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ABSTRACT Compared with conventional photography, the newly emerging light field image capturing
technique has dramatically extended potential capabilities of post processing. Among the new capabilities,
refocusing is of the most interest. In this paper, we first investigate a region-adaptive multi-scale focus
measure (RA-MSFM) that is able to more robustly and accurately measure focus of light field images.
It is especially superior when measuring focus in flat areas where previous methods struggle. Following
we design a novel refocusing measure metric which employs the RA-MSFM as core technique. Using the
metric, refocusing capability of a given light field image as a whole can be measured in a single number by
combining focus score maps of each refocused image in the focal stack. The focus score maps are generated
using the proposed RA-MSFM. In RA-MSFM, different multi-scale factor is adaptively selected depending
on different regions such as texture-rich or flat areas using a multi-layer perceptron network. Different from
most light field image metrics that assess image quality, our metric targets to assess refocusing capability.
Our experiments have shown that not only does the proposed refocusing metric have high correlation with
subjective evaluations given in the form of mean opinion scores, but it also produces all-in-focus images
having 0.7 ~ 4.6dB higher PSNRs compared to previous state-of-the-art methods. The proposed refocusing
metric can be used to measure refocusing loss in practical application such as compression, tone mapping,
denoising, and smoothing.

INDEX TERMS Refocusing measure, light field images, multi-scale focus measure, all-in-focus, subjective
experiment, refocusing capability.

I. INTRODUCTION

Light field photography has drawn much attention from
academia, consumers, and industries due to its wide range
of potential applications such as in photography, astronomy,
microscopy, robotics, and medical imaging among others [1].
The light field (LF) camera allows effective reverse raytracing
from already recorded image so that the image itself can
be adjusted in post processing [2]. That is, focus, exposure,
viewing angle, and depth of field can be adjusted after the
picture is taken [3]. The availability of depth information over
an entire scene also facilitates users in adjusting other aspects
of the image like controlling the depth-of-field [4].
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Recently, various rendering and display techniques for LF
data have been reported, for example, techniques related to
light field displays and head-mounted displays [5]. With the
development of 5G, head-mounted displays of LFs such as in
AR/VR are becoming popular [6]. In addition, conventional
displays can be used to simulate light field applications taking
advantage of techniques such as refocusing or viewing angle
change [7]. It is also easy to see many commercial smart
phones equipped with 2 or 3 cameras which are able to
capture multi-view images. This would make it possible to
refocus an image even after the time of its capture. In these
applications, the in-focus region of interest (ROI) can be
arbitrarily designated by user, thus, the ROI could be placed
at any position in the whole image. It is thus very desirable
to measure how successful these refocusing operations are.
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TABLE 1. Existing focus measure operators and their performance.

Method Theoretical Principle Operators Performances

A hat f di Gradient-based operators, Sensitive to window size; Good

ssumtes that }? cuse d 1ma§1es e.g. Thresholded absolute gradient [11][17] response to noise.

present more Sharp edges than . Best overall performance in normal
Spatial blurred ones [8]. Laplacian-based operators, imasine conditions: Most sensitive to
. ¢.g. SML (sum-modified-Laplacian) [10][18] nesng :

;l;:;s Zasrgtli}; ttiil;e:;i\ssrt:ge of Statistics-based operators, e.g. Gray-level The highest robustness to noise; Better

des cgr iptors variance, Histogram range [12][13] autofocus performance.

) RDF (ring difference filter) [15] Robust to noise

Uses coefficients of the discrete .
Frequency wavelet transform to describe the Wavelet-based f)perator.s, ¢.g. Sum/Variance of . . .
domain frequency and spatial content of wavelet coefﬁments‘ [8]; DCT-based operators, Performs well in small window size

images e.g. DCT energy ratio.

- . Miscellaneous operators, e.g. Image contrast .

Others Conditional operator consisting of [14], Image curvature, Local binary patterns- Performance varies in terms of contrast,

multiply operands.

based, Steerable filters-based.

noise, window size.

In this regard, one likes to measure how much in focus a pixel
is in a refocused image. The general refocusing capability of
an LF image can be thought as the overall degree of focusing
in the images refocused at arbitrary points. There has been
research on focus measurement, however, it is noted that
most focus measures [10], [11], [12], [13], [14] were only
developed with general 2D images in mind, and there are only
a few studies [15], [16], [18] that have looked at refocusing
of light field images. The motivation and contribution of this
paper is to design a measure of general refocusing capability
of light field images.

Focus measures (FM) are widely used for many problems
of image processing and computer vision, such as for depth
from focus [15], [16], [20], autofocus [18]. The existing FM
operators for conventional 2D images can be divided into two
main categories: spatial domain FM and frequency domain
FM [8]. The operators and their advantages are listed in
Table 1. There are roughly four families of spatial domain
focus measures: Gradient-based, Laplacian-based, statistics-
based, and the rest. The analysis and ranking results of FM
operators [9] shows that the modified Laplacian (LAP2)
[10], tenengrad of gradient variance (GRA7) [11], eigenvalue
based (STA2) [3], and image contrast (MIS3) [14] methods
achieve the overall high performance among the four fam-
ilies. Noise robustness tests in [9] indicate that STA2 and
GRA7 methods handle noise very well.

However, it should also be noted that there are a few FM
methods that have been developed for LF images. Surh [15]
proposed a FM employing a ring difference filter (RDF)
which maintains high robustness and confidence by utilizing
a relatively large window of neighboring pixels and placing a
ring gap space to ignore certain regions in that window. The
RDF focus measure is especially useful in depth estimation
for LF images. Rizkallah [17] proposed a metric to decide
whether a certain pixel in a focal stack is in focus or not by
thresholding of pixel gradient. This metric is used to evaluate
compression loss by counting the number of in-focus pixels.
It is a very simple metric which judges whether a pixel is
in-focus or not by hard thresholding on gradient value, but
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performs not so well in flat in-focus area. Chantara [18]
proposed a FM based on the Summation of the Modified
Laplacian, which is sensitive to noise. This FM is used to
select the focus area of an LF focal stack.

