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ABSTRACT Energy management strategy (EMS) has a great impact on securing fuel cell durability, battery
charge sustenance, and fuel saving in fuel cell hybrid electric vehicles (FCHEVs). This study aims to
develop EMS that can be applied in real-time to satisfy above conditions. Real time power separation was
performed using rule-based EMS. A genetic algorithm (GA) was implemented to calculate the optimal
battery charge/discharge criterion that simultaneously satisfies the minimum hydrogen consumption rate,
battery charge rate preservation, and high fuel cell efficiency. The battery charge/discharge parameter values
vary according to driving patterns, and in this paper, typical suburban, urban, and highway driving conditions
are considered. For the real-time application of this research method, the effectiveness was demonstrated by
applying the driving conditions of unknown patterns. The effect on the initial battery SOC on EMS was
analyzed, and in order to verify the superiority of this method, it was compared and analyzed with EMS
results using dynamic programming and fuzzy logic under the same driving cycles. The effectiveness of
this research method was verified through simulation, and it was confirmed through experiments for real-
time application. Since there is a limit to the experiment using an actual fuel cell vehicle, the experiment
was performed using a fuel cell and battery. This method can be applied to real fuel cell vehicles in the
same way.
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17

INDEX TERMS Battery charge sustenance, energy management, fuel cell hybrid electric vehicle, hydrogen
consumption, multi-objective GA.

I. INTRODUCTION18

In recent years, the energy concerns resulting from the deple-19

tion of fossil fuels and air pollution have received increas-20

ing attention, especially in the automobile industry. Given21

their high energy conversion efficiency, high power density,22

zero emissions, and environment-friendly features, polymer23

electrolyte membrane fuel cell (PEMFC) electric vehicles24

are considered as effective substitutes for traditional vehicles.25

With the development of hydrogen storage devices and refu-26

eling stations, these vehicles have a long mileage and short27

refueling time.28

The associate editor coordinating the review of this manuscript and

approving it for publication was Gayadhar Panda .

To compensate for the slow chemical response of fuel 29

cell systems, energy storage systems (ESSs), such as battery 30

and/or supercapacitor, are often used. ESSs not only improve 31

the acceleration ability of vehicles and conserve their braking 32

energy but also improve the flexibility of power distribution 33

in a fuel cell hybrid electric vehicle (FCHEV) system. Rapid 34

charging/discharging rate and over-discharging of the battery 35

lead to deterioration of the battery capacity, which in turn 36

leads to replacement of the battery. The main concerns with 37

FCHEV systems are tied to their economic cost, sustainable 38

operation, and system durability, which are closely related 39

to their energy management strategy design. The authors 40

in [1] reviewed various EMSs and advanced optimization 41

algorithms for addressing the above issues and proposed 42
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some recommendations for the future development of effi-43

