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ABSTRACT The temporal graph can represent a temporal relationship widely used in compound synthesis
analysis, biological gene analysis, etc. However, the temporal graph would embody vertex updates fre-
quently, high time resolution, and not enumerated rules. The construction and update of some temporal
graph models are too dependent on the graph operation sequence, which leads to a lack of an effective
model. Simultaneously, the temporal subgraph clustering of the temporal graph with frequent updating for
the lack of an effective model leads to low accuracy. Therefore, we propose an efficient and frequently
updated temporal graph model as vertex driven and corresponding temporal subgraph clustering method.
First, we propose a temporal graph construction algorithm and set two thresholds to divide the temporal graph
on a timeline to obtain temporal subgraphs. Next, an enhancement strategy based on the sliding window
is proposed to accelerate the construction process. Third, we offer a double-standard temporal subgraph
clustering method based on community comparison and temporal distance. The temporal subgraph can be
effectively distinguished in temporal and structure dimensions. Lastly, experimental results on both real and
synthetic datasets show that the temporal graph model proposed in this work can reduce the time overhead
of construction compared to other existing models. The cluster method improves the clustering accuracy of
temporal subgraphs. The clustering results show through the hierarchical clustering at the same time.

INDEX TERMS Temporal Graph, temporal graph model, subgraph clustering, sliding window, hierarchical
clustering.

I. INTRODUCTION basis and premise of data modeling and data analysis, such as

The Temporal graph [1], [2] is a dynamic network [3], [4]
with frequent updates of vertices and edges and high time res-
olution, unenumerable nature of rules can describe complex
objects and their relationships in the real world. The temporal
graph generation model [5] is that defines the meaning of
the vertices and edges, in the time axis according to the
reality of the uninterrupted evolution process, according to
certain rules to construct a temporal graph, which can solve
the problem of temporal graph built in the real world. It is
widely used in various practical scenarios and is an important
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compound evolution analysis, traffic model evolution analy-
sis, and disaster monitoring evolution analysis. In a disaster
monitoring analysis scenario, for example, we can express
a vertex as a sensor, taking abnormal moment difference
between sensors as edge generation or not, between the sen-
sors will generate more than one edge determined by the
properties with the time information. When users want to
describe the relationship between the sensors, they can use
the temporal graph generation model and build a sensor rela-
tionship graph between the sensors, forming a set of multiple
temporal graphs. When the user wants to analyze the rule of
events in a certain period, the clustering results of multiple
temporal graphs can be quickly presented, which provides
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accurate data reference for disaster analysis and subsequent
disaster prevention. It is very effective for sensor relationship
modeling and mining, which are critical methods in big data
analysis.

Existing temporal graph models focus on graph streaming
and graph generation model, in which the graph streaming
model uses known changes in graph vertices and edges to
construct and update the temporal graph [6], [7], [8], graph
generation model is similar to it, which generates temporal
graphs generally through the attributes of vertices or edges.
For example, Purohit S. et al. [9] calculated the probability
of the arrival of edges and vertices, and need know the
sequence of the generation or disappearance of the edges
and vertices, but the relevant temporal information is difficult
to get directly in the real scene, so whether the emergence
or disappearance of vertices and edges should be developed
rules. For example, the graph generation model proposed by
Bai Y. et al. [10] requires an additional calculation of the
similarity between different objects in the video to construct
the temporal graph, which is too costly and reduces the
efficiency of subsequent data analysis for the scene of real-
time construction of the temporal graph. Multiple graphs
clustering work is mostly concentrated in the field of machine
learning [11], [12], [13], most of the work involves the clas-
sification of the temporal graph, extracting the characteristic
subgraphs of graphs or the characteristic matrix to learn. It’s
equivalent to clustering, but this way of classification to be
separate training on each data set leading to these methods
has some limitations, such as the training cost is high, the
labels being difficult to obtain, and the model is difficult
to update. The other method is to compare the similarity
between two temporal graphs by extracting the graph core
feature [14] for multiple graph clustering. Although this
method can obtain the similarity of multiple graphs, this
similarity does not consider time differences, only structural
differences, which is not suitable for temporal multi-graph
clustering.

Therefore, this paper proposes a Vertex-Driven Temporal
Subgraph Clustering(VDTSC) Problem and a correspond-
ing Vertex-Driven Temporal Subgraph Clustering method.
Firstly, a basic temporal graph construction method is pro-
posed, which determines the generation of inner vertices
edges by setting two thresholds. Secondly, the construction
process of the temporal graph is optimized using a sliding
window. Then, the community detection method is used
to extract communities from a static graph transforming
from a temporal graph. The total distance between the two
temporal graphs was determined by calculating the com-
munity comparing distance and the distance of time, and
hierarchical clustering was used for clustering. Finally, the
effectiveness of the method proposed in this paper was ver-
ified through experiments. Our main contributions are as
follows.

e We propose a vertex-driven temporal graph construction
algorithm and set two thresholds to divide the temporal graph
on a timeline to obtain various temporal subgraphs.
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e An enhancement strategy based on a sliding window is
proposed to speed up the construction process and reduce the
number of comparisons.

e We offer a double-standard temporal subgraph cluster-
ing method based on community comparison and temporal
editing distance to realize the temporal subgraph clustering.
The temporal subgraph can be distinguished in temporal and
structure dimensions.

e Experimental results on 5 real and synthetic datasets
show that the temporal graph model in this work can reduce
the time overhead of construction compared with other exist-
ing models. The cluster method improves the clustering accu-
racy of temporal subgraphs. The clustering results can be
shown directly through hierarchical clustering at the same
time.

This paper is organized as follows. Section II introduces
the current work in this direction. Section Il illustrates defini-
tions and VDTSC problems. Section IV constructs temporal
graphs with two thresholds. Section V uses 3 steps to compute
temporal subgraphs’ distances and cluster them. Section VI
compares our model and algorithms. Section VII summarizes
this work.

Il. RELATED WORKS

We introduce several aspects relevant to the work of this
paper, streaming graph, community detection, community
detection on the temporal graph, and multi-graph clustering,
respectively.

1) STREAMING GRAPH

C. Linhares et al. [15] proposed a visualization method
of time series graph to decompose large networks into
small parts and classify community activity models better.
Yin, Siwen et al. [16] proposed a novel incremental commu-
nity detection method based on modularity optimization for
node-grained streaming networks. This method takes one ver-
tex and its connecting edges as a processing unit and equally
treats edges involved by the same node, finding the tempo-
ral communities on the timeline. Ferrari, André et al. [17]
devised an online change-point detection algorithm that fully
benefits from the recent advances in graph signal processing
to exploit the characteristics of the data that lie on irregular
supports. Sariylice, A. et al. [18] proposed a find-and-merge
type of community detection algorithm that can efficiently
handle streaming updates incorporating two additional tech-
niques to speed up the incremental merge-min-hashing and
inverted indexes. Y. Wu et al. [19] introduced a simple model
for networks growing over time, which they refer to as
the streaming stochastic block model (StSBM). Within this
model, they proved that voting algorithms have fundamental
limitations. Feng Sheng et al. [20], they use components as
units, edges are added and deleted after vertex classification,
and use a load balancing mechanism. However, this method
does not have to scale with frequent updates on a large graph.
Zhang Jianpeng et al. [21] proposed an appropriate streaming
clustering model and designed two new core components:
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streaming reservoir and a cluster manager, which handles the
edge additions/deletions. They cluster vertices into clusters
and do not consider multi-graph clustering.

2) COMMUNITY DETECTION

B. Das et al. [22] proposed an online community detection
method based on user behavior. Pan Xiaohui er al. [23]
composed by the similarity of adjacent nodes and then
formed communities by connecting these small pieces.
Ma Tinghuai et al. [24] proposed a community discovery
method for static graphs based on global (k-shell entropy)
and local information. Bilal Saoud er al. [25] proposed a
method of small community detection merging based on local
clustering. Fang Hu e al. [26] proposed a framework of
vertex continuous feature representation and executed graph
clustering by spectral clustering. You Xuemei ez al. [27] finds
communities through central vertex recognition, tag propaga-
tion, and community combination based on global and local
information. Feng Zeng et al. [28] proposed a relationship
between social properties and an interesting measurement
vertex relationship and maintained the result of cluster clus-
tering between vertices. Li Tianpeng et al. [29] proposed a
method of dynamic temporal community discovery, which
is like the view in this paper, based on the internal feature
correlation of each snapshot. They both consider the structure
of a graph but do not consider the multi-graph problem.

