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ABSTRACT To achieve safe and immersive interface with a user-driven treadmill (UDT), robustness of
the user position must be ensured by sensitively estimating and accurately converging to the intentional
walking speed (IWS). The existing IWS estimation using a linear observer with the cart model (1% order
dynamics) can exponentially converge to the true IWS. However, when the estimation sensitivity is increased
by increasing the gain, this method causes severe postural instability due to the generation of excessive
anomalous forces. Thus, the existing method has an implicit limitation with regards to increasing the position
robustness because of the postural instability issues. In this paper, to simultaneously achieve sensitive
and accurate IWS estimation while reducing postural instability on a UDT, in addition to the cart model,
we have also utilized the inverted pendulum-based gait model (IPGM) as a 2" order dynamic to estimate
the intentional walking acceleration (IWA) generated by the ankle torque. Thus, the proposed IWS prediction
method uses the cart model for accurate convergence to IWS and the IPGM to follow sensitively the change
in the IWS. In the proposed method, the internal states of the existing observers applied to the 15t and 2™
order dynamics are shared recursively to estimate the ankle torque acting as a disturbance for the IPGM and
to sensitively predict the change in the IWS. Experiments show that the proposed method can significantly
facilitate the users in following a profile of desired walking speeds more accurately than the existing IWS
estimation method under the same position robustness setup.

INDEX TERMS Gait dynamics, locomotion interface, user-driven treadmill, disturbance observer.

I. INTRODUCTION

Treadmills are widely utilized in virtual reality (VR) as a
representative device for locomotion interface (LI) to allow
users to participate actively in VR with realistic spatial sen-
sations [1], [2], [3]. This functionality is achieved through a
user-driven treadmill (UDT) that tracks the user’s locomotion
intention and allows the generation of unlimited level-ground
conditions without limiting the user’s motions. To ensure safe
and immersive gait interface with a UDT, the user’s position
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must be maintained in a reference position above the treadmill
belt even when their walking speed is changing arbitrarily,
and their spatial and temporal gait parameters should not
be significantly different from those during over-ground or
conventional treadmill walking [4], [5].

If the belt motion of a UDT does not sensitively follow a
user’s intentional walking speed (IWS), it causes a position
error, the excess of which can induce the user to fall down.
Thus, the main objectives of a UDT control scheme are to
ensure the position robustness by accurately estimating the
IWS, and to generate the appropriate control commands when
the user dynamically changes their walking speed [5], [6].
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A general method of configuring the UDT controller consists
of a feed-forward term for estimating the IWS and a feedback
term to compensate for the user’s position error [7], [8].
Position robustness is affected by both these terms; however,
the feed-forward term is mainly related to postural stability
(51, [6].

The user’s IWS is considered as a disturbance input for
the UDT because their walking behavior causes their posi-
tion to change. Thus, the IWS can be estimated from the
position information of the user’s center of mass (COM) [9],
[10], [11], [12]. Souman et. al. proposed an IWS estimation
scheme using a stable linear observer that converges precisely
to the steady state value of the IWS [12]. This is the represen-
tative UDT controller that can perform LI by using only the
position of the user’s COM. To design the linear observer that
works as the feedforward component in the research reported
in [12], the authors used a simple cart model as the 1% order
dynamics (velocity-level control), which can exponentially
and precisely converge to the true IWS.

However, Kim. et. al. [13] reported that, when using a large
gain for the linear observer to increase the position robustness
by sensitively converging to the IWS, a generated anomalous
force affects the user’s postural stability and increases the risk
of falling. Since the existing IWS estimator uses the 1% order
dynamics (cart model) that differ greatly from the human
walking dynamics, such as the lack of consideration for lower
limb movement, it cannot appropriately estimate the accelera-
tion or deceleration occurring in the changing IWS on a UDT.
On the contrary, the observer with a low gain setting cannot
guarantee the position robustness with respect to a reference
position due to a relatively long time constant. Therefore,
there is a limited margin to simultaneously improve the over-
all performance in terms of position robustness and postural
stability.

Among other IWS estimation methods, Yoon. et. al. pro-
posed a method that involves the maximum swing-foot veloc-
ity (MSFV) as a consideration of the bipedal motion of human
gait [5]. According to the kinematic model of the normal gait
pattern, the MSFV has a linearly proportional relationship
with the average gait speed during a single footstep. By using
the MSFV instead of the position of the COM, this method
can significantly alleviate the postural instability issue even
though it sensitively estimates the IWS, unlike the method
reported in [12]. However, this estimation method discretely
updates the IWS because it needs time to determine the
MSFV from the swing-foot velocity during one step. More-
over, since it is based on the kinematic model of a normal
gait pattern, it suffers from inaccurate prediction of the IWS
when the user is starting to walk from a standstill (i.e., from
zero to preferred speed). Thus, it is difficult to apply it to a
wide range of walking patterns and speeds.

To alleviate the limitations of the works presented in [5]
and [12], Kim. et. al. proposed a feedforward strategy called
the attenuator [13], which can keep a time required to con-
verge to the IWS by attenuating from an exponential conver-
gence rate (linear observer) to a proportional rate based on the
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MSFV method. However, while using the attenuator concept,
it may still be difficult to guarantee the position robustness
due to the reduced convergence rate when the gait speed is
changing dynamically.

