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ABSTRACT Recently, Convolutional Neural Networks (CNN) based deep models have been successfully
applied to the task of stereo matching. In this paper, we propose a novel deep stereo matching network
based on the strategies of dense feature learning and compact cost aggregation, namely DFL-CCA-Net.
It consists of three modules: Dense Feature Learning (DFL), Compact Cost Aggregation (CCA) and the
disparity regression module. In DFL module, the CNN backbone with Dense Atrous Spatial Pyramid Pooling
(DenseASPP) is employed to extract multi-scale deep feature maps of the given left and right images
respectively. Then an initial 4D cost volume is obtained by concatenating left feature maps with their
corresponding right feature maps across each disparity level. In the following CCA module, each initial
3D cost volume component (i.e., the component across the left or right image feature channel dimension)
is aggregated into a more compact one by using the atrous convolution operation with different expansion
rates. These updated 3D cost volume components are then fed into the disparity regression module, which
consisting of a 3D CNN network with a stacked hourglass structure, to estimate the final disparity map.
Comprehensive experimental results demonstrated on the Scene Flow, KITTI 2012 and KITTI 2015 datasets
show that the 3D cost volume components obtained by the proposed DFL and CCA modules generally
containing more multi-scale semantic information and thus can largely improve the final disparity regression
accuracies. Compared with other deep stereo matching methods, DFL-CCA-Net achieves very competitive
prediction accuracies especially in the reflective regions and regions containing detail information.

INDEX TERMS Deep stereo matching, dense feature learning, compact cost aggregation.

I. INTRODUCTION

Binocular stereo vision is based on the principle of disparity
to obtain 3D geometric information of the measured object.
It is one of the research hotspots in computer vision and
has been widely used in many fields such as autonomous
driving [1], robotics [2], industrial inspection [3] remote sens-
ing [4]. In general, a typical binocular stereo vision system
includes four steps: binocular calibration, image correction,
stereo matching and 3D reconstruction, among which stereo
matching is the key step of binocular stereo vision [5]. The
accuracy and efficiency of stereo matching directly affect the
performance of the whole binocular stereo vision system.
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In stereo matching, let us consider the left and right image
pairs taken by a pair of cameras whose camera centers lie on
the same horizontal line but do not overlap. After epipolar
correction [6], a pixel p; = (x,y) in the left image corre-
sponds to the pixel p, = (x — d, y) in the right image, then
the disparity of p; is said to be d. Then, the depth of p; can
be estimated by the triangulation principle z = fB/d, where
f is the focal length of the camera and B is the length of
the camera baseline. Obviously, the result of stereo matching
directly determines the accuracies of image depth estimation.
Before deep learning was introduced to stereo matching,
traditional methods generally consisted of the following four
steps (or a combination of some of them) [7]: matching
cost computation, cost aggregation, disparity computation,
and disparity refinement. Depending on whether the cost
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aggregation step is included, traditional methods can be clas-
sified into local matching methods [8] and global matching
methods [9].

In recent years, the steps such as cost computation, cost
aggregation, disparity computation, and disparity optimiza-
tion have been integrated into the deep neural networks and
exhibit superior performance over traditional methods. The
research trend of stereo matching has gradually shifted from
traditional methods to deep learning methods, and a series
of representative works have been proposed. In current end-
to-end stereo matching networks, there are two most popular
types of cost volume: 3D cost volume and 4D cost volume.
The 3D cost volume is formed by correlation operation on
left and right image features [10]. And 2D encoder-decoder
structure with cascaded refinement is usually used to process
3D cost volume and compute the disparity map. The 4D cost
volume is formed by concatenating left image feature maps
with their corresponding right feature maps across each dis-
parity level [11]. And the regularization structure consisting
of 3D convolutions is the common way to process the 4D cost
volume and get the disparity map.

