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ABSTRACT The temporal graph can represent a temporal relationship widely used in compound synthesis
analysis, biological gene analysis, etc. However, the temporal graph would embody vertex updates fre-
quently, high time resolution, and not enumerated rules. The construction and update of some temporal
graph models are too dependent on the graph operation sequence, which leads to a lack of an effective
model. Simultaneously, the temporal subgraph clustering of the temporal graph with frequent updating for
the lack of an effective model leads to low accuracy. Therefore, we propose an efficient and frequently
updated temporal graph model as vertex driven and corresponding temporal subgraph clustering method.
First, we propose a temporal graph construction algorithm and set two thresholds to divide the temporal graph
on a timeline to obtain temporal subgraphs. Next, an enhancement strategy based on the sliding window
is proposed to accelerate the construction process. Third, we offer a double-standard temporal subgraph
clustering method based on community comparison and temporal distance. The temporal subgraph can be
effectively distinguished in temporal and structure dimensions. Lastly, experimental results on both real and
synthetic datasets show that the temporal graph model proposed in this work can reduce the time overhead
of construction compared to other existing models. The cluster method improves the clustering accuracy of
temporal subgraphs. The clustering results show through the hierarchical clustering at the same time.
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INDEX TERMS Temporal Graph, temporal graph model, subgraph clustering, sliding window, hierarchical
clustering.

I. INTRODUCTION18

The Temporal graph [1], [2] is a dynamic network [3], [4]19

with frequent updates of vertices and edges and high time res-20

olution, unenumerable nature of rules can describe complex21

objects and their relationships in the real world. The temporal22

graph generation model [5] is that defines the meaning of23

the vertices and edges, in the time axis according to the24

reality of the uninterrupted evolution process, according to25

certain rules to construct a temporal graph, which can solve26

the problem of temporal graph built in the real world. It is27

widely used in various practical scenarios and is an important28
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basis and premise of data modeling and data analysis, such as 29

compound evolution analysis, traffic model evolution analy- 30

sis, and disaster monitoring evolution analysis. In a disaster 31

monitoring analysis scenario, for example, we can express 32

a vertex as a sensor, taking abnormal moment difference 33

between sensors as edge generation or not, between the sen- 34

sors will generate more than one edge determined by the 35

properties with the time information. When users want to 36

describe the relationship between the sensors, they can use 37

the temporal graph generation model and build a sensor rela- 38

tionship graph between the sensors, forming a set of multiple 39

temporal graphs. When the user wants to analyze the rule of 40

events in a certain period, the clustering results of multiple 41

temporal graphs can be quickly presented, which provides 42

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 100627

https://orcid.org/0000-0002-1336-2428
https://orcid.org/0000-0002-4524-1647
https://orcid.org/0000-0003-4285-578X


H. Zhang et al.: Efficient Vertex-Driven Temporal Graph Model and Subgraph Clustering Method

accurate data reference for disaster analysis and subsequent43

disaster prevention. It is very effective for sensor relationship44

modeling and mining, which are critical methods in big data45

analysis.46

Existing temporal graph models focus on graph streaming47

and graph generation model, in which the graph streaming48

model uses known changes in graph vertices and edges to49

construct and update the temporal graph [6], [7], [8], graph50

generation model is similar to it, which generates temporal51

graphs generally through the attributes of vertices or edges.52

For example, Purohit S. et al. [9] calculated the probability53

of the arrival of edges and vertices, and need know the54

sequence of the generation or disappearance of the edges55

and vertices, but the relevant temporal information is difficult56

to get directly in the real scene, so whether the emergence57

or disappearance of vertices and edges should be developed58

rules. For example, the graph generation model proposed by59

Bai Y. et al. [10] requires an additional calculation of the60

similarity between different objects in the video to construct61

the temporal graph, which is too costly and reduces the62

efficiency of subsequent data analysis for the scene of real-63

time construction of the temporal graph. Multiple graphs64

clustering work is mostly concentrated in the field of machine65

learning [11], [12], [13], most of the work involves the clas-66

sification of the temporal graph, extracting the characteristic67

subgraphs of graphs or the characteristic matrix to learn. It’s68

equivalent to clustering, but this way of classification to be69

separate training on each data set leading to these methods70

has some limitations, such as the training cost is high, the71

labels being difficult to obtain, and the model is difficult72

to update. The other method is to compare the similarity73

between two temporal graphs by extracting the graph core74

feature [14] for multiple graph clustering. Although this75

method can obtain the similarity of multiple graphs, this76

similarity does not consider time differences, only structural77

differences, which is not suitable for temporal multi-graph78

clustering.79

Therefore, this paper proposes a Vertex-Driven Temporal80

Subgraph Clustering(VDTSC) Problem and a correspond-81

ing Vertex-Driven Temporal Subgraph Clustering method.82

Firstly, a basic temporal graph construction method is pro-83

posed, which determines the generation of inner vertices84

edges by setting two thresholds. Secondly, the construction85

process of the temporal graph is optimized using a sliding86

window. Then, the community detection method is used87

to extract communities from a static graph transforming88

from a temporal graph. The total distance between the two89

temporal graphs was determined by calculating the com-90

munity comparing distance and the distance of time, and91

hierarchical clustering was used for clustering. Finally, the92

effectiveness of the method proposed in this paper was ver-93

ified through experiments. Our main contributions are as94

follows.95

•We propose a vertex-driven temporal graph construction96

algorithm and set two thresholds to divide the temporal graph97

on a timeline to obtain various temporal subgraphs.98

• An enhancement strategy based on a sliding window is 99

proposed to speed up the construction process and reduce the 100

number of comparisons. 101

• We offer a double-standard temporal subgraph cluster- 102

ing method based on community comparison and temporal 103

editing distance to realize the temporal subgraph clustering. 104

The temporal subgraph can be distinguished in temporal and 105

structure dimensions. 106

• Experimental results on 5 real and synthetic datasets 107

show that the temporal graph model in this work can reduce 108

the time overhead of construction compared with other exist- 109

ing models. The cluster method improves the clustering accu- 110

racy of temporal subgraphs. The clustering results can be 111

shown directly through hierarchical clustering at the same 112

time. 113

This paper is organized as follows. Section II introduces 114

the current work in this direction. Section III illustrates defini- 115

tions and VDTSC problems. Section IV constructs temporal 116

graphs with two thresholds. SectionV uses 3 steps to compute 117

temporal subgraphs’ distances and cluster them. Section VI 118

compares our model and algorithms. Section VII summarizes 119

this work. 120

II. RELATED WORKS 121

We introduce several aspects relevant to the work of this 122

paper, streaming graph, community detection, community 123

detection on the temporal graph, and multi-graph clustering, 124

respectively. 125

1) STREAMING GRAPH 126

C. Linhares et al. [15] proposed a visualization method 127

of time series graph to decompose large networks into 128

small parts and classify community activity models better. 129

Yin, Siwen et al. [16] proposed a novel incremental commu- 130

nity detection method based on modularity optimization for 131

node-grained streaming networks. This method takes one ver- 132

tex and its connecting edges as a processing unit and equally 133

treats edges involved by the same node, finding the tempo- 134

ral communities on the timeline. Ferrari, André et al. [17] 135

devised an online change-point detection algorithm that fully 136

benefits from the recent advances in graph signal processing 137

to exploit the characteristics of the data that lie on irregular 138

supports. Sariyüce, A. et al. [18] proposed a find-and-merge 139

type of community detection algorithm that can efficiently 140

handle streaming updates incorporating two additional tech- 141

niques to speed up the incremental merge-min-hashing and 142

inverted indexes. Y. Wu et al. [19] introduced a simple model 143

for networks growing over time, which they refer to as 144

the streaming stochastic block model (StSBM). Within this 145

model, they proved that voting algorithms have fundamental 146

limitations. Feng Sheng et al. [20], they use components as 147

units, edges are added and deleted after vertex classification, 148

and use a load balancing mechanism. However, this method 149

does not have to scale with frequent updates on a large graph. 150

Zhang Jianpeng et al. [21] proposed an appropriate streaming 151

clustering model and designed two new core components: 152
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streaming reservoir and a cluster manager, which handles the153

