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ABSTRACT Energy management strategy (EMS) has a great impact on securing fuel cell durability, battery
charge sustenance, and fuel saving in fuel cell hybrid electric vehicles (FCHEVs). This study aims to
develop EMS that can be applied in real-time to satisfy above conditions. Real time power separation was
performed using rule-based EMS. A genetic algorithm (GA) was implemented to calculate the optimal
battery charge/discharge criterion that simultaneously satisfies the minimum hydrogen consumption rate,
battery charge rate preservation, and high fuel cell efficiency. The battery charge/discharge parameter values
vary according to driving patterns, and in this paper, typical suburban, urban, and highway driving conditions
are considered. For the real-time application of this research method, the effectiveness was demonstrated by
applying the driving conditions of unknown patterns. The effect on the initial battery SOC on EMS was
analyzed, and in order to verify the superiority of this method, it was compared and analyzed with EMS
results using dynamic programming and fuzzy logic under the same driving cycles. The effectiveness of
this research method was verified through simulation, and it was confirmed through experiments for real-
time application. Since there is a limit to the experiment using an actual fuel cell vehicle, the experiment
was performed using a fuel cell and battery. This method can be applied to real fuel cell vehicles in the
same way.

INDEX TERMS Battery charge sustenance, energy management, fuel cell hybrid electric vehicle, hydrogen
consumption, multi-objective GA.

I. INTRODUCTION To compensate for the slow chemical response of fuel

In recent years, the energy concerns resulting from the deple-
tion of fossil fuels and air pollution have received increas-
ing attention, especially in the automobile industry. Given
their high energy conversion efficiency, high power density,
zero emissions, and environment-friendly features, polymer
electrolyte membrane fuel cell (PEMFC) electric vehicles
are considered as effective substitutes for traditional vehicles.
With the development of hydrogen storage devices and refu-
eling stations, these vehicles have a long mileage and short
refueling time.
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cell systems, energy storage systems (ESSs), such as battery
and/or supercapacitor, are often used. ESSs not only improve
the acceleration ability of vehicles and conserve their braking
energy but also improve the flexibility of power distribution
in a fuel cell hybrid electric vehicle (FCHEV) system. Rapid
charging/discharging rate and over-discharging of the battery
lead to deterioration of the battery capacity, which in turn
leads to replacement of the battery. The main concerns with
FCHEYV systems are tied to their economic cost, sustainable
operation, and system durability, which are closely related
to their energy management strategy design. The authors
in [1] reviewed various EMSs and advanced optimization
algorithms for addressing the above issues and proposed
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some recommendations for the future development of effi-
cient EMSs.

EMS can be categorized into rule- and optimization-based
EMSs. Rule-based EMSs have high practicability and low
computation load. In [2], the state of charge (SOC) and
power capabilities of ESSs were main parameters in design-
ing power distribution rules. A finite state machine-based
EMS was designed for fuel cell hybrid source vehicles to
benefit system health and fuel economy. To mitigate the
power fluctuation of fuel cell system under rule-based EMS,
Lopez et al. [3] utilized a low-pass filter to split the power
between the fuel cell and supercapacitor system. The wavelet
transform algorithm was incorporated into fuzzy logic EMS
to smoothen the fuel cell current change and allocate power
efficiently [4]. This approach can minimize the damage
brought by current fluctuation and improve fuel cell health.
Wang et al. [5] proposed a suboptimal online power allocation
strategy based on rules and classical cybernetics and found
that this strategy can realize near-optimal performance much
easier than dynamic programming (DP) EMS. Optimization-
based EMSs can achieve a globally optimized or a subopti-
mal power management by applying optimization algorithms
with system control objective functions and constraints.
As a global optimization algorithm that achieves optimal
power distribution under vehicle system constraints, DP
serves as a good benchmark for other EMSs [6]. For real-
time optimization, Pontryagin’s minimum principle (PMP)
algorithm introduces an instantaneous optimization prob-
lem instead of global optimization in an energy man-
agement system [7]. Nevertheless, the co-state value is
related to the information of driving cycles and affects
the adaptability of the algorithm. The equivalent consump-
tion minimization strategy (ECMS) is a promising real-time
optimization method used in hybrid power systems. Li et al.
proposed an online adaptive ECMS to minimize the
equivalent hydrogen consumption and power source degrada-
tion in fuel cell/battery/supercapacitor hybrid electric vehicle
systems while ensuring battery charge sustenance and pro-
longing fuel cell lifetime [8]. By taking advantage of the
instantaneous optimization and future prediction ability of the
model predictive control (MPC) algorithm, the authors in [9]
proposed an EMS based on MPC to optimally allocate power
in a hybrid electric vehicle with boundaries and constraints
online. However, effective mathematical models for ECMS
and MPC are necessary to obtain optimal solutions. More-
over, advanced multi-objective optimization methods [10],
[11], [12], [13] have been studied to mitigate the degradation
of fuel cell and battery system, save fuel consumption, and
keep battery charge sustaining. Recently, machine learning
algorithms, such as online learning [14], reinforcement learn-
ing [15], [16], and rule learning algorithm [17], have been
investigated for power management in an FCHEV system.
However, the EMS using the optimal solution shows the result
using simulation, and there are few real-time optimal EMS
development results.
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FIGURE 1. Power flow diagram of FCHEV system.