cient EMSs.44

EMS can be categorized into rule- and optimization-based45

EMSs. Rule-based EMSs have high practicability and low46

computation load. In [2], the state of charge (SOC) and47

power capabilities of ESSs were main parameters in design-48

ing power distribution rules. A finite state machine-based49

EMS was designed for fuel cell hybrid source vehicles to50

benefit system health and fuel economy. To mitigate the51

power fluctuation of fuel cell system under rule-based EMS,52

Lopez et al. [3] utilized a low-pass filter to split the power53

between the fuel cell and supercapacitor system. The wavelet54

transform algorithm was incorporated into fuzzy logic EMS55

to smoothen the fuel cell current change and allocate power56

efficiently [4]. This approach can minimize the damage57

brought by current fluctuation and improve fuel cell health.58

Wang et al. [5] proposed a suboptimal online power allocation59

strategy based on rules and classical cybernetics and found60

that this strategy can realize near-optimal performance much61

easier than dynamic programming (DP) EMS. Optimization-62

based EMSs can achieve a globally optimized or a subopti-63

mal power management by applying optimization algorithms64

with system control objective functions and constraints.65

As a global optimization algorithm that achieves optimal66

power distribution under vehicle system constraints, DP67

serves as a good benchmark for other EMSs [6]. For real-68

time optimization, Pontryagin’s minimum principle (PMP)69

algorithm introduces an instantaneous optimization prob-70

lem instead of global optimization in an energy man-71

agement system [7]. Nevertheless, the co-state value is72

related to the information of driving cycles and affects73

the adaptability of the algorithm. The equivalent consump-74

tion minimization strategy (ECMS) is a promising real-time75

optimization method used in hybrid power systems. Li et al.76

proposed an online adaptive ECMS to minimize the77

equivalent hydrogen consumption and power source degrada-78

tion in fuel cell/battery/supercapacitor hybrid electric vehicle79

systems while ensuring battery charge sustenance and pro-80

longing fuel cell lifetime [8]. By taking advantage of the81

instantaneous optimization and future prediction ability of the82

model predictive control (MPC) algorithm, the authors in [9]83

proposed an EMS based on MPC to optimally allocate power84

in a hybrid electric vehicle with boundaries and constraints85

online. However, effective mathematical models for ECMS86

and MPC are necessary to obtain optimal solutions. More-87

over, advanced multi-objective optimization methods [10],88

[11], [12], [13] have been studied to mitigate the degradation89

of fuel cell and battery system, save fuel consumption, and90

keep battery charge sustaining. Recently, machine learning91

algorithms, such as online learning [14], reinforcement learn-92

ing [15], [16], and rule learning algorithm [17], have been93

investigated for power management in an FCHEV system.94

However, the EMS using the optimal solution shows the result95

using simulation, and there are few real-time optimal EMS96

development results.97

FIGURE 1. Power flow diagram of FCHEV system.

Instead of online optimization that requires big data pro- 98

cessing, EMS with offline global optimization and real- 99

time implementable abilities has been studied extensively for 100

FCHEVs. The controlling parameters are optimized offline 101

and subsequently applied online to obtain the highest prac- 102

ticable and optimal deterministic rules for power allocation, 103

thereby guaranteeing online control optimality. To improve 104

the online performance of a fuel cell hybrid power system, 105

a rule-based EMS was developed based on the results of 106

the dynamic programming (DP) algorithm [18]. The fuel 107

cell system works steadily even under drastic load changes, 108

and fuel economy optimization can be optimized like using 109

the DP algorithm. Moreover, fuzzy logic EMS is widely 110

combined with GA for offline optimization, and the system 111

performance can be improved online with the optimized 112

membership functions [19], [20], [21]. The main problem is 113

that since global optimization is obtained based on a given 114

driving pattern, optimal performance deteriorates when these 115

fixed parameter values are applied to other driving cycles. 116

To improve the adaptivity of EMS under changeable driving 117

conditions, the authors in [22] and [23] initially optimized 118

the parameters in different driving conditions offline and then 119

used a driving pattern recognition method to transform the 120

optimized membership function for real-time driving cycles. 121

However, the abovementioned EMSs require many con- 122

trol parameters to be optimized, hence this complicates the 123

method to obtain the optimal solution and increases com- 124

putation time. In addition, these EMSs are developed in a 125

simulation or in a hardware-in-the-loop simulation and most 126

of them lack physical experiment verification. To satisfy 127

unknown driving pattern with the developed method, this 128

paper presents a real-time optimized rule-based EMS that can 129

be innovatively applied even under similar driving conditions 130

by optimizing small number of parameters for three typical 131

driving conditions. Simulation and experiment results reveal 132

that the proposed EMS has a significant improvement over 133

online rule-based EMS in terms of hydrogen consumption, 134

fuel cell durability, and battery sustainability across each 135

driving condition. The main contributions of this paper can 136

be summarized as follows. 137

1) Combining multi-target GA optimization with a rule- 138

based control strategy calculates five parameters to 139
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FIGURE 2. System topology of FCHEV system.