edge additions/deletions. They cluster vertices into clusters154

and do not consider multi-graph clustering.155

2) COMMUNITY DETECTION156

B. Das et al. [22] proposed an online community detection157

method based on user behavior. Pan Xiaohui et al. [23]158

composed by the similarity of adjacent nodes and then159

formed communities by connecting these small pieces.160

Ma Tinghuai et al. [24] proposed a community discovery161

method for static graphs based on global (k-shell entropy)162

and local information. Bilal Saoud et al. [25] proposed a163

method of small community detectionmerging based on local164

clustering. Fang Hu et al. [26] proposed a framework of165

vertex continuous feature representation and executed graph166

clustering by spectral clustering. You Xuemei et al. [27] finds167

communities through central vertex recognition, tag propaga-168

tion, and community combination based on global and local169

information. Feng Zeng et al. [28] proposed a relationship170

between social properties and an interesting measurement171

vertex relationship and maintained the result of cluster clus-172

tering between vertices. Li Tianpeng et al. [29] proposed a173

method of dynamic temporal community discovery, which174

is like the view in this paper, based on the internal feature175

correlation of each snapshot. They both consider the structure176

of a graph but do not consider the multi-graph problem.177

3) COMMUNITY DETECTION ON TEMPORAL GRAPH178

Qin H. et al. [4] studied the problem of seeking periodic179

communities in a temporal network, where each edge is180

associated with a set of timestamps and proposed novel181

models, including σ -periodic k-core and σ -periodic k-clique,182

representing periodic communities in temporal networks.183

A. Hollocou et al. [30] found communities of graphs from184

an edge perspective. M.A.K. Patwary et al. [31] segments185

graph vertices online, ensuring load balance between par-186

titions, but it is not suitable for constructing sequential187

graphs. An adaptive clustering algorithm in [21] is proposed188

to ensure the priority of graph stream data construction.189

M. Mariappan et al. [32] also proposed an adaptive data190

processing model based on a streaming graph, both of which191

consider edge creation and deletion. Feng Sheng et al. [33]192

proposed a technique of loss processing of incremental193

graphs to illustrate the optimization process of edge creation194

and deletion. Yao Junjie et al. [34] proposed a new approach195

to detect burst tagging events, which captures the relation-196

ships among a group of correlated tags where the tags are197

burst or associated with bursts tag co-occurrence. They both198

consider the streaming or graph data and not the construction199

perspective.200

4) MULTI-GRAPH CLUSTERING201

Current temporal graph clustering mainly focuses on vertex202

clustering, not the muti-graph clustering. Most of them focus203

on the multi-graph classification.Multi-graph classification,204

such as [13], [14] [11], [12]. Wu, Jia et al. [11] used the205

gspanmethod to mine the subgraph, which has a unique code, 206

developed a bScore function to compute the similarity of 207

each graph. They use a weak classifier to get the (t + 1)th 208

informative subgraph and two classifiers to adjust the final 209

consequence.Wu Jia et al. [12]’s work is similar to [11]. Pang 210

Jun et al. [13] mainly developed a frequent subgraph mining 211

score function, calculates the top-K frequent subgraphs to 212

get the feature subgraph on the multi-graph. They complete 213

multi-graph clustering with a combination of the ELM clas- 214

sification model and MapReduce framework, which is also 215

in the static graph clustering. Ma Guixiang et al. [14] used 216

interior-node clustering and themulti-graph clustering, which 217

can finally achieve a refined multi-graph clustering result. 218

It studies the static brain networks. Wang Haishuai et al. [35] 219

calculated the shaplet of each time vary graph and classified 220

them by converting the time-varying graph into time-series 221

data, but it counts the operation counts without computing 222

temporal information. At present, there is still a lack of an 223

efficient multi-temporal graph clustering method. 224

III. PRELIMINARY 225

In this section, we introduce the basic concepts and defini- 226

tions of a vertex-driven temporal subgraph Gt = (M ,E,T ) 227

is introduced according to Example 1. They form a set of 228

temporal graph denotes as G = (M, E, T ), whereas Gt ⊆ G. 229

M and E just denote the temporal subgraph on the layer of 230

notation, T contains temporal information. We call G vertex- 231

driven temporal graph set. 232

Definition 1 (Vertex): The vertex set is denoted as M = 233

{m1,m2,m3, . . . ,ml, . . . |l ∈ [1, |M |]}, can easily infer 234

|M | ≥ 1, each vertex has an abnormal time instance Pmi , i ∈ 235

M , and each vertex can be connected or disconnected by 236

temporal edges according to abnormal status. 237

Definition 2 (Edge): The relation between two vertices 238

uses an edge to connect in graph, each edge is existence or 239

not decided by the vertex’s abnormal status and instance. 240

For simply, vertex 1 has abnormal time Pm1 , and vertex 241

2 has abnormal time Pm2 , the time difference (edge time 242

information) is 1t = |Pm2 − Pm1 |. We denote the edge set 243

as E = {eij|i, j ∈ [0, |M |]}, and T = {1tij|i, j ∈ [0, |M |]}. 244

Definition 3 (Immediate Neighbor): The vertex A’s imme- 245

diate neighbor indicates a node set apart from node A, denotes 246

the set of vertices directly connected to A. We use N (A) to 247

denote and use N [A] to represent a node set including A and 248

its immediate neighbor. 249

Definition 4 (Structure Similarity): The similarity of ver- 250

tices uses the balanced performance method, called structure 251

similarity [36], the computational formula is as follows. 252

simij = (N [i] ∩ N [j])/(
√
|N [i]| × |N [j]|), i, j ∈ M (1) 253

Example 1:We obtain the set of abnormal instances corre- 254

sponding to different sensors through the abnormal detection 255

method when mining a tunnel in the mountain. The tempo- 256

ral graph can express these relationships to analyze digging 257

from structure and time. Although a cluster of sensors [37] 258

can obtain the classification sensors, it is the integrated 259
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FIGURE 1. An Example of Temporal Directed Graph.

relationship of all sensors between each monitoring event.260

Therefore, there needs a temporal graph model in the process261

of analysis.262

As shown in Figure 1, we can see that vertex 5 is the263

first becoming an anomalous state. Its immediate neighbors264

are vertices 2, 3, and 6, vertex 5’s anomaly instances is265

1, 2, 2, respectively. We set the local threshold to t = 3 and266

the global threshold to σ = 20, which can be determined267

based on the specific domain’s prior knowledge. However,268

there are no edges between the vertices between 5 and 1,269

and between vertices 2 and 4. We assume that if the time270

difference between the two vertices is greater than the local271

threshold t , then the directed edge will not appear. When272

vertex 7 appears in this temporal graph, it does not meet273

the local threshold t . We will force connecting vertex 7 to274

10 to ensure that the temporal graph is connected within the275

global threshold, similarly, vertex 4 and 12. We use the global276

threshold σ to facilitate the partition of the temporal graph,277

forming a temporal subgraph set, or forming an integrated278

temporal graph with t .279

Definition 5 (Connectivity and Direct Connectivity):280

If ∃mi ∈ M where the vertices set M correspond to a281

temporal subgraph of G, the first abnormal vertex is mfirst =282

argmmin(PM ), so if the node mi and mfirst satisfy the follow-283

ing different conditions, respectively, we will get different284

conclusions.285

Condition 1: 0 ≤ Pmi − Pmfirst ≤ σ , all nodes in this range286

are connected containing mi, denotes as γn = {mi|0 ≤ Pmi −287

Pmfirst ≤ σ, i ∈ [1, |γn|]}.288

Condition 2: 0 ≤ Pmi − Pmfirst ≤ t , we set mi to be289

direct connected with each other, denotes as nγ ∗l = {mi|Pmi−290

Pmfirst ≤ t, i ∈ [1, |γ ∗l |]}.291

Condition 3: t < Pmi − Pmfirst ≤ σ , we consider the node292

mi and mfirst are not connectivity, the first mi ∈ γn+1 is the293

new initial point m′first in the next temporal internal subgraph294

which indicates the node mi is not contained in the current295

sliding window with length t .296

Condition 4: Pmi − Pmfirst ≥ σ , we separate mi into a new297

temporal level keep away from the former temporal graph,298

which indicates the node mi is not contained in the current299

sliding window with length σ .300

When a new mi emerge on the timeline, we have:301

If condition 1 is satisfied, we consider that the mi302

are in a connectivity state with the nodes in this range.303

If conditions 1 and 2 are met simultaneously, we think that304

they possess direct connectivity and will fully connect the 305

nodes to mi. If condition 4 is met, we consider that they are 306

separated on the timeline and form a new temporal graph 307

vertex set γn+1, the first node is mi. 308

If condition 1 and condition 3 satisfied, we will force 309

connect the latest vertex milast in γ
∗
i and the earliest vertex 310

mjfirst in γ
∗
j , that is to insert an edge eγ ∗ilast γ

∗
jfirst

between them. 311

So, the different temporal scope of 1t will connect together, 312

and construct a connected temporal graph with length σ . 313

Recall Example 1, we set an extensive threshold of σ , 314

rather than only a small threshold t to segment the temporal 315

graph and further analyze it in different periods. If only one 316

small threshold is used, all the temporal information will inte- 317

grate into a large graph, which is not conducive to subsequent 318

analysis, so the global threshold is used here. This reason can 319

easily get in Example 2. 320

Definition 6 (Vertex-Driven Temporal Graph (Connected 321

Graph)):When the number of nodes reaches |γ | ≥ α, α ≥ 2, 322

and they all satisfy connectivity (Definition 5(1)), we con- 323

sider that there form a temporal graph, they have properties 324

as follows. 325

i. nγ ∗m ⊆ γn ⊆M,n E∗m ⊆ En ⊆ E , i.e. G∗tn ⊆ Gtn. 326

ii. ∀mi ∈ γi and ∀mi ∈ γ ∗i , they are all reach- 327

able, i.e., each node can reach another through a series of 328

nodes and edges. We call this graph vertex-driven tempo- 329

ral graph, denotes as Gtn = (γn, En, Tn), whereas γn = 330

{nγ
∗

1 ,n γ
∗

2 , . . . ,n γ
∗
l , . . . }, En = {nE

∗

1 ,n E
∗

2 , . . . ,n E
∗
l , . . . }, 331

Tn = {nT ∗1 ,n T
∗

2 , . . . ,n T
∗
l , . . . }. The graph we obtained by 332

combining the nγ ∗m and nEm is a vertex-driven temporal inter- 333

nal subgraph, which is denoted as G∗tn = (nγ ∗l ,n E
∗
l ,n T

∗
l ). 334

These temporal graphs will form a temporal subgraph set 335

denoted as G = (M, E, T ) = {Gt1,Gt2, . . . ,Gtn, . . . }, 336

whereas M = {γ1, γ2, . . . , γn}, E = {E1, E2, . . . , En},T = 337

{T1, T2, . . . , Tn}. 338

To briefly state, we use the terms ‘‘temporal graph’’ 339

referring to a vertex-driven temporal graph, and ‘‘temporal 340

subgraph,’’ referring to a vertex-driven temporal subgraph. 341

According to the definitions above, we obtain the property 342

of a temporal graph as follows. 343

i. Pmi − Pmfirst ≥ σ , mfirst ∈ γi,mi ∈ γj or mfirst ∈ γj, 344

mi ∈ γi 345

ii. |M| ≥ |Gt | × α 346

iii. |γi| ≥ 2 ∧ |γj| ≥ 2 347

iiii. |nγ ∗l | ≤ |γn|, with m ∈ [1, |γn|] 348

iiiii. ∀mi ∈ γi and ∀mj ∈ γj in the temporal graph set is 349

unreachable. 350

Definition 7 (Vertex-Driven Temporal Subgraph Cluster- 351

ing(VDTSC) Problem): A user provides a query period Tui ∈ 352

[ti, tj], a temporal directed graph can be formally represented 353

as G = (M, E, T ), where M is the set of vertices, E ⊂ 354

M×M is the set of edges, and T is the temporal weight or 355

temporal information that denotes the difference between a 356

pair of nodes becoming abnormal status. Given a set of such 357

graphs G = {Gt1,Gt2, . . .Gti}, which construct a temporal 358

graph set according to the above Definitions, they do not have 359
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FIGURE 2. An example of temporal subgraphs clustering.

FIGURE 3. A temporal graph generates under the condition of t = 4s.

any properties themselves, so we must compute the distance360

distanceij between two temporal graphs and using the hierar-361

chical clustering method, the goal of multi-graph clustering362

is to cluster the graphs in G into C = {c1, c2, . . . , cn} set.363

Example 2:There are 4 sensors on the timeline. Their status364

changes from normal to abnormal frequently. As shown in365

Figure 2, there are many dots with different colors denoting366

the different sensors. The axis denotes the timeline, which367

indicates that these sensors turn into the abnormal status368

at different time instances in seconds, and the sequence1 -369

sequence4 will together form a temporal graph set through370

our graph model, which is shown at the bottom of this Figure.371

The dashes denote the partition of the temporal graph, which372

is determined by σ . We set σ = t = 2s, which will373

merge the first four temporal graphs when σ = 8s, but they374

cannot form a new structure of a temporal graph. We sort375

them in ascending order according to vertex series numbers376

for some abnormal nodes simultaneously. These temporal377

graphs form a new set as G. And their clustering denotes378

as C = {{A, I , J}, {B,C,D,E,F,G,H}}. We will illustrate379

clustering in section V-D. This example illustrates that the380

purpose of we set a threshold to segment a temporal graph381

TABLE 1. Symbolic meanings.