3) COMMUNITY DETECTION ON TEMPORAL GRAPH

Qin H. er al. [4] studied the problem of seeking periodic
communities in a temporal network, where each edge is
associated with a set of timestamps and proposed novel
models, including o -periodic k-core and o -periodic k-clique,
representing periodic communities in temporal networks.
A. Hollocou et al. [30] found communities of graphs from
an edge perspective. M.A K. Patwary et al. [31] segments
graph vertices online, ensuring load balance between par-
titions, but it is not suitable for constructing sequential
graphs. An adaptive clustering algorithm in [21] is proposed
to ensure the priority of graph stream data construction.
M. Mariappan et al. [32] also proposed an adaptive data
processing model based on a streaming graph, both of which
consider edge creation and deletion. Feng Sheng et al. [33]
proposed a technique of loss processing of incremental
graphs to illustrate the optimization process of edge creation
and deletion. Yao Junjie et al. [34] proposed a new approach
to detect burst tagging events, which captures the relation-
ships among a group of correlated tags where the tags are
burst or associated with bursts tag co-occurrence. They both
consider the streaming or graph data and not the construction
perspective.

4) MULTI-GRAPH CLUSTERING

Current temporal graph clustering mainly focuses on vertex
clustering, not the muti-graph clustering. Most of them focus
on the multi-graph classification.Multi-graph classification,
such as [13], [14] [11], [12]. Wu, Jia et al. [11] used the
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gspan method to mine the subgraph, which has a unique code,
developed a bScore function to compute the similarity of
each graph. They use a weak classifier to get the (r + 1)
informative subgraph and two classifiers to adjust the final
consequence. Wu Jia et al. [12]’s work is similar to [11]. Pang
Jun et al. [13] mainly developed a frequent subgraph mining
score function, calculates the top-K frequent subgraphs to
get the feature subgraph on the multi-graph. They complete
multi-graph clustering with a combination of the ELM clas-
sification model and MapReduce framework, which is also
in the static graph clustering. Ma Guixiang et al. [14] used
interior-node clustering and the multi-graph clustering, which
can finally achieve a refined multi-graph clustering result.
It studies the static brain networks. Wang Haishuai et al. [35]
calculated the shaplet of each time vary graph and classified
them by converting the time-varying graph into time-series
data, but it counts the operation counts without computing
temporal information. At present, there is still a lack of an
efficient multi-temporal graph clustering method.

lll. PRELIMINARY

In this section, we introduce the basic concepts and defini-
tions of a vertex-driven temporal subgraph G; = (M, E, T)
is introduced according to Example 1. They form a set of
temporal graph denotes as G = (M, &, T), whereas G, € G.
M and E just denote the temporal subgraph on the layer of
notation, J_ contains temporal information. We call G vertex-
driven temporal graph set.

Definition 1 (Vertex): The vertex set is denoted as M =
{mi,may,m3,...,my,...|l € [1,|M]]}, can easily infer
M| > 1, each vertex has an abnormal time instance P,,,, i €
M, and each vertex can be connected or disconnected by
temporal edges according to abnormal status.

Definition 2 (Edge): The relation between two vertices
uses an edge to connect in graph, each edge is existence or
not decided by the vertex’s abnormal status and instance.
For simply, vertex 1 has abnormal time P,,, and vertex
2 has abnormal time P,,, the time difference (edge time
information) is At = |P,, — Py, |. We denote the edge set
as E = {e;j|i,j € [0, IM|]}, and T = {Az;li, j € [0, [M]]}.

Definition 3 (Immediate Neighbor): The vertex A’s imme-
diate neighbor indicates a node set apart from node A, denotes
the set of vertices directly connected to A. We use N(A) to
denote and use N[A] to represent a node set including A and
its immediate neighbor.

Definition 4 (Structure Similarity): The similarity of ver-
tices uses the balanced performance method, called structure
similarity [36], the computational formula is as follows.

simjj = (NLION[D/(VINL X IN[ID,  i.jeM (1)

Example 1: We obtain the set of abnormal instances corre-
sponding to different sensors through the abnormal detection
method when mining a tunnel in the mountain. The tempo-
ral graph can express these relationships to analyze digging
from structure and time. Although a cluster of sensors [37]
can obtain the classification sensors, it is the integrated
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FIGURE 1. An Example of Temporal Directed Graph.

relationship of all sensors between each monitoring event.
Therefore, there needs a temporal graph model in the process
of analysis.

As shown in Figure 1, we can see that vertex 5 is the
first becoming an anomalous state. Its immediate neighbors
are vertices 2, 3, and 6, vertex 5’s anomaly instances is
1,2, 2, respectively. We set the local threshold to r = 3 and
the global threshold to o = 20, which can be determined
based on the specific domain’s prior knowledge. However,
there are no edges between the vertices between 5 and 1,
and between vertices 2 and 4. We assume that if the time
difference between the two vertices is greater than the local
threshold ¢, then the directed edge will not appear. When
vertex 7 appears in this temporal graph, it does not meet
the local threshold . We will force connecting vertex 7 to
10 to ensure that the temporal graph is connected within the
global threshold, similarly, vertex 4 and 12. We use the global
threshold o to facilitate the partition of the temporal graph,
forming a temporal subgraph set, or forming an integrated
temporal graph with ¢.

Definition 5 (Connectivity and Direct Connectivity):
If 3m; € M where the vertices set M correspond to a
temporal subgraph of G, the first abnormal vertex is my; =
argmmin(Pyy), so if the node m; and my,; satisfy the follow-
ing different conditions, respectively, we will get different
conclusions.

Condition 1: 0 < Py, — Py, < 0, all nodes in this range
are connected containing m;, denotes as y, = {m;|0 < Py, —
Py < 0,0 €1, |ynll}

Condition 2: 0 < Py, — Ppy,, < t, we set m; to be
direct connected with each other, denotes as nyl* = {m;| Py, —
Py < toi € [1 |y 1)

Condition 3: t < Py, — Py, < o, we consider the node
m; and my,s; are not connectivity, the first m; € y,4 is the
new initial point m}im in the next temporal internal subgraph
which indicates the node m; is not contained in the current
sliding window with length ¢.

Condition 4: Py, — Py, > 0, we separate m; into a new
temporal level keep away from the former temporal graph,
which indicates the node m; is not contained in the current
sliding window with length o.

When a new m; emerge on the timeline, we have:

If condition 1 is satisfied, we consider that the m;
are in a connectivity state with the nodes in this range.
If conditions 1 and 2 are met simultaneously, we think that
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they possess direct connectivity and will fully connect the
nodes to m;. If condition 4 is met, we consider that they are
separated on the timeline and form a new temporal graph
vertex set y,,+1, the first node is m;.

If condition 1 and condition 3 satisfied, we will force
connect the latest vertex m;,,, in y;* and the earliest vertex
My, iy, that is to insert an edge ey: v between them.

irst

So, the different temporal scope of Ar will connect together,
and construct a connected temporal graph with length o.

Recall Example 1, we set an extensive threshold of o,
rather than only a small threshold ¢ to segment the temporal
graph and further analyze it in different periods. If only one
small threshold is used, all the temporal information will inte-
grate into a large graph, which is not conducive to subsequent
analysis, so the global threshold is used here. This reason can
easily get in Example 2.

Definition 6 (Vertex-Driven Temporal Graph (Connected
Graph)): When the number of nodes reaches |y| > o, o > 2,
and they all satisfy connectivity (Definition 5(1)), we con-
sider that there form a temporal graph, they have properties
as follows.

LaVp Sy S M & & C & ie. Gy, C Gy

ii. Vm; € vy and Vm; € y7, they are all reach-
able, i.e., each node can reach another through a series of
nodes and edges. We call this graph vertex-driven tempo-
ral graph, denotes as Gy, = (yu, En, Tn), Whereas y, =
{nl/fk,n)/f,--qn)/l*,-u}, En = {ngikang*» ""ng]*7"'}9
To = T T,y .0 T, ... }. The graph we obtained by
combining the ,y,: and ,&,, is a vertex-driven temporal inter-
nal subgraph, which is denoted as G}, = G¥,".n & T
These temporal graphs will form a temporal subgraph set
denoted as G = (M, E,T) = {G1,Gp,...,Gy, ...},
whereas M = {y1, 2, ..., v}, € = {1, &, ..., E)T =
{T1. Ta, ... Tl

To briefly state, we use the terms ‘‘temporal graph”
referring to a vertex-driven temporal graph, and ‘“‘temporal
subgraph,” referring to a vertex-driven temporal subgraph.
According to the definitions above, we obtain the property
of a temporal graph as follows.

i Pmi - Pmﬁm > 0, Mfirss € Vi, M € Yj OF Mfirgy € Y,
m; € Yi

ii. I M| > |G| X «

il [yl > 2 Ayl = 2

iii. |nyl*| =< |val, withm € [1, |yul]
unreachable.