be optimized, then splits the power in the FCHEV140

system to achieve real-time operation with optimal141

performance.142

2) Fuel consumption, fuel cell durability, efficiency, and143

battery sustainability are considered in a framework of144

multi-objective GA optimization over suburban, urban,145

and highway driving cycles. A Pareto analysis of mul-146

tiple objectives is carried out and obtained integrated147

optimization parameters are used to apply to similar148

driving patterns to ensure reliability.149

3) The sensitivity of the initial battery SOC value to power150

distribution and system performance is investigated.151

Results indicate that the proposed EMS can guarantee152

battery charge sustenance, optimizing the hydrogen153

consumption and improving the long driving capability154

of a FCHEV system.155

II. ARCHITECTURE OF THE FCHEV SYSTEM156

The powertrain structure of a FCHEV system is shown in157

Fig. 1. The PEMFC is coupled to a DC bus via a unidi-158

rectional DC-DC boost converter providing the main power159

supply. A battery package connected in series to a bidirec-160

tional DC–DC converter supplies extra power and recover161

braking energy. This topology is highly flexible because both162

converters achieve power control and simultaneously regulate163

the bus voltage. In this study, a mathematical vehicle model164

with real parameter information is utilized for demand power165

calculation. Whereas a downscaled power test platform and166

simulation model are constructed for energy management167

strategy study with downscaled demand power profiles.168

A. VEHICLE MODEL169

Longitudinal vehicle dynamics were modeled to obtain the170

vehicle running demand power [17]. The required demand171

power can be formulated as (1) and the main parameters are172

listed in Table 1.173

Pd = mgfvcosα + mgvsinα +
1
2
CdAρv3 + δmv

dv
dt

(1)174

A DC-AC inverter, motor, and mechanical transmission 175

system are assumed to be effective for optimization of power 176

allocation between the fuel cell and the battery. The power 177

balance between the power sources and demand power can 178

be described as follows: 179{
pd = pfcηnum_DC + pbatηbi_DC_disc Pfc ≤ Pd
pd = pfcηnum_DC + pbatηbi_DC_cha Pfc > Pd

(2) 180

where Pd is the demand power, Pfc is the fuel cell power, 181

Pbat is the battery power, ηuni_DC is the efficiency of uni- 182

directional DC-DC converter, ηbi_DC_cha and ηbi_DC_disc are 183

the efficiency of bidirectional DC-DC converter in charge and 184

discharge mode, respectively. 185

TABLE 1. Vehicle parameters.

B. PEMFC SYSTEM 186

AH-1000 PEMFCmanufactured byHorizon Co. is applied in 187

the FCHEV system and it provides a rated power of 1000W. 188

As the purpose of the study is to study effectiveness of the 189

proposed EMS, small PEMFC is utilized for the power alloca- 190

tion. The dynamics of a PEMFC system can be described by 191

an equivalent electrical model with a double-layer capacitor 192

as shown in Fig. 2. The mathematical model and specifica- 193

tions of a PEMFC model is demonstrated in our previous 194

work [24]. 195

The working efficiency of PEMFC (ηfc) is essential in 196

ensuring fuel economy and cell health as defined in (3), 197
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FIGURE 3. Efficiency curve of PEMFC system.

