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ABSTRACT Recently, Convolutional Neural Networks (CNN) based deep models have been successfully
applied to the task of stereo matching. In this paper, we propose a novel deep stereo matching network
based on the strategies of dense feature learning and compact cost aggregation, namely DFL-CCA-Net.
It consists of three modules: Dense Feature Learning (DFL), Compact Cost Aggregation (CCA) and the
disparity regressionmodule. In DFLmodule, the CNN backbone with Dense Atrous Spatial Pyramid Pooling
(DenseASPP) is employed to extract multi-scale deep feature maps of the given left and right images
respectively. Then an initial 4D cost volume is obtained by concatenating left feature maps with their
corresponding right feature maps across each disparity level. In the following CCA module, each initial
3D cost volume component (i.e., the component across the left or right image feature channel dimension)
is aggregated into a more compact one by using the atrous convolution operation with different expansion
rates. These updated 3D cost volume components are then fed into the disparity regression module, which
consisting of a 3D CNN network with a stacked hourglass structure, to estimate the final disparity map.
Comprehensive experimental results demonstrated on the Scene Flow, KITTI 2012 and KITTI 2015 datasets
show that the 3D cost volume components obtained by the proposed DFL and CCA modules generally
containing more multi-scale semantic information and thus can largely improve the final disparity regression
accuracies. Compared with other deep stereo matching methods, DFL-CCA-Net achieves very competitive
prediction accuracies especially in the reflective regions and regions containing detail information.

18 INDEX TERMS Deep stereo matching, dense feature learning, compact cost aggregation.

I. INTRODUCTION19

Binocular stereo vision is based on the principle of disparity20

to obtain 3D geometric information of the measured object.21

It is one of the research hotspots in computer vision and22

has been widely used in many fields such as autonomous23

driving [1], robotics [2], industrial inspection [3] remote sens-24

ing [4]. In general, a typical binocular stereo vision system25

includes four steps: binocular calibration, image correction,26

stereo matching and 3D reconstruction, among which stereo27

matching is the key step of binocular stereo vision [5]. The28

accuracy and efficiency of stereo matching directly affect the29

performance of the whole binocular stereo vision system.30

The associate editor coordinating the review of this manuscript and

approving it for publication was Bing Li .

In stereo matching, let us consider the left and right image 31

pairs taken by a pair of cameras whose camera centers lie on 32

the same horizontal line but do not overlap. After epipolar 33

correction [6], a pixel pl = (x, y) in the left image corre- 34

sponds to the pixel pr = (x − d, y) in the right image, then 35

the disparity of pl is said to be d . Then, the depth of pl can 36

be estimated by the triangulation principle z = fB/d , where 37

f is the focal length of the camera and B is the length of 38

the camera baseline. Obviously, the result of stereo matching 39

directly determines the accuracies of image depth estimation. 40

Before deep learning was introduced to stereo matching, 41

traditional methods generally consisted of the following four 42

steps (or a combination of some of them) [7]: matching 43

cost computation, cost aggregation, disparity computation, 44

and disparity refinement. Depending on whether the cost 45

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 100999

https://orcid.org/0000-0001-5546-6009
https://orcid.org/0000-0001-9980-0152
https://orcid.org/0000-0002-4780-1708