Therefore, in the presented work, we have aimed to
design a walking speed prediction method that can sensi-
tively respond to changes in the IWS to increase position
robustness, while overcoming the postural instability by using
an appropriate gait dynamics model. The proposed method
involves simultaneous utilization of the existing 1% order
dynamics to guarantee the accurate IWS convergence and
the 2" order dynamics of the inverted pendulum-based gait
model (IPGM) [14], [15] to represent the movement of the
lower extremities. While the conventional method involving
the 1% order dynamics tracks the true IWS, another distur-
bance observer working with the 2" order dynamics detects
the amount of change in the IWS through the estimation of
the ankle torque.

The effectiveness of the proposed method is validated
through experimentation with 10 subjects where it is com-
pared to the existing controller reported in [12]. The experi-
ment results revealed that use of the proposed method allowed
the subjects to change their gait speed more accurately
according to cue speeds given to them as reference com-
mands, while maintaining the position robustness at the same
level as the conventional method.

Il. DESIGN OF WALKING SPEED PREDICTION METHOD
A. GAIT DYNAMICS CONSIDERING ANKLE TORQUE

The existing IWS estimation, which is based on the cart
model shown in Figure 1 [12], has the problem of gait insta-
bility that occurs when a user tries to change their walking
speed [13]. According to the research reported in [12], the
true IWS (v,,) acting as a disturbance in a UDT can be
estimated using the cart model, and it can be expressed as
follows

X| = —Ve+vy=—Vv+v, €))

where, x1 is the position of the COM, v,, denotes the true
IWS, which is considered as the disturbance of Eq. (1), and v,
and v are the control command and the current UDT velocity,
respectively. For simplicity, both these values are the same
since it is assumed that the low-level controller utilized in the
UDT can precisely follow the control command, and x; can
be represented as the position error when the desired position
(xrer) is considered to be zero (i.e., x,r = 0).

FIGURE 1. Simplified UDT dynamics based on the cart model (15 order
dynamics) represented by Eq. (1).
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FIGURE 2. Expanded UDT dynamicsggcording to the inverted pendulum
model-based gait model (2"d order dynamics) represented by Eq. (2).

When the UDT tries to follow the IWS based on the
position error (x7), it is difficult to sensitively estimate the
IWS because it may implicitly include a delay. Therefore,
additional information that can be used to quickly estimate
the change in IWS is required. To design the IWS estimator
based on the human gait dynamics [14], the cart model given
in Eq. (1) is differentiated to extend it to 2" order dynamics,
as follows

{5“ - )

Xy = —ac+ay, = —a+ay

where x; and x; represent the position and velocity of the
COM, respectively, a,, denotes the intentional walking accel-
eration (IWA) generated by the ankle torque, which is con-
sidered as the disturbance in Eq. (2), and a. is the final
control command for UDT belt acceleration (a). To consider
the human gait motion, the IWA represented as a,, can be re-
written by applying the IPGM [15], as follows:

8X1 8Px T Tank
Zc Zc mz.

3

where g is the gravitational acceleration defined as 9.81m/s?,
m is the user’s mass, T,,; represents the generated ankle
torque, and z. and p, are the height of the user’s COM and
their ankle joint position during the stance phase, respec-
tively. Since the relative position of the ankle joint (p,) and
the COM (x1) can be easily measured using an optical sensor
system, the unknown input (disturbance) of Eq. (3) is the
ankle torque (Ty,x ) related to IWA and IWS.

As shown in Figure 2, the IPGM considers the torque
generated at the ankle joint while performing the ground-
pushing motion. Thus, if the generated ankle torque (Tynx)
can be estimated using the user’s kinematic information (py,
x1) and the current speed and acceleration of the treadmill belt
(ve, ac), a more accurate IWS estimation can be achieved.

B. THE PROPOSED LI CONTROLLER

In the proposed IWS prediction method, which applies the
additional disturbance observer based on the IPGM is shown
in Figure 3. The proposed method utilizes the sum of the two
observed values to achieve accurate convergence to the IWS
(by) and fast response to the change in IWS (x). Similar
to the strategies used in previous LI research [5], [9], [12],
[13], the proposed LI controller utilizes the robust integration
of the sign of the error (RISE) controller [16] for the feedback
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FIGURE 3. The proposed LI controller with the additional disturbance
observer.

term (). This feedback control scheme helps to increase the
robustness of the position error by estimating the slowly time-
varying uncertainty of the closed-loop system.

In the existing LI method without the additional distur-
bance observer, the true IWS (v,,) is observed by the extended
state observer (ESO) [18] based on the cart model only,
as given by Eq. (1), and it directly feeds forward to the final
control command (v.), shown using the white-dashed line
in Figure 3. Therefore, according to the existing method for
designing a LI controller, the conventional control command
can be given as follows

t
Ve (1) = /O u()dr + ‘A’w_temp @

where Dy, semp 18 the value observed by the ESO based on
Eq. (1) and p is the feedback command from the RISE con-
troller. The key feature of by, s is exponential convergence
to v,, according to the property of the 1% order dynamics.