Definition 7 (Vertex-Driven Temporal Subgraph Cluster-
ing(VDTSC) Problem): A user provides a query period T, €
[#i, t], a temporal directed graph can be formally represented
as G = (M, E,T), where M is the set of vertices, £ C
M x M is the set of edges, and T is the temporal weight or
temporal information that denotes the difference between a
pair of nodes becoming abnormal status. Given a set of such
graphs G = {G;1, Gy2, . .. G4}, which construct a temporal
graph set according to the above Definitions, they do not have
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FIGURE 3. A temporal graph generates under the condition of t = 4s.

any properties themselves, so we must compute the distance
distance;; between two temporal graphs and using the hierar-
chical clustering method, the goal of multi-graph clustering
is to cluster the graphs in G into C = {cy, ¢3, ..., ¢} set.
Example 2: There are 4 sensors on the timeline. Their status
changes from normal to abnormal frequently. As shown in
Figure 2, there are many dots with different colors denoting
the different sensors. The axis denotes the timeline, which
indicates that these sensors turn into the abnormal status
at different time instances in seconds, and the sequencel -
sequence4 will together form a temporal graph set through
our graph model, which is shown at the bottom of this Figure.
The dashes denote the partition of the temporal graph, which
is determined by o. We set 0 = ¢ = 2s, which will
merge the first four temporal graphs when o = 8s, but they
cannot form a new structure of a temporal graph. We sort
them in ascending order according to vertex series numbers
for some abnormal nodes simultaneously. These temporal
graphs form a new set as G. And their clustering denotes
as C = {{A,1,J},{B,C,D,E,F, G, H}}. We will illustrate
clustering in section V-D. This example illustrates that the
purpose of we set a threshold to segment a temporal graph
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TABLE 1. Symbolic meanings.

Symbol Meaning

Gy =(M,E,T) Temporal subgraph.

G=(M,ET) The temporal graph; M and £ are the vertex set
and edge set in temporal graph set. 7 provides
temporal information.

M = vertex set of G't.

{rull € 1, |M}}

FE = edge set of G'¢.

{eijli, 7 € [0, [M][}
T = edge’s time information set of G.
{ts;13,5 € [0,|M]]}
P, A vertex m;’s abnormal time instance.

m;

N[A], N(A) A’s immediate neighbor and A; immediate
neighbor of A.

simg; The similarity between vertex ¢ and j.

o The global threshold means the graph segmented
by it.

t The local threshold, which means that the vertices
fully connect in it.

h The distance threshold of the hierarchical cluster
after z-normalization.

At The time difference |Pp,; — ij| between the
two vertex’s abnormal time instance.

v* Cy The node set of one temporal internal subgraph;
The node set is one temporal graph.

ErCé& The edge set of one temporal subgraph; The edge
set of one temporal graph.

« The number constraints of temporal graph gener-
ating.

Si A vertex sequence of one temporal graph.

distance;;,de,dgq | Distance between G¢; and G'¢;; community com-

paring distance; temporal editing distance.

0; CO; A community of one temporal graph; all commu-
nities of one temporal graph.

Fm, The map function of vertex m; and m; between
0; and 0j.

De,; The time difference of the temporal subgraph’s
edge sets £ and S]*.

C= The cluster consequence includes multiple tem-

{c1,¢2,...,¢cn} poral subgraphs in each c;.

into a series of temporal subgraphs to differentiate them from
o = 10s,t = 2s situation shown in Figure 3, which generates
at t+ = 4s and does not vary in the period of 4s-10s. The
operation is boring for a little bigger o.

We can easily find the different periods corresponding
to a different temporal graph. The distance among them
will help us cluster and seek the rule of temporal graphs
to avoid accidents. The table 1 shows the meaning of all
symbols.

IV. VERTEX DRIVEN TEMPORAL GRAPH MODEL

The temporal graph model should be a model that has two
procedures of construction and partition on the timeline.
Some vertices and edges update omit, unavailable, and unrea-
sonable if we use the snapshot strategy [5]. It would also
be impractical to update a temporal graph with every ver-
tex and edge updated with one vertex at frequent update
mode.

So we set two thresholds (see section III Definition 5)
to segment the temporal graph on the timeline and call this
model the vertex-driven temporal graph model. Its primary
purpose is to construct a set of temporal subgraphs G.
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A. VERTEX-DRIVEN TEMPORAL GRAPH CONSTRUCTION
We construct the temporal graph G according to the abnor-
mal time instance of vertices, recalling the Definition 1,
Definition 2, Definition 5 and Definition 6 from the above.

The abnormal instance determines whether some edges
exist or not between different vertices. The main thought
of temporal graph construction is to wait for the abnormal
vertex. We insert edges following the constraints, connect the
vertices in the time sequence. The edge ¢;; is determined by
the time vertex arrival and created one by one abiding by the
thresholds # and 0. We will count the abnormal frequency
of the same vertex, when it becomes abnormal status from
normal between o and determine the importance of this
vertex. The vertex will be connected all the time according to
the threshold r when o = 0. The pseudo-code of this method
is shown in Algorithm 1.

Algorithm 1 Temporal Graph Construction(TGC)

Require: M, t, edge construction threshold o, #, Ty; € [#;, ;]
Ensure: G = {G;1,Gya, ..., G}

1: startPoint < (,queue < W,nodeList < W,existEdge = False
2: while True do

3 if 16, is motivated and falls in the time interval Ty; then
4 startPoint <— mpyey if the procedure execute first circle.
5: nodeList.insert(mpey)

6: d < Pmpeyy — PstartPoint
7.
8
9

if d > 0 and o # O then
G = G U Gy, Gy; construction according to nodeList
startPoint < mpey

10: nodeList < ()

11: continue

12: else

13: ifd <o ando #0 then

14: for each node i in nodeList do
15: if |Pyye,y—p; | < t then
16: i = Mpew-€i mpeyy = d
17: existEdge = True

18: end if

19: end for

20: if existEdge == False then
21: nodeList last — Mueyw-€nodelList lastmpey = @
22: end if

23: existEdge = False

24: end if

25: if o == 0 then

26: The same as line 14-24.

27: end if

28: end if

29: if Mpew not in queue then

30: nodeListip,, -count + +

31: end if

32: end if

33: end while

34: return G

Line 1 initials the variable. Line 2 monitors the situation of
vertex abnormal status through an endless loop. It entrances
the edge construction process according to a new vertex that
occurs at abnormal status at line 3. Line 4 confirms the first
vertex with abnormal status, and lines 5-6 compute the time
difference d of startPoint and a new abnormal vertex #1,,,, in
each iteration, where nodeList stores the frequency and node
set of the range of o period, we will save to form a temporal
graph and clear it after G,; construction. Line 8 merges the
current Gy; into the G. Lines 9-10, re-initialize startPoint and
nodeList ready to save the next temporal graph. If d < o
and o # 0, then this node will locate in o period at line 13.
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Atlines 28-31, we statistic the number of each vertex and save
them into the current nodeList between o when they appear
more than once. Lines 14-19 traverse each node in nodeList,
find the nodes that satisfy the condition At < ¢ and construct
the edge between i and m,,, with weight d under constraint
Definition 5 (2). We should connect the nodeList.last in the
last G}; and my,e,, in G;"( i) that construct a connected Gy, with
Definition 5 (4). We construct G; through the above method
one by one on the timeline. At line 25, we obtain an integrated
temporal graph with ¢ = 0. The algorithm returns the G at
line 34.

Complexity Analysis: The vertex set is M be allocated by
ourself, and the time complexity is | M| x (| M| —1), the space
complexity is |E| + |[M]| x (JM] — 1).

B. SLIDING WINDOW ENHANCED

Though we can get temporal graphs G in section IV-A, we can
also optimize the construction process according to the slid-
ing window as I'V-B.

Corollary 1 (Period Partition): We set the run-up time
startTime = Py, . and the end time startTime + o as shown
in Figure 4, the current period is [P; — ¢, P;]. Its temporal
subgraph vertex set is PSET, the next period is determined
by [Pi+1 — t, Pi+1], when the next abnormal vertex emerges.
There have NSET = PSET\ Ak Um;;1, where Ak denotes a
period in vertices definitely does not connect with the current
vertex in it. Therefore, the algorithm only eliminates vertices
from PSET, and diagnoses each node in NSET each time,
which can reduce the computation cost.

;Q’(mdes) startTime+o
¢ A :
startTime ‘ P 3+ TN#ET | g
L NN > x(t
' @

FIGURE 4. Time period partition illustration.

We will not compare with all nodes from the start time
of one temporal graph in the generation process. However,
constructing edges to the vertex set is shown in Figure 4(time
difference Ar < f) to reduce the complexity of online tem-
poral graph construction according to IV-B. This method’s
pseudo-code is shown in Algorithm 2.