C. Yin et al.: Dense Feature Learning and Compact Cost Aggregation for Deep Stereo Matching

aggregation step is included, traditional methods can be clas-46

sified into local matching methods [8] and global matching47

methods [9].48

In recent years, the steps such as cost computation, cost49

aggregation, disparity computation, and disparity optimiza-50

tion have been integrated into the deep neural networks and51

exhibit superior performance over traditional methods. The52

research trend of stereo matching has gradually shifted from53

traditional methods to deep learning methods, and a series54

of representative works have been proposed. In current end-55

to-end stereo matching networks, there are two most popular56

types of cost volume: 3D cost volume and 4D cost volume.57

The 3D cost volume is formed by correlation operation on58

left and right image features [10]. And 2D encoder-decoder59

structure with cascaded refinement is usually used to process60

3D cost volume and compute the disparity map. The 4D cost61

volume is formed by concatenating left image feature maps62

with their corresponding right feature maps across each dis-63

parity level [11]. And the regularization structure consisting64

of 3D convolutions is the common way to process the 4D cost65

volume and get the disparity map.66

In this paper, we observe that many stereo matching net-67

works in the 3D architecture commonly use the Spatial Pyra-68

mid Pooling (SPP) [12] module to extract multi-scale image69

information and then directly use 3D convolution to process70

the obtained 4D cost volume. However, the pooling opera-71

tion causes a decrease in the resolution of the feature maps,72

resulting in a significant loss of image detail information.73

Besides, according to the construction of 4D cost volume74

proposed in GC-Net [11], we found that the same pixel75

has the same cost value at different disparities in each 3D76

cost volume component (height×width× disparity), which77

is obviously not in line with general cognition. Considering78

these two points, this paper proposes DFL-CCA-Net, a novel79

stereo matching network based on dense feature learning and80

compact cost aggregation. The proposed DFL-CCA-Net81

introduces DenseASPP (densely connected atrous spatial82

pyramid pooling) [13] operation in DFL module to obtain83

dense multi-scale feature information. It can avoid the84

information loss caused by multiple pooling operations85

in SPP [12]. After constructing the 4D cost volume,86

DFL-CCA-Net uses CCA (compact cost aggregation)module87

to effectively aggregated each initial 3D cost volume compo-88

nent into a more compact one by using the atrous convolu-89

tion operations with different expansion rates. Specifically,90

CCA module changes the distribution of the cost values in91

the cost volume components from a constant distribution to92

a non-constant distribution, which can make the cost vol-93

ume contain more informative semantic information. Finally,94

a stacked hourglass-shaped 3D CNN structure is used to95

process the 4D cost volume and estimate the disparity map.96

DFL-CCA-Net adopts a multi-stage training strategy: first97

we pre-train the model on the Scene Flow dataset, and then98

fine-tune it on the KITTI datasets. The test results on all three99

datasets demonstrate the effectiveness of the proposed DFL100

module and CCA module.101

Our main contributions can be summarized as follows: 102

(1) We introduced the dense feature learning module by 103

using DenseASPP [13] to replace SPP [12]. DenseASPP 104

applies the idea of dense connectivity from DenseNet [14] 105

to extract multiscale dense image features.Thus, DFLmodule 106

can enhance the perceptual field of the networkwithout losing 107

image information. 108

(2) We design an efficient compact cost aggregation mod- 109

ule to make the updated cost volumemore informative, which 110

can largely improve the final disparity regression accuracies. 111

(3) We propose an end-to-end stereo matching network 112

namely DFL-CCA-Net without any post-processing step. 113

It can achieve an advanced prediction accuracies in Scene 114

Flow and KITTI datasets. Especially, DFL-CCA-Net is par- 115

ticularly effective in the reflective image regions and image 116

regions containing a lot of detail information. 117

II. RELATED WORK 118

Mayer et al. introduced the first end-to-end disparity regres- 119

sion network Disp-Net [10], which borrows the idea from the 120

optical flow estimation network FlowNet [15]. First, the left 121

and right image features are extracted using a siamese net- 122

work, then a 1D correlation operation is performed to obtain 123

the 3D cost volume, and finally the 2D encoder-decoder 124

structure is used to process the 3D cost volume and regress 125

the disparity map. Pang et al. introduced the idea of residual 126

learning and proposed a two-stage cascaded residual learning 127

network CRL [16]. The first stage network DispFulNet gen- 128

erates the initial disparity map, and the second stage network 129

DispResNet uses the multi-scale residual signals to correct 130