Meanwhile, to sensitively predict the change in the IWS
by estimating the generated ankle torque (7,,x) in the IPGM,
the additional disturbance observer is utilized as shown in
Figure 3 (Gray-line), and the conventional control command
represented by Eq. (4) is modified by utilizing the additional
disturbance observer as follows:

1 t
Vc(t)=/0 M(T)df+f/w+5€2=/0 p (AT +0y ot (5)

where X is the observed amount of change in the IWS, which
is computed by the 2" order dynamics represented by Eq. (2)
and (3), ¥y, is observed using the hyperbolic tangent tracking
differentiator-based nonlinear disturbance observer (HTDO)
[17] to accurately converge to the steady-state IWS with the
disturbance rejection property, and ¥y, ;o747 is the summation
of these observed values.
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In Eq. (5), x» can be detected during the swing phase,
which allow the IWS estimation within a half-step period.
This feature is similar to the concept proposed by Yoon et. al.
[5]. Thus, the IWS estimation can be updated immediately,
while the other foot (stance foot) generating the ankle torque
is still on the UDT. This can also help prevent falling on the
treadmill by quickly updating the UDT speed [18].

As shown in Figure 3, inputs of the HTDO are the
acceleration-level values given as &W_temp, and a., which are
calculated by the tracking differentiator (TD) [19] utilized
between the 1% order dynamics-based ESO and the HTDO
to obtain better signal processing results of the differentia-
tion than the finite difference methods. TD works well for
practical engineering problems because it can extract the
continuously filtered signal and its differential value from
randomly noisy or discontinuous signal data [18]. In this
paper, the nonlinear TD constructed using the hyperbolic
tangent (HT) nonlinear function-based TD (HTTD) is utilized
as follows: [20]

=2 ©)
z = —p* [mi tanh (21 = Zinpur) + ma tanh (22/p) ]

where, p, m; and my are positive design parameters, Zippu 1S
the input value that requires signal processing, z; is the output
value after signal processing, and z; is a state representing the
differential value of z;. Moreover, the HTTD is also applied
to the motion capture system to reduce the random noise in
the measured position of the COM (x1) and the ankle joint
position (py), as shown in Figure 3.

In this paper, to properly estimate the ankle torque (7gnk ),
the cart model with exponential convergence property is
also used to estimate the IWS precisely and sensitively.
By applying the additional disturbance observer to the exist-
ing method, the proposed method helps to increase position
robustness while mitigating the postural instability.

C. DESIGN OF AN OBSERVER FOR ESTIMATING THE
AMOUNT OF CHANGE IN IWS (X3)

In the IPGM shown in Figure 2, IWA (a,,) is generated by
Tank in Eq. (3). Thus, the ESO is utilized to estimate the ankle
torque in real time as follows

2= —Bif (a1, &) +F, =i —x
X gx1  &p
X = —pof (6,02, 8) + T — 2=
e e (7

X3
+ Z_ + dcomp | — ac

-C

);C3 = —Bf (6,03, 8) = Typi/m

where, B1, B2, B3, @1, a2, @3 and & are the gain parameters
of the ESO. ¢ is an error value, which is computed based
on the user position (x1) and the state, x;, of the ESO. x;
is the observed value of the user position. X, which is the
value to be used as the control input, represents the amount
of change in the IWS due to the estimated disturbance (ankle
torque) represented as X3, Acomp 18 the estimated disturbance
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value predicted by the other observer to compensate for the
uncertainties generated by the estimation error in x3.
In Eq. (7), f is a nonlinear gain function about ¢, given as

€
lel < &

Sl—a’
le]“ sgn(e), el > &,

f(&‘,a,%‘): 050[51, $>0

®)

If « is set to 1, this ESO becomes the Luenberger observer
(Linear observer) because the output of the nonlinear gain
function becomes identical to the input error (¢). On the other
hand, it takes the form of a sliding mode observer when « is
set to 0. Thus, if the value of « is increasing, the ESO is at a
sensitive setting. Under o = 0, the maximum value of f (¢,
0, &) defined by the sliding mode observer mode is just 1.
When 0 < « < 1, the function f has the characteristic that the
smaller the error, the relatively greater is the output and the
larger the error, the smaller is the output.

To stably converge to the unknown input of the IPGM given
by x3, the error dynamics (Edy) is derived from Eq. (2), (3)
and (7) as follows

—B1 1

0 ~
) g 4] 0
Edy =|==-8 0 1 e |+ 1 (acomp - a,;)
Z
¢ e3 0
—B3 0 O
A + B (duomp — a0) ©)

where, ¢1, ¢, and e3 are states of the error dynamics obtained
by subtracting Eq. (2) and (3) from Eq. (7) (i.e., 1 = x| —
X] =&, ey = X — X2, €3 = X3 — x3). It should be noted that,
since f is working as only a nonlinear gain with respect to ¢,
Eq. (9) is calculated by replacing e; with f (e, a, &) for the
simplified stability analysis [21]. Thus, the solution of Eq. (9)
is computed as

t
Egy (1) =eMEg (0)4-¢A / ¢ A" B (acomp — ac)dt  (10)
0

To find the bounded condition of Eq. (10) for any time (¢), A
in the error dynamics should be Hurwitz. Assuming that acomp
is bounded and z. is closed, the gain satisfying the Hurwitz
condition is given as

Br— B3 > 9.81/z (11)

To correspond to a height of the COM, which is different for
each person, the gain should be set as 8> > 3.