Line 1 initializes the variables, here, we delete the
existEdge and add another variable isFirst we set as a flag
to show PSET is built accomplish or not in this method.
Lines 3-10 are the same as the TGC so we omit this code para-
graph. Lines 12 — 14 illustrate PSET and G;; construction,
line 16 sets the isFirst to False so that the next iteration cannot
execution code segment 11-14. Line 16 adds anode to Ak that
satisfies the distance from nodes to the first node in PSET
smaller than the distance from the m,,,, to the last motivating
node in PSET. Lines 18-21 denote the motivation of n1,,,,
is greater than ¢ when the |Ak| equals to the |PSET|, then
we connect the PSET .last to mye,, wWith weight d to promise
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Algorithm 2 Fast Temporal Graph Construction(FTGC)

Require: M, ¢, edge construction threshold o, 7, Ty; € [t 1]

Ensure: G ={G;1,Gya, ..., Gm}

1: startPoint < W,queue < W,isFirst = True, PSET < (), NEST < (
2: while True do

3: if 16y is motivated and falls in the time interval Tu; then
4: startPoint <— myey if the procedure execute first circle.
5: nodeList.insert(mpey)
6: d < Prpew — PstartPoint
7: ifd > o and o # 0 then
8: It’s the same to the Algorithm 1 except for the line 10, we set isFirst =
False extra.
9: else
10: ifd <o and 0 # 0 then
11: if isFirst then
12: if Pripevy — PstartPoint < 1 then
13: Construct PSET
14: connect all vertices emerge in the first PSET .
15: else
16: isFirst = False
17: get At according to IV-BIV-B
18: it | Ak| == |PSET| then
19: nodeList.last — Myey,
20: CnodelList last,mpeyy = A queue < Mpey
21: end if
22: for each node i in PSET\ Ak do
23: NSET .insert(mpey)
24: i = Mpew:€i mpey, = d» queue < Mpey
25: end for
26: PSET = NSET
27: end if
28: else
29: The same as line 14 to 23 in Algorithm 1.
30: end if
31: end if
32: end if
33: if o == 0 then
34: The same as line 11 to 30 in Algorithm 2.
35: end if
36: if Mpey in queue then
37: nodeListipg,, .count + +
38: end if
39: end if
40: end while
41: return G

connectivity, and push m,,,, into the queue. Lines 21-24 con-
nect each node in PSET\ Ak to the my,, with distance d
and push my,,, into the queue. We reset PSET to the current
variable value NSET at line 26. And line 29 ensures the PSET
and NSET updating in the subsequent process. Lines 34 is
the same as line 10 to 29 to construct an integrated temporal
graph. Line 36-38 statistic the node emerging in the o period.
Line 41 returns the G.

Complexity Analysis: We do not consider the while circle
participating time complexity computation as well, the time
complexity of Algorithm 2 is decided by length of the first
|PSET |, and the others decided by the remaining length of
PSET in each period ¢ that decided by motivated frequency
of these nodes. So the total time complexity is |first (PSET )|+
|[PSET| x ((t; — t;)/0’). The space complexity is consist of G,
Gy, PSET, and NSET in each iteration, and nodeList in each
G;;, and the total space complexity is | M|+ |y,| 4+ (|PSET | +
INSET|) + |nodeList|.

The algorithm above will construct the temporal graph in
real-time. The edge between two vertices is the time dif-
ference, which directly represents the temporal relationship
between two points at the period of [#;, #;]. The temporal
edge can judge the similarities and differences between two
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temporal subgraphs when they have a similar structure.
Although we can find the difference between temporal graphs
through the combination of structure matching algorithm and
time information, it requires high computational overhead,
and a large amount of temporal subgraph matching is not
suitable for the traditional subgraph matching algorithm [38],
so community detection algorithm is used in this work as a
compromise.

V. VERTEX-DRIVEN TEMPORAL

SUBGRAPHS CLUSTERING

The above algorithm will construct the temporal graph in
real-time with period [7;, ¢;]. We can distinguish a temporal
graph with the same time relationship through the temporal
edge. In contrast, the graph structure matching methods can
find their differences. Still, it requires high time complexity
and many temporal graph distance computation tasks. It is
unsuitable for a large amount of subgraph matching, so we
decide to use community detection as a compromise. This
step enhances the morphology discrimination and prepares
a temporal graph set for subsequent clustering.

A. VERTEX COMPUTATION TREE

This section will change the temporal graph to a static graph
to conduct community detection to find the structure of the
temporal graph. So we propose two notations of the graph:
local impact and overlap level before entering the community
detection. Hit counts can decide the local effect of a vertex in
its range of two-hop neighbors, and we define the hit counts
as Definition 8.

We erase the temporal information of vertices and edges.
If there is a one-way edge between two vertices in the current
graph, which will change into an undirected edge, do the same
operation for the bi-edge, and the whole graph becomes a
static graph.

Definition 8 (Hit Counts): The range of two-hop neighbors
and the current vertex is the entire scope, which the current
vertex is considered the center we count. Naturally, the hit
count of vertex i is computed by the equation 2.

HIT (i) = {hity, hitp, ..., hit,}, nel[l,|V]],
hit; = |twoHop(i)|,
twoHop(i) = N[i[]UNI[NI[i], iel[l,|V]] 2)

where the |[rwoHop(i)| denotes the occurrence number of i in
the two-hop range, the hit; is a list of all vertices that exist
with vertex i. We devise a self-adaptive function to decide
the vertex is reserving or not. The function of self-adaptive is
shown in equation 3.

SN gy — max(HIT (i)) — min(HIT (i))
hitfd = =
¢ \HIT (i)| — 2

A vertex remained or not can be decided by the hit{‘d when

the hit; of nodes in G is greater than this value or not through
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the piecewise function as equation 4.

0, if hit; > hir®?
1, otherwise.

fx) = { “

The hit counts can represent the impact of the current node,
but it only decides the current node is the representation
between two-hop and cannot determine the classification with
other vertices. Therefore, we should consider the overlap
notation of a vertex, which can decide to merge them. The
definition of overlap level denotes as Definition 9.

Definition 9 (Overlap Level): The number of intersections
between the current node i and each neighboring node in two
hops can show their correlation, which requires a threshold
corresponding to the current node in the two-hop neighbor
set. The ratio of overlap vertices will be used to decide if they
merge not. First, one-hop neighbors of a vertex n; denotes as
N[ni] = {n;, N(n;)}, so we define the overlap level threshold
is as equation 5.

Wi = {wir, wiz, ..., wij}

i — Yl O N ) e [LINGOI - (5)
P min(NTmIl N1 7 S

We adopt the same method of adaptive hit counts hit,‘,‘;l_i
computation and define the adaptive overlap level wfd as
equation 6.

e _ EJ!ZY)IWU — max(W;) — min(W;) ©
' lwi| —2
The same as hit counts, the piecewise function will select
the vertex to determine whether it will become the candidate
set through f(x) = 1 selected or f(x) = 0 unchosen in the
two-hop range.

0, ifw; ad
L w; > w; )

1, otherwise.

f(X)=:

We construct two sets-hit candidate set and overlap candi-
date set denotes as hitCandidate and wCandidate according
to the Definition 8 and Definition 9, respectively.

Definition 10 (Vertex Computation Tree): We will construct
a vertex computation tree to speed up the process of the
solution procedure while the algorithm is executing for partic-
ipating vertex i € Gy. The computation tree divided into two
hierarchical layers, the neighboring set of the current vertex i
forms the first layer denoted as N(i) = {1,2,3,...,j,...},
the neighboring of the current vertex i’s neighbor set forms
the second layer denoted as N(N(i)) = {1,2,3,...,k,...},
each edge denotes the hit counts(|hitCandidate|) of two ver-
tices vertex i and vertex j between the first layer and the sec-
ond layer, whereas i and j denote as two vertices, respectively.

The common neighbor CN(i,j) + 2 is the hit counts.
We simply compute the |N(7)| will hit i only once. And i
will hit itself. So hit; = i.degree + 1, and Vj € N(i), hit;
determined by the common neighbor among i and j since
others cannot hit j, plus i and j itself. So hitj = CN(i, j) + 2.
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The third layer is the rest of the non-repeating vertex because
we removed the repeat elements from the first layer, so the
hity = count (k).

The hit count of current node i is hit; = i.degree + 1, the
second layer of each node is set to hit; = CN(i, j) + 2, also,
as the edge between the root and its children as well. And we
also consider the counts during the construction process, see
section IV. So the hit counts will become (i.degree 4+ 1) x
i.count and hit; = (CN(i, j) + 2) x j.count. The third layer is
hity = count(k) x k.count apart from the elements emerging
in the second layer. The emerged counts of the vertex k must
be 1 in each node in the second layer after eliminating the
repeated elements in the second layer, and each element k in
the third layer hit; is computed by summation all the same
elements in the third layer. So we can easily deduct that the
edge between the third and second layers must be 1. The
overlap level between node i and node j denotes as w;; =
CN(i, j)/CN(,j) + count (k).