the initial disparity map. The network architecture iResNet 131

proposed by Liang et al. [17] combines reconstruction errors 132

with feature correlation as feature constancy, which is used to 133

optimize the disparity map. Among other network architec- 134

tures based on 3D cost volume, some researchers pay more 135

attention to the time cost and use a coarse-to-fine strategy 136

to reduce the computational burden [18], [19], while other 137

researchers tend to combinemultiple architectures or used the 138

idea of multi-task learning to reduce the incorrect matching 139

rate in ill-posed regions [20], [21], [22], [23], [24]. Kendall 140

proposed a novel deep disparity learning network architec- 141

ture, GC-Net [11]. GC-Net creatively introduced a 4D cost 142

volume to obtain more information about image geometry 143

and context, and regressed the disparity map by a regulariza- 144

tion module consisting of 3D convolutions. GWC-Net [25] 145

proposed a group correlation strategy by considering the asso- 146

ciation of different feature channels, which resulted in a better 147

representation of the cost volume and enabled the network 148

to obtain a more accurate disparity map. The PSMNet [26] 149

mainly consists of a SPP [12] module and a stacked hourglass 150

3D CNN module, where the SPP [12] module extracts multi- 151

scale features and the 3D CNN module regularizes 4D cost 152

volume to provide disparity prediction. Many other stereo 153

matching networks based on 4D cost volume also try to make 154

the network to consider more image contextual information 155

during the learning process by designing different feature 156
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FIGURE 1. Architecture overview of the proposed DFL-CCA-Net.

extraction modules or by combining the idea of multi-task157

learning, such as [27], [28], [29], and [30].158

In addition, it is worth noting that with the success of the159

Attention mechanism and Transformer, some new methods160

represented by [31] revisited stereo matching from a new161

perspective, and convert the stereo matching into a response162

problem on sequences. They replaced cost volume construc-163

tionwith dense pixelmatching using position information and164

attention. Besides, some works focus more on the application165

of stereo matching in the medical field. For example, [32]166

proposed a robust edge-preserving stereo matching method167

for laparoscopic images, which overcomes the limitations of168

laparoscopic images containing illumination specular high-169

lights and occlusions.170

In this paper, the DFL module in our network can extract171

effective dense multi-scale features with detailed informa-172

tion. In addition, unlike works such as GC-Net [11] and173

PSMNet [26], which directly employ 3D CNN after con-174

structing 4D cost volume, our proposed DFL-CCA-Net175

designs a novel compact cost aggregation module, which can176

change the constant distribution of cost values and make the177

cost volume more informative.178

III. DFL-CCA-NET179

The overall architecture of our proposed DFL-CCA-Net is180

shown in Figure 1, which contains three modules: Dense181

Feature Learning (DFL), Compact Cost Aggregation (CCA)182

and Disparity Regression module.183

A. DENSE FEATURE LEARNING MODULE184

The input of the dense feature learning module is an185

image pair, and the output are dense multi-scale image fea-186

tures. It consists of two main parts: initial feature learn-187

ing and densely connected atrous spatial pyramid pooling188

(DenseASPP). The initial feature learning part extrct initial189

semantic features and DenseASPP uses the idea of dense190

connections to extract multi-scale information.191

1) INITIAL FEATURE LEARNING192

In the initial feature learning part, DFL-CCA-Net first uses193

three convolutional filters with a size of 3 × 3 to extract194

FIGURE 2. Residual block.

low-level deep features and implements downsampling oper- 195

ations. Then four residual blocks containing skip connections 196

are used to learn the high-level features, and the residual block 197

structure [33] is shown in Figure 2, which is calculated as 198

xs+1 = xs + F(xs). (1) 199

Here, we use Equation (2) to describe the complete process 200

of the left image going through the initial feature learning part 201

F lfeature = f (Il), (2) 202

where Il is the input left image, f is a mapping from image 203

space to feature space, F lfeature ∈ R
1
4H×

1
4W×4C is the feature 204

map, H andW denote the height and width of the image, and 205

4C = 128 is the number of feature channels. Similarly, the 206

output of the right image after the initial feature learning part 207

is denoted as F rfeature. 208

2) DenseNet, ASPP and DenseASPP 209

The basic idea of the DenseNet [14] is to establish a dense 210

connection between all the previous layers and the later layers 211
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FIGURE 3. Illustration of the densely connected atrous spatial pyramid
pooling operation used in the dense feature learning module.

