58.65
Full-YOLOvV4- 54.94 52.14 71.63 56.88
det104

Full-YOLOv4-41 57.30 51.91 73.46 56.37

9) MODEL SIZE, COMPUTATION, AND SPEED
REQUIREMENTS

For a test on 118 images and network input resolution
of 608 x 608 pixels the average detection-only time on
a CPU computer with specification Intel®Core™i7-10700
CPU @ 2.90 GHz, 8 Cores, 16 Logical Processors were
11, 12 and 77 seconds for YOLO-mp-31, YOLO-mp-41 and
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full-YOLOvV4 models, respectively. YOLO-mp-31 model is
7 times faster (93.22ms per image) compared to full-YOLO
model (652.54ms per image) due to YOLO-mp-31 having
fewer number of layers (51 layers) and require less compu-
tation (21.800 BFLOPS) compared to full-YOLOv4 model
with 162 layers and 161.839 BFLOPS as shown in Table 10.

TABLE 10. BFLOPS of trained model and memory size.

Model name BFLOPs Model size (Mb)
YOLOV4-tiny-31 (original) 17.127 233
YOLO-mp-31 21.800 24.5
YOLO-mp-41 24.477 254
Full-YOLOV4 (original) 127.232 244
Full-YOLOv4-det104 161.839 244
Full-YOLOv4-41 213.521 263

Larger model needs more storage space, longer down-
loading time and more computing resource such as proces-
sor and memory. Therefore, YOLO-mp-31 model is suitable
for real-time mobile and embedded device applications.
YOLO-mp-31 model’s weight file size is 24.5MB which is
about 10 times less than full-YOLOv4 model’s weight size
of 244MB as shown in Table 10.

VIl. QUANTITATIVE ANALYSIS

Irrespective of diagnostic methods used for identification
of malaria infection, all positive results should be accom-
panied by quantifying percentage parasitemia content in
the blood films [4]. Trained models were used for detec-
tion and the number of detections per image was counted
and assessed against the ground truth count of bounding
boxes using regression analysis as shown in Table 11 and
Table 12.

TABLE 11. Detection counts from models trained on trainset of fold-5 of
Dataset B-centered applied to infer on validation set of fold-5 Dataset
B-centered. All models have input resolution 608 x 608 pix and trained
using 0.5 loU threshold. Inference-time conf threshold of 0.25. “y” and
“x" refers to predicted and ground truth counts, respectively.

YOLO-mp- Full-YOLOv4 YOLO-mp-41
31
Regression y=1.2295x Y=1.2214x y=1.2992x
equation
R-squared 0.932 0.9304 0.9188
RMSE 3.242 3.218 3.923

Although, the confidence threshold value for each model
should be determined separately to obtain best results, on a
common confidence level of 0.25 and 0.5 the counts of
pathogen from YOLO-mp-31 are similar to Full-YOLOv4
model as shown in Table 11 and Table 12.

With lower confidence threshold (Table 11) there is higher
detection counts and higher RMSEs from all models com-
pared to using higher confidence threshold (Table 12).
At confidence threshold of 0.5 the counts form YOLO-mp-31
and Full-YOLOv4 are close to the ground truth counts
with RMSEs of 2.163 and 2.190, respectively (Table 12).
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TABLE 12. Detection counts from models trained on trainset of fold-5 of
Dataset B-centered applied to infer on validation set of fold-5 Dataset
B-centered. All models have input resolution 608 x 608 pix and trained
using 0.5 loU threshold. Inference-time conf threshold of 0.5. “y” and “x”
refers to predicted and ground truth counts, respectively.

YOLO-mp-31 | Full-YOLOv4 YOLO-mp-41
Regression y=1.0824x y=1.0332x y=1.1535x
equation
R-squared 0.9469 0.9358 0.9404
RMSE 2.163 2.190 2.638

(e) ®

FIGURE 7. Pathogen detection results on image 0521.jpg for

0.5 confidence threshold left (a, ¢, e) and for 0.25 confidence threshold
right (b, d, f) from YOLO-mp-3I, Full-YOLOv4, and YOLO-mp-4| models,
respectively.