into a series of temporal subgraphs to differentiate them from 382

σ = 10s,t = 2s situation shown in Figure 3, which generates 383

at t = 4s and does not vary in the period of 4s-10s. The 384

operation is boring for a little bigger σ . 385

We can easily find the different periods corresponding 386

to a different temporal graph. The distance among them 387

will help us cluster and seek the rule of temporal graphs 388

to avoid accidents. The table 1 shows the meaning of all 389

symbols. 390

IV. VERTEX DRIVEN TEMPORAL GRAPH MODEL 391

The temporal graph model should be a model that has two 392

procedures of construction and partition on the timeline. 393

Some vertices and edges update omit, unavailable, and unrea- 394

sonable if we use the snapshot strategy [5]. It would also 395

be impractical to update a temporal graph with every ver- 396

tex and edge updated with one vertex at frequent update 397

mode. 398

So we set two thresholds (see section III Definition 5) 399

to segment the temporal graph on the timeline and call this 400

model the vertex-driven temporal graph model. Its primary 401

purpose is to construct a set of temporal subgraphs G. 402
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A. VERTEX-DRIVEN TEMPORAL GRAPH CONSTRUCTION403

We construct the temporal graph G according to the abnor-404

mal time instance of vertices, recalling the Definition 1,405

Definition 2, Definition 5 and Definition 6 from the above.406

The abnormal instance determines whether some edges407

exist or not between different vertices. The main thought408

of temporal graph construction is to wait for the abnormal409

vertex. We insert edges following the constraints, connect the410

vertices in the time sequence. The edge eij is determined by411

the time vertex arrival and created one by one abiding by the412

thresholds t and σ . We will count the abnormal frequency413

of the same vertex, when it becomes abnormal status from414

normal between σ and determine the importance of this415

vertex. The vertex will be connected all the time according to416

the threshold t when σ = 0. The pseudo-code of this method417

is shown in Algorithm 1.418

Algorithm 1 Temporal Graph Construction(TGC)
Require: M , t , edge construction threshold σ, t , Tui ∈ [ti, tj]
Ensure: G = {Gt1,Gt2, . . . ,Gtn}
1: startPoint ← ∅,queue← ∅,nodeList ← ∅,existEdge = False
2: while True do
3: if mnew is motivated and falls in the time interval Tui then
4: startPoint ← mnew if the procedure execute first circle.
5: nodeList.insert(mnew)
6: d ← Pmnew − PstartPoint
7: if d > σ and σ 6= 0 then
8: G = G ∪ Gti, Gti construction according to nodeList
9: startPoint ← mnew
10: nodeList ← ∅
11: continue
12: else
13: if d ≤ σ and σ 6= 0 then
14: for each node i in nodeList do
15: if |Pmnew−Pi | ≤ t then
16: i→ mnew,ei,mnew = d
17: existEdge = True
18: end if
19: end for
20: if existEdge == False then
21: nodeList.last → mnew,enodeList.last,mnew = d
22: end if
23: existEdge = False
24: end if
25: if σ == 0 then
26: The same as line 14-24.
27: end if
28: end if
29: if mnew not in queue then
30: nodeListmnew .count ++
31: end if
32: end if
33: end while
34: return G

Line 1 initials the variable. Line 2 monitors the situation of419

vertex abnormal status through an endless loop. It entrances420

the edge construction process according to a new vertex that421

occurs at abnormal status at line 3. Line 4 confirms the first422

vertex with abnormal status, and lines 5-6 compute the time423

difference d of startPoint and a new abnormal vertexmmew in424

each iteration, where nodeList stores the frequency and node425

set of the range of σ period, we will save to form a temporal426

graph and clear it after Gti construction. Line 8 merges the427

current Gti into the G. Lines 9-10, re-initialize startPoint and428

nodeList ready to save the next temporal graph. If d ≤ σ429

and σ 6= 0, then this node will locate in σ period at line 13.430

At lines 28-31, we statistic the number of each vertex and save 431

them into the current nodeList between σ when they appear 432

more than once. Lines 14-19 traverse each node in nodeList , 433

find the nodes that satisfy the condition1t < t and construct 434

the edge between i and mnew with weight d under constraint 435

Definition 5 (2). We should connect the nodeList.last in the 436

lastG∗ti andmnew inG
∗

t(i+1) that construct a connectedGtn with 437

Definition 5 (4). We construct Gt through the above method 438

one by one on the timeline. At line 25, we obtain an integrated 439

temporal graph with σ = 0. The algorithm returns the G at 440

line 34. 441

Complexity Analysis: The vertex set is M be allocated by 442

ourself, and the time complexity is |M|×(|M|−1), the space 443

complexity is |E | + |M| × (|M| − 1). 444

B. SLIDING WINDOW ENHANCED 445

Though we can get temporal graphs G in section IV-A, we can 446

also optimize the construction process according to the slid- 447

ing window as IV-B. 448

Corollary 1 (Period Partition): We set the run-up time 449

startTime = Psfirst and the end time startTime + σ as shown 450

in Figure 4, the current period is [Pi − t,Pi]. Its temporal 451

subgraph vertex set is PSET , the next period is determined 452

by [Pi+1 − t,Pi+1], when the next abnormal vertex emerges. 453

There have NSET = PSET\1k ∪mi+1, where1k denotes a 454

period in vertices definitely does not connect with the current 455

vertex in it. Therefore, the algorithm only eliminates vertices 456

from PSET , and diagnoses each node in NSET each time, 457

which can reduce the computation cost. 458

FIGURE 4. Time period partition illustration.

We will not compare with all nodes from the start time 459

of one temporal graph in the generation process. However, 460

constructing edges to the vertex set is shown in Figure 4(time 461

difference 1t < t) to reduce the complexity of online tem- 462

poral graph construction according to IV-B. This method’s 463

pseudo-code is shown in Algorithm 2. 464

Line 1 initializes the variables, here, we delete the 465

existEdge and add another variable isFirst we set as a flag 466

to show PSET is built accomplish or not in this method. 467

Lines 3-10 are the same as the TGC sowe omit this code para- 468

graph. Lines 12 − 14 illustrate PSET and Gt1 construction, 469

line 16 sets the isFirst toFalse so that the next iteration cannot 470

execution code segment 11-14. Line 16 adds a node to1k that 471

satisfies the distance from nodes to the first node in PSET 472

smaller than the distance from the mnew to the last motivating 473

node in PSET . Lines 18-21 denote the motivation of mnew 474

is greater than t when the |1k| equals to the |PSET |, then 475

we connect the PSET .last to mnew with weight d to promise 476
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Algorithm 2 Fast Temporal Graph Construction(FTGC)
Require: M , t , edge construction threshold σ, t , Tui ∈ [ti, tj]
Ensure: G = {Gt1,Gt2, . . . ,Gtn}
1: startPoint ← ∅,queue← ∅,isFirst = True,PSET ← ∅,NEST ← ∅
2: while True do
3: if mnew is motivated and falls in the time interval Tui then
4: startPoint ← mnew if the procedure execute first circle.
5: nodeList.insert(mnew)
6: d ← Pmnew − PstartPoint
7: if d > σ and σ 6= 0 then
8: It’s the same to the Algorithm 1 except for the line 10, we set isFirst =

False extra.
9: else
10: if d ≤ σ and σ 6= 0 then
11: if isFirst then
12: if Pmnew − PstartPoint ≤ t then
13: Construct PSET
14: connect all vertices emerge in the first PSET .
15: else
16: isFirst = False
17: get 1t according to IV-BIV-B
18: if |1k| == |PSET | then
19: nodeList.last → mnew
20: enodeList.last,mnew = d , queue← mnew
21: end if
22: for each node i in PSET\1k do
23: NSET .insert(mnew)
24: i→ mnew;ei,mnew = d , queue← mnew
25: end for
26: PSET = NSET
27: end if
28: else
29: The same as line 14 to 23 in Algorithm 1.
30: end if
31: end if
32: end if
33: if σ == 0 then
34: The same as line 11 to 30 in Algorithm 2.
35: end if
36: if mnew in queue then
37: nodeListmnew .count ++
38: end if
39: end if
40: end while
41: return G

connectivity, and pushmnew into the queue. Lines 21-24 con-477

nect each node in PSET\1k to the mnew with distance d478

and push mnew into the queue. We reset PSET to the current479

variable valueNSET at line 26. And line 29 ensures the PSET480

and NSET updating in the subsequent process. Lines 34 is481

the same as line 10 to 29 to construct an integrated temporal482

graph. Line 36-38 statistic the node emerging in the σ period.483

Line 41 returns the G.484

Complexity Analysis: We do not consider the while circle485

participating time complexity computation as well, the time486

complexity of Algorithm 2 is decided by length of the first487

|PSET |, and the others decided by the remaining length of488

PSET in each period t that decided by motivated frequency489

of these nodes. So the total time complexity is |first(PSET )|+490

|PSET | × ((tj − ti)/σ ). The space complexity is consist of G,491

Gt , PSET , and NSET in each iteration, and nodeList in each492

Gti, and the total space complexity is |M|+|γn|+ (|PSET |+493

|NSET |)+ |nodeList|.494

The algorithm above will construct the temporal graph in495

real-time. The edge between two vertices is the time dif-496

ference, which directly represents the temporal relationship497

between two points at the period of [ti, tj]. The temporal498

edge can judge the similarities and differences between two499

temporal subgraphs when they have a similar structure. 500

Although we can find the difference between temporal graphs 501

through the combination of structure matching algorithm and 502

time information, it requires high computational overhead, 503

and a large amount of temporal subgraph matching is not 504

suitable for the traditional subgraph matching algorithm [38], 505

so community detection algorithm is used in this work as a 506

compromise. 507

V. VERTEX-DRIVEN TEMPORAL 508

SUBGRAPHS CLUSTERING 509

The above algorithm will construct the temporal graph in 510

real-time with period [ti, tj]. We can distinguish a temporal 511

graph with the same time relationship through the temporal 512

edge. In contrast, the graph structure matching methods can 513

find their differences. Still, it requires high time complexity 514

and many temporal graph distance computation tasks. It is 515

unsuitable for a large amount of subgraph matching, so we 516

decide to use community detection as a compromise. This 517

step enhances the morphology discrimination and prepares 518

a temporal graph set for subsequent clustering. 519

A. VERTEX COMPUTATION TREE 520

This section will change the temporal graph to a static graph 521

to conduct community detection to find the structure of the 522

temporal graph. So we propose two notations of the graph: 523

local impact and overlap level before entering the community 524

detection. Hit counts can decide the local effect of a vertex in 525

its range of two-hop neighbors, and we define the hit counts 526

as Definition 8. 527

We erase the temporal information of vertices and edges. 528

If there is a one-way edge between two vertices in the current 529

graph, whichwill change into an undirected edge, do the same 530

operation for the bi-edge, and the whole graph becomes a 531

static graph. 532

Definition 8 (Hit Counts): The range of two-hop neighbors 533

and the current vertex is the entire scope, which the current 534

vertex is considered the center we count. Naturally, the hit 535

count of vertex i is computed by the equation 2. 536

HIT (i) = {hit1, hit2, . . . , hitn}, n ∈ [1, |V |], 537

hiti = |twoHop(i)|, 538

twoHop(i) = N [i] ∪ N [N [i]], i ∈ [1, |V |] (2) 539

where the |twoHop(i)| denotes the occurrence number of i in 540

the two-hop range, the hiti is a list of all vertices that exist 541

with vertex i. We devise a self-adaptive function to decide 542

the vertex is reserving or not. The function of self-adaptive is 543

shown in equation 3. 544

hitadi =
6
|N [N [i]]|
j=1 hiti − max(HIT (i))− min(HIT (i))

|HIT (i)| − 2
(3) 545

A vertex remained or not can be decided by the hitadi when 546

the hiti of nodes in G is greater than this value or not through 547

VOLUME 10, 2022 100633



H. Zhang et al.: Efficient Vertex-Driven Temporal Graph Model and Subgraph Clustering Method

the piecewise function as equation 4.548

f (x) =

{
0, if hiti > hitadi
1, otherwise.