These existing FM schemes work well in high frequency
areas such as rich textures or high sharpness areas, but
encounter difficulties when dealing with in-focus flat areas
[9]. A multi-scale concept [21], [22], [23] is seen promising in
improving the accuracy in those flat areas. Thus, in this paper,
we propose a region-adaptive multi-scale focus measure (RA-
MSEM) which plays an important role in our refocusing mea-
sure methodology. That is, for each refocused image in a focal
stack, the RA-MSFM is employed to generate a pixel-wise
focus map of the focal stack. An overall refocusing capability
score of a whole LF image is calculated by combining the
pixel-wise focus maps of the focal stack.

In this paper, we design a new refocusing measure for LF
images. Our contribution of this paper lies in introducing
1) an assessment metric for LF refocusing capability, differ-
ent from existing metrics mostly targets for image quality;
2) the RA-MSFM method performs higher accuracy in both
texture-rich and flat area; 3) an appropriate focal stack range
and step size are determined by analyzing in a mathemati-
cal way instead of simply predefining their values as most
research did.

To evaluate the proposed RA-MSFM method, we take two
approaches: rendering all-in-focus images and comparing
with other state-of-the-art approaches; carrying out subjective
experiments on the focus level of the ROI to analyze corre-
lation. To evaluate the proposed refocusing measure metric
for whole LF image, another subjective experiment is carried
out on in-focus pixels coverage. The proposed refocusing
measure can be used in many image processing tasks which
may result in refocusing loss such as compression, tone
curve mapping, noise reduction, blurring, smoothing, etc.
Compression is a method which minimizes data size of image
even with image quality degradation, thus the consequen-
tial information loss may reduce refocusing capability. Tone
curve mapping extends the dynamic range of one region while
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suppressing in another region where the suppressed signal
may cause refocusing capability loss. The noise reduction
process may also distort the pixel values where the distortion
affects the refocusing capability of the pixel. Image smooth-
ing and blurring are achieved by convolving the image with
a low pass filter, thus refocusing capability is expected to be
reduced due to the loss of high frequency information.

The rest of this paper is organized as follows. Section II
mainly describes the proposed focal-stack oriented refocus-
ing measure methodology of which the RA-MSFM is a core
part. Section III shows the overall structure, flowchart, and
the procedure optimization. Section IV presents experiments
and analysis, including the all-in-focus rendering experi-
ment and two subjective experiments. The all-in-focus ren-
dering experiment and one of the subjective experiments
on focus level are used to evaluate RA-MSFM. The other
subjective experiment on in-focus pixel coverage is used
to evaluate the refocusing metric. Section V concludes the

paper.

Il. PROPOSED REFOCUSING MEASURE METHODOLOGY
In this Section, we present the proposed RA-MSFM and a
new refocusing measure metric. The proposed RA-MSFM
not only works well with high frequency rich textures, but
also achieves good performance in the in-focus flat areas
meanwhile being robust to noise. Using the proposed refo-
cusing metric, we can compute a single value representing
overall degree of focusing on a refocused image generated by
post processing of LF image.

A. PROPOSED REGION-ADAPTIVE MULTI-SCALE FOCUS
MEASURE (RA-MSFM)

A focus map is a collection of focus levels of pixels in an
image. The focus level indicates how much in-focus a given
pixel is. A higher focus level indicates that the pixel has the
better focus. By conventional methods [9], [18], the focus
level of a pixel I(x, y), denoted by F(x, y), can be measured
by a selected focus measure operator FM.

F(x,y) =FM{(x,y)) ey

The FM operators generally consider spatial gradient, Lapla-
cian, or pixel variance, thus, their accuracies depend much on
the image content.

For example, they work well in areas full of textures and
edges [9], however, they tend to fail in in-focus flat area or
out-of-focus texture-rich area. This is an evident limitation
of the existing FM operators. Besides, light field images may
have low spatial resolution and suffer from significant camera
noise in images [7], [15]. In this respect, we investigate a new
FM method achieving limitation-break and noise-resistance.
To have the noise-resistance, a noise-robust FM operator is
designed. To break the limitation, we introduce a region-
adaptive multi-scale method for which different multi-scale
factor is adaptively selected depending on different regions
such as texture-rich or flat areas.
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1) SELECTION OF A FOCUS MEASURE OPERATOR

To generate a noise-robust pixel-wise focus map, we exper-
imentally evaluate the five well-known FM operators [9],
GRA7, LAP2, MIS3, STA2, and RDF for their comparative
noise-robustness since they have been reported as showing
the best performance with relatively low computational com-
plexity [9]. The test result of the five operators is shown
in Fig. 1(a). To simulate realistic camera noise, we also
applied gaussian noise to the original light field images in the
experiment. A refocused image in a focal stack is referred
by its focal stack index k, k = 1,...,K. K is the total
number of images in the focal stack. The horizontal axis in
Fig. 1 indicates the focal stack image index, and the vertical
axis shows the focus level of a pixel at the center of its window
(shown in yellow in Fig. 1). Note that the more in-focus a
pixel is, the higher its focus level is. The focus level of a pixel
at (x, y) are different between the kth and (k + 1)th images in
the focal stack. In an ideal case, with increasing focal stack
index, the focus level should increase and will decrease after
a pick so that showing a hill-shape. In comparison of the
focus level curves generated by the five operators in Fig. 1(a),
RDF, GRA7, and STA2 are seen to show better resistance
to noise than the others since their focus level curves are
more similar to the desired smooth hill shape than the others.
Meanwhile, LAP2 was found to be the most sensitive to noise
since its rises and falls are out of order. As for the accuracy,
RDF and STA2 show better performance than GRA7 since
the peak of the GRA7’s curve does not match with the most
in-focus image index marked by the black dashed line. Focus
measure performance test on in-focus flat area is shown in
Fig. 1(b). It is noted that none of the five operators show
their focus level curve having a smooth hill shape for the in-
focus area. To compare complexity, we analyzed the average
computation time of the five focus operators to see that STA2
consumes the most time. In the overall tradeoff between
noise-robustness, accuracy, and complexity, RDF was found
to be better than GRA7 and STA2. As such, we select RDF
to generate the pixel-wise focus map.