where Paux is the auxiliary power consumption in the fuel cell198

system andHHV stands for higher heating value of hydrogen199

in kJ/mol. This efficiency is represented as the ratio of fuel200

cell net output power (Pnet ) and consumed hydrogen energy201

(Ph2 ) [25]. The PEMFC efficiency curve obtained by experi-202

ment is presented in Fig. 3. The hydrogen consumption (mH2 )203

is calculated by (4).204

ηfc =
Pnet
Ph2
=
Pfc − Paux

HHV ·NIfc2F

(3)205

mH2 =

∫ t

0
ṁH2dt =

∫ t

0

NIfc
2Fηfc

·MH2dt (4)206

C. BATTERY207

An internal resistance model with an equivalent circuit is208

constructed as shown in Fig. 2 to describe the dynamic209

characteristics of a battery. The battery output power (Pbat )210

and voltage (Vbat ) can be calculated according to Kirchhoff’s211

voltage law as expressed in (5). The battery current (Ibat )212

can be calculated by (6), where E represents the battery213

open circuit voltage (OCV) and Rbat is the battery internal214

resistance.215 {
pbat = Vbat Ibat
Vbat = E − IbatRbat

(5)216

Ibat =
E −

√
E2 − 4PbatRbat
2Rbat

(6)217

Real-time SOC (SOC t ) can be calculated through the218

Coulomb counting algorithm expressed by (7), where SOC t0219

is the initial battery SOC, and Cb means the battery rated220

capacity. The battery efficiency is assumed to be 1 when221

charging and discharging for the simplicity.222

SOC t = SOC t0 −
1

3600Cb

∫ t

t0
Ibatdt (7)223

D. DC-DC CONVERTERS224

The bus voltage (Vbus) is expected to be controlled to 48V ,225

which is higher than the output voltage range of the fuel226

cell and battery package. Therefore, a unidirectional DC-DC227

boost converter is used to regulate the fuel cell output volt-228

age. Meanwhile, a bidirectional DC-DC converter is utilized229

for charging or discharging the battery. The topology using230

these two types of converters is shown in Fig. 2. A constant 231

fuel cell current is preferred during the operation because 232

it exhibits a stable two-phase gas flow phenomenon and 233

uninterrupted water transport through the fuel cell mem- 234

brane [26]. Therefore, current mode control (CMC) of the 235

unidirectional DC-DC boost converter is used to improve 236

fuel cell system stability, and a proportional-integral (PI) con- 237

troller 1 is applied to achieve better transient current response. 238

The current value targeted for control is determined by the 239

desired fuel cell power provided by the EMS. The relationship 240

between the fuel cell current and the fuel cell power is esti- 241

mated by a fitted polynomial as (8). To ensure a constant bus 242

voltage, the bidirectional DC-DC converter takes the voltage 243

as a control variable in the battery charging/discharging state 244

and uses voltage mode control (VMC) with a PI controller 2. 245

The architecture of the whole system is presented in Fig. 2, 246

where the EMSs block is the main controller of the FCHEV 247

system that allocates the power between the fuel cell and the 248

battery. 249

Ifc = 5e− 11P4fc − 8e− 8P3fc 250

+5e− 5P2fc+0.0191Pfc+0.2776 (8) 251

In addition, the standard form of PI controller 1 and 2 is 252

presented as (9), where u is the control variable, e is the 253

difference between the tracked reference signal andmeasured 254

process variable, Kp is the proportional gain, and Ti is the 255

integral time. 256

u = Kp

(
e+

1
Ti

∫ t

0
e dt

)
(9) 257

The integral time-weighted absolute error (ITAE) method 258

is utilized to tune the parameters of PI controllers for two 259

designed converters, and the optimized parameters are listed 260

in Table 2. What’s more, the stability of the designed PI 261

controllers was studied in our previous works [27], [28], and 262

both converters can stably regulate the power output under an 263

energy management strategy. 264

TABLE 2. Optimized parameters of PI controllers.

III. ENERGY MANAGEMENT STRATEGY ARCHITECTURE 265

OF THE FCHEV SYSTEM 266

The proposed EMS combines the advantages of optimization- 267

and rule-based EMS, aiming to optimally allocate power 268

between two power sources of FCHEV in real time. Fuel 269

cell durability and efficiency, minimization of hydrogen con- 270

sumption, and sustainability of battery charging are consid- 271

ered in EMS design to ensure overall system stability and 272

reduce operating cost. Conventional EMSs, such as DP, fuzzy 273

logic, and rule-based EMSs are also studied to compare the 274

advantages of the proposed EMS. 275
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FIGURE 4. The flowchart of rule-based EMS.

FIGURE 5. The flow chart of multi-GA optimization process.

A. RULE-BASED EMS276

The core of rule-based EMS is a strategy of supplying277

required load power while satisfying the constraints of (10)278

and distributing power in real-time. The PEMFC is preferred279

to work in maximum efficiency range (MER) to minimize280

hydrogen usage as shown in Fig. 3, where the minimum fuel281

cell power Pfc_min, fuel cell power with maximum efficiency282

Pfc_eff , and maximum fuel cell output power Pfc_max are set283

to 200, 400, and 800 W, respectively. The relevant energy284

management rules are illustrated in Fig. 4, where the input285

load information is subdivided into multiple cases to design286

management rules because of the power limit of battery287

charge or discharge. Battery SOC is considered to gauge the288

remaining capacity of the battery and it is possible to pre-289

vent the battery from being overcharged and over-discharged,290

which is critical to ensure the longevity of electric vehicle291

system. To prevent frequent charging and discharging at the292

lower/upper SOC thresholds, hysteresis control is proposed293

in the rule-based EMS design. SOC l1 and SOCh2 denote the294

initial lower and upper SOC threshold values, whereas SOC l2295

and SOCh1 denote the redefined lower/upper threshold val-296

ues, respectively. When SOC reaches the initial lower or297

upper threshold (SOC l1 or SOCh2), the corresponding value 298

is reassigned to the redefined value (SOC l2 or SOCh1). The 299

initial SOC thresholds of SOC l1, SOC l2, SOCh1, SOCh2 in 300

rule-based EMS are 60%, 65%, 70%, and 80%, respectively. 301
pfc,min ≤ pfc(k) ≤ pfc,max (a)
pbat,min ≤ pbat (k) ≤ pbat,max (b)
SOCmin ≤ SOC(k) ≤ SOCmax (c)