(4)549

The hit counts can represent the impact of the current node,550

but it only decides the current node is the representation551

between two-hop and cannot determine the classificationwith552

other vertices. Therefore, we should consider the overlap553

notation of a vertex, which can decide to merge them. The554

definition of overlap level denotes as Definition 9.555

Definition 9 (Overlap Level): The number of intersections556

between the current node i and each neighboring node in two557

hops can show their correlation, which requires a threshold558

corresponding to the current node in the two-hop neighbor559

set. The ratio of overlap vertices will be used to decide if they560

merge not. First, one-hop neighbors of a vertex ni denotes as561

N [ni] = {ni,N (ni)}, so we define the overlap level threshold562

is as equation 5.563

Wi = {wi1,wi2, . . . ,wij}564

wij =
N [ni] ∩ N [nj]

min(|N [nj]|, |N [nj]|)
, j ∈ [1, |N (i)|] (5)565

We adopt the same method of adaptive hit counts hitadmi566

computation and define the adaptive overlap level wadi as567

equation 6.568

wadi =
6
|N (i)|
j=1 wij − max(Wi)− min(Wi)

|wi| − 2
(6)569

The same as hit counts, the piecewise function will select570

the vertex to determine whether it will become the candidate571

set through f (x) = 1 selected or f (x) = 0 unchosen in the572

two-hop range.573

f (x) =

{
0, if wi > wadi
1, otherwise.

(7)574

We construct two sets-hit candidate set and overlap candi-575

date set denotes as hitCandidate and wCandidate according576

to the Definition 8 and Definition 9, respectively.577

Definition 10 (Vertex Computation Tree):Wewill construct578

a vertex computation tree to speed up the process of the579

solution procedurewhile the algorithm is executing for partic-580

ipating vertex i ∈ Gti. The computation tree divided into two581

hierarchical layers, the neighboring set of the current vertex i582

forms the first layer denoted as N (i) = {1, 2, 3, . . . , j, . . . },583

the neighboring of the current vertex i’s neighbor set forms584

the second layer denoted as N (N (i)) = {1, 2, 3, . . . , k, . . . },585

each edge denotes the hit counts(|hitCandidate|) of two ver-586

tices vertex i and vertex j between the first layer and the sec-587

ond layer, whereas i and j denote as two vertices, respectively.588

The common neighbor CN (i, j) + 2 is the hit counts.589

We simply compute the |N (i)| will hit i only once. And i590

will hit itself. So hiti = i.degree + 1, and ∀j ∈ N (i), hitj591

determined by the common neighbor among i and j since592

others cannot hit j, plus i and j itself. So hitj = CN (i, j) + 2.593

The third layer is the rest of the non-repeating vertex because 594

we removed the repeat elements from the first layer, so the 595

hitk = count(k). 596

The hit count of current node i is hiti = i.degree + 1, the 597

second layer of each node is set to hitj = CN (i, j) + 2, also, 598

as the edge between the root and its children as well. And we 599

also consider the counts during the construction process, see 600

section IV. So the hit counts will become (i.degree + 1) × 601

i.count and hitj = (CN (i, j)+ 2)× j.count . The third layer is 602

hitk = count(k)× k.count apart from the elements emerging 603

in the second layer. The emerged counts of the vertex k must 604

be 1 in each node in the second layer after eliminating the 605

repeated elements in the second layer, and each element k in 606

the third layer hitk is computed by summation all the same 607

elements in the third layer. So we can easily deduct that the 608

edge between the third and second layers must be 1. The 609

overlap level between node i and node j denotes as wij = 610

CN (i, j)/CN (i, j)+ count(k). 611

B. VERTEX COMPUTATION TREE UPDATE 612

We set the corresponding tree to null when a computation 613

tree’s root vertex i is classified, or we set the second layer 614

node j’s subtree to null if the node in the second layer is 615

classified as well and set the corresponding vertex’s edge 616

weight to 1. Its child node is excluded from the number of 617

a hit anymore, and wij = null, not calculated, too. An update 618

will happen between the two-hop neighboring set when some 619

visited nodes in the vertex are visited. 620

The construction of a vertex computation tree can speed 621

up the community detection process, and the pseudo-code is 622

shown as Algorithm 3 as follows. 623

Algorithm 3 Computing Tree Construction(CTC)
Require: M , a node i need to compute
Ensure: The tree of node i
1: Set the current node i as the root node of computation tree.
2: for each node j in N (i) do
3: CN (i, j)← compute the common neighbors between i and j
4: Insert a child between i and j in the tree named j, and its edge is set to the

(CN (i, j)+ 2)× j.count
5: Insert N [j]\N [j] ∩ N [i] set in the tree named by its node’s name, and do not

compute any value between j and k .
6: end for
7: return The computing tree of node i

Line 1 sets the vertex i as the root node of the i computation 624

tree. Lines 2-6 compute the number of common neighbors 625

of each node in the immediate neighbor N (i), then we insert 626

a new vertex with the weight (CN (i, j) + 2) × j.count as a 627

child. Insert a vertex that does not emerge in the first layer of 628

the computation tree and does not have any weight between 629

the third and second layers. The algorithm is over when we 630

traverse all vertices between two-hop neighbors of the current 631

node i. 632

Example 3:We give a static graph example to help under- 633

stand. As shown in Figure 5, we will compute the red vertex 634

first. The blue node denotes the one-hop neighbor set, includ- 635

ing several vertices described by Definition 3, the yellow 636

nodes denote the two-hop neighbor set of the current node. 637
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FIGURE 5. An toy example for community detection on static graph.

We reject the repeated nodes that emerge in the one-hop638

nodes’ neighbor set to eliminate the redundancy and do not639

list the current node when we construct the computation tree.640

We compute the hit counts and overlap level through the edge 641

without node count. 642

For N (1) = {2, 3, 4, 6}, and N (2) = {4, 5}, we remove the 643

repeated elements by comparing with vertex 1, get the final 644

list as shown in Figure 5 (c) according to the rules we propose 645

of the above. And the root is vertex 1, and its child is 2, 3, 4, 6, 646

respectively. The third layer is 5, 5, 5, 7, 5, we compute the 647

overlap level according to the equation 6 in V-A Definition 9, 648

the first cluster will be c1 = {1, 4, 6}.We suppose the vertex 5 649

is the next node that should compute as a center. And the com- 650

putation tree of vertex 5 will become Figure 5 (e) from (d) 651

according to the updated strategy described above since the 652

range of two-hop of node 5 has node 1 visited before. 653

C. DE-TEMPORAL GRAPH COMMUNITY DETECTION 654

We can quickly get the hit candidate set and overlap the can- 655

didate set and compute them are simple through computation 656

tree. We will introduce the community detection algorithm 657

below, which is sensitive to the dense edge vertex and detects 658

communities in a de-temporal graph. This algorithm only sets 659

a threshold called τ will be introduced in Algorithm 5 to 660

merge the vertices according to τ . The pseudo-code is shown 661

in Algorithm 4. 662

Algorithm 4 Graph Community Detection(GCD)
Require: M , τ ,at least one De-temporal direct graph Gti
Ensure: Community of G
1: nodeList ← kshell ← getRank(Gn.nodes())
2: diagFirst ← False, q← ∅
3: for each node i in nodeList do
4: if i.degree > 1 ∧ i.visit == False then
5: q← i, i.stacked == True
6: while q! = null do
7: current ← q.pop
8: if current.degree > 1 ∧ current.visit == False then
9: if diagFirst ← DND(Gncurrent, t) == True then
10: Return
11: end if
12: computationTree← CTC(Gn, current)
13: hitCandidate← get the hit number according to Definition 8.
14: if |hitCandidate| < 3 then
15: current.cluster ← its neighbor’s cluster series with τ .
16: else
17: wCandidate← extract nodes according to Definition 9.
18: interaction← hitCandidate ∩ wCandidate
19: if interact.length() < 3 then
20: current.cluster ← N (current)’s series with τ .
21: else
22: maxCluster ←The maximum number of clusters.
23: if interact.length ≥ |maxCluster| then
24: interact form a new cluster and cluster series.
25: else
26: current.cluster ← maxCluster
27: end if
28: end if
29: end if
30: end if
31: if current.cluster ! = −1 then
32: current.visit = True
33: PushtoQueue(computationTree,G, q, τ, current, interaction)
34: end if
35: end while
36: end if
37: end for
38: Tidy nodes not allocated, according to their neighbors’ cluster.
39: return Community of G

Lines 1-2 initialize the variables that the algorithm needs. 663

In 2011, Kitsak et al. proposed the K-shell method [39]. 664
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The algorithm considers the nodes of a network hierarchical.665

The higher the k-shell layer of a node, the more likely it666

is to be the core of the network. Lines 3-4 will circle in667

the list of nodes whose degree is greater than 1 and have668

not been visited before in the list. Line 5 pushes into the669

queue q that prepares to process subsequently. Line 8 con-670

trols the requirements of the current node i. Lines 9-11,671

the algorithm diagnoses whether the node is divided into672

a cluster or not, and decides the algorithm is too early to673

give up. Lines 12-13 generate a computation tree of vertex i674

and compute the hit candidate set according to Definition 8.675

Line 14, the current node will be classified by its neighbors’676

cluster series if the number of hit candidates set smaller677

than 3, skips subsequent calculations. τ is a value that com-678

putes through |allocatedvertices|/N (current). Lines 17-18679

continue to compute the wCandidate set, and get the interac-680

tion between hitCandidate and wCandidate. Line 19 are the681

same as line 14 when |interact| ≤ 3. When |interact| ≥ 3,682

we seek themaximum cluster of the current node’s immediate683

neighbor set. If |maxCluster| > |interact|, then we set all684

vertices in interact to the cluster series of maxCluster , or we685

set the nodes in interact to a new cluster series at lines 22-27.686

Lines 31-34 sort the vertices in the two-hop range of the687

current node which has not been visited, and push them to a688

queue according to a priority rule we define, see algorithm 6.689

We cluster the nodes which are not clustered in the iteration690

for the specific graph structure based by the principle of the691

majority rule when their neighbor is not allocated or create a692

new cluster for each node and form clusters that have |γi| at693

line 32. The algorithm returns a community of Gtn at line 39.694

Complexity Analysis: The time complexity is |Gtn| × |q| ×695

O(CTC)+O(DND)+O(PushtoQueue), and space complex-696

ity is |q| × (|hitCandidate| + |wCandidate| + |interact| +697

|computationTree| + |maxCluster|).698

The affiliation we diagnose first when a new vertex is699

traversed. Suppose the vertex is classified as a cluster. In that700

case, we will not compute the remaining vertices and divide701

them directly to the cluster and call this solution the DND702

method, the threshold τ represented illustrated above here.703

The pseudo-code is shown in Algorithm 5.704

Algorithm 5 Diagnose Node Division(DND))
Require: G, current, τ
Ensure: updated queue
1: cluster ← get all nodes have been allocated to one cluster.
2: clusterFD← sorted the cluster according to the frequency of emerging.
3: maxCluster ← get the node emerges most.
4: if |cluster| > 0 ∧ |cluster|

|N (current)| > τ then
5: current.cluster ← maxCluster
6: return true
7: end if
8: return false