In this paper, we observe that many stereo matching net-
works in the 3D architecture commonly use the Spatial Pyra-
mid Pooling (SPP) [12] module to extract multi-scale image
information and then directly use 3D convolution to process
the obtained 4D cost volume. However, the pooling opera-
tion causes a decrease in the resolution of the feature maps,
resulting in a significant loss of image detail information.
Besides, according to the construction of 4D cost volume
proposed in GC-Net [11], we found that the same pixel
has the same cost value at different disparities in each 3D
cost volume component (heightxwidthx disparity), which
is obviously not in line with general cognition. Considering
these two points, this paper proposes DFL-CCA-Net, a novel
stereo matching network based on dense feature learning and
compact cost aggregation. The proposed DFL-CCA-Net
introduces DenseASPP (densely connected atrous spatial
pyramid pooling) [13] operation in DFL module to obtain
dense multi-scale feature information. It can avoid the
information loss caused by multiple pooling operations
in SPP [12]. After constructing the 4D cost volume,
DFL-CCA-Netuses CCA (compact cost aggregation) module
to effectively aggregated each initial 3D cost volume compo-
nent into a more compact one by using the atrous convolu-
tion operations with different expansion rates. Specifically,
CCA module changes the distribution of the cost values in
the cost volume components from a constant distribution to
a non-constant distribution, which can make the cost vol-
ume contain more informative semantic information. Finally,
a stacked hourglass-shaped 3D CNN structure is used to
process the 4D cost volume and estimate the disparity map.
DFL-CCA-Net adopts a multi-stage training strategy: first
we pre-train the model on the Scene Flow dataset, and then
fine-tune it on the KITTTI datasets. The test results on all three
datasets demonstrate the effectiveness of the proposed DFL
module and CCA module.
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Our main contributions can be summarized as follows:

(1) We introduced the dense feature learning module by
using DenseASPP [13] to replace SPP [12]. DenseASPP
applies the idea of dense connectivity from DenseNet [14]
to extract multiscale dense image features.Thus, DFL module
can enhance the perceptual field of the network without losing
image information.

(2) We design an efficient compact cost aggregation mod-
ule to make the updated cost volume more informative, which
can largely improve the final disparity regression accuracies.

(3) We propose an end-to-end stereo matching network
namely DFL-CCA-Net without any post-processing step.
It can achieve an advanced prediction accuracies in Scene
Flow and KITTTI datasets. Especially, DFL-CCA-Net is par-
ticularly effective in the reflective image regions and image
regions containing a lot of detail information.

Il. RELATED WORK

Mayer et al. introduced the first end-to-end disparity regres-
sion network Disp-Net [10], which borrows the idea from the
optical flow estimation network FlowNet [15]. First, the left
and right image features are extracted using a siamese net-
work, then a 1D correlation operation is performed to obtain
the 3D cost volume, and finally the 2D encoder-decoder
structure is used to process the 3D cost volume and regress
the disparity map. Pang et al. introduced the idea of residual
learning and proposed a two-stage cascaded residual learning
network CRL [16]. The first stage network DispFulNet gen-
erates the initial disparity map, and the second stage network
DispResNet uses the multi-scale residual signals to correct
the initial disparity map. The network architecture iResNet
proposed by Liang et al. [17] combines reconstruction errors
with feature correlation as feature constancy, which is used to
optimize the disparity map. Among other network architec-
tures based on 3D cost volume, some researchers pay more
attention to the time cost and use a coarse-to-fine strategy
to reduce the computational burden [18], [19], while other
researchers tend to combine multiple architectures or used the
idea of multi-task learning to reduce the incorrect matching
rate in ill-posed regions [20], [21], [22], [23], [24]. Kendall
proposed a novel deep disparity learning network architec-
ture, GC-Net [11]. GC-Net creatively introduced a 4D cost
volume to obtain more information about image geometry
and context, and regressed the disparity map by a regulariza-
tion module consisting of 3D convolutions. GWC-Net [25]
proposed a group correlation strategy by considering the asso-
ciation of different feature channels, which resulted in a better
representation of the cost volume and enabled the network
to obtain a more accurate disparity map. The PSMNet [26]
mainly consists of a SPP [12] module and a stacked hourglass
3D CNN module, where the SPP [12] module extracts multi-
scale features and the 3D CNN module regularizes 4D cost
volume to provide disparity prediction. Many other stereo
matching networks based on 4D cost volume also try to make
the network to consider more image contextual information
during the learning process by designing different feature
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FIGURE 1. Architecture overview of the proposed DFL-CCA-Net.

extraction modules or by combining the idea of multi-task X
learning, such as [27], [28], [29], and [30].

In addition, it is worth noting that with the success of the
Attention mechanism and Transformer, some new methods
represented by [31] revisited stereo matching from a new
perspective, and convert the stereo matching into a response 3 X 3’ 64
problem on sequences. They replaced cost volume construc-
tion with dense pixel matching using position information and F ( xs) RelLU
attention. Besides, some works focus more on the application
of stereo matching in the medical field. For example, [32] 3x 3,64
proposed a robust edge-preserving stereo matching method
for laparoscopic images, which overcomes the limitations of
laparoscopic images containing illumination specular high- ®
lights and occlusions.