Instead of online optimization that requires big data pro-
cessing, EMS with offline global optimization and real-
time implementable abilities has been studied extensively for
FCHEVs. The controlling parameters are optimized offline
and subsequently applied online to obtain the highest prac-
ticable and optimal deterministic rules for power allocation,
thereby guaranteeing online control optimality. To improve
the online performance of a fuel cell hybrid power system,
a rule-based EMS was developed based on the results of
the dynamic programming (DP) algorithm [18]. The fuel
cell system works steadily even under drastic load changes,
and fuel economy optimization can be optimized like using
the DP algorithm. Moreover, fuzzy logic EMS is widely
combined with GA for offline optimization, and the system
performance can be improved online with the optimized
membership functions [19], [20], [21]. The main problem is
that since global optimization is obtained based on a given
driving pattern, optimal performance deteriorates when these
fixed parameter values are applied to other driving cycles.
To improve the adaptivity of EMS under changeable driving
conditions, the authors in [22] and [23] initially optimized
the parameters in different driving conditions offline and then
used a driving pattern recognition method to transform the
optimized membership function for real-time driving cycles.

However, the abovementioned EMSs require many con-
trol parameters to be optimized, hence this complicates the
method to obtain the optimal solution and increases com-
putation time. In addition, these EMSs are developed in a
simulation or in a hardware-in-the-loop simulation and most
of them lack physical experiment verification. To satisfy
unknown driving pattern with the developed method, this
paper presents a real-time optimized rule-based EMS that can
be innovatively applied even under similar driving conditions
by optimizing small number of parameters for three typical
driving conditions. Simulation and experiment results reveal
that the proposed EMS has a significant improvement over
online rule-based EMS in terms of hydrogen consumption,
fuel cell durability, and battery sustainability across each
driving condition. The main contributions of this paper can
be summarized as follows.

1) Combining multi-target GA optimization with a rule-
based control strategy calculates five parameters to
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FIGURE 2. System topology of FCHEV system.

be optimized, then splits the power in the FCHEV
system to achieve real-time operation with optimal
performance.

2) Fuel consumption, fuel cell durability, efficiency, and
battery sustainability are considered in a framework of
multi-objective GA optimization over suburban, urban,
and highway driving cycles. A Pareto analysis of mul-
tiple objectives is carried out and obtained integrated
optimization parameters are used to apply to similar
driving patterns to ensure reliability.

3) The sensitivity of the initial battery SOC value to power
distribution and system performance is investigated.
Results indicate that the proposed EMS can guarantee
battery charge sustenance, optimizing the hydrogen
consumption and improving the long driving capability
of a FCHEV system.