B. VERTEX COMPUTATION TREE UPDATE
We set the corresponding tree to null when a computation
tree’s root vertex i is classified, or we set the second layer
node j’s subtree to null if the node in the second layer is
classified as well and set the corresponding vertex’s edge
weight to 1. Its child node is excluded from the number of
a hit anymore, and w;; = null, not calculated, too. An update
will happen between the two-hop neighboring set when some
visited nodes in the vertex are visited.

The construction of a vertex computation tree can speed
up the community detection process, and the pseudo-code is
shown as Algorithm 3 as follows.

Algorithm 3 Computing Tree Construction(CTC)

Require: M, a node i need to compute

Ensure: The tree of node i
1: Set the current node i as the root node of computation tree.
2: for each node j in N (i) do

3: CN(i, j) < compute the common neighbors between i and j

4: Insert a child between i and j in the tree named j, and its edge is set to the
(CN(i,j) +2) x j.count

5: Insert N[j]\N[j] N N[i] set in the tree named by its node’s name, and do not
compute any value between j and k.

6: end for

7: return The computing tree of node i

Line 1 sets the vertex i as the root node of the i computation
tree. Lines 2-6 compute the number of common neighbors
of each node in the immediate neighbor N (i), then we insert
a new vertex with the weight (CN (i, j) + 2) X j.count as a
child. Insert a vertex that does not emerge in the first layer of
the computation tree and does not have any weight between
the third and second layers. The algorithm is over when we
traverse all vertices between two-hop neighbors of the current
node i.

Example 3: We give a static graph example to help under-
stand. As shown in Figure 5, we will compute the red vertex
first. The blue node denotes the one-hop neighbor set, includ-
ing several vertices described by Definition 3, the yellow
nodes denote the two-hop neighbor set of the current node.
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A% . 4 . . J ./
O ={1,4,6 hits = 4
=46 hity = 1

(b) Computation tree of vertex 1.
1:2,3.4,6 len(1)=5
len(2)=3+1=4——w=3/4=0.75
len(3)=3+1=4—w=3/4=0.75
4:5,7——len(4)=4+2=6——w=4/5=0.8
6: =4/5=0.8

4d=(0.8+0.75)/2=0.775
146 falls into 1 category

(c) The first consequence.
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(e) Updated computation tree of vertex 5 after
vertex was allocated.

5:2,3,4,6,10,11,12,13 len(5)=9
=4——w=3/4=0.75
len(3)=3+1=4——w=3/4=0.75

4:null

6:null
10:coincide——Ilen(10)=3——w=3/3=1
11:coincide len(11)=4——w=4/4=1
12:coincide len(12)=4——w=4/4=1
13:coincide len(13)=3——w=3/3=1
wgd:(0.75+1+1+1)/4:3475/4:0.9375
5,10,11,12,13 fall into 1 category.

(f) The second consequence.

FIGURE 5. An toy example for community detection on static graph.

We reject the repeated nodes that emerge in the one-hop
nodes’ neighbor set to eliminate the redundancy and do not
list the current node when we construct the computation tree.
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We compute the hit counts and overlap level through the edge
without node count.

For N(1) = {2, 3,4, 6}, and N(2) = {4, 5}, we remove the
repeated elements by comparing with vertex 1, get the final
list as shown in Figure 5 (c) according to the rules we propose
of the above. And the root is vertex 1, and its child is 2, 3, 4, 6,
respectively. The third layer is 5, 5, 5,7, 5, we compute the
overlap level according to the equation 6 in V-A Definition 9,
the first cluster will be ¢; = {1, 4, 6}. We suppose the vertex 5
is the next node that should compute as a center. And the com-
putation tree of vertex 5 will become Figure 5 (e) from (d)
according to the updated strategy described above since the
range of two-hop of node 5 has node 1 visited before.

C. DE-TEMPORAL GRAPH COMMUNITY DETECTION

We can quickly get the hit candidate set and overlap the can-
didate set and compute them are simple through computation
tree. We will introduce the community detection algorithm
below, which is sensitive to the dense edge vertex and detects
communities in a de-temporal graph. This algorithm only sets
a threshold called T will be introduced in Algorithm 5 to
merge the vertices according to t. The pseudo-code is shown
in Algorithm 4.

Algorithm 4 Graph Community Detection(GCD)

Require: M, t.at least one De-temporal direct graph G;
Ensure: Community of G

1: nodeList < kgjoy < getRank(Gy.nodes())

2: diagFirst < False,q < )

3: for each node i in nodeList do

4 if i.degree > 1 A i.visit == Fulse then

5: q < i, i.stacked == True

6: while ¢! = null do

7 current < q.pop

8 if current.degree > 1 A current.visit == False then

9: if diagFirst < DND(Gpcurrent,t) == True then

10: Return

11: end if

12: computationTree < CTC(Gy, current)

13: hitCandidate < get the hit number according to Definition 8.
14: if |hitCandidate| < 3 then

15: current.cluster < its neighbor’s cluster series with 7.
16: else

17: wCandidate < extract nodes according to Definition 9.
18: interaction < hitCandidate N wCandidate

19: if interact.length() < 3 then

20: current .cluster < N (current)’s series with .
21: else
22: maxCluster <—The maximum number of clusters.
23: if interact length > |maxCluster| then
24: interact form a new cluster and cluster series.
25: else
26: current.cluster < maxCluster
27: end if
28: end if
29: end if
30: end if
31: if current.cluster! = —1 then
32: current visit = True
33: PushtoQueue(computationTree, G, q, T, current, interaction)
34: end if
35: end while
36: end if
37: end for

38: Tidy nodes not allocated, according to their neighbors’ cluster.
39: return Community of G

Lines 1-2 initialize the variables that the algorithm needs.
In 2011, Kitsak et al. proposed the K-shell method [39].

100635



IEEE Access

H. Zhang et al.: Efficient Vertex-Driven Temporal Graph Model and Subgraph Clustering Method

The algorithm considers the nodes of a network hierarchical.
The higher the k-shell layer of a node, the more likely it
is to be the core of the network. Lines 3-4 will circle in
the list of nodes whose degree is greater than 1 and have
not been visited before in the list. Line 5 pushes into the
queue g that prepares to process subsequently. Line 8 con-
trols the requirements of the current node i. Lines 9-11,
the algorithm diagnoses whether the node is divided into
a cluster or not, and decides the algorithm is too early to
give up. Lines 12-13 generate a computation tree of vertex i
and compute the hit candidate set according to Definition 8.
Line 14, the current node will be classified by its neighbors’
cluster series if the number of hit candidates set smaller
than 3, skips subsequent calculations. t is a value that com-
putes through |allocatedvertices|/N (current). Lines 17-18
continue to compute the wCandidate set, and get the interac-
tion between hitCandidate and wCandidate. Line 19 are the
same as line 14 when |interact| < 3. When |interact| > 3,
we seek the maximum cluster of the current node’s immediate
neighbor set. If |maxCluster| > |interact|, then we set all
vertices in interact to the cluster series of maxCluster, or we
set the nodes in interact to a new cluster series at lines 22-27.
Lines 31-34 sort the vertices in the two-hop range of the
current node which has not been visited, and push them to a
queue according to a priority rule we define, see algorithm 6.
We cluster the nodes which are not clustered in the iteration
for the specific graph structure based by the principle of the
majority rule when their neighbor is not allocated or create a
new cluster for each node and form clusters that have |y;| at
line 32. The algorithm returns a community of G, at line 39.

Complexity Analysis: The time complexity is |Gy, | X |g| X
O(CTC)+ O(DND) + O(PushtoQueue), and space complex-
ity is |g| x (|hitCandidate| + |wCandidate| + |interact| +
|computationTree| + |maxCluster|).

The affiliation we diagnose first when a new vertex is
traversed. Suppose the vertex is classified as a cluster. In that
case, we will not compute the remaining vertices and divide
them directly to the cluster and call this solution the DND
method, the threshold t represented illustrated above here.
The pseudo-code is shown in Algorithm 5.

Algorithm 5 Diagnose Node Division(DND))

Require: G, current, t
Ensure: updated queue
1: cluster < get all nodes have been allocated to one cluster.
. clusterFD < sorted the cluster according to the frequency of emerging.
. maxCluster < get the node emerges most.
:if |cluster| > O A % > 7 then
current .cluster <— maxCluster
return true
. end if
. return false

When the procedure pushes the remaining vertices into
the queue ¢, we should consider a sort strategy to move
these vertices to the queue in a specific order or affect the
subsequent results a lot. We use the total similarity of the
current node with the whole graph to divide the number of
allocated vertices, which can get the average value of the
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entire impact of the current node acting on the allocated
nodes for the effect of the current node is its compactness
to the entire graph. The larger the value is, the smaller the
number of allocated vertices is, which shows that the existing
vertices are less likely to be integrated. It will be assigned
separately. The weight of each edge can be a time difference
or other meanings. There, we use the structure similarity [36]
to denote our temporal graph more precisely, see Definition 4.