In this paper, the DFL module in our network can extract ReLU
effective dense multi-scale features with detailed informa-
tion. In addition, unlike works such as GC-Net [11] and
PSMNet [26], which directly employ 3D CNN after con- Xs41

structing 4D cost volume, our proposed DFL-CCA-Net
designs a novel compact cost aggregation module, which can
change the constant distribution of cost values and make the
cost volume more informative.

IIl. DFL-CCA-NET

The overall architecture of our proposed DFL-CCA-Net is
shown in Figure 1, which contains three modules: Dense
Feature Learning (DFL), Compact Cost Aggregation (CCA)
and Disparity Regression module.

A. DENSE FEATURE LEARNING MODULE

The input of the dense feature learning module is an
image pair, and the output are dense multi-scale image fea-
tures. It consists of two main parts: initial feature learn-
ing and densely connected atrous spatial pyramid pooling
(DenseASPP). The initial feature learning part extrct initial
semantic features and DenseASPP uses the idea of dense
connections to extract multi-scale information.

1) INITIAL FEATURE LEARNING
In the initial feature learning part, DFL-CCA-Net first uses
three convolutional filters with a size of 3 x 3 to extract
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FIGURE 2. Residual block.

low-level deep features and implements downsampling oper-
ations. Then four residual blocks containing skip connections
are used to learn the high-level features, and the residual block
structure [33] is shown in Figure 2, which is calculated as

Xs+1 = X5 + Fxg). (D

Here, we use Equation (2) to describe the complete process
of the left image going through the initial feature learning part

Fleanre =1 D). @

where [ is the input left image, f is a r?apping from image
1

space to feature space, F;eamre € RiH*xzWx4C i¢ the feature

map, H and W denote the height and width of the image, and

4C = 128 is the number of feature channels. Similarly, the

output of the right image after the initial feature learning part

is denoted as F, .-

2) DenseNet, ASPP and DenseASPP

The basic idea of the DenseNet [14] is to establish a dense

connection between all the previous layers and the later layers
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FIGURE 3. lllustration of the densely connected atrous spatial pyramid
pooling operation used in the dense feature learning module.

to help train a deeper CNN. DenseNet [14] can achieve
feature reuse by connecting features in channel dimen-
sion. The SPP (Spatial Pyramid Pooling) module used in
PSMNet [26] divides the feature maps into multiple grids
of different sizes, and then performs the max-pooling opera-
tions to obtain multi-scale features separately. ASPP (Atrous
Spatial Pyramid Pooling) [34] uses atrous convolution with
different expansion rates to process feature maps. Without
doing pooling to lose information, ASPP [34] increases the
receptive field of the network and obtains multi-scale feature
information. In [13], DenseASPP uses the idea of dense
connection to solve the problem of convolutional kernel
degradation in ASPP. Through the use of atrous convolutions
with different expansion rates and dense connection between
features, the convolutional layers located in the middle are
able to encode the image information from different scales.
It ensures that the final output feature maps of DenseA-
SPP [13] cover a large range of semantic information in a
very dense manner.

In DFL-CCA-Net, the DenseASPP used in DFL module
is shown in Figure 3, where the atrous convolutions can be
represented by the following equation

ys = Hag k ([ys—1, Ys—2, -+, yol), 3)
where s € {1,2, 3,4, 5}, yo = Ffeature, Hk 4, 15 an atrous con-
volution with a K x K convolution kernel and an expansion
rate of ds, and [ys—y, - - - , yo] denotes the concatenation of the
outputs from all previous convolutional layers. Specifically,
the input of the whole module is the feature maps F;e ature
and E;eame extracted by initial feature learning part. After
five densely connected atrous convolutions, feature maps
anf, Fr;f € RiHx3Wx4C encoding the information from
multiple scales will be obtained. In this process, the convo-
lution kernel size is K x K = 3 x 3 and expansion rates
are d; = 3,dy, = 6,d; = 12,ds = 18 and d5s = 24,
respectively. Finally, in order to reduce the computational
burden, we reduce the number of feature map channels from
512 to C = 32 by adding three convolutions with a 1 x 1
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(b)

FIGURE 4. (a) Standard one-dimensional atrous convolution with dilation
rate of 6. (b) Stacking anatrous convolution layer with different dilation
rates.

kernel size after Dense ASPP. That is, the final dimension of
the output feature map is %H X %W x C.