to help train a deeper CNN. DenseNet [14] can achieve212

feature reuse by connecting features in channel dimen-213

sion. The SPP (Spatial Pyramid Pooling) module used in214

PSMNet [26] divides the feature maps into multiple grids215

of different sizes, and then performs the max-pooling opera-216

tions to obtain multi-scale features separately. ASPP (Atrous217

Spatial Pyramid Pooling) [34] uses atrous convolution with218

different expansion rates to process feature maps. Without219

doing pooling to lose information, ASPP [34] increases the220

receptive field of the network and obtains multi-scale feature221

information. In [13], DenseASPP uses the idea of dense222

connection to solve the problem of convolutional kernel223

degradation in ASPP. Through the use of atrous convolutions224

with different expansion rates and dense connection between225

features, the convolutional layers located in the middle are226

able to encode the image information from different scales.227

It ensures that the final output feature maps of DenseA-228

SPP [13] cover a large range of semantic information in a229

very dense manner.230

In DFL-CCA-Net, the DenseASPP used in DFL module231

is shown in Figure 3, where the atrous convolutions can be232

represented by the following equation233

ys = Hds,K ([ys−1, ys−2, · · · , y0]), (3)234

where s ∈ {1, 2, 3, 4, 5}, y0 = Ffeature,HK ,ds is an atrous con-235

volution with a K × K convolution kernel and an expansion236

rate of ds, and [ys−1, · · · , y0] denotes the concatenation of the237

outputs from all previous convolutional layers. Specifically,238

the input of the whole module is the feature maps F lfeature239

and F rfeature extracted by initial feature learning part. After240

five densely connected atrous convolutions, feature maps241

F lmf ,F
r
mf ∈ R

1
4H×

1
4W×4C encoding the information from242

multiple scales will be obtained. In this process, the convo-243

lution kernel size is K × K = 3 × 3 and expansion rates244

are d1 = 3, d2 = 6, d3 = 12, d4 = 18 and d5 = 24,245

respectively. Finally, in order to reduce the computational246

burden, we reduce the number of feature map channels from247

512 to C = 32 by adding three convolutions with a 1 × 1248

FIGURE 4. (a) Standard one-dimensional atrous convolution with dilation
rate of 6. (b) Stacking anatrous convolution layer with different dilation
rates.

kernel size after DenseASPP. That is, the final dimension of 249

the output feature map is 1
4H ×

1
4W × C . 250

The feature pyramids composed of DenseASPP can make 251

the network get a better disparity map. Compared to SPP 252

and ASPP, DenseASPP has better scale diversities, bigger 253

equivalent receptive field and denser pixel sampling. For 254

the scale diversities, the atrous convolutions with different 255

dilation rates can extract features at different scales. For 256

receptive field, the equivalent receptive field size of an atrous 257

convolutional layer is 258

Rd,K = (d − 1)× (K − 1)+ K , (4) 259

where d is the dilation rate and K is the kernel size. As shown 260

in Figure 4, stacking atrous convolutional layers together can 261

give us a larger receptive field. Therefore, the final receptive 262

field size of DenseASPP is 263

R = R3,3 + R3,6 + R3,12 + R3,18 + R3,24 − 4 = 128. (5) 264

For denser pixel sampling, we know that the pixel sampling 265

rate of atrous convolutional layers with large dilation rates is 266

very sparse. However, due to the use of dense connections, 267

DenseASPP allows more pixels to be involved in the compu- 268

tation of feature pyramid, so it retains more information while 269

increasing the receptive field. In terms of the effect, the scale 270

diversity of features helps the network adapt to objects at 271

different scales. A larger receptive field helps the network to 272

infer disparity in ill-posed regions, such as reflective regions, 273

repetitive regions, weakly textured regions and plain color 274

regions. And the denser sampling ensures our network can 275

predict the disparity with more detailed information. 276

B. COMPACT COST AGGREGATION 277

1) COST VOLUME 278

As described in Section II, there are two forms of cost volume 279

in the end-to-end network architectures, 3D cost volume and 280
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FIGURE 5. Architecture of the proposed compact cost aggregation
module.