2) REGION-ADAPTIVE MULTI-SCALE FM ARCHITECTURE

An image varies a lot in terms of its spatial contents so
that its processing is better to be adaptive especially when
it comes to focus measure regarding whether a pixel is in
textured or flat area. To deal with this issue for achieving
accurate focus map, we investigate a region-adaptive multi-
scale focus measure (RA-MSFM). An appropriate degree of
down scaling highly depends on local regions, therefore, one
single fixed scale-down factor cannot cover all cases. For
example, the regions of an image can be roughly divided
into 4 types: in-focus flat area (pl), out-of-focus flat area
(p2), out-of-focus texture-rich area (p3), and in-focus texture-
rich area (p4), as shown in Fig. 2. In this work, an adaptive
selection scheme is designed using a multi-layer perceptron
network which selects an appropriate scale-down factor. For
this, we down-scale the original image (having resolution
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—+—STA2 —&-LAP2 —+—MIS3

GRA7 ——RDF

1 5 10 15 20
Focal Stack Image Index (I04, Gaussian Noise 0.001)

(a)

Test on Noise Resistance

GRAT7 —=—RDF

~+—STA2 —#-LAP2 —+—MIS3

Test on In-focus flat area

Focal Stack Image Index (104, original image)

(b)

FIGURE 1. Performance comparison of different focus operators. (a) Test on noise resistance; (b) Test in in-focus flat area. The horizontal axis
indicates the focal stack image index, and the vertical axis shows the focus level. In comparison of computation time, STA2 takes the longest
computation time (STA2 > MIS3 > RDF > GRA7 > LAP2). The pixel under focus measurement is at the center of a 5 x 5 window shown in yellow.

624 x 432) using three factors (1/4, 1/16, 1/64) and train
the network to classify the scale-down factor appropriate for
each pixel. The ground truth scale-down factor is set manually
according to local region structure, which is described later in
this Section II-A.

a: STRUCTURE OF THE CLASSIFICATION NETWORK

The adaptive selection scheme is shown in Fig. 3. A fully
connected network is employed to predict an appropriate
scale-down factor for a given pixel p. Input information
to the network are multi-scale blocks centered at pixel p
which are extracted from the down-scaled images. In order to
reduce redundancy and dimensionality, intended features are
extracted from the original, 1/4, 1/16, and 1/64 scale-downed
blocks at the feature layer of the network. The intended
features not only include general image information such as
luminance histogram, variance, and color histogram, but also
include custom features that are specially designed for judg-
ing proper type such as texture frequency, gradient histogram,
and detail information. To improve convergence speed, all the
feature variables are normalized to range O~1. By the fully
connected layer, probabilities of four scale-down factors are
generated at the output layer. The final predicted label is the
scale-down factor having the highest probability. The loss,
which measures the model accuracy in training, is computed
in terms of the absolute difference of probabilities between
the predicted and the true labels. With the proposed RA-
MSEM as a selected focus measure operator FM in (1), the
focus level of a pixel in an image is re-written as:

F(x,y) = MSFM (I (x,y)) = R; (x,y)
where 7 = argmax Pr(t), t e (t0,11,12,13)  (2)
t

where 7 is the classified label for a pixel I (x,y) and Pr ()
is the probability of the label ¢ provided as network output.
R (x,y), Ri1 (x,Y), Rea (x,y), and Rs3 (x,y) are the focus
levels corresponding to the pixel I (x, y), respectively in the
original, 1/4, 1/16, and 1/64 scaled-down resolution images.

b: PREPARATION OF GROUND TRUTH SCALE-DOWN
FACTORS FOR TRAINING

The scale-down factor should be selected considering struc-
tures of local regions. For training, the ground truth
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FIGURE 2. Image texture type and its ground truth label (p1: in-focus flat
area; p2: out-of-focus flat area; p3: out-of-focus texture-rich area; p4:
in-focus texture-rich area). The bolded rectangle indicates the selected
ground truth scale-down factor of each selected pixel.

scale-down factor of each pixel is prepared among four scale
factors (1, 1/4, 1/16, 1/64) by selecting the one that reflects its
actual focus level the best. The focus level is calculated as in
(1) using a selected focus measure operator FM, for example,
RDF [15]. A high FM value of a pixel indicates that the pixel
is in-focus, on the other hand, a low value indicates an out-
of-focus pixel. Accordingly, for a pixel located at the in-focus
region like pl and p4, its ground truth scale-down factor is
selected as the one giving the maximum focus level. For a
pixel located at the out-of-focus regions (like p2 and p3), the
one giving the minimum focus level is selected as the ground
truth. Fig. 2 illustrates the ground truth of the scale-down
factor (indicated by bolded rectangle) for the pixels pl1~p4.

A focus map showing focus level of each pixel is gener-
ated with our RA-MSFM. Fig. 4 compares the focus maps
generated by three well-known methods and the proposed
RA-MSFM. Unlikely the existing methods, the proposed
RA-MSFM is shown to work well even in flat areas by select-
ing an appropriate scale-down factor to show high accuracy
focus level in in-focus flat area.