The feature pyramids composed of Dense ASPP can make
the network get a better disparity map. Compared to SPP
and ASPP, DenseASPP has better scale diversities, bigger
equivalent receptive field and denser pixel sampling. For
the scale diversities, the atrous convolutions with different
dilation rates can extract features at different scales. For
receptive field, the equivalent receptive field size of an atrous
convolutional layer is

Rixk=Wd-1)x(K—-1)+K, “4)

where d is the dilation rate and K is the kernel size. As shown
in Figure 4, stacking atrous convolutional layers together can
give us a larger receptive field. Therefore, the final receptive
field size of Dense ASPP is

R=R33+R36+R312+R318+R324—4=128. (5)

For denser pixel sampling, we know that the pixel sampling
rate of atrous convolutional layers with large dilation rates is
very sparse. However, due to the use of dense connections,
Dense ASPP allows more pixels to be involved in the compu-
tation of feature pyramid, so it retains more information while
increasing the receptive field. In terms of the effect, the scale
diversity of features helps the network adapt to objects at
different scales. A larger receptive field helps the network to
infer disparity in ill-posed regions, such as reflective regions,
repetitive regions, weakly textured regions and plain color
regions. And the denser sampling ensures our network can
predict the disparity with more detailed information.

B. COMPACT COST AGGREGATION

1) COST VOLUME

As described in Section 11, there are two forms of cost volume
in the end-to-end network architectures, 3D cost volume and
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FIGURE 5. Architecture of the proposed compact cost aggregation
module.

4D cost volume. The 4D cost volume doesn’t require dimen-
sionality reduction of the features, thus enabling more infor-
mation to be retained. Therefore, we use the dense multi-scale
features extracted by DFL module to obtain an initial 4D cost
volume C with the dimension of H' x W' x D' x 2C =
%H X %W X %Dmax x 2C, where Dy, = 192 denotes the
maximum disparity.

. left right

Now consider any 3D cost volume component C;*" or C;

in the initial 4D cost volume C, where i € {1,2,---,32}.
Obviously, Cfef " is obtained by concatenating the i-th channel
of the left image features across each disparity level, and
c'® " is obtained by concatenating the corresponding channel
of the right image features. The dimensions of Cfef "and Cl.”ght
are H' x W’ x D'. Here, we propose to perform an operation of
compression followed by dilation in the disparity dimension
and simultaneously use atrous convolutions in the spatial
dimension, thus capturing the relationship between the cost
values of the same pixel at different disparities. Based on this
starting point, we designed the CCA module in which Cfef '
and Cl.r % share the same parameters. Specifically, as shown
in Figure 5, given C; € {Cfeﬁ ,C! i8hy and 2D atrous convo-
lution H; € RX*K where K x K represents the convolution
kernel size, the operation to extract multiscale features of C;

can be defined as
O = HixMe;, (6)

where %) represents the atrous convolution operation and the
index k € {l, 2, 3, 4} represents the extraction of disparity
features at four different scales. The value of K is always
taken as 3 and the expansion rate is taken in order {1, 2, 4, 8}.
After extracting the features at four different scales, we com-
pose them using concat and then feed them into a convolution
with a 3 x 3 convolution kernel, i.e.

O = H x concat([Olk =1, 2,3, 4]), @)
Finally, we obtain the updated cost volume component C; as

Cl=Ci+0. (8)
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FIGURE 6. Comparison of the cost value variances across different
disparity levels at each pixel position of the initial and updated 3D cost
volume components C; (blue) and C; (orange).We can find that the
variances of C; are zeros for all pixe‘s which means the cost values at
different disparities at a given pixel position is always constant. However,
the corresponding variances and cost values of C; are non-constant,
indicating that by using the CCA module, we can achieve more
informative 3D cost volume components.

In the next step, we use the disparity regression module to
process the updated 4D cost volume C’ and get the disparity
map, which is described in the next section.

The CCA module is designed to replace the cost aggrega-
tion step in the traditional stereo matching methods, which
can optimize the initial 4D cost volume obtained in the pre-
vious step. In fact, as shown in Figure 6, after observing the
cost values of a pixel in the initial cost volume component at
different disparities, we found that the cost values at different
disparities are the same, which is obviously not in line with
the actual cognition. To this end, we try to change the constant
distribution of cost values into a non-constant distribution
through the CCA module. By using the CCA module, cost
volume C’ becomes more informative, which can make it eas-
ier for the subsequent disparity regression module to calculate
the accurate disparity.