4D cost volume. The 4D cost volume doesn’t require dimen-281

sionality reduction of the features, thus enabling more infor-282

mation to be retained. Therefore, we use the densemulti-scale283

features extracted by DFL module to obtain an initial 4D cost284

volume C with the dimension of H ′ × W ′ × D′ × 2C =285
1
4H ×

1
4W ×

1
4Dmax × 2C , where Dmax = 192 denotes the286

maximum disparity.287

Now consider any 3D cost volume component Clefti or Crighti288

in the initial 4D cost volume C, where i ∈ {1, 2, · · · , 32}.289

Obviously, Clefti is obtained by concatenating the i-th channel290

of the left image features across each disparity level, and291

Crighti is obtained by concatenating the corresponding channel292

of the right image features. The dimensions of Clefti and Crighti293

areH ′×W ′×D′. Here, we propose to perform an operation of294

compression followed by dilation in the disparity dimension295

and simultaneously use atrous convolutions in the spatial296

dimension, thus capturing the relationship between the cost297

values of the same pixel at different disparities. Based on this298

starting point, we designed the CCA module in which Clefti299

and Crighti share the same parameters. Specifically, as shown300

in Figure 5, given Ci ∈ {Clefti , Crighti } and 2D atrous convo-301

lution Hk ∈ RK×K where K × K represents the convolution302

kernel size, the operation to extract multiscale features of Ci303

can be defined as304

Ok = Hk∗(k)Ci, (6)305

where ∗(k) represents the atrous convolution operation and the306

index k ∈ {1, 2, 3, 4} represents the extraction of disparity307

features at four different scales. The value of K is always308

taken as 3 and the expansion rate is taken in order {1, 2, 4, 8}.309

After extracting the features at four different scales, we com-310

pose them using concat and then feed them into a convolution311

with a 3× 3 convolution kernel, i.e.312

O = H ∗ concat([Ok |k = 1, 2, 3, 4]), (7)313

Finally, we obtain the updated cost volume component C′i as314

C′i = Ci + O. (8)315

FIGURE 6. Comparison of the cost value variances across different
disparity levels at each pixel position of the initial and updated 3D cost
volume components Ci (blue) and C′i (orange).We can find that the
variances of Ci are zeros for all pixels which means the cost values at
different disparities at a given pixel position is always constant. However,
the corresponding variances and cost values of C′i are non-constant,
indicating that by using the CCA module, we can achieve more
informative 3D cost volume components.

In the next step, we use the disparity regression module to 316

process the updated 4D cost volume C′ and get the disparity 317

map, which is described in the next section. 318

The CCA module is designed to replace the cost aggrega- 319

tion step in the traditional stereo matching methods, which 320

can optimize the initial 4D cost volume obtained in the pre- 321

vious step. In fact, as shown in Figure 6, after observing the 322

cost values of a pixel in the initial cost volume component at 323

different disparities, we found that the cost values at different 324

disparities are the same, which is obviously not in line with 325

the actual cognition. To this end, we try to change the constant 326

distribution of cost values into a non-constant distribution 327

through the CCA module. By using the CCA module, cost 328

volume C′ becomes more informative, which can make it eas- 329

ier for the subsequent disparity regressionmodule to calculate 330

the accurate disparity. 331

C. DISPARITY REGRESSION MODULE 332

The input of the disparity regressionmodule is C′, and the out- 333

put is the disparity map. Specifically, we firstly use a stacked 334

hourglass structure which is shown in Figure 7. Stacked 335

hourglass network was proposed by Newell et al [35], which 336

can achieve better mixing of global and local information 337

through constant downsampling and upsampling operations. 338

In this paper, the hourglass block is shown in Figure 8, and the 339

specific convolution settings of stacked hourglass structure 340

are shown in Table 1. From this table,we can see that the 341

first two convolution layers are used to downsample the cost 342

volume, each layer contains two 3D convolution layers with 343

stride of 2 and stride of 1. Then two deconvolution layers are 344

employed to restore the cost volume to its original size of 345
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FIGURE 7. The stacked hourglass structure of 3D convolution.

FIGURE 8. Hourglass block.

TABLE 1. Parameters of stacked hourglass structure. Downsampling is
performed by 3Dhg1_1, 3Dhg1_2, 3Dhg2_1, 3Dhg2_2, 3Dhg3_1, 3Dhg3_2.
H ′ = 1

4 H , W ′ = 1
4 W , D′ = 1

4 Dmax and C = 32 represent the dimensions
of the output tensor. [3× 3× 3, C ]× 2 represents two 3D convolutions
with 3× 3× 3 convolution kernel, and C represents the channel of the
convolution output.