Il. ARCHITECTURE OF THE FCHEV SYSTEM

The powertrain structure of a FCHEV system is shown in
Fig. 1. The PEMFC is coupled to a DC bus via a unidi-
rectional DC-DC boost converter providing the main power
supply. A battery package connected in series to a bidirec-
tional DC-DC converter supplies extra power and recover
braking energy. This topology is highly flexible because both
converters achieve power control and simultaneously regulate
the bus voltage. In this study, a mathematical vehicle model
with real parameter information is utilized for demand power
calculation. Whereas a downscaled power test platform and
simulation model are constructed for energy management
strategy study with downscaled demand power profiles.

A. VEHICLE MODEL
Longitudinal vehicle dynamics were modeled to obtain the
vehicle running demand power [17]. The required demand

power can be formulated as (1) and the main parameters are
listed in Table 1.

dv

1
Py = mgfvcosa + mgvsina + ECdA,ov3 + dmy o

ey
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A DC-AC inverter, motor, and mechanical transmission
system are assumed to be effective for optimization of power
allocation between the fuel cell and the battery. The power
balance between the power sources and demand power can
be described as follows:

Pr =P,
Pr >Pd

Pd = Pfelnum_DC + PbatMbi_DC_disc
Pd = Pfellnum_DC + PbatMbi_DC_cha

(@)

where Py is the demand power, Py is the fuel cell power,
Py is the battery power, n,,; pc is the efficiency of uni-
directional DC-DC converter, 05, pc_cha and np;_pc_disc are
the efficiency of bidirectional DC-DC converter in charge and
discharge mode, respectively.

TABLE 1. Vehicle parameters.

Parameters ~ Description units value
m Vehicle total mass kg 1700
g Gravitational acceleration ms™~2 9.8

f Coefficient of rolling resistance - 0.014
a Road slope Degrees 0

Cy Coefficient of air resistance - 0.35
A Vehicle equivalent windward area ~ m? 2.59
p Air density Ns?m™ 129
) Weight coefficient of rotation mass - 1.04
v Real time vehicle speed ms™! -

B. PEMFC SYSTEM
A H-1000 PEMFC manufactured by Horizon Co. is applied in
the FCHEV system and it provides a rated power of 1000W.
As the purpose of the study is to study effectiveness of the
proposed EMS, small PEMFC is utilized for the power alloca-
tion. The dynamics of a PEMFC system can be described by
an equivalent electrical model with a double-layer capacitor
as shown in Fig. 2. The mathematical model and specifica-
tions of a PEMFC model is demonstrated in our previous
work [24].

The working efficiency of PEMFC (3y.) is essential in
ensuring fuel economy and cell health as defined in (3),
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FIGURE 3. Efficiency curve of PEMFC system.

where P, is the auxiliary power consumption in the fuel cell
system and HHV stands for higher heating value of hydrogen
in kJ /mol. This efficiency is represented as the ratio of fuel
cell net output power (P,.;) and consumed hydrogen energy
(Pp,) [25]. The PEMFC efficiency curve obtained by experi-
ment is presented in Fig. 3. The hydrogen consumption (mgy, )
is calculated by (4).

Pnel Rf'c - Paux

Nfe = = : 3)
© P HHV.YE
t t lec
my, = IhH dt 2/ -Mp dt (4)
: /0 ? 0o 2Fng ?
C. BATTERY

An internal resistance model with an equivalent circuit is
constructed as shown in Fig. 2 to describe the dynamic
characteristics of a battery. The battery output power (Ppgs)
and voltage (Vp,4) can be calculated according to Kirchhoff’s
voltage law as expressed in (5). The battery current (Ip4)
can be calculated by (6), where E represents the battery
open circuit voltage (OCV) and Ry, is the battery internal
resistance.