Algorithm 6 Push to Queue (PQ)

Require: computationTree, G, q, T, current, interaction
Ensure: updated queue
1: priority < @,FD < transfer the computationTree to FD array and delete unquali-
fied nodes.
2: for each i in FD do

3: if i in interaction then

4: delete i

5: end if

6: end for

7: for each i in FD do

8: signed=0;unsigned=0

9: for each jin N(i) do

10: sim=compute the similarity between i and j
11: if j.visit == True then

12: signed + +

13: allSim+ = sim

14: end if

15: end for

16: if allSim == 0 or signed == 0 then
17: priority[i] = 0

18: else

19: priorityli] = allSim/signed
20: if priority[i] == 0 then
21: delete priority[i]

22: end if

23: end if

24: end for

25: prioritySorted = sorted priority by ASC.
26: for each i in prioritySorted do
27: if i.degree > 1 and i.visit == False and i.stack == False then

28: q.put (i)

29: i.stack = True
30: end if

31: end for

32: return Updated queue

So we can sort this value in descending order to opti-
mize the order in which the graphs are assigned, called the
enqueue optimization strategy. The pseudo-code is shown as
Algorithm 6.

Line 1 initializes variables, lines 2-6 delete the nodes in
the interact since they are visited and clustered to a cluster,
see algorithm 4. Line 8 initializes the statistical variables.
Lines 9-15 statistic the number of allocated node signed and
the strength of the connection with the graph allSim (the
total similarity of all neighbors) of each node in FD after the
delete operation. Lines 16 — 17 adjust the priority of nodes
to O which allSim = 0 or signed = 0. Line 19 apportions the
similarity allSim to each allocated node equally. Lines 20-21
delete the node whose priority is 0. Line 25 sorts all vertices as
ASC. Lines 26-31 will push the nodes not visited before, not
included in the queue before, and the degree greater than 1.
The algorithm returns the updated queue to promise the order
visit.

Complexity Analysis: The total time complexity is FD +
FD x |N(i)| + |priority|, the total space complexity is |FD| +
IN(i)| x |FD| + |priority| + 1.
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There exists a problem that each temporal graph has sig-
nificant differences at different periods. The temporal graph
constructed may be much smaller than the original graph, the
consequences of community detection also have a tremen-
dous difference, so we define an equation to describe the
relationship among different temporal graph as Definition 12
to describe the temporal graph.

D. DISTANCE COMPUTATION AND

HIERARCHICAL CLUSTERING

We cluster these G; using a hierarchical clustering algorithm
with our own defined distance, which transforms the whole
temporal graph into a chain following the time sequence and
is defined as follows.

Definition 11 (Temporal Graph Chain): Gy can be trans-
formed to a formof s; = {my — my — --- —> m; — ...},
i € [1,]&]], which ignores the other edges in G;; aiming to
simplify the distance computation process, s.t. |s;| > |yil,
ij—Pmi > 0, or Pm/.—Pm,. = 0,7 < j. The vertex emerges not
only once, following the abnormal order and series number.

Definition 12 (Temporal Graph Distance): There are two
sequences of temporal graphs on Gy, Gy, we consider not
only the community comparing distance but also, consider
the distance of time, we define it as equation 8.

distancej = (d, + dg)/2 ®

The d, denotes the community comparing distance from
the community detection consequence. The character com-
parison will count the corresponding position letter one by
one, taking the communities as a unit according to the vertex’s
abnormal status sequence. If they are different in the corre-
sponding position, then add 1. Otherwise, we do not execute
any operation and arrange them with time sequence, ignoring
other edges as equation 9.

max

d, = 2:max(\o,-\,|0j\)Enﬂ(lo,-l,lojl)|]_-mn| 9)

whereas o0; and o; denote two communities in G, and Gy,
respectively, O; and O; denote all communities in G; and Gy,
respectively. F,,, denotes the nodes map of each community
between |o;| and |oj|, the different map set of vertex sum-
mation gets community comparing distance. The equation is
defined as equation 10.

max(|1E;1,|1E;1)
n=1

di =% IDe;| (10)
whereas D, denotes the time difference of the temporal sub-
graph’s edge set &; and &;. Each different edge time difference
summation in all 0; and o; on G;; and G;; gets the temporal
distance.

Last, we will cluster them through the hierarchical cluster
method of distance on the date set comprising a set of the
temporal subgraph, which if and only if |G| > 2 satisfied
can be computed. Each consequence of clustering must be
within a period of user provision. Because we didn’t improve
the hierarchical clustering algorithm, the pseudo-code omits
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Algorithm 7 Vertex-Driven Temporal Subgraphs Cluster-
ing(VDTSC)

Require: community, G
Ensure: cluster C
1: fori=1to |G| do

2: forj=i+1to|G|—1do

3: de < compute character edit distance between G;; and Gy;.
4: dg < compute directed edge distance between G; and Gy;.
5: distancejj = (de + dq)/2

6: end for

7: end for

8: Cluster subgraphs in G using hierarchical clustering with average linkage.
9: C <« divide the clustering tree according to h.
10: return C

in this part, and we list the other details of the algorithm as
shown in Algorithm 7.

Lines 1-7 compute the distance for every two subgraphs Gy
and Gy, line 8 enters the hierarchical clustering procedure to
calculate the final clustering tree and divides according to the
distance threshold / user setting.

a{l+3-4-51-2-3}

9

125351525313}

(3H13)2

efl 351525323}

d2+3—52-3->2-3}

253522}

(9+2)/3=55

H2—2-2-3-4}

253541234534}

h{3 2451234134}

{15345 1535451-52-34)

flo25354515253545254)

(a) Distance Computing.

>

s

temporal directed graph distance

1 A J E D F C G B H
cluster series
(b) Consequence of Clustering.

FIGURE 6. The process of Hierarchical Clustering computation.

Example 4: We illustrate the process of hierarchical clus-
tering. First, we should compute the distance between every
two temporal graphs according to the Definition 12 as
shown in Figure 2 mentioned before. There have 10 graphs
are formed to compute from Gy, to Gy, and they will
generate 45 distances, which as shown in Figure 6 (a),
we only list only the distance between Gy, and the oth-
ers; First, we compute the distance,;,, which comprise d,
and dy since s, = 1-3—->4—>1—>2—>3 s =
l1-2—-3—>1—>2—>3—>1—3havingthe?2,3,7,8
positions are different, so d, = 4. Meanwhile, we compute
dy between them by adding all time differences in the edges,
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so dg = 7, and distanceq, = (4 + 7)/2 = 5.5. Likewise,
we can compute a and d, which a has 3 positions are different
with d, so d, = 3, and Gy, has the total time cost of 21, the
total time cost of D is 6, so dy = 21 — 6 = 15, and the
final distance,q = (3 + 15)/2 = 9. The rest can be done
in the same manner. The clustering consequence is shown in
Figure 6 (b), which clusters into 2 clusters intuitively for our
model by not setting a threshold to segment them. Actually,
the threshold can be set according to the specific requirements
of users.

VI. EXPERIMENTS

A. EXPERIMENTAL SETUP

1) ENVIRONMENT

This experiment was implemented using Python 3.6.6 on
CPU I5 and 512G SSD platform with NVIDIA 750ti graphics
card.

2) REAL DATASETS AND COMPARING METHODS

We need to synthesize the abnormal state time into the net-
works to test our online TGC and FTGC algorithm’s perfor-
mance. And we will set two parameters of ¢, o to make each
period have many instances to ensure a new temporal graph
can be constructed definitely in 10 minutes at all datasets
corresponding to the 10 minutes range. Each 3 second in the
file has 1 abnormal time instances of each vertex randomly
for the linear way to promise the motivation consistent with
the real situation as far as possible. We will test the time
cost under different r and o values shown in table 2, and
evaluate the size of each temporal subgraph with each value
of variables. We set the cluster threshold with % to evaluate
the cluster method. These network details are listed in table 3
and illustrated as follows.

a: EU-CORE

is an email network among members of the research institu-
tion. Nodes of the network can spread anonymized informa-
tion. A member sends at least one email to other members.

b: DOLPHIN

is a network, whose construction is based on the observation
of 62 bottlenose dolphins from 1994 to 2001. Each node of
the network is a dolphin, edges represent the relation between
dolphins.

c: KARATE

is a network, which comprises players, a coach, and a man-
ager. It focused on the coach and the manager, and the
network can split into two communities.

d: POLBOOK

is a network of books about US politics. The books were
published around the 2004 presidential election and are sold
on the Amazon website. Nodes of the network represent
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books, and an edge means that the same buyer purchases the
books illustrated by the two nodes connecting the edge.

e: FOOTBALL

is a network of American College football games. Each node
denotes a team, and an edge between two nodes means at least
one match between the two teams.