However, YOLO-mp-41 generated more detections than the
other models compared (Table 11 and Table 12).

VIIl. QUALITATIVE ANALYSIS

Models trained on fold-5 trainset were used to detect parasites
on fold-5 validation set images of Dataset B-centered and
bounding box visualized for qualitative analysis as shown in
Figure 7-12.

VOLUME 10, 2022



A. Koirala et al.: Deep Learning for Real-Time Malaria Parasite Detection and Counting Using YOLO-mp

IEEE Access

(a) (b)

FIGURE 8. Pathogen detection results on image 0555.jpg (a) and image
0568.jpg (b)-

Example detections on negative images:

Fold-5 validation set consisted of 24 negative images.
There was no detection on most of the negative images from
all 3 models YOLO-mp-31, Full-YOLO, and YOLO-mp-41.
However, pathogens were detected on some negative images
analyzed below.

In Figure 7, we have a negative image (0521.jpg), where
YOLO-mp-31, full-YOLOv4 and YOLO-mp-41 detected 6,
5, and 8 pathogens (left image conf thresh 0.50), and 8,
5, and 9 pathogens (right image conf thresh 0.25),
respectively.

However, YOLO-mp-41 detected all the possible pathogens
in Figure 7, that were either missed by YOLO-mp-3l or
full-YOLOVA4.

In Figure 8, we have negative images where all mod-
els (YOLO-mp-3, full-YOLOv4 and YOLO-mp-41) detected
5 pathogens in image 0555.jpg (left) and 3 pathogens in image
0568.jpg (right). For both images of Figure 8, the detections
were on the same objects for detection confidence thresholds
of either 0.5 or 0.25.

In Figure 9, we have a negative image (0540.jpg)
in which YOIO-mp-31, full-YOLOv4 and YOLO-mp-41
detected 2 objects each for with confidence threshold of 0.50.
Although all models agreed on number of detections on
images of Figure 9, but the detections were for different
objects.

In Figure 10, we have a negative image (0562.jpg) in which
all models (YOLO-mp-31, full-YOLOv4 and YOLO-mp-41)
detected same object with confidence scores of greater
than 90%. A zoomed-in view of the detected pathogen is
provided in figure 10.

In Figure 11, we have a negative image (0537.jpg) in
which YOLO-mp-31, full-YOLOv4 and YOLO-mp-41 mod-
els detected 2, 2 and 3 objects at confidence threshold of
0.50 and 3,3 and 4 objects at confidence threshold of 0.25,
respectively. However, in image of Figure 11 the detections
from models are different objects.

The trained models from our study have picked up
pathogen like objects in negative images having no boxes in
the ground truth, but it still begs the question whether the
detections were really a false detection or an ambiguity in
ground truth labelling.
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(@) (b)

(e) )

FIGURE 9. Pathogen detection results on image 0540.jpg left (a, c, e) and
cropped detection with confidence score displayed right (b, d, f) from
YOLO-mp-3l, Full-YOLOv4, and YOLO-mp-4l models, respectively.

(a) (b)

FIGURE 10. Pathogen detection results on image 0562.jpg left (a) and
zoomed in display right (b).

Example detection on positive image:

We have considered as positive image where the differ-
ence between prediction and ground truth object counts was
high.

In Figure 12, we have a positive image (546.jpg),
where both YOLO-mp-31 and full-YOLOv4 models
detected 8 pathogens where the ground truth count being
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(a) (b)
(c) (d)
(e) (f)

FIGURE 11. Pathogen detection results on image 0537.jpg for

0.5 confidence threshold left (a, ¢, e) and for 0.25 confidence threshold
right (b, d, f) from YOLO-mp-3I, Full-YOLOv4, and YOLO-mp-4l models,
respectively.

13 pathogens. However, YOLO-mp-41 model for the
same image of Figure 12 detected all the 12 possible
pathogens that were either missed by YOLO-mp-31 or
full-YOLOVA4.