Pbat = ViatIpar (5)
Voar = E — IparRpar
E — VE? — 4Py, R
Iy = bat\bat (6)

2Rbat

Real-time SOC (SOC;) can be calculated through the
Coulomb counting algorithm expressed by (7), where SOC 4,
is the initial battery SOC, and C; means the battery rated
capacity. The battery efficiency is assumed to be 1 when
charging and discharging for the simplicity.

t

1
SOC; = SOC[O — m/ Ipardt 7)

fo

D. DC-DC CONVERTERS

The bus voltage (Vi) is expected to be controlled to 48V,
which is higher than the output voltage range of the fuel
cell and battery package. Therefore, a unidirectional DC-DC
boost converter is used to regulate the fuel cell output volt-
age. Meanwhile, a bidirectional DC-DC converter is utilized
for charging or discharging the battery. The topology using
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these two types of converters is shown in Fig. 2. A constant
fuel cell current is preferred during the operation because
it exhibits a stable two-phase gas flow phenomenon and
uninterrupted water transport through the fuel cell mem-
brane [26]. Therefore, current mode control (CMC) of the
unidirectional DC-DC boost converter is used to improve
fuel cell system stability, and a proportional-integral (PI) con-
troller 1 is applied to achieve better transient current response.
The current value targeted for control is determined by the
desired fuel cell power provided by the EMS. The relationship
between the fuel cell current and the fuel cell power is esti-
mated by a fitted polynomial as (8). To ensure a constant bus
voltage, the bidirectional DC-DC converter takes the voltage
as a control variable in the battery charging/discharging state
and uses voltage mode control (VMC) with a PI controller 2.
The architecture of the whole system is presented in Fig. 2,
where the EMSs block is the main controller of the FCHEV
system that allocates the power between the fuel cell and the
battery.

Iy = 5e — 11P}, — 8¢ — 8P;,
+5e — 5P7.+0.0191P;+0.2776 (8)

In addition, the standard form of PI controller 1 and 2 is
presented as (9), where u is the control variable, e is the
difference between the tracked reference signal and measured
process variable, K, is the proportional gain, and T; is the

integral time.
1 t
u:Kp<e+—/edt> O]
Ti Jo

The integral time-weighted absolute error (ITAE) method
is utilized to tune the parameters of PI controllers for two
designed converters, and the optimized parameters are listed
in Table 2. What’s more, the stability of the designed PI
controllers was studied in our previous works [27], [28], and
both converters can stably regulate the power output under an
energy management strategy.

TABLE 2. Optimized parameters of Pl controllers.

K, T;
Plcontroller 1 3e-3A™* 0.06s
Plcontroller2 2e-4V~! 12e-3s

Ill. ENERGY MANAGEMENT STRATEGY ARCHITECTURE
OF THE FCHEV SYSTEM

The proposed EMS combines the advantages of optimization-
and rule-based EMS, aiming to optimally allocate power
between two power sources of FCHEV in real time. Fuel
cell durability and efficiency, minimization of hydrogen con-
sumption, and sustainability of battery charging are consid-
ered in EMS design to ensure overall system stability and
reduce operating cost. Conventional EMSs, such as DP, fuzzy
logic, and rule-based EMSs are also studied to compare the
advantages of the proposed EMS.
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A. RULE-BASED EMS

The core of rule-based EMS is a strategy of supplying
required load power while satisfying the constraints of (10)
and distributing power in real-time. The PEMFC is preferred
to work in maximum efficiency range (MER) to minimize
hydrogen usage as shown in Fig. 3, where the minimum fuel
cell power Pfe_in, fuel cell power with maximum efficiency
Pfe_efr, and maximum fuel cell output power Pfe_pmqy are set
to 200, 400, and 800 W, respectively. The relevant energy
management rules are illustrated in Fig. 4, where the input
load information is subdivided into multiple cases to design
management rules because of the power limit of battery
charge or discharge. Battery SOC is considered to gauge the
remaining capacity of the battery and it is possible to pre-
vent the battery from being overcharged and over-discharged,
which is critical to ensure the longevity of electric vehicle
system. To prevent frequent charging and discharging at the
lower/upper SOC thresholds, hysteresis control is proposed
in the rule-based EMS design. SOC;; and SOC}; denote the
initial lower and upper SOC threshold values, whereas SOC >
and SOCy,; denote the redefined lower/upper threshold val-
ues, respectively. When SOC reaches the initial lower or
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upper threshold (SOC;; or SOCy»), the corresponding value
is reassigned to the redefined value (SOCj, or SOCp1). The
initial SOC thresholds of SOC;, SOC;2, SOCp1, SOCjp in
rule-based EMS are 60%, 65%, 70%, and 80%, respectively.