3) GENERATION OF FOCUS SCORE MAP
A focal stack is a collection of the same image but focused
on multiple planes, thus, refocusing can be understood in a
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One image in
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Feature layer

Scale-down factor
classification (Label)

Fully connected layers

1
W scale-down

3 —-— L scale-down
ot

FIGURE 3. Proposed region-adaptive multi-scale focus measure (RA-MSFM) scheme. (4 scale-down factors: 1, 1/4, 1/16, 1/64; multi-scale blocks of
5 x 5: extract 5 x 5 pixels window with its center at a pixel p from 4 types of scale-downed images).

— ==

FIGURE 4. Comparison of the generated focus maps. (a) Original focal stack images; Generated focus maps by
(b) Chantara’s method (Laplacian based) [18]; (c) Rizkallah’s method (Gradient based) [17]; (d) Surh’s method (Ring

Difference Filter) [15]; (e) the proposed method.

simple term as selecting an appropriate image (or rendering
an image by selecting appropriate parts of images) in the focal
stack corresponding to a given desired focus plane. Since
multiple refocused images can be rendered from one single
light field image, availability of possible in-focus areas of the
images in the focal stack that can cover the whole image as
much as possible can provide a very good indication of the
overall refocusing capability of a light field image.

We compute the focus score Sk (x,y) by normalizing
Fi (x,y) in (2) by F/$%* as below.

Fi (x,y)
Sk (x,y) = —pmax
LF
where F/"% = max max (F, (x, 3
LF k=1.§k0§x<xW( () )
0<y<H
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Fy (x, y) represents the focus level of a pixel (x, y) in the kth
image in the focal stack. F* is the maximum focus level
among all K refocused images in the focal stack for a given
LF image. H and W are respectively width and height of the
refocused image. In computing the maximum focus level, 1%
of the highest values are excluded as outliers to minimize the
noise effect.

B. PROPOSED REFOCUSING CAPABILITY MEASURE
METRIC

In this section, we propose a refocusing capability measure
for the given 4D light field image and its rendered 2D refo-
cused images.

101389



IEEE Access

C. Zhao, B. Jeon: Refocusing Metric of Light Field Image Using Region-Adaptive Multi-Scale Focus Measure

Maximum
focus score
r 2=

Global focus
score map
of LF

Focél stack

Refocused Focus score maps
images of refocused images

FIGURE 5. Focus score map generation for light field image (LF).

1) REFOCUSING CAPABILITY OF ONE REFOCUSED IMAGE
Refocusing capability of a refocused image is proposed to be
measured by the refocusing pixel coverage (RPC) which is
expressed as a percentage of the in-focus pixels in the given
refocused image. RPC of the kth refocused image in the focal
stack is defined as:

W—
RPC(k) = ﬁ Z Z k()

y=0

0, Sk (x,y) < THD

b (x,y) = { ’

)
1, Sk (x,y)>THD

where by (x, y) represents whether the given pixel at (x, y) is
in-focus or not: by = 1 indicates an in-focus pixel while by =
0 indicates an out-of-focus (that is, blurred) pixel. A pixel is
thought perceptually in-focus if its focus score is higher than
a certain threshold THD. THD is determined by experiment.

2) OVERALL REFOCUSING CAPABILITY OF LIGHT

FIELD IMAGE

It is possible to measure the refocusing capability of LF image
as a whole by integrating the refocusing capabilities of all
the possible 2D refocused images rendered from the given
light field image. From the 1st to the kth image in the focal
stack, the focus score increases to a peak (indicating highest
in-focus), and then decreases (indicating out-of-focus) like an
inverted valley. We find a maximum focus score Sy (x, y) at
(x,y) among all the images in the focal stack and generate a
global focus score map for 4D light field (LF) image as shown
in Fig. 5. The global focus score map of an LF image reveals
the best possible focus for each pixel.

Jpax (S (x,¥)) (5)

,,,,,

Str(x,y) =

The overall refocusing pixel coverage (RPC) of a light field
image, RPCF, is defined as below.

W—-1H-1

1
RPCip = W Z ZbLF (x,)
x=0 y=0
0. S;r(x,y) <THD
bir (5.3) = Lr (%,3) ©)

1, Sir(x,y) > THD
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llIl. OVERALL STRUCTURE AND PROCEDURE
OPTIMIZATION

In this Section, first, the overall structure of refocusing metric
is presented. Following, we optimize the number of images
in a focal stack by setting appropriate « values through
mathematical analysis.

A. OVERALL FRAMEWORK

In our refocusing measure methodology, we first generate a
focal stack using a 4D light field image. In contrast to the
general focal stack with a user-defined fixed step size [17],
[33], we define the range and the sample step size through
mathematical analysis. Then, we generate a pixel-wise focus
map of each image in the focal stack using RA-MSFM as in
(2). Furthermore, we normalize the focus maps of each refo-
cused image in the focal stack using (3). Finally, a single score
value representing the refocus capability of a given LF image
as a whole is calculated using (6) by combining the focus
score maps of all refocused images in the focal stack as in
(5). The main structure of this approach is illustrated in Fig. 6.
It includes five submodules: focal stack generation from 4D
light field input data; RA-MSFM for each image in the focal
stack to generate focus maps; normalization and combination
of the focus maps in the focal stack to have a global focus
map; calculation of the overall LF refocusing score. Our
method has three advantages. First, we can compute a single
value representing overall degree of focusing in refocused
image generated from LF image through post-processing.
Second, the proposed RA-MSFM works well in both high
frequency rich textures and in-focus flat areas. Third, our
generated focal stack is superior to existing methods [17],
[33], [34], [41] since the range and the step size used for the
focal stack generation are not set simply as in other methods
[17], [33], but determined based on the proposed rigorous
mathematical analysis.