H ′ ×W ′ × D′ × 2C . Note that a skip connection is added to346

the upsampling process in order to keep as much information347

as possible in the middle layers.348

The output of each hourglass block changes the dimension349

of cost volume from H ′ ×W ′ × D′ × 2C to H ×W × Dmax350

after two 3D convolutions and upsampling operations, which 351

is noted as Cregression. We will use the regression method 352

to build disparity map. Specifically, the predicted disparity 353

is calculated by using the softmax operation σ (·) with the 354

following equation 355

d̂(x,y) =
Dmax∑
d=0

d × σ (−c(x,y,d)), (9) 356

σ (−c(x,y,d)) =
e−c(x,y,d)∑Dmax
k=1 e−c(x,y,k)

, (10) 357

where d̂(x,y) denotes the predicted disparity of the pixel 358

located at (x, y) coordinate, and c(x,y,d) is the cost value of the 359

predicted disparity of d , taking the value of the component of 360

Cregression located at (x, y, d). 361

1) LOSS FUNCTION 362

The smoothL1 loss function is considered to be more robust 363

to outliers compared to the L2 Norm [34]. Thus, it is used to 364

guide the network training with the formula 365

L(d, d̂) =
1
N

∑
(x,y)

smoothL1(d(x,y) − d̂(x,y)), (11) 366

smoothL1(x) =

{
0.5x2, |x| < 1
|x| − 0.5, otherwise

, (12) 367

where N denotes the total number of marked pixels, d(x,y) 368

denotes the true disparity at (x, y) coordinate, and d̂(x,y) 369

denotes the predicted disparity. 370

As shown in Figure 7 and Figure 8, while the output c6 371

of each hourglass block is used as the input of the next 372

hourglass block, we will also use it to generate a disparity 373

map. Therefore, in the disparity regression module, there are 374

two intermediate disparity maps and one final disparity map 375

generated, and their losses are respectively denoted as L1, L2 376

and L3. And the final loss function is generated by weighted 377

summation of L1, L2 and L3: 378

L =
3∑
i=1

αiLi, (13) 379

where αi is the weight of Li. 380

IV. EXPERIMENTAL ANALYSIS 381

A. DATASET 382

We train and test DFL-CCA-Net on three public datasets, 383

Scene Flow [10], KITTI 2012 [36] and KITTI 2015 [1]. 384

Scene Flow [10]: This dataset contains approximately 385

39,000 pairs of virtual images with a resolution size of 386

540 × 960, which are subdivided into three subsets based 387

on scene type: FlyingThings3D, Monkaa, and Driving. Fly- 388

ingThings3D contains a total of 22,872 image pairs, of which 389

4,370 pairs are used as a test set. Monkaa contains 8591 train- 390

ing image pairs. Driving mainly provides data of driving 391

scenes, and it contains 4392 image pairs. 392
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KITTI 2012 [36]: This dataset is composed of outdoor393