Pfe,min = pfc(k) = Dfe,max (@)
DPbat,min = pbat(k) =< Pbat,max (b) (10)
SOCpin < SOC(k) < SOCpax  (©)

B. RULE-BASED EMS WITH MULTI-GA OPTIMIZATION
The power distribution in rule-based EMS is decided by the
battery SOC and demand power. In general, a simple rule-
based EMS gives a poor performance in terms of fuel cell
durability and hydrogen consumption. Therefore, the above-
mentioned concerns can be solved by multi-objective opti-
mization using multi-GA method in this section.

1) Fuel cell durability considerations
Water flooding and membrane dehydration inside the
fuel cell result in an irreversible degradation of the
components including membrane, catalyst, and diffu-
sion layer. These phenomena are mainly caused by the
PEMFC'’s drastic power changes and frequent start or
stop operation conditions [3]. In addition, the start-up
and shutdown processes of a fuel cell system lead to a
rapid decay of fuel cell catalyst and diffusion layer due
to imbalance pressure between cathode and anode [29].
Therefore, a low-pass filter is applied to prevent the
overshoot or undershoot of the fuel cell power and to
protect aging process of the fuel cell system. The effect
of the cutoff frequency on the dynamics of fuel cell
system is analyzed in [4], and a first-order low-pass
filter with a cutoff frequency of 0.05 Hz can mitigate
the power fluctuation. Moreover, PEMFC is designed
to operate in non-stop driving mode that meets the
minimal power threshold Pf. 5, to avoid major per-
formance degradation due to frequent fuel cell on-off
cycling.
2) Battery charge sustaining

The battery should work under the charge sustaining
mode, where the energy stored in the battery should be
maintained throughout the driving cycle [30]. Sustain-
ing battery SOC not only decelerates battery degrada-
tion [7], but also minimizes the anxiety resulting from
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FIGURE 7. Simulation power distribution under proposed EMS ((a) NEDC;
(b) UDDS; (c) HWFET).

battery overuse. The preferred battery SOC is 75% in
this study.
3) Multi-objective cost function

To achieve the optimization of rule-based EMS,
a multi-objective EMS combined with multi-GA opti-
mization while having real-time operation capabilities
is investigated in this section. The first cost func-
tion is the hydrogen consumption, which is calculated
by (4). To guarantee the battery charge sustaining, the
variation between the final and the initial SOC val-
ues (|ASOC)) is incorporated into the objective func-
tion to determine whether the battery is over-charged
or over-discharged, which is formulated by (11) (b).
The acceptable SOC deviation is limited to 1.5%
(JASOC| < 1.5%), which was applied in [22] to keep
battery charge sustenance. Except for two cost objec-
tives mentioned above, a FCHEV system must meet the
efficient working conditions of the PEMFC. Therefore,
the third objective described in (11) (c) is targeted to
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improve fuel cell efficiency and subsequently benefit
fuel utilization rate. Given that it is not practical for
all objectives to be optimal at the same time, a multi-
objective GA is pursued to achieve a trade-off among
the three objectives over a known driving cycle.

Jl = mpg, (a)
]2 = |ASOC| = 1SOC, —SOC,| () (11
5= [05 = o ©

For three-objective optimization, the non-dominated sort-
ing genetic algorithm II (NSGA-II) is used to find a local
Pareto front for the cost functions. For each point on the
Pareto front, one of the goals can only be further optimized by
sacrificing the optimization of the other one or two objectives,
and these points are called non-inferior solutions. A non-
inferior solution is the one that provides a suitable compro-
mise between all objectives without degrading any of them,
which reveals the most appropriate trade-off among these
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cost functions. In present work, the relationship between
among three optimized objectives can be revealed through
the method of multi-objective GA. In hysteresis control,
SOC thresholds play a vital role in allocating the demand
power in rule-based EMS design, which greatly affects the
system performance. Hence, the parameters to be optimized
are SOCy1, SOCpp, SOCp1, SOCpa, and Py joy, with the
constraints listed in (12). Noting that the low limit fuel cell
power Py jo, considers the minimum charging power of the
battery to prevent fast charging rate of the battery.