Although the model prediction of number of infected
pathogens can be very close to the ground truth number of
objects in the image as shown in Table 11 and Table 12, the
total count can have false positives counts. Qualitative anal-
ysis in Figure 7-11 showed that although, models detected
similar number of pathogens for the image but few of the
detections were from different objects. Therefore, we cannot
judge the model performance only based on the detection
counts. Average precision on the other hand considers the
overlap of detected object with the ground truth box to deter-
mine true positives and is therefore a better metrics for model
performance assessment.
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(c) (d)

FIGURE 12. Pathogen detection results on image 0546.jpg for

0.5 confidence threshold (b, ¢, d) from YOLO-mp-3l, Full-YOLOv4, and
YOLO-mp-4l models, respectively. Dataset B ground truth boxes for
0546.jpg (a).

IX. VALIDITY OF PUBLIC DATASET

Missing ground truth boxes and error in annotations were
reported for Dataset B by [3]. Form the previous section on
qualitative analysis of Dataset B, we observed our trained
models were detecting more malaria pathogens that did
not have ground truth annotation boxes. Interestingly, such
detections were clearly observed on negative images of
Dataset B.

We randomly selected eight images (0097.jpg, 0322.jpg,
0604.jpg, 0617.jpg, 0652.jpg, 0997.jpg, 1138.jpg, and
1149.jpg) from Dataset B but ensuring they include neg-
ative images as well as images with medium and high
level of parasite infection as per the ground truth count of
Dataset B. On those sampled eight images we draw bound-
ing box on all possible pathogen-like objects (141 annota-
tion boxes in total) and sent to our two independent expert
microscopists (‘expert-1" and ‘expert-2”) for scoring each box
for presence or absence of malaria parasite. For comparison,
existing Dataset B annotator was considered as ‘expert-3’.
Any boxes (out of 141 boxes annotated by us in this study)
that were not labelled as pathogen in sampled images of
Dataset B was considered as scored no-pathogen by expert-3.

To test the similarity in labelling between any two
experts, we calculated the Jaccard similarity score between
labelled sets using ‘‘jaccard_similarity_score” function of
“scikit-learn” machine learning package (https:/scikit-
learn.org/stable; accessed on 20/06/2022). Jaccard similarity
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index (0~1) is a statistical measure of similarity between
two sample sets. Jaccard similarity scores of 0.6, 0.52, and
0.59 were obtained for expert-3 vs. expert-1, expert-3 vs.
expert-2, and expert-1 vs. expert-2, respectively. The low
similarity scores between any of the two expert micro-
scopists on sampled images of Dataset B indicates the high
level of disagreement between experts’ judgement. There-
fore, if we need to deploy low-cost healthcare solution in
pathogen detection through computer vision then there is
also a need to establish standards and quality control on data
sets.

X. DISCUSSION

Chibuta and Acar [3] studied the images on their test sets of
Dataset B where the performance of trained model was very
poor and reported that in most cases there were few parasites
that were not ground truth labelled but detected by the trained
model. Authors of [3] have also reported some annotation
errors in randomly sampled images from the Dataset B. For
supervised learning such subjective errors along with non-
appropriate and loose bounding box where objects are not
centered properly would significantly affect the model train-
ing and detection performance. In our study of dataset B
for images containing tiny (1~2 pixel) bounding boxes, it is
unclear if the labelling expert missed to enlarge the boxes or
that it was mistakenly annotated. Supervised learning mostly
depends on the quality of training data i.e., correctness of
labelling and consistency of drawing bounding box on ground
truth target objects [9]. Similarly, on some images of dataset B
we observed that few ground truth bounding box were unnec-
essarily large compared to other boxes in the same image.
Moreover, some bounding boxes contained only part of the
pathogen although the box were big enough to cover whole
object.

For our new dataset we observed that in most cases the
original bounding boxes from Dataset B were large enough
in size to include the morphologies such as shape fea-
tures around the centered chromatin on a re-adjusted dataset
Dataset B-centered. Therefore, no attempt was made to resize
the bounding box. However, it can be argued that if an
expert microscopist can resize the boxes to properly fit
around the object the overall quality of the dataset could
improve.