B. FOCAL STACK GENERATION WITH

APPROPRIATE « VALUES

Light field images are captured using a plenoptic cameras
which typically have microlens arrays placed in front of
an image sensor to record incoming light rays from many
directions [24]. This architecture allows differentiating as
many directions as there are pixels behind each microlens.
The light field can be used to digitally reconstruct an image
corresponding to a different camera focus, which we call the
refocused image [25], [26]. The light ray of 4D light field can
be parameterized by two parallel planes v and xy, known as
the directional and spatial dimensions. The camera aperture
is positioned along the uv plane, while xy indicates the sensor
plane [19]. As illustrated in Fig. 7, the sensor plane is located
at a distance F' from the aperture plane, and the light ray
L (x,y, u, v) reaches at the position x on the sensor plane. For
the refocus plane RPy, its distance from the aperture plane
is F/ = oF where « = F'/F is defined as the relative
depth [27]. The dashed light ray converging on a position x
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FIGURE 6. Framework of the proposed refocusing measure methodology.
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u,v x,y RP(I®) RPy 1 (1)

FIGURE 7. Light field image refocusing.

on the refocus plane RPj, is denoted by L, (x, y, u, v) . Since
it also reaches at x; in the sensor plane, Ly (x,y,u,v) =
L (x, yk, u,v) . By similar triangles in Fig. 7, xx = % +

) thus

X 1 y
Lo (x,y,u,v) =L[=+ul1—-=), =
o o o

+v(1—l>,u,v> @)
o

The refocused image I, (x, y) is rendered by integrating all
directional rays at a specific position on the sensor plane:

1
v = [fe(Gre(i-3)
<l—l> u,v)dudv ®)
o

By scaling and normalizing % — x, % — y, we have,

o feex(-3)
V<1 — l) , U, v) dudv 9)
o

The image I, (ex, ay) is a scaled version of I, (x,y) by a
factor . However, we can ignore the scaling factor in digital
processing since we can just scale the pitch size of a virtual
sensor plane by exactly « times so the resolution of a rendered
image matches exactly with spatial resolution of light field.
The explanation of ignoring dilated factor « is first presented
by Ng et al. [27] and is adopted in the following research
[28], [29], [30] for digital refocusing. The digital refocusing

u(l——

VOLUME 10, 2022

realization at RPy is given by rendering equation in discrete
domain,

1
Iy (x,y) = Yy LW <x+u<1 - &> .y
u v

oot

Here, L™ (x, y) = L (x,y,u,v) denotes a 2D view from
the point (u, v). (10) shows the digital refocusing is real-
ized by shifting a factor u(1 — 1/a), v(1 — 1/x). If we
denote the shift offset as Ax, Ay, then, Ax = u(1 — 1/a),
Ay=v(l —1/a).

Regarding the refocusing parameter ¢, an «@ value less than
1 indicates its refocus plane being close to the aperture plane
(that is, F’ < F), and « value larger than 1 means a refocus
plane far from the aperture plane (that is, F’ > F). In general,
o can assume any real value, and it is related to one refocused
image in the focal stack, that is, one refocused plane. The
number of images in the focal stack, K, is determined by
a. If K is of a high value, a large and redundant focal stack
demands huge hardware consumption as shown in Fig. 8(a);
if the value of K is low, the generated focal stack cannot
cover all the refocusing ranges as shown in Fig. 8(b), thus
the measured refocusing capability will be smaller than its
real refocusing capability. Therefore, it is necessary to decide
an appropriate K value. The K value depends on the range
Omax — Omin and step size Aa = a4 — .

There have been some studies [31], [32], [33], [34] on
setting the @ value range and step size. One work [31] inves-
tigated setting these values based on the image content depth,
but since content always varies, the depth of each image will
also vary, so it is difficult to give a consistent definition in
this way; another work [32] also investigated this based on
the plenoptic camera’s focal length and microlens diameter,
but this approach is limited to only typical cameras; another
work [33] just used a fixed range and a step size was found
experimentally. In this paper, we study the problem again
mathematically and propose a method to define the range and
sample step size of parameter «.

(10)

1) SETTING FOCAL STACK RANGE
Suppose a plenoptic camera has M x N microlens each of
which has P x P aperture views. It is M x N in the spatial
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: i Refocusing plane positions "f

(a vall‘le) : ©

Z5 3 Focal stack

FIGURE 8. Refocusing plane positions (Original focus plane « = 1 (F = F’); left side planes: « < 1 (F > F’) background direction;
right side planes: « > 1 (F < F’) foreground direction). (a) Number of images in focal stack is large and redundant due to a small
Aa; (b) Number of images in focal stack is small due to a large A«; (c) Number of images in a focal stack is appropriate with the

proposed A« setting.

xy dimension, and P x P aperture views in the directional uv
dimension. A sub-aperture image L") (x, y) extracted from
an LF image has a set of P x P views, where P is usually an
odd number. The possible ranges for u, v, x, y in each sub-
aperture image L") (x, y) are:
P—1
0.5

P—1
2

u(and also v) € {—T,...
xef{0,1,...M—-1},ye{0,1,..., N —1}

In the refocusing plane, the directional shifts Ax, Ay
have the following constraint due to the limitation of
|Ax|] <M — 1,|Ay] < N — 1. We analyze « value in both
twocasesof 0 <o < landw > 1. For 0 < o < 1, using the
constraint of |Ax| <M — 1,

1 : P—1
ull——)| <M —1,since |u|pgy = ——
o 2
1 2M —1)
l—— = —— 1)
o P—-1
P—1
o> 12)
2M—-1)+P—1
Similarly, using the constraint on |Ay| above,
P—1
(13)

o >
“2N-D+P-1

So, the minimal « value depends on M, N, P. For the case
of o> 1, we always have 0 < 1 — é < 1, thus,

(-}

Since |Ax| can be close to |ul,,,, but cannot be |ul,,,,
to reduce redundancy, we set |u/,,, — 1 as the maximum | Ax|

|Ax| = (14)

< |t gy
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value, thus, |Ax| < |ul,0 — 1,

1
<1 - _> |u|max = |u|max -1
o

o

IA

1]
P—-1
oO < —

2
So, the maximal « value depends on P.

15)

2) SETTING FOCAL STACK STEP SIZE

In Fig. 7, the refocus planes RP; and RPj4 respectively
correspond to / &) and 1*+D _The kth and (k + 1)th refocused
images, IV (x,y) = Iy, (x,y) and I*TD (x, y) = I, (x.y)
are rendered using the refocus parameters, ax and ox41. The
step size between the two refocused images *) and 1*+1 is
defined as Aa = | —g+1].