(10) 302

B. RULE-BASED EMS WITH MULTI-GA OPTIMIZATION 303

The power distribution in rule-based EMS is decided by the 304

battery SOC and demand power. In general, a simple rule- 305

based EMS gives a poor performance in terms of fuel cell 306

durability and hydrogen consumption. Therefore, the above- 307

mentioned concerns can be solved by multi-objective opti- 308

mization using multi-GA method in this section. 309

1) Fuel cell durability considerations 310

Water flooding and membrane dehydration inside the 311

fuel cell result in an irreversible degradation of the 312

components including membrane, catalyst, and diffu- 313

sion layer. These phenomena are mainly caused by the 314

PEMFC’s drastic power changes and frequent start or 315

stop operation conditions [3]. In addition, the start-up 316

and shutdown processes of a fuel cell system lead to a 317

rapid decay of fuel cell catalyst and diffusion layer due 318

to imbalance pressure between cathode and anode [29]. 319

Therefore, a low-pass filter is applied to prevent the 320

overshoot or undershoot of the fuel cell power and to 321

protect aging process of the fuel cell system. The effect 322

of the cutoff frequency on the dynamics of fuel cell 323

system is analyzed in [4], and a first-order low-pass 324

filter with a cutoff frequency of 0.05 Hz can mitigate 325

the power fluctuation. Moreover, PEMFC is designed 326

to operate in non-stop driving mode that meets the 327

minimal power threshold Pfc_low to avoid major per- 328

formance degradation due to frequent fuel cell on-off 329

cycling. 330

2) Battery charge sustaining 331

The battery should work under the charge sustaining 332

mode, where the energy stored in the battery should be 333

maintained throughout the driving cycle [30]. Sustain- 334

ing battery SOC not only decelerates battery degrada- 335

tion [7], but also minimizes the anxiety resulting from 336
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FIGURE 6. Pareto front of three objectives under three driving conditions.

FIGURE 7. Simulation power distribution under proposed EMS ((a) NEDC;
(b) UDDS; (c) HWFET).

battery overuse. The preferred battery SOC is 75% in337

this study.338

3) Multi-objective cost function339

To achieve the optimization of rule-based EMS,340

a multi-objective EMS combined with multi-GA opti-341

mization while having real-time operation capabilities342

is investigated in this section. The first cost func-343

tion is the hydrogen consumption, which is calculated344

by (4). To guarantee the battery charge sustaining, the345

variation between the final and the initial SOC val-346

ues (|1SOC|) is incorporated into the objective func-347

tion to determine whether the battery is over-charged348

or over-discharged, which is formulated by (11) (b).349

The acceptable SOC deviation is limited to 1.5%350

(|1SOC| ≤ 1.5%), which was applied in [22] to keep351

battery charge sustenance. Except for two cost objec-352

tives mentioned above, a FCHEV systemmust meet the353

efficient working conditions of the PEMFC. Therefore,354

the third objective described in (11) (c) is targeted to355

FIGURE 8. Performance comparison of simulation results under
optimized driving cycles ((a) SOC variation for NEDC; (b) H2 variation for
NEDC; (c) SOC variation for UDDS; (d) H2 variation for UDDS; (e) SOC
variation for HWFET; (f) H2 variation for HWFET).

improve fuel cell efficiency and subsequently benefit 356

fuel utilization rate. Given that it is not practical for 357

all objectives to be optimal at the same time, a multi- 358

objective GA is pursued to achieve a trade-off among 359

the three objectives over a known driving cycle. 360
J1 = mH2 (a)
J2 = |1SOC| = |SOCt − SOCt0 | (b)

J3 =
∫
(0.5− ηfc)dt (c)