Abdurahman et al. [20] reported that on Dataset B, the
performance of YOLO models was sensitive to change in
inference IoU threshold values. A 6.59% to 17.5% improve-
ment in mAP was observed on Dataset B images for different
YOLO models studied by changing IoU threshold from 0.5 to
0.3. Significant difference in mAP was observed on Dataset
B for full-YOLOv4 model in our current study for two differ-
ent inference threshold values as shown in Table 1, which is
consistent to the results of [20].

In contrast, we observed that the performance mAP
of YOLO models is not very sensitive to the change in
IoU threshold values on Dataset B-centered as shown in
Table 6 and Table 7 which indicates better object localization
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and better overlap between predicted and ground truth bound-
ing box. We argue that the localization capability of models
was improved on Dataset B centered, following chromatin
centering approach.

YOLO-mp-41 achieved the best performance and was
slightly better than YOLO-mp-31 as shown in Table 6. In con-
trast YOLO-mp-31 was slightly better than YOLO-mp-41
on 90-10 split dataset as shown in Table 7. Interestingly,
YOLO-mp-31 for both scratch and transfer learning, out-
performed full-YOLOv4 on fold-5 validation set of Dataset
B-centered as shown in Table 6. This result proved that cus-
tomized smaller models could achieve similar or even better
performance in comparison to large standard models.

XI. RECOMMENDATIONS

The importance of model training and method development
for very sensitive applications like medical imaging diag-
nosis should not solely rely on the model accuracies (num-
bers) reported on any publication but also on repeatability
and reproducibility of model on different train/test sets such
that the method will have some practical importance. It is
recommended that the authors of publications release their
train/test/valid set (especially for public datasets) and include
all technical information on their model implementation
clearly on the paper such that other person can re-produce the
results for benchmarking of new models. We argue that the
experts in medical imaging (e.g., microscopists) and machine
learning should sit together to properly define and validate
some rules for creating better quality datasets to improve
reliability and accuracy of supervised models. It is recom-
mended for authors of publications to explore and understand
the dataset (especially public dataset) before crafting complex
algorithms to solve the problems.

XIil. CONCLUSION
Recommendation has been made from machine learning
viewpoint and are based on the publicly available datasets
of malaria pathogens in thick blood smears, about the sen-
sitivity of the dataset, methods of testing repeatability and
reproducibility of trained models and what information to
be released in publications for future benchmarking. It was
demonstrated that having a cleaner and consistently labelled
dataset would allow to craft smaller and less complex models
that can achieve similar or even better results than heavier
and more complex models with low resource such as less
computation and smaller hardware. A gap between experts
of two domains medical and machine learning was identified
for application under current study and recommendations are
made to close the gap. A tiny model based on YOLO object
detection framework was designed which achieved the best
result with mAP 94% at 0.5 IoU threshold on our test set for
the current dataset compared to heavier standard YOLO-v4
models studied.

In summary, this paper discusses and describes a method to
increase labelling consistency for improved model accuracy.
The improvement in model performance validated the
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proposed method of centering the ground truth bounding
boxes around chromatin. Future developments and large-
scale validations of this can possibly address the existing
knowledge-gaps; and could augment the current efforts of
several health implementations programs on strengthening
Malaria Microscopy across remote and rural areas where it
is warranted most. The custom three-layered YOLO-mp-3I
and four-layered YOLO-mp-41 models achieved the best
mAP scores of 93.99 (@IoU=0.5) and 94.07 (@IoU=0.5),
respectively outperforming standard YOLOv4 (full-YOLOv4
model, mAP 92.56 @IoU=0.5) for detection of malaria
pathogen on a public dataset of thick smear micro-
scopic images captured using phone camera. YOLO-mp-31
(BFLOPs = 21.8, model size =24.5Mb) and YOLO-mp-41
(BFLOPs=24.477, model size = 25.4Mb) outperformed full-
YOLOv4 (BFLOPs=127.232, model size = 244Mb) in terms
of computation and memory requirements proving them suit-
able to run on low resource settings.

Based on our results we can conclude that computer
vision and deep learning methods can certainly help in
automation of pathogen detection task, but there is a
growing need for standardization on health care data set
labelling.
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