In order to cover as wide refocusing ranges as possible with
the minimal number of images in the focal stack, we should
define a proper value for Ac. The light ray L®") (x, yx) and
L®Y) (xg41, yei1) converge to a position x of 1) and 14+D

respectively.
1
Xy =X+u (1 — —)
(273

1
Xk+1 =x+u<1 ——>
Ok+1

and Ad = |xx — xx+1] is the distance between the two light
rays. If Ad > 1, refocusing possibility is compromised due
to omission of some light rays. If Ad < 1, all the refocusing
ranges can be covered, therefore, Ad = |xx — xx41| < 11is
an essential constraint as shown below.

1 1

(16)

<1 (17)
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To ensure all the u values meet the constraint, it is required
that |u| = |u|, = (p — 1)/2. If Ad is too small, there will
be many images in a focal stack which causes redundancy
and high computational cost, thus, Ad = 1 is selected as an
appropriate value.

1 1

Ok1 Ok
Incase of 0 < o < 1, then og41 < o, thus,

(25) e

=1 (18)

|u|max

Uy = (19)
(1’T> + ok
In the same way, when « > 1, then, oy 41 > o, thus,
(%) e
(20)

Ck+1 = p_l—

(55) e

The refocusing plane positions using the step size decided

in this paper are shown in Fig. 8(c). With the proposed «

setting, the generated focal stack can cover all the refocusing
range while having only the minimum number of images.

IV. EXPERIMENT AND ANALYSIS

In this Section, we evaluate the performance of 1) the pro-
posed RA-MSFM, and 2) the proposed refocusing capability
metric RPC. To demonstrate advantages of the proposed
RA-MSFM, we render an all-in-focus (AIF) image using
the proposed RA-MSFM. For performance comparison, AIF
images using other state of art methods [15], [17], [18] are
also generated. A higher PSNR value between the rendered
and the ground truth (GT) AIF images is an indication of
achieving better performance.

We also carry out a subjective evaluation experiment (sub-
jective test I) by collecting subjective Mean Opinion Score
(MOS) values following the recommendation in [39]. Subse-
quently we compare the correlation coefficients achieved by
the proposed objective focus level and the subjective MOS
value to verify whether the proposed measure agrees well
with the subjective judgements.

To evaluate our refocusing capability metric, we also con-
duct another subjective experiment (subjective test II) for the
refocusing pixel coverage (RPC) of each image in a focus
stack.

A. OBJECTIVE EVALUATION BY RENDERING
ALL-IN-FOCUS IMAGE

To evaluate the proposed focus measure, we render AIF
images since the focus measure is an essential technique in
their generation [35], [36]. The AIF image is generated by
finding the highest focus score pixel by pixel from the focal
stack images [37]. kyqyx 1s the index of the focal stack image
that has the highest focus score.

AIF (x,y) = %) (x )

where ky, = argmax (Sx (x, y)) 21
k=1,....K
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Fig. 9 shows the all-in-focus images generated by the dif-
ferent methods [15], [17], [18]. To ensure a fair experiment,
the window size is set to 5 x 5 for all the focus measure oper-
ators tested. The AIF images rendered using our RA-MSFM
are seen better than the images generated by existing methods
(take note of the sky, wall, and face). While the AIF images
rendered by the proposed method is very clean like the ground
truth AIF images, the other existing methods show unpleasing
artifacts in the flat areas.

TABLE 2. PSNR and RMSE comparison.

Chantara’s Rizkallah’s Surh’s

DB [18] [17] [15] Proposed
101 30.54 26.93 30.15 31.14
102 29.07 26.67 28.82 29.69
103 30.14 26.75 28.96 30.52
104 32.76 29.16 32.00 32.94
105 36.12 31.81 35.29 36.94
PSNR 106 37.08 32.77 36.14 37.63
[dB] 107 30.39 25.78 29.15 30.70
108 35.74 30.98 34.12 35.95
109 28.59 25.80 28.09 30.02
110 33.19 27.79 32.37 34.20
111 29.27 24.89 28.17 29.37
112 28.09 25.08 28.01 29.48
101 3.88 5.20 4.12 3.69
102 4.38 5.49 4.59 4.28
103 3.96 5.30 4.27 3.81
104 3.55 4.67 3.78 3.53
105 2.58 3.83 291 2.49
106 2.31 3.64 2.69 2.15
RSME 107 3.51 5.98 423 3.64
108 2.44 3.97 2.89 2.36
109 4.88 6.48 5.14 4.34
110 3.16 5.44 3.64 2.96
I11 3.82 6.52 4.14 3.77
112 5.17 7.78 5.61 4.42

(best one in bold)