60% <SOC;1 < SOC,

SOC < SOCpp < SOCy

SOCpp < SOCph < SOCpp (12)
SOCp1 < SOCjy < 80%

0 <Pfpe_jow < 200W

Multi-objective GA mimics a natural evolutionary selec-
tion process to generate a population of individual solu-
tions repeatedly, and the optimization process is described
as Fig. 5.

IV. SIMULATION RESULTS

A downscaled FCHEV system is constructed in MATLAB/
Simulink. After comparing the system performance by rule-
based, fuzzy logic-based, DP, and proposed EMSs, the supe-
riority of the proposed method was emphasized. Firstly, the
new European driving cycle (NEDC) for suburban driving,
the urban dynamometer driving schedule (UDDS) for urban
driving, and the highway federal emissions test (HWFET) for

102624

TABLE 3. Optimized parameters for three driving conditions.

S0C (%) SOC,(%)  SOCHk (%) SOChz (%) Preiow (W)

NEDC 65.3285 70.3006 72.9170 75.0464 128.3791
UDDS 65.5034 70.2600 70.8782 72.4807 117.6569
HWFET 64.0369 65.9269 70.1315 73.6390 169.2560

highway driving are utilized for multi-objective GA optimiza-
tion to deal with diverse road scenarios.

The optimization process is completed when the given
tolerance is met. The Pareto fronts of three objectives under
three driving conditions are illustrated by Fig. 6, which
reveals the most appropriate trade-off among these cost func-
tions. As can be seen from the Pareto fronts, the effects of
the optimized parameters on three objective functions have
coupled each other. Under three driving conditions, the trend
of the relationship between any two objectives is similar
except for the numerical difference. Given that an absolute
variation of SOC can be derived from battery charging or dis-
charging, the coupling among three objectives can be divided
into two cases. In the case of battery charging, an increase of
J> will lead to greater hydrogen consumption J;. Meanwhile,
an increase of J> caused by battery discharging leads to less
hydrogen consumption in energy management.

The proposed EMS is designed primarily to save as much
hydrogen as possible while maintaining battery charge sus-
taining. However, due to the uncertain future driving pat-
tern, the final SOC value is not necessarily the same as the
initial value but fall within the acceptable interval. Accord-
ing to the Pareto front and assumed battery SOC constraint
(JASOC| < 1.5%), the final optimization parameters under
three driving conditions are determined as shown in Table 3.

Under three typical driving conditions, the power distri-
butions of a downscaled FCHEV system with EMSs are
illustrated in Fig. 7. With proposed EMS, the fuel cell system
operates smoothly in non-stop mode due to low power limit
and low-pass filter, and the battery supports the transient
power demand, which is good for fuel cell durability. With the
SOC constraint, the final SOC is equal to its initial value with
the DP control under three driving cycles, which are indicated
by Fig. 8 (a), (c), and (e). As can be seen from Fig. 8, the pro-
posed EMS realizes a minimum hydrogen consumption at the
expense of SOC variation. In highway condition, the fuzzy
EMS achieves the nearly same hydrogen consumption as the
proposed EMS. However, without optimization, rule-based
EMS and fuzzy-based EMS consume too much hydrogen
under NEDC and UDDS, because fuel cell operates in ineffi-
cient area. In addition, the lack of optimization results in more
energy being stored in the battery. During the entire driving
cycle, the hydrogen consumption depends on the required
fuel cell power and efficiency, which is elucidated by (4), and
the proposed EMS realizes a low hydrogen consumption with
admissible SOC variation.