images of static scenes and contains 389 image pairs (gray394

images and color images) with a resolution of 376 × 1240,395

divided into 194 training image pairs and 195 test image pairs.396

Further, considering that the dataset only exposes the ground397

truth of the training set, we choose to take 34 image pairs398

from the training set as the validation set. Note that the color399

images of KITTI 2012 are used in our work.400

KTTI 2015 [1]: This dataset was acquired in a similar way401

to KITTI 2012 and contains 400 pairs of color images with a402

resolution size of 375×1241. The training set and the test set403

each account for 50% of the total. Similarly, because there is404

no ground truth in the test set, we further remove 20% of the405

image pairs from the training set as the validation set.406

B. EXPERIMENTAL CONFIGURATION407

DFL-CCA-Net was trained end-to-end manner with the408

Adam optimizer (β1 = 0.9, β2 = 0.999) during training.409

In addition, we performed color normalization on the training410

set before the training starts and cropped the images to a411

size of 256 × 512. The batch size was set to 12 and the412

maximum disparity Dmax was set to 192 during training. For413

the Scene Flow dataset, we trained the DFL-CCA-Net with414

15 epochs and a fixed learning rate of 0.001. The trained415

model was tested on the test set and the evaluation index416

was taken as End-point Error (EPE). For KITTI 2015, due to417

its small number of images, we chose to use the parameters418

of the pre-trained model on Scene Flow as the initialization419

parameters for the model training on KITTI 2015. The epoch420

was set to 1000 and the learning rate was 0.001 for the first421

200 epochs and then adjusted to 0.0001. For KITTI 2012,422

we used the model trained on KITTI 2015 as the initialization423

parameters and the training hyperparameters settingswere the424

same. For the models trained on the KITTI dataset, we first425

compared the ablation experiments on the divided validation426

set, and finally uploaded the computational results of the test427

set to the KITTI website for evaluation, using a p-pixel error428

percentage as the evaluation metric, where p is an integer.429

1) EXPERIMENTAL ENVIRONMENT430

Linux system (ubuntu 18), implemented by PyTorch 1.8.431

CPU: Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz, GPU:432

NVIDIA GeForce RTX 2080Ti (four).433

C. ABLATION STUDY FOR DFL-CCA-NET434

1) LOSS WEIGHTS435

As mentioned before, the disparity regression module gen-436

erates three losses L1, L2 and L3, whose weights in the loss437

function affect the final model effect. Therefore, we compare438

the experimental effects of different weights on Scene Flow439

to select the optimal weights.440

As shown in Table 2, it can be seen that the information441

contained in L1 and L2 can effectively increase the accuracies442

of the final output disparity map. When the weights of L1 and443

L2 are increased to (0.5, 0.7), the EPE is minimum. When444

TABLE 2. Influence of weight values for losses L1, L2 and L3 on
validation errors. We empirically found that 0.5/0.7/1.0 yielded the best
performance.

continuing to increase the weight of L1 and L2, the error 445

will instead rise. This indicates that the output of the deep 446

hourglass block contains more valid information than the 447

output of the shallow layer, so L3 needs to be given a greater 448

weight. 449

2) ABLATION STUDY 450

In order to verify the effects of the introduced DFL and 451

CCAmodules, we do ablation experiments and compare their 452

effects on Scene Flow dataset and KITTI dataset, respec- 453

tively. As shown in Table 3, when only the CCA module is 454

used, the EPE of the model decreases from 1.09 to 0.87 on 455

the Scene Flow dataset and the 3-pixel error decreases from 456

1.98% to 1.67% on the KITTI 2015 validation set. With 457

DenseASPP only, the EPE drops to 0.86 and the metric on 458

the KITTI validation set drops to 1.77%.When both CCA and 459

DenseASPP are employed, the EPE decreased to 0.65 and the 460

error on the KITTI dataset decreases to 1.51%. The results 461

confirm our initial idea: both the DFL and CCA modules 462

have a significant improvement on the model effect. And 463

they improve the model precision from different perspectives, 464

with the DFL module facilitating the extraction of more 465

efficient features and the CCAmodule playing the role of cost 466

aggregation and makes the cost volume more informative. 467

Therefore, the roles of DFL andCCAmodules do not overlap, 468

and the superposition of the two modules can make the model 469

achieve better results. 470

D. COMPARISON WITH OTHER METHODS 471

1) COMPARISON ON THE SCENE FLOW DATABASE 472

We compare the model precision with some recent works on 473

the Scene Flow test set, and the results are shown in Table 4. 474

It can be seen that DFL-CCA-Net has a significant improve- 475

ment in precision on the Scene Flow test set compared to the 476

classical working PSMNet [26], GwcNet [25], and the latest 477

stereo matching networks such as WaveletStereo [37] and 478

CAL-Net [39]. Observing the areas indicated by the arrows 479

and the borders in Figure 9, it can be found that the disparity 480

map generated by DFL-CCA-Net is significantly better than 481

PSMNet, especially in the repetitive texture areas and thinner 482

areas such as lines and columns. This visually demonstrates 483

the effectiveness of the DFL module and the CCA module. 484

In addition, from the error maps presented in Figure 9, our 485

proposed DFL module and CCA module can significantly 486

improve the disparity prediction not only in the pathological 487
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TABLE 3. Ablation study to show the effectiveness of DFL module and CCA module in the DFL-CCA-Net. We computed the percentage of 3-pixel-error on
the KITTI 2015 validation set, and end-point-error on the scene flow test set.