For immersive LI, the gain should be set to match the gen-
erated ankle torque during real human walking by adjusting
the gain parameters of the ESO (x; — x(¢) and X3 —
Tank/m). In research on gait analysis [22][23], the maximum
ankle torque (Nm) per body weight (kg) in the normal walk-
ing speed range (1.25~2 m/s) is known to be approximately
1.3 to 2 Nm/kg. Thus, the gains were set as; 1 = 10, §; =
360, B3 =290, a1 = 0.4, xx = 0.4, 23 = 0.25 and £ = 0.001,
so that X3 converges to the ankle joint torque trends suggested
in the existing gait research. Moreover, the stability is also
satisfied for the height of COM just above 0.14m
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D. DESIGN OF AN OBSERVER FOR CONVERGING TO THE
ACCURATE IWS (i)

Through gain tuning, X3 was suggested to estimate the ankle
torque, which causes the IWS change (x;). However, it is
difficult to predict X, accurately, since the estimated ankle
torque (X3) is highly gain-dependent, and the available infor-
mation is too limited to determine it correctly. Therefore,
acomp, mentioned in the previous section, needs to be applied
to compensate for this inaccuracy.

Similar to the design method used for the observer reported
in the previous research [12], which uses the cart model
shown in Figure 1, the ESO based on the 1% order dynamics
given by Eq. (1) is designed as follows
Xa= _Vc_ﬁw_temp — Baif (eq, @a1, &q) A A
A Eq = Xg—X1
{ Vw_temp = —Baof (64> %a2, &a),

(12)

where Bu1, Ba2, ®al, g2 and &, are the positive control
parameters, &, is the error in the observed values between
%1 from the 2" order dynamics-based ESO of Eq. (7) and its
state, x4, of Eq. (12), and D,,_remp represents the observed IWS
based on the 1% order dynamics. To identify a user’s intention
quickly so that Dy, emp — vy, this ESO is sensitively setup
with a high sensitivity for the observed user position obtained
from Eq. (7).

For the stability analysis of this ESO, the characteristic
equation, Eyy g, of the error dynamics is computed as follows

1
52 + Ba1s + Ba2

Thus, the 1% order dynamics-based ESO can be stable when
all poles are in the left-half plane. Furthermore, to quickly
converge to a user’s steady state IWS, the conditions for
exponential convergence to IWS are as follows

—Bat £/B2 — 4B <0, B > 4B (14)

Therefore, the gains of the ESO are set as; 8,1 = 40, By =
300, g1 = 0.4, ag2 = 0.4 and &, = 0.001. With the Dy, _remp
from Eq. (12), acomp in Eq. (7) is estimated by the HTDO as
follows [19]

Edy_a (S) = (13)

{\/w = —a.+ (aw_temp + acomp)
acomp = —p2 [mz1 tanh (B — Dy_remp) (15)
+ my, tanh (acomp/ :Oz)]

where, p,, m;1 and my, are positive design parameters, a,,_remp
is computed using the Vy,_semp predicted by Eq. (12), and ¥,
is the accurate IWS compensated by acomp, which is used as
the control input for vy, s in Eq. (5).

For the stability analysis of HTDO, it satisfies the conver-
gence condition as follows [24]

Pz7>00

T
lim [P (1) = Do_temp ()|dt = 0 (anyT > 0)  (16)
0
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When p, — o0, the stability analysis can be obtained as
follows

|dcomp| = ‘_;0? [mzl tanh (f)w - ‘,}w_temp)
o+ tanh (acomp/p2)] | (17)

Which means that the variation in @comp is much faster than
-dc + a,. This can be clarified by the following equations.

d (_ac + (&w_temp + acomp))

pz—>00 A dt comp (18)
lim —ac + (aw_temp + acomp) _ Acomp
pz—>00 Pz Pz

w9

Thus, when we regard “—a. + (&W_,emp + acomp)” as “vy,”’,
it is clear that Eq. (15) and Eq. (16) are established by
the theorem reported in [25]. It should be noted that, in an
actual system, —a, is bounded due to the physical limita-
tions. Therefore, it is reasonable to assume that acopp is
estimated much faster than &w_,emp — ac. Moreover, dcomp
must be bounded because &w_tem,, is bounded by the 1% order
dynamics-based ESO and the HTTD. Finally, the parameters
of the HTDO are set as; p, = 10, m;; = 1 and mp» = 6.

To briefly explain the proposed IWS prediction method
shown in Figure 4, the HTDO calculates the compensated
IWS (¥,), and for an accurate IWA, it estimates the com-
pensation value as dcomp Which is the convergence error in
the IWS calculated by the previous final control command
(ac) and the predicted TWA (ay_semp) based on the 1%t order
dynamics. Next, the ESO based on the IPGM computes the
amount of change in IWS (%), and supplies X; to the ESO
based on the cart model with improved accuracy achieved by
using acomp. Again, in the cart model based ESO, the temporal
IWS (Py_remp) is re-estimated by the predicted user location
update (X1), and the temporal predicted IWS (Py_renp) is
supplied to the HTDO to recursively improve the accuracy of
IWS estimation. Thus, it helps to converge to more accurate
IWS and T,,x/m values.