When the procedure pushes the remaining vertices into705

the queue q, we should consider a sort strategy to move706

these vertices to the queue in a specific order or affect the707

subsequent results a lot. We use the total similarity of the708

current node with the whole graph to divide the number of709

allocated vertices, which can get the average value of the710

entire impact of the current node acting on the allocated 711

nodes for the effect of the current node is its compactness 712

to the entire graph. The larger the value is, the smaller the 713

number of allocated vertices is, which shows that the existing 714

vertices are less likely to be integrated. It will be assigned 715

separately. The weight of each edge can be a time difference 716

or other meanings. There, we use the structure similarity [36] 717

to denote our temporal graphmore precisely, seeDefinition 4. 718

Algorithm 6 Push to Queue (PQ)
Require: computationTree,G, q, τ, current, interaction
Ensure: updated queue
1: priority← ∅,FD← transfer the computationTree to FD array and delete unquali-

fied nodes.
2: for each i in FD do
3: if i in interaction then
4: delete i
5: end if
6: end for
7: for each i in FD do
8: signed=0;unsigned=0
9: for each j in N(i) do
10: sim=compute the similarity between i and j
11: if j.visit == True then
12: signed ++
13: allSim+ = sim
14: end if
15: end for
16: if allSim == 0 or signed == 0 then
17: priority[i] = 0
18: else
19: priority[i] = allSim/signed
20: if priority[i] == 0 then
21: delete priority[i]
22: end if
23: end if
24: end for
25: prioritySorted = sorted priority by ASC.
26: for each i in prioritySorted do
27: if i.degree > 1 and i.visit == False and i.stack == False then
28: q.put(i)
29: i.stack = True
30: end if
31: end for
32: return Updated queue

So we can sort this value in descending order to opti- 719

mize the order in which the graphs are assigned, called the 720

enqueue optimization strategy. The pseudo-code is shown as 721

Algorithm 6. 722

Line 1 initializes variables, lines 2-6 delete the nodes in 723

the interact since they are visited and clustered to a cluster, 724

see algorithm 4. Line 8 initializes the statistical variables. 725

Lines 9-15 statistic the number of allocated node signed and 726

the strength of the connection with the graph allSim (the 727

total similarity of all neighbors) of each node in FD after the 728

delete operation. Lines 16 − 17 adjust the priority of nodes 729

to 0 which allSim = 0 or signed = 0. Line 19 apportions the 730

similarity allSim to each allocated node equally. Lines 20-21 731

delete the nodewhose priority is 0. Line 25 sorts all vertices as 732

ASC. Lines 26-31 will push the nodes not visited before, not 733

included in the queue before, and the degree greater than 1. 734

The algorithm returns the updated queue to promise the order 735

visit. 736

Complexity Analysis: The total time complexity is FD + 737

FD×|N (i)|+ |priority|, the total space complexity is |FD|+ 738

|N (i)| × |FD| + |priority| + l. 739
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There exists a problem that each temporal graph has sig-740

nificant differences at different periods. The temporal graph741

constructed may be much smaller than the original graph, the742

consequences of community detection also have a tremen-743

dous difference, so we define an equation to describe the744

relationship among different temporal graph as Definition 12745

to describe the temporal graph.746

D. DISTANCE COMPUTATION AND747

HIERARCHICAL CLUSTERING748

We cluster these Gt using a hierarchical clustering algorithm749

with our own defined distance, which transforms the whole750

temporal graph into a chain following the time sequence and751

is defined as follows.752

Definition 11 (Temporal Graph Chain): Gti can be trans-753

formed to a form of si = {m1 → m2 → · · · → mi → . . . },754

i ∈ [1, |Ei|], which ignores the other edges in Gti aiming to755

simplify the distance computation process, s.t. |si| ≥ |γi|,756

Pmj−Pmi ≥ 0, orPmj−Pmi = 0, i < j. The vertex emerges not757

only once, following the abnormal order and series number.758

Definition 12 (Temporal Graph Distance): There are two759

sequences of temporal graphs on Gti, Gtj, we consider not760

only the community comparing distance but also, consider761

the distance of time, we define it as equation 8.762

distanceij = (de + dd )/2 (8)763

The de denotes the community comparing distance from764

the community detection consequence. The character com-765

parison will count the corresponding position letter one by766

one, taking the communities as a unit according to the vertex’s767

abnormal status sequence. If they are different in the corre-768

sponding position, then add 1. Otherwise, we do not execute769

any operation and arrange them with time sequence, ignoring770

other edges as equation 9.771

de = 6max(|Oi|,|Oj|)6
max(|oi|,|oj|)
n=1 |Fmn | (9)772

whereas oi and oj denote two communities in Gti and Gtj,773

respectively,Oi andOj denote all communities inGti andGtj,774

respectively. Fmn denotes the nodes map of each community775

between |oi| and |oj|, the different map set of vertex sum-776

mation gets community comparing distance. The equation is777

defined as equation 10.778

dd = 6
max(|Ei|,|Ej|)
n=1 |Deij | (10)779

whereasDmn denotes the time difference of the temporal sub-780

graph’s edge set Ei and Ej. Each different edge time difference781

summation in all oi and oj on Gti and Gtj gets the temporal782

distance.783

Last, we will cluster them through the hierarchical cluster784

method of distance on the date set comprising a set of the785

temporal subgraph, which if and only if |G| ≥ 2 satisfied786

can be computed. Each consequence of clustering must be787

within a period of user provision. Because we didn’t improve788

the hierarchical clustering algorithm, the pseudo-code omits789

Algorithm 7 Vertex-Driven Temporal Subgraphs Cluster-
ing(VDTSC)
Require: community,G
Ensure: cluster C
1: for i = 1 to |G| do
2: for j = i+ 1 to |G| − 1 do
3: de ← compute character edit distance between Gti and Gtj.
4: dd ← compute directed edge distance between Gti and Gtj.
5: distanceij = (de + dd )/2
6: end for
7: end for
8: Cluster subgraphs in G using hierarchical clustering with average linkage.
9: C ← divide the clustering tree according to h.
10: return C

in this part, and we list the other details of the algorithm as 790

shown in Algorithm 7. 791

Lines 1-7 compute the distance for every two subgraphsGti 792

and Gtj, line 8 enters the hierarchical clustering procedure to 793

calculate the final clustering tree and divides according to the 794

distance threshold h user setting. 795

FIGURE 6. The process of Hierarchical Clustering computation.

Example 4: We illustrate the process of hierarchical clus- 796

tering. First, we should compute the distance between every 797

two temporal graphs according to the Definition 12 as 798

shown in Figure 2 mentioned before. There have 10 graphs 799

are formed to compute from Gta to Gti, and they will 800

generate 45 distances, which as shown in Figure 6 (a), 801

we only list only the distance between Gta and the oth- 802

ers; First, we compute the distanceab, which comprise de 803

and dd since sa = 1→ 3→ 4→ 1→ 2→ 3, sb = 804

1→ 2→ 3→ 1→ 2→ 3→ 1→ 3 having the 2, 3, 7, 8 805

positions are different, so de = 4. Meanwhile, we compute 806

dd between them by adding all time differences in the edges, 807
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so dd = 7, and distanceab = (4 + 7)/2 = 5.5. Likewise,808

we can compute a and d , which a has 3 positions are different809

with d , so de = 3, and Gta has the total time cost of 21, the810

total time cost of D is 6, so dd = 21 − 6 = 15, and the811

final distancead = (3 + 15)/2 = 9. The rest can be done812

in the same manner. The clustering consequence is shown in813

Figure 6 (b), which clusters into 2 clusters intuitively for our814

model by not setting a threshold to segment them. Actually,815

the threshold can be set according to the specific requirements816

of users.817

VI. EXPERIMENTS818

A. EXPERIMENTAL SETUP819

1) ENVIRONMENT820

This experiment was implemented using Python 3.6.6 on821

CPU I5 and 512G SSD platformwith NVIDIA 750ti graphics822

card.823

2) REAL DATASETS AND COMPARING METHODS824

We need to synthesize the abnormal state time into the net-825

works to test our online TGC and FTGC algorithm’s perfor-826

mance. And we will set two parameters of t, σ to make each827

period have many instances to ensure a new temporal graph828

can be constructed definitely in 10 minutes at all datasets829

corresponding to the 10 minutes range. Each 3 second in the830

file has 1 abnormal time instances of each vertex randomly831

for the linear way to promise the motivation consistent with832

the real situation as far as possible. We will test the time833

cost under different t and σ values shown in table 2, and834

evaluate the size of each temporal subgraph with each value835

of variables. We set the cluster threshold with h to evaluate836

the cluster method. These network details are listed in table 3837

and illustrated as follows.838

a: EU-CORE839

is an email network among members of the research institu-840

tion. Nodes of the network can spread anonymized informa-841

tion. A member sends at least one email to other members.842

b: DOLPHIN843

is a network, whose construction is based on the observation844

of 62 bottlenose dolphins from 1994 to 2001. Each node of845

the network is a dolphin, edges represent the relation between846

dolphins.847

c: KARATE848

is a network, which comprises players, a coach, and a man-849

ager. It focused on the coach and the manager, and the850

network can split into two communities.851

d: POLBOOK852

is a network of books about US politics. The books were853

published around the 2004 presidential election and are sold854

on the Amazon website. Nodes of the network represent855

books, and an edge means that the same buyer purchases the 856

books illustrated by the two nodes connecting the edge. 857

e: FOOTBALL 858

is a network of American College football games. Each node 859

denotes a team, and an edge between two nodesmeans at least 860

one match between the two teams. 861

Here, we select three algorithms BSC Algorithm [21], 862

a streaming graph processing frame, GraPu Algorithm [20], 863

a distributed algorithm for graph partition. GShaplet 864

Algorithm [35], an algorithm borrows from time series. And 865

we set α = 20 ≤ min(|M |),M ⇐⇒ γn, which smaller 866

than the smallest datasets for generating graphs correctly. 867

Here, a user can adjust through the prior knowledge to avoid 868

obtaining noise. 869

This method should consider the parameters t and σ in real 870

situations when used. That’s not our focus. We must build 871

these temporal edges following our temporal graph model 872

using FTGC and TGC algorithms. For example, a vertex 873

mi has 20 abnormal time instances in one minute, and the 874

network Football has 115 vertices, we will simulate the node 875

motivating in timeline incrementally, which needs to arrange 876

all nodes in a row or column according to an abnormal time 877

instance in a file. The first abnormal time instance of mi as 878

the startNode in Algorithm 1 of all vertices means mi are 879

uncertain, while generate abnormal instances in each minute 880

can promise the number of |G| locate in a controlled range. 881

So these experimental methods can thoroughly verify the 882

algorithm performance. 883

We select MGTC and ME-MGC as Clustering compari- 884

son algorithms. MGTC [14] uses the interior-node clustering 885

and the multi-graph clustering, which can finally achieve a 886

refinedmulti-graph clustering result. It studies the static brain 887

networks. 888

ME-MGC [13] mainly devices a frequent subgraph mining 889

score function, calculates the top-K frequent subgraph to 890

get the feature subgraph on the multi-graph. They complete 891

multi-graph clustering with a combination of the ELM clas- 892

sification model andMapReduce framework, which is also in 893

the static graph clustering. 894

3) OTHER FACTORS 895

a: MULTI-GRAPHS LABEL TAG 896

A similar temporal graph will be allocated to the same cluster 897

for verifying the accuracy of clustering, if and only if a kind 898

of temporal graph, which has a similar structure and temporal 899

information. So we have an equation of labeling for temporal 900

graph as: SIMγi,γj = (
∑|ci1|

k=1 D(k)∑|γi|
k=1 D(k)