(11) 361

For three-objective optimization, the non-dominated sort- 362

ing genetic algorithm II (NSGA-II) is used to find a local 363

Pareto front for the cost functions. For each point on the 364

Pareto front, one of the goals can only be further optimized by 365

sacrificing the optimization of the other one or two objectives, 366

and these points are called non-inferior solutions. A non- 367

inferior solution is the one that provides a suitable compro- 368

mise between all objectives without degrading any of them, 369

which reveals the most appropriate trade-off among these 370
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FIGURE 9. Performance comparison of simulation results under test
driving cycles ((a) SOC variation for WLTP3; (b) H2 variation for WLTP3;
(c) SOC variation for LA92; (d) H2 variation for LA92; (e) SOC variation for
ArtMwl30; (f) H2 variation for ArtMwl30).

cost functions. In present work, the relationship between371

among three optimized objectives can be revealed through372

the method of multi-objective GA. In hysteresis control,373

SOC thresholds play a vital role in allocating the demand374

power in rule-based EMS design, which greatly affects the375

system performance. Hence, the parameters to be optimized376

are SOC l1, SOC l2, SOCh1, SOCh2, and Pfc_low, with the377

constraints listed in (12). Noting that the low limit fuel cell378

power Pfc_low considers the minimum charging power of the379

battery to prevent fast charging rate of the battery.380 

60% ≤SOC l1 < SOC l2

SOC l1 < SOC l2 < SOCh1

SOC l2 < SOCh1 < SOCh2

SOCh1 < SOCh2 ≤ 80%
0 <Pfc_low ≤ 200W

(12)381

Multi-objective GA mimics a natural evolutionary selec-382

tion process to generate a population of individual solu-383

tions repeatedly, and the optimization process is described384

as Fig. 5.385

IV. SIMULATION RESULTS386

A downscaled FCHEV system is constructed in MATLAB/387

Simulink. After comparing the system performance by rule-388

based, fuzzy logic-based, DP, and proposed EMSs, the supe-389

riority of the proposed method was emphasized. Firstly, the390

new European driving cycle (NEDC) for suburban driving,391

the urban dynamometer driving schedule (UDDS) for urban392

driving, and the highway federal emissions test (HWFET) for393

TABLE 3. Optimized parameters for three driving conditions.

highway driving are utilized formulti-objectiveGAoptimiza- 394

tion to deal with diverse road scenarios. 395

The optimization process is completed when the given 396

tolerance is met. The Pareto fronts of three objectives under 397

three driving conditions are illustrated by Fig. 6, which 398

reveals the most appropriate trade-off among these cost func- 399

tions. As can be seen from the Pareto fronts, the effects of 400

the optimized parameters on three objective functions have 401

coupled each other. Under three driving conditions, the trend 402

of the relationship between any two objectives is similar 403

except for the numerical difference. Given that an absolute 404

variation of SOC can be derived from battery charging or dis- 405

charging, the coupling among three objectives can be divided 406

into two cases. In the case of battery charging, an increase of 407

J2 will lead to greater hydrogen consumption J1. Meanwhile, 408

an increase of J2 caused by battery discharging leads to less 409

hydrogen consumption in energy management. 410

The proposed EMS is designed primarily to save as much 411

hydrogen as possible while maintaining battery charge sus- 412

taining. However, due to the uncertain future driving pat- 413

tern, the final SOC value is not necessarily the same as the 414

initial value but fall within the acceptable interval. Accord- 415

ing to the Pareto front and assumed battery SOC constraint 416

(|1SOC| ≤ 1.5%), the final optimization parameters under 417

three driving conditions are determined as shown in Table 3. 418

Under three typical driving conditions, the power distri- 419

butions of a downscaled FCHEV system with EMSs are 420

illustrated in Fig. 7. With proposed EMS, the fuel cell system 421

operates smoothly in non-stop mode due to low power limit 422

and low-pass filter, and the battery supports the transient 423

power demand, which is good for fuel cell durability.With the 424

SOC constraint, the final SOC is equal to its initial value with 425

the DP control under three driving cycles, which are indicated 426

by Fig. 8 (a), (c), and (e). As can be seen from Fig. 8, the pro- 427

posed EMS realizes a minimum hydrogen consumption at the 428

expense of SOC variation. In highway condition, the fuzzy 429

EMS achieves the nearly same hydrogen consumption as the 430

proposed EMS. However, without optimization, rule-based 431

EMS and fuzzy-based EMS consume too much hydrogen 432

under NEDC and UDDS, because fuel cell operates in ineffi- 433

cient area. In addition, the lack of optimization results inmore 434

energy being stored in the battery. During the entire driving 435

cycle, the hydrogen consumption depends on the required 436

fuel cell power and efficiency, which is elucidated by (4), and 437

the proposed EMS realizes a low hydrogen consumption with 438

admissible SOC variation. 439

To evaluate the adaptability of proposed EMS with unified 440

optimization parameters under the similar driving conditions, 441
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FIGURE 10. Battery SOC performance under proposed EMS in repetitive
driving cycles with different initial SOC values ((a) NEDC; (b) WLTP3;
(c) UDDS; (d) LA92; (e) HWFET; (f) ArtMwl30).