1st order 2nd order Dy
y | dynamics- |g | dynamics-based X,
—%) based ESO |- ESO
Eq. (12) Eq. (7) —a.
acompT -7?2
aw_temp HTDO _9
a, ———— Eq. (15) " |Vw_total

FIGURE 4. Flow chart to illustrate the relationship between each
observer’s input and output values.

E. FEEDBACK CONTROL

The primary objective of the feedback controller is to gen-
erate a control command to set the position of the user at
a desired location. For this purpose, the feedback controller
needs to be designed as shown in Figure 5 (See also Figure 3).
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FIGURE 5. The feedback controller utilized in this work.

This controller utilizes the RISE controller given by [26]

ER = X1 + a1X]
t

= G+ 1) (er) + /O [oa (ks + 1) g + Psgn (er)] do
(19)

where kg, @1, oo and B are adjustable positive control gains,
and sgn(-) denotes the standard signum function. Now, when
the error signal between the final control command (v.) and
the current belt speed (v) is defined as ¢ = v-v,, the final
control command using Eq. (4) and (19) and the 1% order
dynamics given in Eq. (1) is derived as follows [9]
Ve = Vy + kg /
0

t t

q (r)dr + (ks + 1)052/ epdr
0

t
+ﬂ/ sgn (eg)dr, (20)
0

where, k, is an adjustable control gain. The controller defined
in Eq. (20) renders the closed-loop dynamic as § = —kagq
to compensate the error in the velocity command sent to the
low-level controller (i.e., the servo system for actuating the
treadmill belt), which demonstrates exponential convergence
of g to zero. Thus, in this paper, it is assumed for simplicity
that v, and v are equal. The gain settings of the feedback
controller are; k, = 1, k; = 0.3, o1 = 0.01, o = 0.01 and
B =0.001.

For safety purposes, the control command (v,) is applied
to the saturation block eliminating oscillation, which is set to
0~4m/s. Thus, it does not generate the control command to
move the user in the forward direction when they are posi-
tioned behind the reference location after they stop walking.
The stability issue caused by the applied saturation is elimi-
nated by a supervisory algorithm that initializes the integral
term of the RISE controller when the user stays behind the
reference position [9].

F. SIMULATION TO VERIFY THE PROPOSED METHOD

For intuitively understanding how the proposed IWS predic-
tion method is working, a simulation was performed using
the general walking speed and movement of the ankle joint.
Since the proposed method uses the ankle joint position (py),
it is necessary to simulate proper human gait kinematics. The
research reported in [5] shows that the ankle joint positions
of both the lower limbs can be considered as sinusoidal
functions with opposite phases. When walking at a normal
gait speed of about 1.4 m/s, the gait frequency and step length
(magnitude of the sinusoidal function) can be modelled as
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FIGURE 6. Simulation results, (a) Results for each observer, (b) Estimated
ankle torque (X3), (c) IWA compensation by acomp in the HTDO.

about 2Hz and 0.73 m [27], respectively. Thus, when the
given IWS is set to 1.4m/s, the ankle position, ppesm, of both
the lower limbs is updated as follows:

x1 + 0.73sin (4rt)
Dboth = 2D

x1 + 0.73sin <4nt + 1/4)

where ¢ is the simulation time. It should be noted that py is
selected from pp,y, as the ankle joint position of the lower
extremity that is in the stance phase. During the double
support phase of gait, this is calculated as the average of the
positions of the two ankle joints, and this value is almost
equal to the position of the COM. To perform the simulation
as close to the implemented system as possible, the random
noise of the motion capture camera was included in the
simulation in the range of 21 mm. The loop frequency of the
motion capture was set to 100Hz, and that of the controller
was set to 1kHz.

In the simulation result shown in Figure 6(a), the given
IWS (vy) is 1.4m/s and the applied time constant is 0.1s.
The 1% order dynamics-based ESO converges quickly to the
IWS but is affected by the oscillatory movement of the ankle
position, while ,, stably converges to the steady state IWS
with noise rejection.

Meanwhile, By using the estimated T ,x/m, as shown
in Figure 6(b), X, can sensitively respond to the amount
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of change in the IWS and is reduced when the IWS goes
to a steady state. In Figure 6(b), during the acceleration
period, Tnx /m has a magnitude of 2.6 Nm/kg, approximately.
Whereas, during the steady state of IWS, a magnitude of
1.3 Nm/kg is generated through the set gains. In human gait,
a walking speed offset of approximately 0.25 m/s occurs at
normal gait speed when a torque is generated at the ankle joint
during the stance phase [5]. This trend is also observed in the
proposed IWS estimator, as shown in Figure 6(a). Thus, the
proposed scheme can interface with the users through control
commands in a way that is closer to the real gait model than
the observer based on the cart model only.