C. DISPARITY REGRESSION MODULE

The input of the disparity regression module is C’, and the out-
put is the disparity map. Specifically, we firstly use a stacked
hourglass structure which is shown in Figure 7. Stacked
hourglass network was proposed by Newell et al [35], which
can achieve better mixing of global and local information
through constant downsampling and upsampling operations.
In this paper, the hourglass block is shown in Figure §, and the
specific convolution settings of stacked hourglass structure
are shown in Table 1. From this table,we can see that the
first two convolution layers are used to downsample the cost
volume, each layer contains two 3D convolution layers with
stride of 2 and stride of 1. Then two deconvolution layers are
employed to restore the cost volume to its original size of
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FIGURE 7. The stacked hourglass structure of 3D convolution.
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FIGURE 8. Hourglass block.

TABLE 1. Parameters of stacked hourglass structure. Downsampling is
performed by 3Dhg1_1, 3Dhg1_2, 3Dhg2_1, 3Dhg2_2, 3Dhg3_1, 3Dhg3_2.
H=lHw=1w,p = %D,,,ax and C = 32 represent the dimensions
of the output tensor. [3 x 3 x 3, C] x 2 represents two 3D convolutions
with 3 x 3 x 3 convolution kernel, and C represents the channel of the
convolution output.

Name Layer setting Output dimension
3DConv0 | [3x 3 x 3,C] x 2 H xW xD xC
3DConvl | [3x3x3,C] x 2 H xW xD xC
3Dhgl_1 | [3x3x3,20] x 2 1H x 1w’ x 1D  x20
3Dhgl_2 | [3x 3 x3,20] x 2 LH < lw' < 1p" x 20
3Dhgl_3 | [deconw3 x 3x 3,2C] | 1H xlw' x 1D x2C
3Dhgl_4 | [deconv3 x 3 x3,C] | H xW xD xC
3Dhg2_1 | [3x 3 x3,2C0] x 2 1H x 1w x 1D x20
3Dhg2 2 | [3x 3 x3,2C] x 2 1H < Iw' x1p" x20
3Dhg2 3 | [deconw3 x 3x 3,2C] | 1H x 1w’ x 1D x2C
3Dhg2_4 | [deconv3 x 3 x3,C] | H xW xD xC
3Dhg3_1 | [3x3x3,2C] x 2 TH x W’ x 1D x2C
3Dhg3_2 | [3x3x3,2C] x 2 1H x 1w’ x 1p"x2C
3Dhg3_3 | [deconw3 x 3x3,2C] | 1H x 1w’ x1D" x2cC
3Dhg3_4 | [deconv3 x3x3,C] | H xW xD xC

H' x W x D' x 2C. Note that a skip connection is added to
the upsampling process in order to keep as much information
as possible in the middle layers.

The output of each hourglass block changes the dimension
of cost volume from H' x W x D' x 2Cto H x W X Dyax
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after two 3D convolutions and upsampling operations, which
is noted as Cregression- We will use the regression method
to build disparity map. Specifically, the predicted disparity
is calculated by using the softmax operation o (-) with the
following equation

Dmax
dix.y) = Z d x 0(=C(x.y.d)), )
d=0
e~ Ctyad)

_ 10
TP e "

o(=Cuy,a) =

where cAz’( x,y) denotes the predicted disparity of the pixel
located at (x, y) coordinate, and c(y,y,q) is the cost value of the
predicted disparity of d, taking the value of the component of
Cregression located at (x, y, d).

1) LOSS FUNCTION

The smoothL | loss function is considered to be more robust
to outliers compared to the Ly Norm [34]. Thus, it is used to
guide the network training with the formula

~ 1 ~
Ld,d) = > smoothL(dix.y) — dx.y), (11)
(x,)

0.5x2,
|x| — 0.5,

[x] <1

smoothL(x) = (12)

. k)
otherwise

where N denotes the total number of marked pixels, dx y)
denotes the true disparity at (x,y) coordinate, and cAl(x’y)
denotes the predicted disparity.

As shown in Figure 7 and Figure 8, while the output cg
of each hourglass block is used as the input of the next
hourglass block, we will also use it to generate a disparity
map. Therefore, in the disparity regression module, there are
two intermediate disparity maps and one final disparity map
generated, and their losses are respectively denoted as Ly, Ly
and L3. And the final loss function is generated by weighted
summation of L, L, and Lj:

3
L= aili (13)
i=1

where «; is the weight of L;.