Table 2 illustrates the correlations between the reference
ground truth image and the rendered AIF images. Test
datasets 101 ~ I12 are shown in Fig. 10(a). Peak signal to
noise ratio (PSNR) and root mean squared error (RMSE)
are used to evaluate the correlation between the images.
In checking similarity between the reference and the rendered
images, a high PSNR indicates that the rendered AIF image is
very similar to the reference AIF image. So, in this evaluation
of all-in-focus images, a high PSNR is seen to indicate a high-
quality focus measure method. Since the RMSE quantifies
difference between the reference and the rendered image,
a smaller RMSE indicates better performance of the given
focus measure. The experiment results reveal that the pro-
posed method has the highest PSNR and the lowest RSME.
The rendered AIF image using the proposed method has aver-
age 0.7dB, 4.6dB, and 1.5dB higher PSNR than Chantara’s
[18], Rizkallah’s [17], and Surh’s [15] methods, respectively.
The RSME results also show that the proposed method pro-
duces 4.6%, 35.3%, and 13.8% smaller error than the existing
methods, respectively.
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(a) (b) () (d) (©
FIGURE 9. Various all-in-focus images generated by different focus measure methods. (a) Reference GT AIF images; (b) Chantara’s method [18]
(Laplacian based); (c) Rizkallah’s method [17] (Gradient based); (d) Surh J ‘s method [15] (Ring Difference Filter); (e) The proposed method.

(b)

FIGURE 10. Subjective experiments. (a) Subjective test I: focus measure on marked ROI area (marked area is target area
which is used to subjectively score focus capability level as 0 ~ 1) (101 ~ 112); (b) Subjective test II: refocusing metric
(marked area is refocusing pixel coverage (RPC) of sample images in focal stack) (101, 103, 104, 110).

B. SUBJECTIVE EVALUATION evaluations of our RA-MSFM and the refocusing mea-
1) EXPERIMENT SETTING sure metric RPC. Our experimental environment is arranged
Using the popular LF image dataset [38] which cov- according to the recommendations specified in ITU-R

ers all the general categories, we perform two subjective ~ BT.500-12 [39].
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TABLE 3. Experiment configuration for subjective test.

TABLE 4. Subjective | & objective comparision on FM of each image.

Configuration Values
Method Single stimulus (SS)
Evaluation score scales 0~5
Number of light field images 12
Rendered image resolution 624x432
Viewing distance Three times the image height
Ambient light Dark room

A single-stimulus (SS) method is used in these tests under
the configuration in Table 3. For each light field image in
the test, we generate a focal stack that includes 21 refocused
images with different focus depths. In the subjective test I, for
certain regions of interest (ROI) marked with yellow boxes in
Fig. 10(a), the focus capability level of each ROI is scored
from 0 ~ 1.

Among the 21 rendered images in the focal stack, the best
in-focus one is scored as 1, while the most blurred (that is,
out-of-focus) one is given 0. In the subjective test II, the
refocusing pixel coverage range is marked and the ratio of
the focused area to the whole image is scored as 0 ~ 100%
as shown in Fig. 10(b). Total 15 subjects are asked to mark
all the in-focus pixels for each image in the focal stack and
the percentage of focused area is calculated as the score. For
this, we develop a tool using MATLAB code to experiment
the focus measure MOS. The experiment consists of training
and rating stages. The subjects preview some examples at the
training stage to understand how to score properly. When tal-
lying the result, one outlier score is removed from computing
an average MOS value.

2) EXPERIMENT ANALYSIS

After the subjective test, for performance comparison with
three existing methods, we analyze the correlations between
the objective focus score generated by the proposed method
and the subjective MOS score employing four commonly
used statistical indexes: Spearman rank order correlation
coefficient (SROCC), Kendall rank order correlation coef-
ficient (KROCC), Pearson Linear Correlation Coefficient
(PLCC), and Absolute prediction error root mean square error
(RMSE). SROCC, KROCC, and PLCC indicate correlation,
thus, a higher value means higher correlation. RMSE, mean-
while, measures error, thus, a smaller value indicates the
measured focus score is closer to the subjective score.

For noise-resistance comparison of different focus measure
methods in the subjective evaluation I, we test the proposed
MSFM, Chantara’s [18], Rizkallah’s [17], and Surh’s [15]
focus measure methods. Fig. 11 illustrates the focus score
for the focal stacks 101, 107, and I10 corrupted by Gaussian
noise of & = 0.001. The black line shows subjective focus
score MOS value (scaled to O ~ 1) given by human. The
measured focus score for the focal stack generated with the
various methods show that the proposed method is closest to
the reference subjective result.
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Co-relation Chantara’s  RizkallahM’s ~ SurhJ’s  Proposed
[18] [17] [15]
101 0.39 0.61 0.67 0.90
102 0.30 0.65 0.82 0.87
K 103 0.24 0.76 0.74 0.77
R 104 0.25 0.62 0.91 0.88
O 105 0.36 0.72 0.78 0.80
C 106 0.38 0.76 0.73 0.94
C 107 0.26 0.63 0.95 0.95
108 0.20 0.75 0.92 0.98
109 0.35 0.81 0.94 0.92
110 0.19 0.52 0.94 0.97
111 0.84 0.83 0.63 0.93
112 0.56 0.79 0.74 0.92
101 0.64 0.84 0.81 0.98
102 0.09 0.61 0.89 0.98
P 103 0.38 0.6 0.78 0.80
L 104 0.59 0.72 0.87 0.97
C 105 0.48 0.58 0.82 0.93
C 106 0.48 0.62 0.93 0.99
107 0.46 0.62 0.89 0.99
108 0.10 0.54 0.91 0.98
109 0.42 0.64 0.87 0.98
110 0.26 0.64 0.88 0.99
111 0.92 0.88 0.69 0.95
112 0.65 0.73 0.88 0.98

(best one in bold)

Table 4 shows the correlations between the objective and
subjective focus score for the datasets 101 ~ 112 with Gaus-
sian noise of ¢ = 0.001. The Laplacian-based Chantara’s
method is found to be most sensitive to noise.

TABLE 5. Subjective | & objective correlation of focus meansures.