×

∑|cj1|
i=1 D(k)∑|γj|
k=1 D(k)

· · ·×

∑|cin|
k=1 D(k)∑|γi|
k=1 D(k)

× 901

∑|cjn|
k=1 D(k)∑|γj|
k=1 D(k)

) × (
∑|ci1|

k=1 T (k)∑|γi|
k=1 T (k)

×

∑|cj1|
k=1 T (k)∑|γj|
k=1 T (k)

× · · · ×

∑|cin|
k=1 T (k)∑|γi|
k=1 T (k)

× 902

∑|cjn|
k=1 T (k)∑|γi|
k=1 T (k)

), where ci is got by K-Clique method [40], and 903

with no loss generation, T (i) and D(i) are the total period 904

and the total degree of one community. The same cluster 905
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series is allocated to two temporal graphs with SIMγ i,γ j ≤ 0.3906

through experiments, then we label all the graphs in the907

dataset generated by FTGC to evaluate the performance of908

the algorithms.909

b: EFFECT OF STATIC GRAPH TRANSFORMATION910

The dense of edge temporal graph is higher than two G∗ti and911

G∗t(i+1) for each node will connect with the newest node. The912

variable t is small enough will lead to the graph transfer into913

a chain because each node in it cannot connect with any node914

between t , the community detection can also find community915

according to this structure, see section V-C. Additionally, the916

σ only decides the range of each Gti on the timeline, so it917

cannot affect community detection.918

4) EVALUATION INDICATORS919

We adopt the Accuracy for the cluster method evaluation,920

adopt two measures NMI and Modularity for community921

detection and use time cost to evaluate the temporal graph922

construction.923

a: NMI924

Normalized mutual information is used to measure the simi-925

larity between the true community structure and the commu-926

nity structure obtained by community detection algorithms.927

The higher the value of NMI, the more accurate the commu-928

nity detection algorithm is. NMI is formulated as: NMI =929

−2
∑i=1

CA

∑j=1
Cn

Nijlog(NijN/Ni.N.j)∑i=1
CA

Ni.log(Ni/N )+
∑j=1

Cn
N.jlog(N.j/N )

), where CA is the number of930

real communities,CB denotes the number of found communi-931

ties. The matrix N represents the confusion matrix, where Nij932

is simply the number of nodes in the real community i that933

appear in the detected community j.Ni. and Nj. are the sum934

over row i and column j of the confusion matrix, respectively.935

N is the number of nodes. When NMI is equal to 1, the936

community structure detected by the algorithm is the same937

as the real community structure. Conversely, if NMI = 0,938

the detected community structure is entirely independent of939

the real, and the entire network comprises of one community.940

It indirectly proves the effectiveness of the algorithm.941

b: MODULARITY942

Modularity is widely used to measure the quality of com-943

munities. The overlapping modularity is expressed as Q =944

1/2m
∑c=1

K
∑

v∈Cc 1/OiOj(Aij − kikj/2m), where m is the945

number of edges in the entire graph, ki, kj are respectively946

node i and j, Aij is the adjacency matrix of the graph and947

Oi and Oj respectively denote the number of communities948

which node i and j belong to the same cluster and 0 otherwise.949

The higher the value Q is, the more accurate the community950

results.951

c: ACCURACY952

Let ci represent the clustering label result of a multi-graph953

clustering algorithm and yi represent the corresponding954

TABLE 2. Experimental variables.

TABLE 3. Datasets information.

ground truth label of the graphGt i. Then Accuracy is defined 955

as: Accuracy =
∑i=1

n δ(yi,map(ci))/n, where δ is the 956

Kronecker delta function, and map(ci) is the best mapping 957

function that permutes clustering labels to match the ground 958

truth labels using the KuhnMunkres algorithm [41]. Larger 959

Accuracy indicates better clustering performance. 960

B. PERFORMANCE 961

1) EFFECT OF σ 962

We count each node transfer from normal status to abnormal 963

status and add the cost of edges construction in seconds. 964

Add each period cost to get the final time cost at the end 965

of 10 minute, construct temporal graphs with different σ , set 966

fixed t = 3s for initialization for studying the performance 967

of each algorithm. Observe the effect of the temporal sub- 968

graph threshold’s construction time cost on different datasets. 969

All nodes need not wait for abnormal status, which is an 970

offline model. 971

As shown in Figure 7, x axis denotes threshold σ from 972

3s to 12s, y axis denotes time cost in seconds, where the 973

overall trend of the computational overhead of all algorithms 974

is up. We use the sequence of graph operations generated by 975

our build rules required by the three algorithms. It can be 976

seen from the figure, four kinds of algorithms of the total 977

computing time spending growth trends, when the sigma 978

in [3, 9]. the time cost does not increase a lot, but since the 979

9th second, while the number of increased significantly, the 980

reason is the σ not only determines the number of G, and 981

determines the number of temporal edges, when σ increases, 982

while t is fixed, the number of edges increase since σ contains 983

manywindows of length t , so the build time increases rapidly. 984

Aswe can see from the figure, the BSC andGraPU algorithms 985

are more expensive than ours because they have extra opera- 986

tions on edge insertion, which makes them spend more time. 987

BSC uses cluster manager to manage constraints and merge 988

components directly, which uses the streaming reservoir to 989

ensure conformity and maximality. We save time by insert- 990

ing edges directly through the two thresholds. Additionally, 991

the clipping process of vertices and edges and distribution 992
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FIGURE 7. Temporal Graph Construction Time Cost with Different σ .

FIGURE 8. Temporal Graph Construction Time Cost with Different t(s).

of GraPu algorithms are not used to avoid additional time993

overhead.994

2) EFFECT OF t995

We evaluate different t to observe the effect of the temporal996

subgraph G∗t threshold’s construction time cost on 5 datasets997

under σ = 10s as shown in Figure 8.998

As Figure 8 shows, the x axis denotes the connectivity999

(local) threshold t from 1s to 10s, and the y axis indicates the1000

time cost of the 5 methods we are comparing. Here, we can1001

see that our algorithm outperforms others for construction1002

procedures at different connectivity thresholds t . The 5 kinds1003

of algorithms’ time spending increased following the increase1004

in t . The curve grows up rapidly at t = 5s, the reason is1005

that the abnormal vertex number grows at the local threshold1006

with t increasing. We recall Definition 5 (2), the number of1007

temporal edge is n × (n − 1)/2, whereas n is |γ ∗|, so the1008

build time grows rapidly, among them. In theKerate, Dolphin, 1009

EU-Core data set, the slope of the curve reduces at t = 6s, 1010

because the number of abnormal vertices decrease between 1011

t = 6s and t = 7s, so the construction time also 1012

decreases accordingly. Therefore, the slope of these exper- 1013

imental curves can partly reflect the increase or decrease 1014

of the number of abnormal vertices. It can be seen from 1015

Figure 8 (e) that the construction time of TGC algorithm and 1016

FTGC algorithm is less than that of the other three algorithms. 1017

There is a large difference between them, mainly because 1018

the larger the value of t is, the fewer times of comparison 1019

after filtering through PSET , and the smaller the time cost 1020

of FTGC algorithm is. However, when the data set is small, 1021

this advantage cannot be reflected. There is little difference 1022

in the time cost between Figure (a) and Figure (b) because 1023

the number of vertices in the first two data sets is not large, 1024

so the advantage of the algorithm is not reflected. As shown 1025
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FIGURE 9. Number of edge of |G|.

FIGURE 10. Effect of τ to modularity and NMI.

in the figure, the current change of t has a greater impact on1026

the time cost than σ because the increase of σ does not affect1027

the large growth of edges, according to Definition 5. But the1028

growth of t directly affects the number of edges.1029

3) EFFECT OF σ AND t FOR EDGES1030

We further evaluate the effect of σ and t on the number of1031

edges |E | that we count all edges generated of construction in1032

each Gtn on five datasets using FTGC method. Figure 9 (a)1033

uses σ ∈ [3s, 12s] with t = 3s, Figure 9 (b) uses t ∈ [1s, 10s]1034

with σ = 10s.1035

As shown in Figure 9, x axis denotes different σ in1036

Figure 9 (a), and denotes different t in Figure 9 (b), y axis1037

denotes the number of edges in minutes. It can be seen from1038

Figure 9 (a) that when σ increases, |E | increases but not as fast1039

as Figure 9 (b), because the change of t directly affects |E |.1040

The EU-core dataset has more original vertices, so it has more1041

temporal edges in the same condition. It can be seen from1042

Figure 9 (b) that the number of temporal edges in EU-core1043

is stable when t ∈ [4s, 7s], because there are fewer vertex1044

anomalies, so the |G| also decreases.1045

4) COMMUNITY DETECTION1046

We use GCD to detect the community in 5 real networks,1047

and the community is shown in Figure 11. Our algorithm1048

needs to set a parameter τ to promise the NMI index and1049

Modularity maximum at each dataset. Next, we developed a1050

group experiment to instruct our GCD algorithm under the1051

original graph to verify and compare it with other methods.1052

As shown in Figure 10, x axis denotes different τ we set1053

from 0 to 1, y axis denotes Modularity and NMI, respectively.1054

The dashed line denotes the modularity. We can see different1055

TABLE 4. The Modularity of community detection.

TABLE 5. The NMI index of community detection.