IV. EXPERIMENTAL ANALYSIS
A. DATASET
We train and test DFL-CCA-Net on three public datasets,
Scene Flow [10], KITTI 2012 [36] and KITTI 2015 [1].
Scene Flow [10]: This dataset contains approximately
39,000 pairs of virtual images with a resolution size of
540 x 960, which are subdivided into three subsets based
on scene type: FlyingThings3D, Monkaa, and Driving. Fly-
ingThings3D contains a total of 22,872 image pairs, of which
4,370 pairs are used as a test set. Monkaa contains 8591 train-
ing image pairs. Driving mainly provides data of driving
scenes, and it contains 4392 image pairs.
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KITTI 2012 [36]: This dataset is composed of outdoor
images of static scenes and contains 389 image pairs (gray
images and color images) with a resolution of 376 x 1240,
divided into 194 training image pairs and 195 test image pairs.
Further, considering that the dataset only exposes the ground
truth of the training set, we choose to take 34 image pairs
from the training set as the validation set. Note that the color
images of KITTI 2012 are used in our work.

KTTI 2015 [1]: This dataset was acquired in a similar way
to KITTI 2012 and contains 400 pairs of color images with a
resolution size of 375 x 1241. The training set and the test set
each account for 50% of the total. Similarly, because there is
no ground truth in the test set, we further remove 20% of the
image pairs from the training set as the validation set.

B. EXPERIMENTAL CONFIGURATION

DFL-CCA-Net was trained end-to-end manner with the
Adam optimizer (81 = 0.9, 82 = 0.999) during training.
In addition, we performed color normalization on the training
set before the training starts and cropped the images to a
size of 256 x 512. The batch size was set to 12 and the
maximum disparity D, was set to 192 during training. For
the Scene Flow dataset, we trained the DFL-CCA-Net with
15 epochs and a fixed learning rate of 0.001. The trained
model was tested on the test set and the evaluation index
was taken as End-point Error (EPE). For KITTI 2015, due to
its small number of images, we chose to use the parameters
of the pre-trained model on Scene Flow as the initialization
parameters for the model training on KITTI 2015. The epoch
was set to 1000 and the learning rate was 0.001 for the first
200 epochs and then adjusted to 0.0001. For KITTI 2012,
we used the model trained on KITTI 2015 as the initialization
parameters and the training hyperparameters settings were the
same. For the models trained on the KITTI dataset, we first
compared the ablation experiments on the divided validation
set, and finally uploaded the computational results of the test
set to the KITTI website for evaluation, using a p-pixel error
percentage as the evaluation metric, where p is an integer.

1) EXPERIMENTAL ENVIRONMENT

Linux system (ubuntu 18), implemented by PyTorch 1.8.
CPU: Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz, GPU:
NVIDIA GeForce RTX 2080Ti (four).

C. ABLATION STUDY FOR DFL-CCA-NET

1) LOSS WEIGHTS

As mentioned before, the disparity regression module gen-
erates three losses L1, Ly and L3, whose weights in the loss
function affect the final model effect. Therefore, we compare
the experimental effects of different weights on Scene Flow
to select the optimal weights.

As shown in Table 2, it can be seen that the information
contained in L and L; can effectively increase the accuracies
of the final output disparity map. When the weights of L and
Ly are increased to (0.5, 0.7), the EPE is minimum. When
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TABLE 2. Influence of weight values for losses L, L, and L5 on
validation errors. We empirically found that 0.5/0.7/1.0 yielded the best
performance.

Number Loss Weights EPE
1 (0.0, 0.0, 1.0) 0.95
2 (0.1,0.3, 1.0) 0.90
3 (0.3,0.7, 1.0) 0.83
4 (0.5,0.7, 1.0) 0.65
5 (0.7,0.9, 1.0) 0.82
6 (1.0, 1.0, 1.0) 1.06

continuing to increase the weight of L; and L, the error
will instead rise. This indicates that the output of the deep
hourglass block contains more valid information than the
output of the shallow layer, so L3z needs to be given a greater
weight.

2) ABLATION STUDY

In order to verify the effects of the introduced DFL and
CCA modules, we do ablation experiments and compare their
effects on Scene Flow dataset and KITTI dataset, respec-
tively. As shown in Table 3, when only the CCA module is
used, the EPE of the model decreases from 1.09 to 0.87 on
the Scene Flow dataset and the 3-pixel error decreases from
1.98% to 1.67% on the KITTI 2015 validation set. With
DenseASPP only, the EPE drops to 0.86 and the metric on
the KITTI validation set drops to 1.77%. When both CCA and
Dense ASPP are employed, the EPE decreased to 0.65 and the
error on the KITTI dataset decreases to 1.51%. The results
confirm our initial idea: both the DFL and CCA modules
have a significant improvement on the model effect. And
they improve the model precision from different perspectives,
with the DFL module facilitating the extraction of more
efficient features and the CCA module playing the role of cost
aggregation and makes the cost volume more informative.
Therefore, the roles of DFL and CCA modules do not overlap,
and the superposition of the two modules can make the model
achieve better results.