FIGURE 9. Visualization results on the Scene Flow test set. The images under the disparity map are the error maps, the warmer
the tone, the worse the prediction.

regions, but also in the regions where PSMNet [26] originally488

predicts well.489

2) COMPARISON ON THE KITTI 2015 DATABASE490

After comparing the learning ability of the network on Scene491

Flow, we fine-tuned the model on KITTI 2015 and submitted492

the results to the KITTI website to evaluate the generalization493

ability of the network. The results of our network testing on494

KITTI 2015 are presented in Table 5, and all data are taken495

from the KITTI test server. In Table 5, D1-bg, D1-fg, and D1-496

all represent the 3-pixel error percentages of the background497

region, foreground region, and all regions for the all pixels498

(All) and non-occluded pixels (Noc), respectively. Compared499

with other methods, DFL-CCA-Net achieves leading results500

for disparity prediction in the background region. In addi-501

tion, we qualitatively analyzed the results of DFL-CCA-Net502

on the KITTI 2015 test set. As shown in Figure 10 and503

Figure 11, compared to the classical deep learning method504

PSMNet [26] and recent advanced method Bi3D [40] which505

has a disparity optimization module specifically designed506

into the network architecture, our proposed network achieves507

more robust results, especially in regions containing a lot of508

TABLE 4. Comparison of DFL-CCA-Net and other stereo matching
methods on the Scene Flow dataset with EPE (endpoint error).

detailed information such as the edges of signage, poles, and 509

grasses as marked in the figures. From the disparity maps and 510

error maps in Figure 10 and Figure 11, our proposed DFL and 511

CCA modules can significantly reduce the prediction errors 512

in the background region, thus improving the accuracies of 513

disparity prediction. 514

3) COMPARISON ON THE KITTI 2012 DATABASE 515

The final submission results of DFL-CCA-Net after 516

fine-tuning on the KITTI 2012 dataset are shown in 517

Tables 5 and 6. The evaluation metrics are the p-pixel error 518
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FIGURE 10. Comparison with PSMNet [26] on KITTI 2015 test set. The images under the disparity maps are the error maps, the warmer the tone,
the worse the prediction.

FIGURE 11. Comparison with Bi3D [40] on KITTI 2015 test set. The images under the disparity maps are the error maps, the warmer the tone, the
worse the prediction.

percentages for both all pixels (All) and non-occluded pix-519

els (Noc). The pixels involved in the error calculation in520

Table 5 are the pixels of all regions, and Table 6 shows521

the pixel test results of reflective regions. As shown in the 522

last row of data in Tables 5 and 6, DFL-CCA-Net is also 523

competitive on the KITTI 2012 dataset, especially reaching 524
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TABLE 5. Performance comparison on KITTI 2015 test set.

TABLE 6. Performance comparison in all regions on KITTI 2012 test set.

FIGURE 12. Visualization results on KITTI 2012 test set. The top are the error maps (the blacker the better) and the bottom are the disparity maps.

the lowest 3-pixel error percentage 1.35% and 5-pixel error525

percentage 0.79% in the non-occluded region. Compared to526

PSMNet, the EPE of DFL-CCA-Net decreases from 1.4 to527

1.2 and 1.6 to 1.3 in non-occluded and all areas, respec- 528

tively. In addition, as illustrated in the schematic regions 529

in Figure 12, DFL-CCA-Net can also significantly improve 530
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TABLE 7. Performance comparison in reflective regions on KITTI 2012 test set.

disparity prediction precisions in strongly reflective regions531

such as windows and roofs.532

V. CONCLUSION533

In this paper, we propose a new end-to-end stereo matching534

network architecture, DFL-CCA-Net. DFL-CCA-Net learns535

dense multi-scale semantic features by using a dense feature536

learning module containing DenseASPP, thus increasing the537

perceptual field without loss of information. And before dis-538

parity regression module, the compact cost aggregation mod-539

ule is innovatively introduced, which can change the constant540

distribution of the cost values in the cost volume components541

and make the updated cost volume more informative. Com-542

pared with advanced stereo matching methods, our proposed543

network architecture has a significant improvement in match-544

ing accuracy. Especially, the improvement effect is more545

obvious in the reflective regions such as windows and roofs,546

and regions containing a lot of detail information such as the547

edges of objects.548
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