τ have a different degree influence on Modularity and NMI, 1056

when the τ = 0.23, the four datasets produced the maximum 1057

of the two indexes except for Polbook. Because this dataset 1058

has a boundary and fewer communities within each commu- 1059

nity when merging some vertices using a smaller τ . So we set 1060

τ < 0.1 for the Polbook dataset to obtain a higher index. The 1061

subsequent experiments will use the τ setting here. 1062

As shown in Figure 11, the community of each original real 1063

network detected using our algorithmGCD, each network has 1064

its structure to be clustered. So we then compare with other 1065

7 community detection algorithms to test our community 1066

detection method using the consequence of the paper [24]. 1067

we compute NMI and Modularity to evaluate our method, 1068

the result is shown as table 4 and table 5. We can see that 1069

our method performs much better in a larger dataset Eu-core. 1070

The reason is that our approach ranks vertices in each step 1071

through the compactness of the graph, see section V. So our 1072

method is more adaptive to a large dataset on sparse and 1073

dense graphs. OCDLCE cluster graph is based on edges, 1074

so it is not an adaptive dataset that has too many edges for 1075

a vertex. Not Different from OCDLCE, both OCDSSE and 1076

SECD are overlapping community detection algorithms using 1077

a seed set expansion based on nodes rather than edges, which 1078
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FIGURE 11. Community Detection Consequence of 5 networks.

have a limitation when local information differs from global1079

information. Link divides a large community into several1080

smaller communities, ignoring the connections among nodes1081

within a large community. So links cannot detect reasonable1082

communities. However, AOCCMandCAMAS have the same1083

drawback that all nodes of the network cannot be in full cover-1084

age, so the community found are not precise. LGIEMdoes not1085

consider the sequence processing between local information,1086

and it is also a method that focuses on extension, so it cannot1087

detect communities on large datasets like Eu-core.1088

5) CLUSTERING CONSEQUENCE1089

We set σ = 3s to 12s to get the most suitable temporal graph1090

for Football and Eu-core datasets, suppose a user selects1091

t ∈ [3min, 5min] and we get 60, 45, 36, 30, 26, 23, 20, 18,1092

17, 15 temporal subgraphs within 3 minutes, also, we clus-1093

ter these temporal subgraphs to form C , and we use our1094

VDTSC algorithm to get the final clusters, which are shown1095

as Figure 12 and Figure 13. It can be easily deduced that the1096

distance increases among different communities following1097

the increasing number of vertices in each community, so the1098

distance will become larger, difficult to set the threshold1099

that distinguishes different clusters in hierarchical clusters.1100

We use Z -score normalization to normalize all distances to1101

express every two subgraphs to promise within the same1102

range.1103

As shown in Figure 12 and 13, the x axis is series of 1104

temporal subgraphs Gtn, y axis is the distance among them, 1105

they form an integrated clustering tree. Still, the distance 1106

threshold h we set will affect the final clustering. That’s why 1107

we use Z -core normalization to promise distances among 1108

these clusters located in a range of [0, 1], which is easy for 1109

user settings. 1110

6) EFFECT OF h AND τ 1111

h decides the cluster allocation, τ decides the structure of each 1112

temporal graph, so we evaluate the two parameters to observe 1113

our method’s stability in football and Eu-core. Figure 14 1114

shows the consequence. 1115

We can see that the τ locate in the scope 0.4-0.6 achieves 1116

higher accuracy because our GCD method arrives at a 1117

higher level on two datasets in Figure 14 (a) and (b). And, 1118

h directly affects the accuracy. The accuracy will drop if 1119

we set a smaller value of h. The reverse has the same 1120

effect since hierarchical clustering is sensitive to distance 1121

threshold. 1122

Then we compare the accuracy with two methods MGTC 1123

and ME-MGC, at h = 0.3 and τ = 0.23, respectively. 1124

We train these two classifiers using Football and Eu-core 1125

datasets above, considering they need labeled graphs, so we 1126

set the σ and t is 3s simultaneously. The accuracy of these 1127

3 methods is shown in Table 6. 1128
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FIGURE 12. Cluster Consequence on Football.

FIGURE 13. Cluster Consequence on Eu-core.

FIGURE 14. Effect of h and τ to Clustering Accuracy.

TABLE 6. The Accuracy of Temporal Graph Clustering.

We can find that our algorithm has a much better per-1129

formance on both datasets of Football and Eu-core from1130

Table 6. Because the above two algorithms do not consider1131

temporal information, our algorithm considers the distance of1132

the time dimension, and its accuracy is more than 30% higher 1133

than MTGC for football and more 16% higher than MTGC 1134

on Eu-core. This proves our algorithm’s validity. ME-MGC 1135

algorithm is weaker than MGTC algorithm, which the main 1136

reason is MGTC algorithm performs clustering alternately 1137

of internal nodes and global structures to verify each other. 1138

MGTC algorithm more accurately compared with ME-MGC 1139

only looks for structural features from the perspective of 1140

subgraphs to find structures. Another main reason for the 1141

accuracy of ME-MGC algorithm is that the number of label 1142

graphs is not enough, and the classification of graphs may 1143

produce over-fitting. 1144
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We can find that these temporal subgraphs are clustered,1145

and the results are clear for analysis users. This method can1146

also cluster other temporal subgraph clustering problems.1147

We also get different results if we set different thresholds for1148

t and σ . We provide a novel cluster for the VDTSC problem.1149

VII. CONCLUSION1150

This paper proposes a temporal graph construction model,1151

which generates a temporal graph based on abnormal stream-1152

ing data. We further offer a hierarchical clustering method1153

on a set of temporal graph, calculating the distance based on1154

community comparing distance and time distance according1155

to their properties. We verify the effectiveness and efficiency1156

of temporal graph model, verify the accuracy and show clas-1157

sification results on 5 real network datasets.1158

In addition, on the one hand, the temporal graph building1159

model applies to the area where the exception time can be1160

obtained, but the two thresholds are required according to1161

the prior knowledge. Graph structure information is hidden1162

due to add temporal information, if only use the temporal1163

information is as a basis for the structure partition, which1164

leads to the structure of the temporal graph partition prefer to1165

temporal perspective since the temporal information is added.1166

So we use structural similarity to replace the temporal infor-1167

mation, i.e., removing the temporal information of temporal1168

graph do community detection.1169

On the other hand, the temporal graph on the structure and1170

temporal information is varied after the complete building.1171

If we mine frequent subgraph directly, where there may1172

not get effective temporal graph structure, or difficult to go1173

through frequent subgraphs analysis the internal informa-1174

tion of temporal graph. At the same time, expertise acts an1175

essential role when label temporal subgraphs. It’s nontrival1176

for its cost is large and difficult to be applied in practice.1177

As a result, we use a way of through a double-standard1178

temporal subgraphs clustering method based on community1179

comparison and temporal distance. And our method provide1180

process them in a novel manner.1181

REFERENCES1182

[1] P. Holme and J. Saramäki, ‘‘Temporal networks,’’ Phys. Rep., vol. 519,1183

no. 3, pp. 97–125, 2012.1184

[2] N. Masuda and P. Holme, ‘‘Small inter-event times govern epidemic1185

spreading on networks,’’ Phys. Rev. Res., vol. 2, no. 2, p. 23163, May 2020.1186

[3] C. Song, T. Ge, C. Chen, and J. Wang, ‘‘Event pattern matching over graph1187

streams,’’ Proc. VLDB Endowment, vol. 8, no. 4, pp. 413–424, 2014.1188

[4] H. Qin, R. Li, Y. Yuan, G. Wang, W. Yang, and L. Qin, ‘‘Periodic com-1189

munities mining in temporal networks: Concepts and algorithms,’’ IEEE1190

Trans. Knowl. Data Eng., vol. 1, no. 8, pp. 3927–3945, Sep. 2020.1191

[5] I. Maduako and M. Wachowicz, ‘‘A space-time varying graph for1192

modelling places and events in a network,’’ Int. J. Geographical1193

Inf. Sci., vol. 33, no. 10, pp. 1915–1935, Oct. 2019, doi:1194

10.1080/13658816.2019.1603386.1195

[6] M. Latapy, T. Viard, and C. Magnien, ‘‘Stream graphs and link streams for1196

the modeling of interactions over time,’’ Social Netw. Anal. Mining, vol. 8,1197

no. 1, pp. 1–29, Dec. 2018.1198

[7] L. Zhang, L. Zhao, S. Qin, and D. Pfoser, ‘‘TG-GAN: Continuous-1199

time temporal graph generation with deep generative models,’’ 2020,1200

arXiv:2005.08323.1201

[8] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec, ‘‘GraphRNN: 1202

Generating realistic graphs with deep auto-regressive models,’’ 2018, 1203

arXiv:1802.08773. 1204

[9] S. Purohit, L. Holder, and G. Chin, ‘‘Temporal graph generation based on 1205

a distribution of temporal motifs,’’ Pacific Northwest Nat. Lab. (PNNL), 1206

Richland, WA, USA, Tech. Rep. PNNL-SA-134797, 2018. 1207

[10] Y. Bai, Y. Wang, Y. Tong, Y. Yang, Q. Liu, and J. Liu, ‘‘Boundary content 1208

graph neural network for temporal action proposal generation,’’ in Proc. 1209

Eur. Conf. Comput. Vis. Glasgow, U.K.: Springer, 2020, pp. 121–137. 1210

[11] J. Wu, S. Pan, X. Zhu, and Z. Cai, ‘‘Boosting for multi-graph classifica- 1211

tion,’’ IEEE Trans. Cybern., vol. 45, no. 3, pp. 416–429, Mar. 2015. 1212

[12] J. Wu, X. Zhu, C. Zhang, and P. S. Yu, ‘‘Bag constrained structure pattern 1213

mining for multi-graph classification,’’ IEEE Trans. Knowl. Data Eng., 1214

vol. 26, no. 10, pp. 2382–2396, Oct. 2014. 1215

[13] J. Pang, Y. Gu, J. Xu, X. Kong, and G. Yu, ‘‘Parallel multi-graph classifi- 1216

cation using extreme learning machine and mapreduce,’’ Neurocomputing, 1217

vol. 261, pp. 171–183, Oct. 2017. 1218

[14] G. Ma, L. He, B. Cao, J. Zhang, P. S. Yu, and A. B. Ragin, ‘‘Multi- 1219

graph clustering based on interior-node topology with applications to brain 1220

networks,’’ in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery 1221

Databases. Riva del Garda, Italy: Springer, 2016, pp. 476–492. 1222

[15] C. Linhares, J. R. Ponciano, F. Pereira, L. Rocha, J. Paiva, and 1223

B. Travencolo, ‘‘A scalable node ordering strategy based on community 1224

structure for enhanced temporal network visualization,’’ Comput. Graph., 1225

vol. 84, pp. 185–198, Nov. 2019. 1226

[16] S. Yin, S. Chen, Z. Feng, K. Huang, D. He, P. Zhao, and M. Y. Yang, 1227

‘‘Node-grained incremental community detection for streaming net- 1228

works,’’ in Proc. IEEE 28th Int. Conf. Tools Artif. Intell. (ICTAI), 1229

Nov. 2016, pp. 585–592. 1230

[17] A. Ferrari and C. Richard, ‘‘Non-parametric community change-points 1231

detection in streaming graph signals,’’ in Proc. IEEE Int. Conf. Acoust., 1232

Speech Signal Process. (ICASSP), May 2020, pp. 5545–5549. 1233

[18] A. E. Sariyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and V. Çatalyürek, 1234