In Figure 6(c), ay,_temp, Which is estimated by the 1% order
dynamics-based ESO, has a relatively large difference from
the true acceleration, given as a,,. However, due to the use of
acomp, this difference tends to be compensated compared to
using only @, temp, and this compensated acceleration helps
in achieving a fast response to X, because Eq. (7) becomes
more sensitive to the change in IWS.

ill. METHOD

A. EXPERIMENTAL SETUP

Experiments were conducted to evaluate the performance of
the proposed IWS prediction method compared to the existing
controller. For conducting the experiment, we built the UDT
system shown in Figure 7, the specifications of which are
summarized in Table 1. The reduction ratio between the
servomotor and the pulley attached to the drum driving the
treadmill belt is 3.57. The utilized servo and PCI-type PLC
are manufactured by YASKAWA, and their model names
are SGM7G-20A and MP3100, respectively. The system can
reach a maximum belt speed of 4.4 m/s when the servo is run
at its rated maximum rotation speed of 3000 RPM. However,
we limited the maximum rotation speed of the servo to 80%
of the rated speed to maintain a performance margin. Thus,

| High-level ~ Motor control S5t
| [control PC  PC with PCI- y W
Motion

| :‘\A type PLC
e %

L@ Aswitch sole
Emmwith marke

FIGURE 7. Experimental setup showing the PC used for executing the LI,
marker locations, switch sole details, treadmill size and the used
servomotor.
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TABLE 1. Specifications of the UDT used in the experiment.

Motor Drum Servo Drum Max.
power pulley dia. pulley dia. dia. Belt speed
Spec. 1.8kW  150mm 42mm 100mm  3.5m/s

the maximum belt speed of the developed UDT is 3.5 m/s.
The user’s pelvic and foot motions during treadmill walking
were captured by the motion capture system (VICON) and
used to measure x; and p, with a sampling rate of 100 Hz.
The markers for tracking the position of COM were placed
on the posterior superior iliac spines. Considering the user’s
convenience and safety, these spinal markers were attached
to the harness. The markers for tracking the ankles were
attached to the switch soles that are specially designed soles
installed in the user’s ankle joint (see Figure 7). The switch
soles have a movable joint so that they do not interfere with
the movement of the user’s ankle joint. The switches are
active when the lower extremity that they are attached to is in
the stance phase and deactivated during swing phase. During
double support phase, p, is computed as the average value of
both the ankle positions, same as the simulation performed
above.

If the user performs a run, the double support phase occurs
in the air. Thus, the switch sole signals of both the lower
extremities become temporarily off. At this time, since the
position of the ankle joint of the lower extremity where the
propulsive force is generated is located behind the ankle
joint where the braking force and switch sole signals will be
activated, py is decided to be the ankle joint having the smaller
position value.

The hardware connection configuration is shown in
Figure 8. The software running on each PC are executed in
real-time with a 1kHz loop frequency, and real-time syn-
chronization is realized by connecting the PCs through direct
connected TCP/IP communication. The motion capture PC
interfaces with the switch signals from the switch soles, and
it measures the user’s COM (x1) and ankle joint position (py)
via VICON. The measured information is transmitted to the
high-level PC, and the control command (v.) is generated.
The low-level PC and the high-level PC transmit the current
treadmill belt speed (v) and control command (v.) to each
other in real time. The PCI-type PLC installed in the low-
level PC is connected to the servo amplifier via Mechatrolink,
which is an open field network used to simplify system
configuration while ensuring synchronization [27]. The loop
frequency of the PLC used is guaranteed to be 10kHz, there-
fore, it can stably execute the calculated control command
(v¢) given by the high-level control PC.

B. EXPERIMENTAL PROTOCOL

To obtain objective performance results, all the participants
were given the same walking speed profile, and it was
observed that how closely they were able to follow the given
profile. The desired speed profile was provided visually to
the participants through the graphic shown in Figure 9 (left),
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FIGURE 8. System configuration used for executing locomotion interface
using the proposed IWS prediction method.
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FIGURE 9. Visual display of the cue speed and current speed feedback
(left), and the desired speed profile (right).

which was displayed on a monitor screen placed in front of
them. The green indicator shows the cue speed consisted of
the desired speed profile to a user, as shown in Figure 9
(right), while the red indicator shows the current treadmill
speed (v), and the participants’ task was to match the positions
of both these indicators. To avoid excessive accelerations and
to guarantee safety on the UDT, the acceleration and speed of
the desired speed profile were limited to 1 m/s> and 1.5 m/s
by applying a 1 second time constant to the step function.
The profile indicating the cue speed starts at 0 m/s and then
sequentially changed to 1 m/s, 1.5 m/s, 1 m/s and finally back
to 0 m/s in 8 second intervals. Before the measured trials,
the subjects practiced adjusting their walking according to the
cue speeds 2-3 times. The same speed profile was tested under
the two estimators (i.e., the research reported in [12] and the
proposed method) in a randomized order.