D. COMPARISON WITH OTHER METHODS

1) COMPARISON ON THE SCENE FLOW DATABASE

We compare the model precision with some recent works on
the Scene Flow test set, and the results are shown in Table 4.
It can be seen that DFL-CCA-Net has a significant improve-
ment in precision on the Scene Flow test set compared to the
classical working PSMNet [26], GwcNet [25], and the latest
stereo matching networks such as WaveletStereo [37] and
CAL-Net [39]. Observing the areas indicated by the arrows
and the borders in Figure 9, it can be found that the disparity
map generated by DFL-CCA-Net is significantly better than
PSMNet, especially in the repetitive texture areas and thinner
areas such as lines and columns. This visually demonstrates
the effectiveness of the DFL module and the CCA module.
In addition, from the error maps presented in Figure 9, our
proposed DFL. module and CCA module can significantly
improve the disparity prediction not only in the pathological
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TABLE 3. Ablation study to show the effectiveness of DFL module and CCA module in the DFL-CCA-Net. We computed the percentage of 3-pixel-error on

the KITTI 2015 validation set, and end-point-error on the scene flow test set.

Methods DFL [ CCA EPE (Sceneflow) [ KITTI 2015 (Val Err(%))
Baseline (PSMNet [26]) X X 1.09 1.98
VA X 0.86 1.77
Ours (DFL-CCA-Net) X Vv 0.87 1.67
4 v 0.65 1.51

(a) Left Image

(b) Ground Truth Map

(c) PSMNet (d) Ours

FIGURE 9. Visualization results on the Scene Flow test set. The images under the disparity map are the error maps, the warmer

the tone, the worse the prediction.

regions, but also in the regions where PSMNet [26] originally
predicts well.

2) COMPARISON ON THE KITTI 2015 DATABASE

After comparing the learning ability of the network on Scene
Flow, we fine-tuned the model on KITTI 2015 and submitted
the results to the KITTI website to evaluate the generalization
ability of the network. The results of our network testing on
KITTI 2015 are presented in Table 5, and all data are taken
from the KITTI test server. In Table 5, D1-bg, D1-fg, and D1-
all represent the 3-pixel error percentages of the background
region, foreground region, and all regions for the all pixels
(All) and non-occluded pixels (Noc), respectively. Compared
with other methods, DFL-CCA-Net achieves leading results
for disparity prediction in the background region. In addi-
tion, we qualitatively analyzed the results of DFL-CCA-Net
on the KITTI 2015 test set. As shown in Figure 10 and
Figure 11, compared to the classical deep learning method
PSMNet [26] and recent advanced method Bi3D [40] which
has a disparity optimization module specifically designed
into the network architecture, our proposed network achieves
more robust results, especially in regions containing a lot of
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TABLE 4. Comparison of DFL-CCA-Net and other stereo matching
methods on the Scene Flow dataset with EPE (endpoint error).

Methods EPE on Scene Flow
GC-Net [11] (2017) 2.51
CRL [16] (2017) 1.67
PSMNet [26] (2018) 1.09
GwcNet [25] (2019) 0.77
WaveletStereo [37] (2020) 0.84
PCR [38] (2021) 0.94
CAL-Net [39] (2021) 0.698
Ours (DFL-CCA-Net) 0.65

detailed information such as the edges of signage, poles, and
grasses as marked in the figures. From the disparity maps and
error maps in Figure 10 and Figure 11, our proposed DFL and
CCA modules can significantly reduce the prediction errors
in the background region, thus improving the accuracies of
disparity prediction.

3) COMPARISON ON THE KITTI 2012 DATABASE

The final submission results of DFL-CCA-Net after
fine-tuning on the KITTI 2012 dataset are shown in
Tables 5 and 6. The evaluation metrics are the p-pixel error
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(a) Left Image (b) PSMNet (¢) Ours

FIGURE 10. Comparison with PSMNet [26] on KITTI 2015 test set. The images under the disparity maps are the error maps, the warmer the tone,
the worse the prediction.