‘‘Sonic: Streaming overlapping community detection,’’ Data Mining 1235

Knowl. Discovery, vol. 30, no. 4, pp. 819–847, 2016. 1236

[19] Y. Wu, M. Bateni, A. Linhares, F. M. G. de Almeida, A. Montanari, 1237

A. Norouzi-Fard, and J. Tardos, ‘‘Streaming belief propagation for com- 1238

munity detection,’’ 2021, arXiv:2106.04805. 1239

[20] F. Sheng, Q. Cao, H. Cai, J. Yao, andC.Xie, ‘‘GraPU:Accelerate streaming 1240

graph analysis through preprocessing buffered updates,’’ in Proc. ACM 1241

Symp. Cloud Comput. New York, NY, USA: Association for Computing 1242

Machinery, 2018, pp. 301–312, doi: 10.1145/3267809.3267811. 1243

[21] J. Zhang, Y. Pei, G. Fletcher, and M. Pechenizkiy, ‘‘A bounded-size clus- 1244

tering algorithm on fully-dynamic streaming graphs,’’ Intell. Data Anal., 1245

vol. 22, no. 5, pp. 1039–1058, Sep. 2018. 1246

[22] B. C. Das, M. M. Anwar, and M. A.-A. Bhuiyan, ‘‘Attribute 1247

driven temporal active local online community detection,’’ in Proc. 1248

IEEE/ACM Int. Conf. Adv. Social Netw. Anal. Mining (ASONAM). 1249

Los Alamitos, CA, USA: IEEE Computer Society, Dec. 2020, 1250

pp. 619–622, doi: 10.1109/asonam49781.2020.9381442. 1251

[23] X. Pan, G. Xu, B. Wang, and T. Zhang, ‘‘A novel community detection 1252

algorithm based on local similarity of clustering coefficient in social 1253

networks,’’ IEEE Access, vol. 7, pp. 121586–121598, 2019. 1254

[24] T. Ma, Q. Liu, J. Cao, Y. Tian, A. Al-Dhelaan, and M. Al-Rodhaan, 1255

‘‘LGIEM: Global and local node influence based community 1256

detection,’’ Future Gener. Comput. Syst., vol. 105, pp. 533–546, 1257

Apr. 2020. [Online]. Available: https://www.sciencedirect.com/science/ 1258

article/pii/S0167739X19310210 1259

[25] B. Saoud and A. Moussaoui, ‘‘Node similarity and modularity for 1260

finding communities in networks,’’ Phys. A, Stat. Mech. Appl., 1261

vol. 492, pp. 1958–1966, Feb. 2018. [Online]. Available: https://www. 1262

sciencedirect.com/science/article/pii/S0378437117311883 1263

[26] F. Hu, J. Liu, L. Li, and J. Liang, ‘‘Community detection in com- 1264

plex networks using Node2vec with spectral clustering,’’ Phys. A, Stat. 1265

Mech. Appl., vol. 545, May 2020, Art. no. 123633. [Online]. Available: 1266

https://www.sciencedirect.com/science/article/pii/S0378437119320254 1267

[27] X. You, Y. Ma, and Z. Liu, ‘‘A three-stage algorithm on community 1268

detection in social networks,’’ Knowl.-Based Syst., vol. 187, 1269

Jan. 2020, Art. no. 104822. [Online]. Available: https://www. 1270

sciencedirect.com/science/article/pii/S0950705119302977 1271

[28] F. Zeng, J. Peng, and W. Li, ‘‘An effective clustering routing algorithm 1272

based on social-interest similarity in mobile opportunistic networks,’’ in 1273

Proc. 10th EAI Int. Conf. Mobile Multimedia Commun., 2017, pp. 41–46, 1274

doi: 10.4108/eai.13-7-2017.2270328. 1275

100644 VOLUME 10, 2022

http://dx.doi.org/10.1080/13658816.2019.1603386
http://dx.doi.org/10.1145/3267809.3267811
http://dx.doi.org/10.1109/asonam49781.2020.9381442
http://dx.doi.org/10.4108/eai.13-7-2017.2270328


H. Zhang et al.: Efficient Vertex-Driven Temporal Graph Model and Subgraph Clustering Method

[29] T. Li, W. Wang, X. Wu, H. Wu, P. Jiao, and Y. Yu, ‘‘Exploring the1276

transition behavior of nodes in temporal networks based on dynamic com-1277

munity detection,’’ Future Gener. Comput. Syst., vol. 107, pp. 458–468,1278

Jun. 2020. [Online]. Available: https://www.sciencedirect.com/science/1279

article/pii/S0167739X193269011280

[30] A. Hollocou, J. Maudet, T. Bonald, and M. Lelarge, ‘‘A streaming algo-1281

rithm for graph clustering,’’ in Proc. NIPS Wokshop Adv. Model. Learn.1282

Interact. Complex Data, Long Beach, CA, USA, Dec. 2017, pp. 1–12.1283

[Online]. Available: https://hal.archives-ouvertes.fr/hal-016395061284

[31] M. A. K. Patwary, S. Garg, and B. Kang, ‘‘Window-based streaming graph1285

partitioning algorithm,’’ in Proc. Australas. Comput. Sci. Week Multicon-1286

ference, Jan. 2019, pp. 1–10.1287

[32] M. Mariappan, J. Che, and K. Vora, ‘‘DZiG: Sparsity-aware incremental1288

processing of streaming graphs,’’ in Proc. 16th Eur. Conf. Comput. Syst.1289

New York, NY, USA: Association for Computing Machinery, Apr. 2021,1290

pp. 83–98, doi: 10.1145/3447786.3456230.1291

[33] F. Sheng, Q. Cao, and J. Yao, ‘‘Exploiting buffered updates for fast stream-1292

ing graph analysis,’’ IEEE Trans. Comput., vol. 70, no. 2, pp. 255–269,1293

Feb. 2021.1294

[34] J. Yao, B. Cui, Y. Huang, and Y. Zhou, ‘‘Bursty event detection from1295

collaborative tags,’’ World Wide Web, vol. 15, no. 2, pp. 171–195, 2012,1296

doi: 10.1007/s11280-011-0136-2.1297

[35] H. Wang, J. Wu, X. Zhu, Y. Chen, and C. Zhang, ‘‘Time-variant graph1298

classification,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 50, no. 8,1299

pp. 2883–2896, 2020.1300

[36] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger, ‘‘Scan: A struc-1301

tural clustering algorithm for networks,’’ in Proc. 13th ACM SIGKDD1302

Int. Conf. Knowl. Discovery Data Mining, 2007, pp. 824–833, doi:1303

10.1145/1281192.1281280.1304

[37] A. Zaeemzadeh, M. Joneidi, N. Rahnavard, and G.-J. Qi, ‘‘Co-SpOT:1305

Cooperative spectrum opportunity detection using Bayesian clustering in1306

spectrum-heterogeneous cognitive radio networks,’’ IEEE Trans. Cognit.1307

Commun. Netw., vol. 4, no. 2, pp. 206–219, Jun. 2018.1308

[38] X. Sun, Y. Tan, Q. Wu, and J. Wang, ‘‘Hasse diagram based algorithm for1309

continuous temporal subgraph query in graph stream,’’ in Proc. 6th Int.1310

Conf. Comput. Sci. Netw. Technol. (ICCSNT), Oct. 2017, pp. 241–246.1311

[39] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley,1312

and H. A. Makse, ‘‘Identification of influential spreaders in com-1313

plex networks,’’ Nature Phys., vol. 6, pp. 888–893, Aug. 2010, doi:1314

10.1038/nphys1746.1315

[40] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, ‘‘Uncovering the overlapping1316

community structure of complex networks in nature and society,’’ Nature,1317

vol. 435, no. 7043, pp. 814–818, Jun. 2005.1318

[41] H. W. Kuhn, ‘‘The Hungarian method for the assignment problem,’’ Nav.1319

Res. Logistics, vol. 2, nos. 1–2, pp. 83–97, Mar. 1955.1320

HANLIN ZHANG was born in Shenyang,1321

Liaoning, China, in 1993. He received the1322

B.S. degree in CST from Liaoning University,1323

Shenyang, in 2020, where he is currently pur-1324

suing the Ph.D. degree in big data statistics and1325

intelligent.1326

He was a Program Developer with the Mine1327

Safety Engineering Laboratory for three years.1328

His research interests include big data processing1329

techniques and graph data processing techniques.1330

LINLIN DING received the M.S. and Ph.D. 1331

degrees in computer science and technology 1332

fromNortheastern University, Shenyang, China, in 1333

July 2008 and 2013, respectively. 1334

She is currently an Associate Professor with 1335

the School of Information, Liaoning University, 1336

Shenyang. She published more than 40 research 1337

articles in international conference proceedings 1338

and journals. Her research interests include big 1339

data management, uncertain data management, 1340

high-dimensional data, and distributed data management. 1341

GANG ZHANG was born in Anyang, Henan, 1342

China, in 1998. He is currently pursuing the M.S. 1343

degree in software engineering with Liaoning Uni- 1344

versity, Shenyang, Liaoning, China. 1345

He was a Program Developer at the Mine 1346

Safety Engineering Laboratory for two years. His 1347

research interests include big data processing tech- 1348

niques and graph data processing techniques. 1349

YISHAN PAN was born in Donggang, Liaoning, 1350

China, in 1964. He received the M.S. degree in 1351

mining engineering from Liaoning Project Tech- 1352

nology University, Fuxin, Liaoning, in 1986, and 1353

the Ph.D. degree in solidmechanics fromTsinghua 1354

University, Beijing, China, in 1997. 1355

He is currently a Professor with the School 1356

of Environment, Liaoning University, Shenyang. 1357

He published more than 80 research paper in inter- 1358

national conference proceedings and journals. His 1359

research interests include coal mine rock burst, gas outburst, and coalbed 1360

methane exploitation. 1361

Mr. Pan’s awards and honors include the China Coal Industry Science 1362

and Technology First Award, the National Science and Technology Progress 1363

Second Award, and the China Coal Industry Association Special Award. 1364

BAOYAN SONG (Member, IEEE) received the 1365

B.Eng. and M.Sc. degrees in computer soft- 1366

ware and theory from Northeastern University, 1367

Shenyang, in 1996, where she received the Ph.D. 1368

degree, in 2002. 1369

From 1988 to 1993, she was a Research Assis- 1370

tant at the School of Information Science and Engi- 1371

neering, Northeastern University. Since 2005, she 1372

has been a Professor with the School of Informa- 1373

tion, LiaoningUniversity. She is the author of three 1374

books, more than 100 articles, and four inventions. Her research interests 1375

include database theory and techniques, RFID event stream processing 1376

techniques, massive data processing techniques, and graph data processing 1377

techniques. She is a member of the China Computer Federation. 1378

1379

VOLUME 10, 2022 100645

http://dx.doi.org/10.1145/3447786.3456230
http://dx.doi.org/10.1007/s11280-011-0136-2
http://dx.doi.org/10.1145/1281192.1281280
http://dx.doi.org/10.1038/nphys1746