For a fair comparison, the performance is considered to be
equivalent if the same amount of position error exists when
an arbitrary step input of the IWS is given to the existing and
the proposed controller. The feedback controller used with
both estimators had the same gain settings, while the gain of
the linear observer was set to 6 through simulation. 10 young
and healthy volunteers (5 men, 5 women) with ages ranging
from 25 to 32 years (27.6 = 7.0) and height 162-172 cm
(167.2 £ 4.8), participated in this experiment. The exper-
iments were conducted at room 202-1 of Dasan building,
Gwangju Institute of Science and Technology (Gwangju,
Republic of Korea), following the principles of the Decla-
ration of Helsinki. The study protocol was approved by the
Institutional Review Board of Gwangju Institute of Science
and Technology (20210217-HR-59-06-04). Only the volun-
teers who had not experienced any musculoskeletal disease or
injury in the past were included in the study. All participants
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provided written informed consent prior to inclusion in the
study.

C. DATA ANALYSIS

From the collected data, the root mean square (RMS) of the
error between the cue speed and the treadmill belt speed and
RMS of error in user position are computed, respectively.
Furthermore, to compare the gait pattern changes due to
the existing and the proposed controllers, an analysis of the
spatio-temporal gait parameters was performed on the tread-
mill, which included the total number of steps, average step
length, cadence and walk ratio. The step length is measured
when double stance is determined by the switch sole, which
represents approximately the distance between the ipsilateral
and the contralateral heel at each heel contact. The walk
ratio represents the relationship between the amplitude and
frequency of rhythmic leg movements during walking and
was calculated as the average step length divided by the
cadence [28]. Although cadence usually uses number of steps
per minute, in this paper, it is defined as the number of steps
per second since the experiment time was only 30s.

For post-experimental data analysis, a one-way repeated
measures analysis of variance (RMANOVA) was performed
to study the effects of the proposed controller under the
various speed changes on the RMS of the error between the
cue speed and the treadmill belt speed, RMS of the error in
user position, total number of steps, average step length and
walk ratio. Mauchly’s test of Sphericity was used to confirm
the validity of the RMANOVA results. Post hoc tests were
conducted using the Bonferroni correction method. Partial eta
squared (M,z,) was calculated as a measure of the effect size
for one-way RMANOVA. All statistical analyses were carried
out using SPSS V20.0 (IBM Corp., USA).

IV. RESULT

A. MAIN EXPERIMENTAL RESULTS

The average position error for all the participants, and its
standard deviation (STD), in the time domain is shown in
Figure 10. For synchronizing the results of each participant,
post-processing was performed by referring to the cue speed
data included in each participant’s results. The yellow-shaded
zone represents the accelerating and decelerating gait speeds.
Both the controllers have relatively large position errors when
the gait speed changes (yellow-shaded periods in Figure 10,
except at the start and end of the experiment).

Figure 11 shows the time domain experimental results in
the form of the average and STD of all the participants’
walking speeds compared to the given cue speed profile.
Analyzing both the LI controllers, the STD tends to increase
at the beginning and end of the experiment. The reason for
this large deviation in walking speeds of the participants at
the beginning and ending periods is that they experience
the incorrect speed convergence rate from the UDT, which
is exacerbated by the large gait speed changes (1.5 m/s)
during these periods as compared to the other experiment
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FIGURE 10. Time domain experimental results for the average of the
position error and its standard deviation (STD), (a) existing controller and
(b) proposed controller.
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FIGURE 11. Time domain experimental results for the walking speed of
all the participants compared to the desired velocity profile. (a) existing
controller and (b) proposed controller.

periods [11]. This incorrect estimation of the gait speed tran-
sition makes it difficult for the subject to follow the desired
speed cue, and as a result, an overshoot and undershoot are
observed when the desired speed cue is considered as the
reference input.
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FIGURE 12. Estimated X5 of one subject representing T;mp/m (Nm/kg).

However, when the user is trying to follow the desired
speed cue with the existing method, there is a large difference
in the gait speeds of the different participants. In the exper-
iment period where the gait speed cue is maintained after
accelerating or decelerating, the existing controller has more
difficulty in following the cue speed. Thus, the trend of the
STD remains larger than the proposed method.

Combining the experimental results for the cue speed fol-
lowing (command following) and the position error, the STD
of the position error of each participant in Figure 10 and
the gait speed error in Figure 11 show similar trends. That
is, both the STDs of the existing controller show relatively
larger errors and fluctuations. This is because the accuracy of
gait speed estimation was reduced due to the generation of
excessive control commands that did not match the intention
of the participants who were trying to follow the speed cues.
Thus, the current position robustness setting in the existing
method is relatively unsuitable in this situation. It means that
the IWS convergence rate should be lowered by a smaller
gain in the linear observer, which will also reduce the posi-
tion robustness. However, in the case of the presented IWS
prediction, it can follow the IWS more precisely.

Figure 12 shows the estimated ankle torque per mass of
a male participant with the speed cue. In the section at
the start of the experiment, the ankle torque per mass (X3)
showed a tendency to increase, reaching a maximum value
of 2.7 Nm/kg. In the section where the walking speed is
constant, the ankle torque shows a trend that is similar to the
simulation results (1.5 Nm/kg) and the gait analysis research
reported in [22] and [23]. When the cue for a reduction
in walking speed is given, the ankle torque also tends to
decrease, and reaches a minimum value of —2.3 Nm/kg.
Thus, the proposed IWS estimator can predict the ankle joint
torque well during the actual gait interface, similar to the
simulation result presented in Figure 6(b).