To evaluate the adaptability of proposed EMS with unified
optimization parameters under the similar driving conditions,
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FIGURE 10. Battery SOC performance under proposed EMS in repetitive
driving cycles with different initial SOC values ((a) NEDC; (b) WLTP3;
(c) UDDS; (d) LA92; (e) HWFET; (f) ArtMwI130).
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FIGURE 11. Experimental platform of PEMFC/battery hybrid power
system.

the Worldwide Harmonized Light Vehicle Test Procedures
class 3(WLTP3), the California Unified Cycle (LA92), and
the Artemis project Motorway driving cycle (ArtMw130)
forming the test inputs, are used to validate the applicability
of the proposed method. They represent different suburban,
urban, and highway driving patterns, respectively, and the
simulation results are presented in Fig. 9. The results show
that four provided EMSs perform similarly as before in each
road scenario. As the benchmark, the DP EMS achieves the
optimal hydrogen consumption with battery SOC sustaining.
And the proposed EMS realizes lower hydrogen consumption
with acceptable SOC deviations, which validates that the
optimization parameters obtained in advance can guarantee
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FIGURE 12. Experimental power distribution under proposed EMS
((a) NEDC; (b) UDDS; (c) HWFET).
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FIGURE 13. Performance comparison of experimental results under
optimized driving cycles ((a) SOC variation for NEDC; (b) H, variation for
NEDC; (c) SOC variation for UDDS; (d) H, variation for UDDS; (e) SOC
variation for HWFET; (f) H, variation for HWFET).

optimal solution under the similar driving patterns, thereby
proving the applicability of proposed EMS.

For fair comparison, the electric energy change caused
by the final SOC variation in battery system should
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FIGURE 14. The fuel cell power distribution of different energy
management strategies under driving cycle of HWFET ((a) Rule-based;
(b) Fuzzy; (c) DP; (d) Proposed).

be considered. Except for the hydrogen consumption, the

equivalent hydrogen consumption due to the SOC variation

is calculated by the equivalent heat value [31]. The total

hydrogen consumption my, ; is given as (13), and the total

hydrogen consumption comparison of different control strate-

gies under studied driving cycles are indicated in Table 4.
ASOC - Epyy - 3600

my, ; = myg, + (13)
> : Nfc_avg * HHV

where Ep,; is the nominal energy capacity of the battery pack,
Nfe_avg 18 the average fuel cell efficiency, and HHV expresses
the higher heating value of hydrogen (MJ /kg). When SOC
increases (ASOC < 0) or decreases (ASOC > 0), the stored
or consumed energy can be converted into the equivalent
decrement or increment of the hydrogen consumption.

TABLE 4. Total hydrogen consumption comparison under different
energy management strategies.

Driving Rule-based Fuzzy EMS DP Proposed
Cycles EMS (g) (g) EMS (g) EMS(g)
NEDC 16.006 7.6514 7.187 6.9702
UDDS 17.049 7.775 7.117 7.0356
HWFET 8.7799 6.1419 6.531 6.1319
WLTP3 23.584 11.7302 11.2 11.6789
LA92 18.678 7.774 7.104 7.0478
ArtMw130 15.6902 10.89 11.64 11.0743

As can be seen from Table 4, the proposed EMS can realize
a minimal hydrogen consumption compared with DP EMS
in most cases. Even though the total hydrogen consumption
is not minimum under the driving cycles of WLTP3 and
ArtMw130, the consumption deviation is acceptable in the
face of uncertain road conditions.

To verify the ability of battery SOC sustenance, the pro-
posed EMS is applied under the repeated driving cycles of
suburban, urban, and highway with different initial SOC
values. As shown in Fig. 10, with the initial SOC value of
75%, the battery SOC is maintained in an admissible range.
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When the initial SOC changes, the battery SOC is automati-
cally regulated and follows the SOC path with initial value
of 75% in suburban and urban driving conditions, during
which the FCHEV system is working in an optimal state.
Under highway driving pattern, the battery SOC with initial
value lower than 65% will finally reach to the value near
65% not 75%. When the initial SOC value is between 65%
and 75%, the battery SOC will sustain near its initial value.
The fuel cell does not have much power to charge the battery
due to high power demand. This phenomenon is related to
the optimized parameters. If they are chosen with minimum
SOC deviation, the battery SOC with initial value lower than
75% will be around 75% during the driving cycle. However,
the SOC recovery rate is slow due to the low charge power.
In rule-based and fuzzy logic EMSs, the battery SOC greatly
fluctuates due to the lack of optimization, which shortens
the battery lifetime [32]. Therefore, the battery health is
improved with the proposed EMS irrespective of the initial
battery SOC.