Here, we select three algorithms BSC Algorithm [21],
a streaming graph processing frame, GraPu Algorithm [20],
a distributed algorithm for graph partition. GShaplet
Algorithm [35], an algorithm borrows from time series. And
we set = 20 < min(IM|),M <= y,, which smaller
than the smallest datasets for generating graphs correctly.
Here, a user can adjust through the prior knowledge to avoid
obtaining noise.

This method should consider the parameters ¢ and o in real
situations when used. That’s not our focus. We must build
these temporal edges following our temporal graph model
using FTGC and TGC algorithms. For example, a vertex
m; has 20 abnormal time instances in one minute, and the
network Football has 115 vertices, we will simulate the node
motivating in timeline incrementally, which needs to arrange
all nodes in a row or column according to an abnormal time
instance in a file. The first abnormal time instance of m; as
the startNode in Algorithm 1 of all vertices means m; are
uncertain, while generate abnormal instances in each minute
can promise the number of |G| locate in a controlled range.
So these experimental methods can thoroughly verify the
algorithm performance.

We select MGTC and ME-MGC as Clustering compari-
son algorithms. MGTC [14] uses the interior-node clustering
and the multi-graph clustering, which can finally achieve a
refined multi-graph clustering result. It studies the static brain
networks.

ME-MGC [13] mainly devices a frequent subgraph mining
score function, calculates the top-K frequent subgraph to
get the feature subgraph on the multi-graph. They complete
multi-graph clustering with a combination of the ELM clas-
sification model and MapReduce framework, which is also in
the static graph clustering.

3) OTHER FACTORS

a: MULTI-GRAPHS LABEL TAG

A similar temporal graph will be allocated to the same cluster
for verifying the accuracy of clustering, if and only if a kind
of temporal graph, which has a similar structure and temporal
information. So we have an equation of labeling for temporal

leip | lejil |ém\
2 DK) 3Ly D) | D(k)
graph as: SIM,, . = (
l Yi¥; — Wl D(k)l | |V/ | Dk) IV, | D(k)
/n D(k)) o ( IL’”T(]{) Il T(k) “ ka\T(k) y
\y] D) \Vl | T \V, T \Vl | T
“’”'T(k)

m T(k)) where c¢; is got by K-Clique method [40], and

w1th no loss generation, 7'(i) and D(i) are the total period
and the total degree of one community. The same cluster
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series is allocated to two temporal graphs with SIM,,; ,,; < 0.3
through experiments, then we label all the graphs in the
dataset generated by FTGC to evaluate the performance of
the algorithms.

b: EFFECT OF STATIC GRAPH TRANSFORMATION

The dense of edge temporal graph is higher than two GJ; and
G;"(i +1) for each node will connect with the newest node. The
variable 7 is small enough will lead to the graph transfer into
a chain because each node in it cannot connect with any node
between ¢, the community detection can also find community
according to this structure, see section V-C. Additionally, the
o only decides the range of each Gy on the timeline, so it
cannot affect community detection.

4) EVALUATION INDICATORS

We adopt the Accuracy for the cluster method evaluation,
adopt two measures NMI and Modularity for community
detection and use time cost to evaluate the temporal graph
construction.

a: NMi

Normalized mutual information is used to measure the simi-
larity between the true community structure and the commu-
nity structure obtained by community detection algorithms.
The higher the value of NMI, the more accurate the commu-
nity detection algorithm is. NMI is formulated as: NMI =

—2 Y& S0 NiglogNyN /NN )

S5 NilogNi/N)+ Y5 N jlog(N j/N)
real communities, Cg denotes the number of found communi-
ties. The matrix N represents the confusion matrix, where N;;
is simply the number of nodes in the real community i that
appear in the detected community j.N; and N; are the sum
over row i and column j of the confusion matrix, respectively.
N is the number of nodes. When NMI is equal to 1, the
community structure detected by the algorithm is the same
as the real community structure. Conversely, if NMI = 0,
the detected community structure is entirely independent of
the real, and the entire network comprises of one community.
It indirectly proves the effectiveness of the algorithm.

), where Cy4 is the number of

b: MODULARITY

Modularity is widely used to measure the quality of com-
munities. The overlapping modularity is expressed as 0 =
1/2m Y5 e, 1/0i0j(Ay; — kikj/2m), where m is the
number of edges in the entire graph, k;, k; are respectively
node i and j, A;; is the adjacency matrix of the graph and
O; and O; respectively denote the number of communities
which node i and j belong to the same cluster and O otherwise.
The higher the value Q is, the more accurate the community
results.

c: ACCURACY
Let c; represent the clustering label result of a multi-graph
clustering algorithm and y; represent the corresponding
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TABLE 2. Experimental variables.

Variables Values
t {1s,2s,3s,4s,5s, 6s, 7s,8s,9s,10s}
o {3s,4s,5s,6s,7s,8s,9s,10s,11s, 125}
a 20
h {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}
p {0,0.01,0.02,...,0.23,...,0.04,...,0.99,1}

TABLE 3. Datasets information.

Networks n m community number
Karate Club 34 78 2

Dolphin 62 159 4

Polbook 105 441 3

Football 115 613 12

Eu-Core 1005 | 25571 42

ground truth label of the graph G;i. Then Accuracy is defined
as: Accuracy = ij ! 8(yi, map(c;))/n, where § is the
Kronecker delta function, and map(c;) is the best mapping
function that permutes clustering labels to match the ground
truth labels using the KuhnMunkres algorithm [41]. Larger
Accuracy indicates better clustering performance.

B. PERFORMANCE

1) EFFECT OF o

We count each node transfer from normal status to abnormal
status and add the cost of edges construction in seconds.
Add each period cost to get the final time cost at the end
of 10 minute, construct temporal graphs with different o, set
fixed r = 3s for initialization for studying the performance
of each algorithm. Observe the effect of the temporal sub-
graph threshold’s construction time cost on different datasets.
All nodes need not wait for abnormal status, which is an
offline model.

As shown in Figure 7, x axis denotes threshold o from
3s to 12s, y axis denotes time cost in seconds, where the
overall trend of the computational overhead of all algorithms
is up. We use the sequence of graph operations generated by
our build rules required by the three algorithms. It can be
seen from the figure, four kinds of algorithms of the total
computing time spending growth trends, when the sigma
in [3, 9]. the time cost does not increase a lot, but since the
9th second, while the number of increased significantly, the
reason is the o not only determines the number of G, and
determines the number of temporal edges, when o increases,
while ¢ is fixed, the number of edges increase since o contains
many windows of length ¢, so the build time increases rapidly.
As we can see from the figure, the BSC and GraPU algorithms
are more expensive than ours because they have extra opera-
tions on edge insertion, which makes them spend more time.
BSC uses cluster manager to manage constraints and merge
components directly, which uses the streaming reservoir to
ensure conformity and maximality. We save time by insert-
ing edges directly through the two thresholds. Additionally,
the clipping process of vertices and edges and distribution
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FIGURE 8. Temporal Graph Construction Time Cost with Different t(s).

of GraPu algorithms are not used to avoid additional time
overhead.

2) EFFECT OF t

We evaluate different ¢ to observe the effect of the temporal
subgraph G threshold’s construction time cost on 5 datasets
under o = 10s as shown in Figure 8.

As Figure 8 shows, the x axis denotes the connectivity
(local) threshold ¢ from 1s to 10s, and the y axis indicates the
time cost of the 5 methods we are comparing. Here, we can
see that our algorithm outperforms others for construction
procedures at different connectivity thresholds . The 5 kinds
of algorithms’ time spending increased following the increase
in t. The curve grows up rapidly at + = Ss, the reason is
that the abnormal vertex number grows at the local threshold
with ¢ increasing. We recall Definition 5 (2), the number of
temporal edge is n x (n — 1)/2, whereas n is |y*|, so the
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build time grows rapidly, among them. In the Kerate, Dolphin,
EU-Core data set, the slope of the curve reduces at t = 6s,
because the number of abnormal vertices decrease between
t = 6s and ¢ 7s, so the construction time also
decreases accordingly. Therefore, the slope of these exper-
imental curves can partly reflect the increase or decrease
of the number of abnormal vertices. It can be seen from
Figure 8 (e) that the construction time of TGC algorithm and
FTGC algorithm is less than that of the other three algorithms.
There is a large difference between them, mainly because
the larger the value of ¢ is, the fewer times of comparison
after filtering through PSET, and the smaller the time cost
of FTGC algorithm is. However, when the data set is small,
this advantage cannot be reflected. There is little difference
in the time cost between Figure (a) and Figure (b) because
the number of vertices in the first two data sets is not large,
so the advantage of the algorithm is not reflected. As shown
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in the figure, the current change of ¢ has a greater impact on
the time cost than o because the increase of o does not affect
the large growth of edges, according to Definition 5. But the
growth of ¢ directly affects the number of edges.