B. STATISTICAL ANALYSIS OF THE MAIN RESULT

RMS of the error between the cue speed and the treadmill
belt speed and RMS of the error in the user position for
each participant is summarized in Table 2, and results of the
one-way RMANOVA carried out to study the effects of the
proposed controller are presented in Table 3. The average
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TABLE 2. RMS results of each subject in the experiment.

RMS of the error between

the cue speed and the RMS of the error in the user

Sub. readmill belt speed (m/s?) position (m)

Existing Proposed Existing Proposed
1 0.239147 0.190509 0.074423 0.071348
2 0.253012 0.20616 0.074858 0.076273
3 0.271649 0.215792 0.0811 0.101872
4 0.197322 0.175379 0.074941 0.085744
5 0.279051 0.245003 0.110542 0.090645
6 0.361598 0.204845 0.075015 0.100718
7 0.395726 0.188536 0.075101 0.045228
8 0.298328 0.212337 0.04913 0.069047
9 0.239393 0.241394 0.049318 0.064099
10 0.253107 0.214333 0.054523 0.048635

TABLE 3. Results of one-way RMANOVA of each set of RMS data.

Parameter F p-value s
RMS of the error between the cue 1,9)
speed and the treadmill belt speed =11.545 <0.01  0.562
RMS of error in user position (1,9)=.356 0.566 0.038

0.4

*%

o
w

Cue speed following
(=] )
Y [N)

Existing method Proposed method

FIGURE 13. Mean and SD values of the RMS of the error between the cue
speed and the treadmill belt speed. Statistically significant difference is
marked based on Post-hoc pairwise comparison (xx: p < 0.01).

values of the RMS of position error with the two different
controllers are 0.0724+0.017 m and 0.075+£0.019 m, and there
is no significant difference between them. The average values
of the RMS of the error in following the cue speed were
0.279+0.057 m/s and 0.209+0.021 m/s, respectively, with
the proposed controller showing significantly lower errors (p-
value = 0.0028), as shown in Figure 13. The main reason for
the increase in the cue speed following error, as compared to
the existing controller, is that the walking speed of most of the
participants fluctuated as they tried to follow the cue speed.

C. SPATIO-TEMPORAL GAIT PARAMETERS ANALYSIS

The total number of steps, average step length and walking
ratio of all participants are summarized in Table 4, and results
of the statistical analyses of these outcomes are presented in
Table 5. The total number of steps with the existing controller
(51.2+5.8 steps) was slightly but not significantly differ-
ent from the proposed controller (49.8+4.89 steps). This
means that the existing controller only slightly increases the
cadence.
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TABLE 4. Spatio-temporal gait parameters of all participants.

Step number (No.)  Step length (m) Walking ratio
Sub. (m/step/s)
Existing  Propoesd  Existing  Propoesd  Existing  Propoesd
1 44 46 0.410 0.430 0.280 0.280
2 54 50 0.354 0.410 0.197 0.246
3 43 43 0.422 0.420 0.294 0.293
4 48 52 0.469 0.350 0.293 0.202
5 49 50 0.449 0.443 0.275 0.266
6 49 44 0.303 0.329 0.185 0.224
7 57 48 0.429 0.385 0.225 0.240
8 53 51 0.403 0.385 0.228 0.226
9 53 59 0.356 0.367 0.201 0.186
10 62 55 0.276 0.349 0.133 0.190

TABLE 5. Results of one-way RMANOVA of the gait parameter outcomes.

Parameter F p-value s
Step number (1,9)=0.831 0.386 0.084
Step length (1, 9) =0.000 0.987 0.000
Walk ratio (1,9)=10.001 0.754 0.011

In case of the step length, the existing and the proposed
controller showed 0.3874+0.062 m and 0.387140.038 m,
respectively. While for the walking ratio, the outcomes were
0.231£0.053 m/step/s and 0.2354+0.036 m/step/s, respec-
tively. There was also no significant difference in any of
the spatio-temporal gait parameters. Thus, the overall results
suggest that the proposed controller has relatively better per-
formance in following the IWS and it does not change the
user’s gait pattern. Moreover, after the experiment, we asked
each participant about their feelings or opinions about both
the controllers. All the participants were of the opinion that it
was easier to follow the speed cues with the LI controller that
utilized the proposed IWS prediction method. This perception
is supported by the result obtained from the quantitative data.

V. CONCLUSION

In this paper, we proposed an IWS estimator that uses the
position information of the ankle joint and the COM of the
subject, which is more accurate and sensitive than the con-
ventional method. The acceleration/deceleration generated
during walking is set as the disturbance of the UDT system,
and the torque generated at the ankle joint, which is the cause
of this disturbance, is accurately predicted by the proposed
observer scheme to quickly respond to the IWA by using the
1% and 2" order dynamics that represent the UDT-human
dynamics. Results from the experiments with 10 participants
show that, as compared to the previously developed method,
the proposed controller has significantly better performance
in following the user’s IWS, while maintaining the same level
of position robustness and having no significant effect on
their gait pattern.
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