V. EXPERIMENTAL VERIFICATION

A downscaled test platform is constructed to verify the effec-
tiveness of the proposed EMS as shown in Fig. 11, and a
LabVIEW-based supervisory environment is assembled for
real-time monitoring. The experimental conditions are the
same as those in simulation environment.

To verify the performance of the proposed EMSs in subur-
ban, urban and highway road conditions, NEDC, UDDS and
HWEET driving cycles are tested in experiment. Fig. 12 and
Fig. 13 display the performance of FCHEV system with rule-
based, fuzzy-based, DP and proposed EMSs. Compared with
the conventional rule-based EMS under three driving pat-
terns, the proposed EMS smoothens the fuel cell output power
which makes fuel cell system work under non-stop mode,
thereby benefiting for the fuel cell durability. The proposed
EMS sacrifices SOC variation within an acceptable range and
has a lower hydrogen consumption compared with DP EMS.
The trajectories of battery SOC and hydrogen consumption in
the experiment are almost identical to those observed in the
simulation.

In addition, the standard deviations (std) of fuel cell power
change rate under NEDC, UDDS, and HWFET in the exper-
iment are calculated and compared to analyze the fuel cell
durability, which are listed in Table 5. With proposed EMS,
the fuel cell works in non-stop mode, and the output power is
smoothed by the low-pass filter. Compared with rule-based
EMS, the fuel cell power change rate is greatly improved
with proposed EMS, even better than DP EMS under NEDC
and HWFET. Under UDDS, the fuel cell provides too much
low-power dynamics under the proposed EMS. Even if the
hydrogen consumption is minimal, the power variation is
slightly larger than that under fuzzy and DP EMSs.

To display the fuel cell power distribution in three driving
conditions, the histogram of fuel cell power in HWFET is
shown in Fig. 14. As shown in the figure, rule-based and
fuzzy-based EMSs arrange the fuel cell to work in the less
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TABLE 5. Standard derivation (std) of fuel cell power change rate under
different energy management strategies.

Rule-based Fuzzy DP Proposed
EMS (W/s) EMS(W/s) EMS (W/s) EMS (W/s)
NEDC 46.1161 19.7729 17.0771 14.8314
UDDS 86.9325 23.0822 22.6533 25.6343
HWFET  59.6197 19.8819 20.3490 19.2427
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FIGURE 15. Experimental voltage response of different energy
management strategies under driving cycle of HWFET ((a) Rule-based;
(b) Fuzzy; (c) DP; (d) Proposed).

efficient power area, whereas DP and proposed EMSs make
the fuel cell operate in MER, realizing an optimal power
distribution. Under the control of proposed EMS, the fuel
cell power and efficiency are well balanced, saving much
hydrogen consumption.

The bus voltage Vg, fuel cell voltage Vi, and battery
voltage Vp,, under HWFET driving cycle are indicated by
Fig. 15. Experimental results show that the output voltages of
fuel cell and battery change with the driving load, while the
bus voltage is adjusted well with less noise, which improves
the stability of the subsequently connected devices.

VI. CONCLUSION

This paper aims to develop a practical rule-based EMS with
multi-objective optimization capability in an FCHEV system.
Based on the real-time power allocation ability of rule-based
EMS, the multi-objective GA is applied to improve its per-
formance through optimization with small number of param-
eters. Three objective functions, i.e., hydrogen consumption,
battery charge sustaining, and fuel cell efficiency, are opti-
mized offline under three typical driving conditions through
multi-objective NSGA-II method. It provides a minimum
hydrogen consumption relative to the DP benchmark with
admissible SOC variation. The adaptability of the proposed
EMS is verified in other similar three driving cycles. The
sensitivity of the initial battery SOC to power management is
studied systematically. As a result of this study, the proposed
EMS assures that the battery can work in the optimized charg-
ing sustaining mode, which contributes to energy saving and

VOLUME 10, 2022

battery health. The rule-based EMS with multi-objective GA
optimization can realize a real-time optimization for similar
driving pattern. The shortcoming of this study is that it lacks
online pattern recognition for unknown driving patterns to
provide an optimal solution, so further study is necessary.
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