Correlation Chantara’s Rizkallah M’s Surh J’s Proposed
[18] [17] [15]
SROCC 0.93 0.85 0.91 0.97
Original KROCC 0.90 0.80 0.85 0.90
RMSE 0.07 0.12 0.08 0.05
PLCC 0.91 0.82 0.89 0.96
Gaussian SROCC 0.40 0.66 0.78 0.92
noise KROCC 0.36 0.70 0.81 0.90
5=0.001 RMSE 0.24 0.18 0.13 0.05
) PLCC 0.46 0.67 0.85 0.96
Gaussian SROCC 0.21 0.55 0.64 0.82
noise KROCC 0.15 0.53 0.60 0.70
6=0.02 RMSE 0.28 0.24 0.19 0.13
) PLCC 0.23 0.50 0.68 0.81
(best one in bold)

Table 5 shows the average performance over 12 LF images
for the original and its noise-added ones. In the case of the
original images, the proposed method is seen to achieve 2%
~ 4% higher correlation than Chantara’s, 5% ~ 8% higher
than Surh’s, and 10% ~ 15% higher than Rizkallah’s. In the
case of the noisy images, the Laplacian-based Chantara’s
method shows the worst performance. The comparison data
in Table 4, Table 5, and the measured focus level for the ROI
in Fig. 11 show that the proposed method is superior to the
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FIGURE 11. Subjective evaluation | on MSFM methods (with noisy images).
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FIGURE 12. Subjective evaluation Il on refocusing capability metric (with original images).
existing methods not only for the original images but also TABLE 6. Subjective Il & objective correlation of refocusing metrics.
with noisy images.
A f h biecti I of f f . DB PLCC RMSE
part from the S_u J.G:Ctlve test . ol tocus SC().re ora gI.V.en Proposed Rizkallah M’s ~ Proposed  Rizkallah M’s
local area, the subjective test II is for refocusing capability [17] [17]
metric regarding refocusing pixel coverage. In the subjective 101 0.98 0.90 3.01 7.00
test 1L, subjects are asked to mark all the in-focus pixels for 102 0.99 0.91 2.69 8.00
each image in the focal stack 103 094 0-80 5.08 12.28
gen | acK. o _ 104 0.99 0.93 2.15 9.73
The subjective refocusing capability is measured in terms 105 0.99 0.73 2.80 13.37
of the in-focus pixel percentage over the whole image. The 106 0.98 0.67 2.05 457
comparative subjective and objective refocusing capability 107 0.97 0.78 2.24 6.03
evaluation is shown in Fig. 12 using 101 ~ I12 data sets. {gg ggg ggg ig: gg
The proposed metric RPC gets closer to the subjective score 110 0.96 0.84 3.02 6.92
than the state-of-the-art Rizkallah’s metric [17]. The corre- 111 0.97 0.89 2.87 8.03
lation analysis results with PLCC and RMSE are shown in 112 0.95 0.0 3.19 7.48
Table 6 which shows also that the proposed metric achieves (best one in bold)
12% higher correlation and 5% lower error than the other
state-of-the-art methods. The experiment result shows that An accurate focus level is essential in improving many
the proposed RA-MSFM exhibits high accuracy in measuring practical applications especially in auto focusing (AF) [40],
focus level. shape-from-focus (SFF) [9], digital refocusing [42], [43], etc.
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In AF, the focus measure is used to determine the position of
the best focused image. Auto-focus augmented reality (AR)
eyeglasses is one of the key AF applications [41]. Depth
information is estimated in SFF with an accurate focusing
measure since the local focus variation can be used as a depth
cue [9]. SFF applications include robot manipulation and con-
trol [44], 3D model reconstruction [45] and manufacturing
[46]. Digital refocusing enables users to choose the focus and
depth-of-field for the image after capture [42]. A common
interactive method is to allow the user to point-and-click
on the image to choose the location of the refocus plane in
practical AR/VR application [42], [43].

V. CONCLUSION

This paper presented a focal stack-based refocusing capabil-
ity measure for light field images. We first addressed determi-
nation of the range and the sample step size for the focal stack
generation. Second, we proposed the region-adaptive multi-
scale focus measure (RA-MSFM) to evaluate focus level of
each refocused image in the focal stack, then introduced a
refocusing capability measure which is applicable to a light
field image as a whole or single refocused images in a focal
stack.

To carry out objective and subjective performance evalua-
tions of the proposed scheme, we experimented the proposed
RA-MSFM and the proposed refocusing metric.

By rendering all-in-focus images in an objective experi-
ment using our focus measure method, we compared the pro-
posed method with three well-known state-of-the-art focus
measure methods introduced in literatures.

The all-in-focus image generated using our RA-MSFM
method was markedly superior compared to the existing
approaches, achieving PSNR 0.7dB, 4.6dB, and 1.5dB higher
than those achieved by the respective methods of Chantara,
Rizkallah, and Surh. Additionally, we undertook the subjec-
tive experiment I on focus measure method and the subjective
experiment I on refocusing capability assessment for widely-
used well-known light field images. Our experimental results
indicate that there is significant correlation between the pro-
posed refocusing metric and subjective scores.

The proposed RA-MSFM model can potentially be useful
in many applications including all-in-focus image generation,
depth map estimation, and other potential practical appli-
cations such as auto focusing AR eyeglasses, digital refo-
cusing on user assigned area, and 3D model reconstruction
with depth information, etc. The proposed refocusing met-
ric can be used to measure refocusing capability loss after
some image processing such as image compression, denoise,
smoothing, tone or inverse tone mapping, etc. The proposed
metric in this paper is based on a focal stack generated from
P x P sub-aperture images (SAI). However, if P is small,
the generated focal stack by shift and add may be not fine
enough. Handling high accuracy focal stack generation from
a few SAIs will be one of our future research directions.
Another potential future extension of this work is the design
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of a perceptual focus measure which is more closely related
to how the human visual system evaluates images.
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