3) EFFECT OF o AND t FOR EDGES

We further evaluate the effect of o and ¢ on the number of
edges |£| that we count all edges generated of construction in
each Gy, on five datasets using FTGC method. Figure 9 (a)
uses o € [3s, 12s] witht = 3s, Figure 9 (b) uses ¢ € [1s, 10s]
with o = 10s.

As shown in Figure 9, x axis denotes different o in
Figure 9 (a), and denotes different ¢ in Figure 9 (b), y axis
denotes the number of edges in minutes. It can be seen from
Figure 9 (a) that when o increases, || increases but not as fast
as Figure 9 (b), because the change of ¢ directly affects |£].
The EU-core dataset has more original vertices, so it has more
temporal edges in the same condition. It can be seen from
Figure 9 (b) that the number of temporal edges in EU-core
is stable when ¢ € [4s, 7s], because there are fewer vertex
anomalies, so the |G| also decreases.

4) COMMUNITY DETECTION
We use GCD to detect the community in 5 real networks,
and the community is shown in Figure 11. Our algorithm
needs to set a parameter T to promise the NMI index and
Modularity maximum at each dataset. Next, we developed a
group experiment to instruct our GCD algorithm under the
original graph to verify and compare it with other methods.
As shown in Figure 10, x axis denotes different T we set
from O to 1, y axis denotes Modularity and NMI, respectively.
The dashed line denotes the modularity. We can see different
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Networks | Dolphin | Football | Eu-core
Link 0.149 | 0.083 | 0.127
OCDLCE| 0.368 | 0.565 | 0.225
OCDSSE | 0.377 0.41 0.07
SECD 0.401 0.595 | 0.137
AOCCM | 0437 | 0372 | 0.179
CAMAS | 0396 | 0401 | 0.172
LGIEM | 0.491 | 0572 | 0.292
GCD 0.485 | 0.597 | 0.326

TABLE 5. The NMI index of community detection.

Networks | Dolphin | Football | Eu-core
Link 0.392 | 0.716 | 0.279
OCDLCE| 0487 | 0.725 | 0.327
OCDSSE | 0.064 | 0.632 | 0.316
SECD 0.489 | 0.641 | 0.395
AOCCM | 0.872 | 0.795 | 0.263
CAMAS | 0.809 | 0.809 | 0.412
LGIEM | 0.890 | 0.665 | 0.504
GCD 0.671 0.919 | 0.562

T have a different degree influence on Modularity and NMI,
when the © = 0.23, the four datasets produced the maximum
of the two indexes except for Polbook. Because this dataset
has a boundary and fewer communities within each commu-
nity when merging some vertices using a smaller 7. So we set
T < 0.1 for the Polbook dataset to obtain a higher index. The
subsequent experiments will use the 7 setting here.

As shown in Figure 11, the community of each original real
network detected using our algorithm GCD, each network has
its structure to be clustered. So we then compare with other
7 community detection algorithms to test our community
detection method using the consequence of the paper [24].
we compute NMI and Modularity to evaluate our method,
the result is shown as table 4 and table 5. We can see that
our method performs much better in a larger dataset Eu-core.
The reason is that our approach ranks vertices in each step
through the compactness of the graph, see section V. So our
method is more adaptive to a large dataset on sparse and
dense graphs. OCDLCE cluster graph is based on edges,
so it is not an adaptive dataset that has too many edges for
a vertex. Not Different from OCDLCE, both OCDSSE and
SECD are overlapping community detection algorithms using
a seed set expansion based on nodes rather than edges, which
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FIGURE 11. Community Detection Consequence of 5 networks.

have a limitation when local information differs from global
information. Link divides a large community into several
smaller communities, ignoring the connections among nodes
within a large community. So links cannot detect reasonable
communities. However, AOCCM and CAMAS have the same
drawback that all nodes of the network cannot be in full cover-
age, so the community found are not precise. LGIEM does not
consider the sequence processing between local information,
and it is also a method that focuses on extension, so it cannot
detect communities on large datasets like Eu-core.

5) CLUSTERING CONSEQUENCE

We set 0 = 3s to 125 to get the most suitable temporal graph
for Football and Eu-core datasets, suppose a user selects
t € [3min, Smin] and we get 60, 45, 36, 30, 26, 23, 20, 18,
17, 15 temporal subgraphs within 3 minutes, also, we clus-
ter these temporal subgraphs to form C, and we use our
VDTSC algorithm to get the final clusters, which are shown
as Figure 12 and Figure 13. It can be easily deduced that the
distance increases among different communities following
the increasing number of vertices in each community, so the
distance will become larger, difficult to set the threshold
that distinguishes different clusters in hierarchical clusters.
We use Z-score normalization to normalize all distances to
express every two subgraphs to promise within the same
range.
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As shown in Figure 12 and 13, the x axis is series of
temporal subgraphs Gy,, y axis is the distance among them,
they form an integrated clustering tree. Still, the distance
threshold /2 we set will affect the final clustering. That’s why
we use Z-core normalization to promise distances among
these clusters located in a range of [0, 1], which is easy for
user settings.

6) EFFECT OF h AND <

h decides the cluster allocation, T decides the structure of each
temporal graph, so we evaluate the two parameters to observe
our method’s stability in football and Eu-core. Figure 14
shows the consequence.

We can see that the 7 locate in the scope 0.4-0.6 achieves
higher accuracy because our GCD method arrives at a
higher level on two datasets in Figure 14 (a) and (b). And,
h directly affects the accuracy. The accuracy will drop if
we set a smaller value of h. The reverse has the same
effect since hierarchical clustering is sensitive to distance
threshold.

Then we compare the accuracy with two methods MGTC
and ME-MGC, at h = 0.3 and 7 = 0.23, respectively.
We train these two classifiers using Football and Eu-core
datasets above, considering they need labeled graphs, so we
set the o and ¢ is 3s simultaneously. The accuracy of these
3 methods is shown in Table 6.
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TABLE 6. The Accuracy of Temporal Graph Clustering.

Methods | Accuracy
Football  Eu-core
VDTSC 0.68 0.57
MTGC 0.52 0.49
ME-MGC 0.31 0.27

We can find that our algorithm has a much better per-
formance on both datasets of Football and Eu-core from
Table 6. Because the above two algorithms do not consider
temporal information, our algorithm considers the distance of
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the time dimension, and its accuracy is more than 30% higher
than MTGC for football and more 16% higher than MTGC
on Eu-core. This proves our algorithm’s validity. ME-MGC
algorithm is weaker than MGTC algorithm, which the main
reason is MGTC algorithm performs clustering alternately
of internal nodes and global structures to verify each other.
MGTC algorithm more accurately compared with ME-MGC
only looks for structural features from the perspective of
subgraphs to find structures. Another main reason for the
accuracy of ME-MGC algorithm is that the number of label

graphs is not enough, and the classification of graphs may
produce over-fitting.
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We can find that these temporal subgraphs are clustered,
and the results are clear for analysis users. This method can
also cluster other temporal subgraph clustering problems.
We also get different results if we set different thresholds for
t and 0. We provide a novel cluster for the VDTSC problem.

VII. CONCLUSION

This paper proposes a temporal graph construction model,
which generates a temporal graph based on abnormal stream-
ing data. We further offer a hierarchical clustering method
on a set of temporal graph, calculating the distance based on
community comparing distance and time distance according
to their properties. We verify the effectiveness and efficiency
of temporal graph model, verify the accuracy and show clas-
sification results on 5 real network datasets.

In addition, on the one hand, the temporal graph building
model applies to the area where the exception time can be
obtained, but the two thresholds are required according to
the prior knowledge. Graph structure information is hidden
due to add temporal information, if only use the temporal
information is as a basis for the structure partition, which
leads to the structure of the temporal graph partition prefer to
temporal perspective since the temporal information is added.
So we use structural similarity to replace the temporal infor-
mation, i.e., removing the temporal information of temporal
graph do community detection.

On the other hand, the temporal graph on the structure and
temporal information is varied after the complete building.
If we mine frequent subgraph directly, where there may
not get effective temporal graph structure, or difficult to go
through frequent subgraphs analysis the internal informa-
tion of temporal graph. At the same time, expertise acts an
essential role when label temporal subgraphs. It’s nontrival
for its cost is large and difficult to be applied in practice.
As a result, we use a way of through a double-standard
temporal subgraphs clustering method based on community
comparison and temporal distance. And our method provide
process them in a novel manner.
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