FIGURE 11. Experimental platform of PEMFC/battery hybrid power
system.

the Worldwide Harmonized Light Vehicle Test Procedures442

class 3(WLTP3), the California Unified Cycle (LA92), and443

the Artemis project Motorway driving cycle (ArtMw130)444

forming the test inputs, are used to validate the applicability445

of the proposed method. They represent different suburban,446

urban, and highway driving patterns, respectively, and the447

simulation results are presented in Fig. 9. The results show448

that four provided EMSs perform similarly as before in each449

road scenario. As the benchmark, the DP EMS achieves the450

optimal hydrogen consumption with battery SOC sustaining.451

And the proposed EMS realizes lower hydrogen consumption452

with acceptable SOC deviations, which validates that the453

optimization parameters obtained in advance can guarantee454

FIGURE 12. Experimental power distribution under proposed EMS
((a) NEDC; (b) UDDS; (c) HWFET).

FIGURE 13. Performance comparison of experimental results under
optimized driving cycles ((a) SOC variation for NEDC; (b) H2 variation for
NEDC; (c) SOC variation for UDDS; (d) H2 variation for UDDS; (e) SOC
variation for HWFET; (f) H2 variation for HWFET).

optimal solution under the similar driving patterns, thereby 455

proving the applicability of proposed EMS. 456

For fair comparison, the electric energy change caused 457

by the final SOC variation in battery system should 458
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FIGURE 14. The fuel cell power distribution of different energy
management strategies under driving cycle of HWFET ((a) Rule-based;
(b) Fuzzy; (c) DP; (d) Proposed).

be considered. Except for the hydrogen consumption, the459

equivalent hydrogen consumption due to the SOC variation460

is calculated by the equivalent heat value [31]. The total461

hydrogen consumption mH2_t is given as (13), and the total462

hydrogen consumption comparison of different control strate-463

gies under studied driving cycles are indicated in Table 4.464

mH2_t = mH2 +
1SOC · Ebat · 3600
ηfc_avg · HHV

(13)465

where Ebat is the nominal energy capacity of the battery pack,466

ηfc_avg is the average fuel cell efficiency, and HHV expresses467

the higher heating value of hydrogen (MJ/kg). When SOC468

increases (1SOC < 0) or decreases (1SOC > 0), the stored469

or consumed energy can be converted into the equivalent470

decrement or increment of the hydrogen consumption.471

TABLE 4. Total hydrogen consumption comparison under different
energy management strategies.