(a) Left Image (b) Bi3D (c) Ours

FIGURE 11. Comparison with Bi3D [40] on KITTI 2015 test set. The images under the disparity maps are the error maps, the warmer the tone, the
worse the prediction.

percentages for both all pixels (All) and non-occluded pix- the pixel test results of reflective regions. As shown in the
els (Noc). The pixels involved in the error calculation in last row of data in Tables 5 and 6, DFL-CCA-Net is also
Table 5 are the pixels of all regions, and Table 6 shows competitive on the KITTI 2012 dataset, especially reaching
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TABLE 5. Performance comparison on KITTI 2015 test set.

All (%) Noc (%) Time (s)

Methods Dl-bg Dl-fg Dl-all Dl-bg Dl-fg Dl-all

PSMNet [26] (2018) 1.86 462 232 171 431 2.14 041
GC-Net [11] (2017) 221 6.16 2.87 2.02 5.58 2.61 0.90
CRL [16] (2017) 2.48 3.59 267 232 3.12 245 0.47
DispNetC [10] (2016) 432 441 434 411 372 4.05 0.06
CFP-Net [41] (2019) 19 439 231 173 3.92 2.09 0.95
Bi3D [40] (2020) 1.95 3.48 221 1.79 311 2.01 -
DTF SENSE [42] (2021) 2.08 313 2.5 1.92 2.92 2.09 -
Ours (DFL-CCA-Net) 1.81 413 2.19 1.65 3.67 1.98 0.49

TABLE 6. Performance comparison in all regions on KITTI 2012 test set.

>2 px(%) >3 px(%) >5 px(%) Mean Error
Methods Noc All Noc All Noc All Noc All
GC-Net [11] (2017) 271 3.46 177 23 112 1.46 0.6 0.7
PSMNet [26] (2018) 2.44 3.01 1.49 1.89 0.9 115 05 0.6
SGNet [43] (2020) 222 2.89 138 1.85 0.86 115 05 0.5
HITNet [44] (2021) 2.00 2.65 1.41 1.89 0.96 129 0.4 0.5
AANet [45] (2020) 2.90 3.6 1.91 242 12 153 05 0.6
HD3Stereo [19] (2019) 2.00 2.56 1.4 18 0.94 1.19 05 0.5
BGNet+ [46] (2021) 278 335 1.62 2.03 0.9 116 05 0.6
Ours (DFL-CCA-Net) 2.5 281 1.35 1.73 0.79 1.03 05 0.5

(a) Left Image (b) PSMNet (¢) Ours

FIGURE 12. Visualization results on KITTI 2012 test set. The top are the error maps (the blacker the better) and the bottom are the disparity maps.

the lowest 3-pixel error percentage 1.35% and 5-pixel error 1.2 and 1.6 to 1.3 in non-occluded and all areas, respec-
percentage 0.79% in the non-occluded region. Compared to tively. In addition, as illustrated in the schematic regions
PSMNet, the EPE of DFL-CCA-Net decreases from 1.4 to in Figure 12, DFL-CCA-Net can also significantly improve
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TABLE 7. Performance comparison in reflective regions on KITTI 2012 test set.

>2 px(%) >3 px(%) >5 px(%) Mean Error

Methods Noc All Noc All Noc All Noc All
GC-Net [11] (2017) 16.58 19.07 10.8 12.8 6.59 7.99 1.8 2

PSMNet [26] (2018) 13.77 16.06 8.36 10.18 4.58 5.64 1.4 1.6
AANet [45] (2020) 15.89 17.87 10.51 11.97 6.25 7.02 1.7 1.8
SGNet [43] (2020) 12.32 14.7 7.02 8.89 3.72 4.74 1.4 1.5
HITNet [44] (2021) 11.85 14.02 6.07 7.78 2.78 3.74 1.2 1.3
BGNet+ [46] (2021) 11.89 14.3 6.44 8.41 3.11 433 1.2 1.4
Ours (DFL-CCA-Net) 11.97 14.16 6.16 7.82 2.76 3.66 1.2 1.3

disparity prediction precisions in strongly reflective regions [11] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy,

such as windows and roofs.

V. CONCLUSION

In this paper, we propose a new end-to-end stereo matching
network architecture, DFL-CCA-Net. DFL-CCA-Net learns
dense multi-scale semantic features by using a dense feature
learning module containing Dense ASPP, thus increasing the
perceptual field without loss of information. And before dis-
parity regression module, the compact cost aggregation mod-
ule is innovatively introduced, which can change the constant
distribution of the cost values in the cost volume components
and make the updated cost volume more informative. Com-
pared with advanced stereo matching methods, our proposed
network architecture has a significant improvement in match-
ing accuracy. Especially, the improvement effect is more
obvious in the reflective regions such as windows and roofs,
and regions containing a lot of detail information such as the
edges of objects.
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