As can be seen from Table 4, the proposed EMS can realize472

a minimal hydrogen consumption compared with DP EMS473

in most cases. Even though the total hydrogen consumption474

is not minimum under the driving cycles of WLTP3 and475

ArtMw130, the consumption deviation is acceptable in the476

face of uncertain road conditions.477

To verify the ability of battery SOC sustenance, the pro-478

posed EMS is applied under the repeated driving cycles of479

suburban, urban, and highway with different initial SOC480

values. As shown in Fig. 10, with the initial SOC value of481

75%, the battery SOC is maintained in an admissible range.482

When the initial SOC changes, the battery SOC is automati- 483

cally regulated and follows the SOC path with initial value 484

of 75% in suburban and urban driving conditions, during 485

which the FCHEV system is working in an optimal state. 486

Under highway driving pattern, the battery SOC with initial 487

value lower than 65% will finally reach to the value near 488

65% not 75%. When the initial SOC value is between 65% 489

and 75%, the battery SOC will sustain near its initial value. 490

The fuel cell does not have much power to charge the battery 491

due to high power demand. This phenomenon is related to 492

the optimized parameters. If they are chosen with minimum 493

SOC deviation, the battery SOC with initial value lower than 494

75% will be around 75% during the driving cycle. However, 495

the SOC recovery rate is slow due to the low charge power. 496

In rule-based and fuzzy logic EMSs, the battery SOC greatly 497

fluctuates due to the lack of optimization, which shortens 498

the battery lifetime [32]. Therefore, the battery health is 499

improved with the proposed EMS irrespective of the initial 500

battery SOC. 501

V. EXPERIMENTAL VERIFICATION 502

A downscaled test platform is constructed to verify the effec- 503

tiveness of the proposed EMS as shown in Fig. 11, and a 504

LabVIEW-based supervisory environment is assembled for 505

real-time monitoring. The experimental conditions are the 506

same as those in simulation environment. 507

To verify the performance of the proposed EMSs in subur- 508

ban, urban and highway road conditions, NEDC, UDDS and 509

HWFET driving cycles are tested in experiment. Fig. 12 and 510

Fig. 13 display the performance of FCHEV system with rule- 511

based, fuzzy-based, DP and proposed EMSs. Compared with 512

the conventional rule-based EMS under three driving pat- 513

terns, the proposed EMS smoothens the fuel cell output power 514

which makes fuel cell system work under non-stop mode, 515

thereby benefiting for the fuel cell durability. The proposed 516

EMS sacrifices SOC variation within an acceptable range and 517

has a lower hydrogen consumption compared with DP EMS. 518

The trajectories of battery SOC and hydrogen consumption in 519

the experiment are almost identical to those observed in the 520

simulation. 521

In addition, the standard deviations (std) of fuel cell power 522

change rate under NEDC, UDDS, and HWFET in the exper- 523

iment are calculated and compared to analyze the fuel cell 524

durability, which are listed in Table 5. With proposed EMS, 525

the fuel cell works in non-stop mode, and the output power is 526

smoothed by the low-pass filter. Compared with rule-based 527

EMS, the fuel cell power change rate is greatly improved 528

with proposed EMS, even better than DP EMS under NEDC 529

and HWFET. Under UDDS, the fuel cell provides too much 530

low-power dynamics under the proposed EMS. Even if the 531

hydrogen consumption is minimal, the power variation is 532

slightly larger than that under fuzzy and DP EMSs. 533

To display the fuel cell power distribution in three driving 534

conditions, the histogram of fuel cell power in HWFET is 535

shown in Fig. 14. As shown in the figure, rule-based and 536

fuzzy-based EMSs arrange the fuel cell to work in the less 537
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TABLE 5. Standard derivation (std) of fuel cell power change rate under
different energy management strategies.

FIGURE 15. Experimental voltage response of different energy
management strategies under driving cycle of HWFET ((a) Rule-based;
(b) Fuzzy; (c) DP; (d) Proposed).

efficient power area, whereas DP and proposed EMSs make538

the fuel cell operate in MER, realizing an optimal power539

distribution. Under the control of proposed EMS, the fuel540

cell power and efficiency are well balanced, saving much541

hydrogen consumption.542

The bus voltage Vbus, fuel cell voltage Vfc, and battery543

voltage Vbat under HWFET driving cycle are indicated by544

Fig. 15. Experimental results show that the output voltages of545

fuel cell and battery change with the driving load, while the546

bus voltage is adjusted well with less noise, which improves547

the stability of the subsequently connected devices.548

VI. CONCLUSION549

This paper aims to develop a practical rule-based EMS with550

multi-objective optimization capability in an FCHEV system.551

Based on the real-time power allocation ability of rule-based552

EMS, the multi-objective GA is applied to improve its per-553

formance through optimization with small number of param-554

eters. Three objective functions, i.e., hydrogen consumption,555

battery charge sustaining, and fuel cell efficiency, are opti-556

mized offline under three typical driving conditions through557

multi-objective NSGA-II method. It provides a minimum558

hydrogen consumption relative to the DP benchmark with559

admissible SOC variation. The adaptability of the proposed560

EMS is verified in other similar three driving cycles. The561

sensitivity of the initial battery SOC to power management is562

studied systematically. As a result of this study, the proposed563

EMS assures that the battery can work in the optimized charg-564

ing sustaining mode, which contributes to energy saving and565

battery health. The rule-based EMS with multi-objective GA 566

optimization can realize a real-time optimization for similar 567

driving pattern. The shortcoming of this study is that it lacks 568

online pattern recognition for unknown driving patterns to 569

provide an optimal solution, so further study is necessary. 570
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